Annales de l'institut Fourier

JEAN-CLAUDE THOMAS

Rational homotopy of Serre fibrations

Annales de l'institut Fourier, tome 31, nº 3 (1981), p. 71-90

http://www.numdam.org/item?id=AIF 1981 31 3 71 0>

© Annales de l'institut Fourier, 1981, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

RATIONAL HOMOTOPY OF SERRE FIBRATIONS

par Jean-Claude THOMAS

1. Preliminaries.

In this paper we adopt the terminology of [8] and [9].

Let A denote the Sullivan functor [16] from topological path connected spaces with base point to commutative graded differential augmented algebras over a field **k** of characteristic zero:

$$A: Top \longrightarrow C.G.D.A.$$

To each sequence of base point perserving continuous maps, in particular to each Serre fibration,

(*)
$$F \xrightarrow{j} E \xrightarrow{\Pi} M$$

D. Sullivan [16] associated a commutative diagram (in C.G.D.A.)

$$(A(M), d_{M}) \xrightarrow{A(\pi)} (A(E), d_{E}) \xrightarrow{A(f)} (A(F), d_{F})$$

$$(D) \qquad \uparrow \qquad \qquad \downarrow \qquad$$

where:

- •) ΛX is the free c.g.a over the graded space $X = \bigoplus_{i>0} X^i$ and $m^*: H(B, d_B) \longrightarrow H(A(M), d_M) (\cong H(M, k))$ is an isomorphism.
- $\bullet \bullet$) $\iota(b) = b \otimes 1$, $\rho = \epsilon_{\rm B} \otimes {\rm Id}_{\Lambda {\rm X}}$, where $\epsilon_{\rm B}$ is the augmentation of B.
 - •••) ϕ^* : H(B \otimes Λ X, d) \longrightarrow H(A(E), d_E) is an isomorphism.
- •v) There exists an homogeneous basis $(e_{\alpha})_{\alpha \in K}$ of X indexed by a well ordered set K such that

$$d(1 \otimes e_{\alpha}) \in \mathbb{B} \otimes \Lambda(\mathbb{X}_{<\alpha})$$

where we denote by $X_{<\alpha}$ the graded vector space generated by the e_{β} with $\beta < \alpha$.

The sequence

$$\mathscr{E}: (B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, \overline{d})$$

is called a K.S-extension ([8]), the pair (\mathscr{E}, ϕ) a KS-model of the sequence (*), $(e_{\alpha})_{\alpha \in K}$ a KS-basis.

If there exists a K.S basis such that

$$(e_{\alpha} \in X^{i}, e_{\beta} \in X^{j}, i < j) \Longrightarrow (\alpha < \beta)$$

for all α and β in K and all degrees i and j, the K.S-extension \mathscr{E} (resp. the K.S-model (\mathscr{E}, ϕ)) is called *minimal*.

When, in the diagram (D), $\overline{\phi}$ induces an isomorphism $\overline{\phi}^*$ between cohomologies, the sequence (*) is called *rational fibration*.

When the base M of (*) is a point, then $((\Lambda X, d), \Phi)$ is a K.S-model of E = F (resp. $((\Lambda X, d), \phi)$) is a minimal K.S model of E = F if $\mathscr E$ is minimal).

For all rational fibration (*), with base M, if (\mathscr{E}, ϕ) is a minimal K.S model of (*) then $((\Lambda X, \overline{d}), \overline{\phi})$ is minimal K.S model of the fiber F.

Theorem 20.3 of [8] asserts that rational fibrations include Serre fibrations of path connected spaces when one of $H^*(M, k)$ or $H^*(F, k)$ is a graded space of finite type and $\Pi_1(M)$ acts nilpotently in each $H^p(F, k)$.

It can be easily deduced from definitions that if M, E, F are nilpotent spaces with $H(M\,,\,\mathbf{Q})\,$, $H(E\,,\,\mathbf{Q})\,$, $H(F\,,\,\mathbf{Q})$ graded spaces of finite type then (*) is a rational fibration if and only the rationalized sequence

$$(**) F_{\mathbf{Q}} \xrightarrow{j_{\mathbf{Q}}} E_{\mathbf{Q}} \xrightarrow{\Pi_{\mathbf{Q}}} M_{\mathbf{Q}}$$

is a rational fibration.

If $((\Lambda X, d), \phi)$ is a K.S minimal model of the topological space M, the graded vector space $\Pi_{\psi}(M) = \bigoplus_{i \geq 1} \Pi_{\psi}^{i}(M)$ of indecomposable elements of ΛX is called the ψ -homotopy of M.

Every rational fibration have a long ψ -homotopy sequence,

$$\cdots \longrightarrow \Pi_{\psi}^{i}(\mathbf{M}) \xrightarrow{\pi^{\#}} \Pi_{\psi}^{i}(\mathbf{E}) \xrightarrow{j^{\#}} \Pi_{\psi}(\mathbf{F}) \xrightarrow{\partial^{\#}} \Pi_{\psi}^{i+1}(\mathbf{M}) \longrightarrow \cdots$$

Following [10], if dim $\Pi_{\psi}^*(M) < +\infty$, we call the Euler homotopy characteristic and the rank of the space M the integers

$$\chi_{\Pi}(\mathbf{M}) = \sum_{i=1}^{+\infty} (-1)^{i} \dim \Pi_{\psi}^{i}(\mathbf{M})$$

and

$$rk(\mathbf{M}) = \sum_{i=1}^{+\infty} \dim \Pi_{\psi}^{2i+1}(\mathbf{M}).$$

If the spaces $\Pi_{\psi}^{*}(M)$ and $H^{*}(M, k)$ are finite dimensional, M is called a space of type F ([7]).

2. Main results.

A rational fibration (*) is called *pure* if there exists a K.S-minimal model (\mathscr{E}, ϕ) such that

$$dX^{\text{even}} = 0$$
, $dX^{\text{odd}} \subset B \otimes \Lambda(X^{\text{even}})$.

In this case $(B \otimes \Lambda(X^{\text{even}}) \otimes \Lambda(X^{\text{odd}}), d)$ is a Koszul complex [12] and from [5] when k = R, and [17] for k = Q, we have:

THEOREM 1. — If G is a compact connected Lie group and H a closed connected subgroup, then every fibre bundle with standard fiber G/H, associated to a G-principal bundle via the standard action of G on G/H is a pure fibration.

In this paper we prove the following results.

Theorem 2. – For any rational fibration such that the fibre F is a space of type F with $\chi_{\pi}(F) = 0$ the following assertions are equivalent:

- i) (*) is totally non cohomologeous to zero (T.N.C.Z)
- ii) (*) is a pure fibration.

Recall that (*) is called T.N.C.Z if $j^* : H^*(F, \mathbf{Q}) \longrightarrow H^*(E, \mathbf{Q})$ is surjective, which is equivalent [15] when $H^*(F, \mathbf{Q})$ and $H^*(M, \mathbf{Q})$ are of finite type and (*) is Serre fibration, to:

iii) The Serre Spectral sequence collapses at the E_2 term $(d_r = 0 \ r \ge 2)$.

In particular the hypothesis of theorem 2 are satisfied when F is a homogeneous space G/H with rkG = rkH, for example if F is a real oriented or complex or quaternionic grassmann manifold, or F = G/T when T is a maximal torus of G or F is a finite product of such spaces. It is proved in [10] that a space M of type F has a χ_{π} zero iff $H^{\text{odd}}(M, \mathbf{Q}) = 0$.

THEOREM 3. – Every rational fibration such that the fibre F is a space of type F with $\chi_{\pi}(F)=0$ and $rk(F) \leq 2$ is a pure fibration.

This result can be applied when

$$F = S^{2n}$$
, CP^n , HP^n , $S^{2n} \times S^{2q}$, $CP^q \times HP^r$, $SP(2)/U(2)$,
 $SO(4)/U(2)$, $U(2)/U(1) \times U(1)$, $SO(5)/SO(1) \times SO(3)$,...

It is a particular case of a conjecture of S. Halperin.

Every rational fibration with fibre of type F and $\chi_{\pi}=0$ is T.N.C.Z.

COROLLARY 4. – If F is a path connected topological space of type F and $\chi_{\pi}=0$ and if G is a compact connected Lie group operating on F then the total space F_G of the fiber bundle

$$F \longrightarrow E_G \underset{G}{\times} F \longrightarrow B_G$$

associated with the operation is intrinsically formal and the Krull dimension of $H_G(F,\mathbf{Q})=H(F_G,\mathbf{Q})$ equals the rank of G.

COROLLARY 5 (compare with [2]). — There do not exist Serre fibrations (*) if one of the following conditions is satisfied:

- i) $H^{\text{even}}(E, \mathbf{Q}) = 0$.
- ii) E is a connected Lie group.
- iii) $E = S^{2n}$ except for $H^*(F, \mathbf{Q}) = H^*(S^{2n}, \mathbf{Q})$

and if F is a non contractile space of type F with $\chi_\pi(F)=0$ and $\text{rk}(F)\leqslant 2$.

From the Leray-Hirsh theorem we get, that if (*) is T.N.C.Z., then there exists a graded vector space isomorphism

$$f: H(M; \mathbf{Q}) \otimes H(F, \mathbf{Q}) \longrightarrow H(E, \mathbf{Q})$$

preserving base and fiber cohomology. When f can be chosen to be an algebra isomorphism the fibration (*) is called *cohomologically trivial* (C.T.).

When E, F, M are nilpotent spaces, with rational cohomology algebras of finite type, the rational fibration (*) is called

- (•) homotopically trivial (H.T), or
- (••) weakly homotopically trivial (W.H.T), or
- $(\bullet \bullet \bullet)$ a σ -fibration $(\sigma \cdot F)$

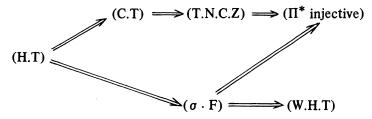
if the rational fibration (**)

- (•) is trivial or,
- (••) has a long homotopy exact sequence with a connecting homomorphism ∂[#] identically zero

$$(\Pi_{\psi}(E) = \Pi_{\psi}(M) \otimes \Pi_{\psi}(F)), \text{ or }$$

(•••) admits a section.

Naturally we have the following diagram



with all the reversed implications false. We do not know if in the general case $(C.T) \longrightarrow (W.H.T)$, but we obtain the following results. (For all fibrations $F \longrightarrow E \longrightarrow M$ the spaces are assumed to have cohomology of finite type).

PROPOSITION 6. — a) Every T.N.C.Z rational fibration with fibre F such that $H^*(F, \mathbf{k})$ is a free commutative graded algebra is H.T.

b) Every C.T rational fibration with fibre F a space of type F and $\chi_{\pi}=0$ is H.T.

PROPOSITION 7. – a) Every σ -fibration (*) such that M is ℓ -connected and $\Pi^i_{\psi}(F) = 0$ for i < r and $i \ge r + \ell$ is H.T.

b) Every rational fibration such that dim $H^*(F, \mathbf{k}) < + \infty$ and M is a coformal space [13], [14] with spherical cohomology zero in dimension 2p if $\Pi^{2p-1}_{\psi}(F) \neq 0$ is W.H.T.

3. Some examples and counter examples.

Example 1. — Even if a rational fibration (*) is pure not every KS minimal model (*) need verify

$$dX^{\text{even}} = 0$$
 and $dX^{\text{odd}} \subseteq B \otimes \Lambda(X^{\text{even}})$.

Indeed the minimal K.S-extension

$$\begin{aligned} \&: (\Lambda b_1, 0) &\stackrel{\iota}{\longrightarrow} (\Lambda b_1 \otimes \Lambda(x_2, x_3, x_4, x_7), d) &\stackrel{\rho}{\longrightarrow} (\Lambda(x_2, x_3, x_4, x_7), \overline{d}) \\ \text{with} & db_1 &= 0 \\ dx_3 &= x_2^2 & dx_7 &= x_4^2 + 2b_1 x_3 x_4 \\ dx_2 &= 0 & dx_4 &= b_1 x_2^2 \end{aligned}$$

is a K.S-minimal model of a pure fibration

(*)
$$S^2 \times S^4 \xrightarrow{j} E \xrightarrow{\Pi} S^1$$
.

Example 2. — As a particular case of pure fibration we get the notion of pure space. Evidently in a pure fibration the fiber is a pure space; the converse however is false. In [10] it is proved that a space of type F with χ_{π} zero is a pure space, but the conjecture and theorem 2 fail if we replace the hypothesis "F is a space of type F with $\chi_{\pi}(F) = 0$ " by the hypothesis "F is a pure space of type F". Indeed consider the rational fibration

$$F_{\mathbf{Q}} \xrightarrow{j} E \xrightarrow{\Pi} S^3$$

with $F = (S^2VS^4)_7 \cup e^7$ where $(S^2VS^4)_7$ is the 7^{th} Posnikov stage of the space S^2VS^4 and $\phi = [S^4, [S^2, S^2]] - [S^2[S^2, S^4]]$ defined by its K.S-minimal model

$$\begin{aligned} \mathcal{E}: & (\Lambda b_{3}, 0) \longrightarrow (\Lambda b_{3} \times \Lambda (x_{2}, x_{3}, x_{4}, x_{5}, x_{7}), d) \longrightarrow (\Lambda (x_{i}), \overline{d}) \\ & db_{3} = 0 \\ & dx_{2} = 0 \qquad dx_{4} = b_{3}x_{2} \\ & dx_{3} = x_{2}^{2}, \quad dx_{5} = x_{2}x_{4} + b_{3}x_{3}, \quad dx_{7} = x_{4}^{2} + 2b_{3}x_{5}. \end{aligned}$$

Then $\chi_{\pi}(F) = -1$ and $H^4(E, \mathbf{k}) = 0$, and (*) is neither a pure fibration nor a T.N.C.Z. fibration.

Example 3. — There exists one (unique up to rational homotopy equivalence) Serre fibration

$$(S^2VS^2)_0 \xrightarrow{j} E \xrightarrow{\pi} S^3$$

which is C.T. but not H.T., as it can be easily seen from the calculations of [11].

Example 4. — The universal fiber bundle

$$S^{2n} \longrightarrow B_{SO(2n)} \longrightarrow B_{SO(2n+1)}$$

is T.N.C.Z. and W.H.T. but not C.T.

Example 5. — Let a vector bundle

$$\eta: \mathbb{R}^{2n+1} \longrightarrow \mathbb{E} \longrightarrow \mathbb{M}$$

and $p_n(\eta)$ its n^{th} Pontryagin class, and

$$\eta_S: S^{2n} \longrightarrow E_S \longrightarrow M$$

its associated sphere bundle. Suppose that η_S is T.N.C.Z. then $p_n(\eta) = 0$ if and only if η_S is H.T.

Example 6. — If a fibration admits a section then it is a σ fibration. The converse is false indeed, consider the σ -fibration

$$S^4 \times S^3 \xrightarrow{j} E \xrightarrow{\pi} S^5$$

of orthonormal two frames on S⁵.

4. Proof of theorem 2.

A K.S-extension $\mathcal{E}: (B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, \overline{d})$ is called pure if there exists a K.S-extension

$$\mathcal{E}': (B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X', d') \xrightarrow{\rho'} (\Lambda X', \overline{d}')$$

and an isomorphism of K.S extension $(\mathrm{Id}_{\mathrm{B}}, f, \overline{f}) \& \simeq \&'$ with $d'X'^{\mathrm{even}} = 0$ and $d'X'^{\mathrm{odd}} \subseteq \mathrm{B} \otimes \Lambda(X'^{\mathrm{even}})$.

In view of proposition 1.11 of [8], theorem 2 follows from the following algebraic version.

THEOREM 2'. — Let & be a K.S-minimal extension with connected base B and dim $H(\Lambda X, d) < \infty$, dim $X^{\text{odd}} = \dim X^{\text{even}} < + \infty$ then the two assertions are equivalent:

- i) ρ* is surjective
- ii) E is pure.
- A) First suppose that $\mathscr E$ is pure then $\Lambda(X^{\text{even}})$ maps into $H(B \otimes \Lambda X, d)$ and from [7] $H(\Lambda X, \overline{d}) = \Lambda(X^{\text{even}})/\overline{d}X^{\text{odd}} \cdot \Lambda(X^{\text{even}})$ so ρ^* is surjective.
- B) The converse is in two steps. First we prove that $\mathscr E$ is isomorphic to $\mathscr E'$ with $d'X^{\text{even}}=0$ and then we show $\mathscr E'$ isomorphic to $\mathscr E''$ with $d''X^{\text{even}}=0$ and $d''X^{\text{odd}}\subset B\otimes \Lambda X^{\text{even}}$.
- B1) First step. From [10] we can suppose that \overline{d} satisfies

$$\overline{d} X^{\text{even}} = 0$$
 and $\overline{d} X^{\text{odd}} \subset \Lambda(X^{\text{even}})$.

Since ρ and ρ^* are surjective for all $x \in X^{\text{even}}$ there exists $\Phi_x \in (B \otimes \Lambda X) \cap \ker d$ such that $\rho(\Phi_x) = x$.

Then

$$\Phi_x = x + \Omega_x$$

with $\Omega_x \in B^+ \otimes \Lambda X = \ker \rho$. Let x run through a K.S-minimal basis and define a linear map $g: X \longrightarrow B \otimes \Lambda X$ by

$$g(x) = x$$
 if $x \in X^{\text{odd}}$
 $g(x) = x + \Omega_x$ if $x \in X^{\text{even}}$

g extends uniquely to a B-linear algebra isomorphism. $g: B \otimes \Lambda X \longrightarrow B \otimes \Lambda X$. It can be easily proved than g is an isomorphism.

Let $\mathscr{E}': (B, d_B) \longrightarrow (B \otimes \Lambda X, g^{-1} dg) \longrightarrow (\Lambda X, \overline{d})$ so that $(\mathrm{Id}_B, g, \mathrm{Id}_{\Lambda X})$ is an isomorphism of K.S-extensions between \mathscr{E} and \mathscr{E}' and $d'(X^{\mathrm{even}}) = g^{-1} dg(X^{\mathrm{even}}) = 0$.

B2) Second step. - Suppose & is a K.S-minimal extension such that

$$(\mathbf{H}_{\varrho}) = \begin{cases} d\mathbf{X}^{\mathsf{even}} = 0 \\ d\mathbf{X}^{\mathsf{odd}} \subseteq (\mathbf{B} \times \Lambda(\mathbf{X}^{\mathsf{even}})) \otimes (\mathbf{B}^{>\varrho} \otimes (\Lambda^{+}\mathbf{X}^{\mathsf{odd}}) \otimes \Lambda(\mathbf{X}^{\mathsf{even}})) \end{cases}$$

and let $(\hat{B}_{\varrho} \otimes \Lambda X, \hat{d})$ be the quotient c.g.d.a.

$$(B \otimes \Lambda X, d)/(B^{> \ell+1} \otimes \Lambda X, d).$$

LEMMA 1. – In $(\hat{B}_{\varrho} \otimes \Lambda X, \hat{d})$ we obtain

a)
$$(\ker \hat{d}) \cap (B^{\ell} \otimes \Lambda X) = (B^{\ell} \otimes \Lambda(X^{\text{even}})) + (d(B^{\ell} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})))$$

b)
$$(\ker \hat{d}) \cap (B^{\ell} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}}))$$

 $\subseteq \hat{d}(B^{\ell} \otimes \Lambda^{+}(X^{\text{even}}) \otimes \Lambda(X^{\text{odd}})))$

Proof. – a) One inclusion in a) is immediate, the second results from the relation $H_+(\Lambda X, \overline{d}) = 0$ where $H_i(\Lambda X, \overline{d})$ is the homology of the Koszul complex

$$\hat{d}\phi_i = (1 \otimes \overline{d})\phi_i$$
 for $\phi_i \in B^{\ell} \otimes \Lambda^i(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})$.

b) is true for the same reason.

Clearly if $\mathscr E$ satisfies the hypothesis of theorem 2' then $\mathscr E$ satisfies hypothesis (H_1) , and since X is a finite dimensional vector space, theorem 2' results from

LEMMA 2. – If & satisfies hypothesis (H_{ϱ}) there exists a minimal K.S-extension &' isomorphic to & which satisfies $(H_{\varrho+1})$.

Proof. -1) Suppose $\ell = 2\ell'$, so for each $x \in X^{\text{odd}}$, in $(\hat{B}_{\ell} \otimes \Lambda X, \hat{d})$ we have

$$\hat{d}x = \Phi_x + \sum_{s \ge 1} \phi_{x,2s}$$

with $\Phi_x \in \hat{B}_{\varrho} \otimes \Lambda(X^{\text{even}})$, $\phi_{x,2s} \in B^{\varrho} \otimes \Lambda^{2s}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})$.

From relation $\hat{d} \circ \hat{d}x = 0$ we deduce

$$\begin{split} 0 &= \hat{d}\Phi_x + \hat{d}\left(\sum_{s \geq 1} \ \Phi_{2s,x}\right) = \left(d_{\mathrm{B}} \otimes id\right)\Phi_x \ + \\ &\quad \left(id \otimes \overline{d}\right)\left(\sum_{s \geq 1} \ \Phi_{2s,x}\right) \in \mathrm{B}^{\mathrm{odd}} \otimes \Lambda \mathrm{X} \oplus \hat{\mathrm{B}}^{\mathrm{g}} \otimes \Lambda \mathrm{X} \,. \end{split}$$

Hence
$$0 = \hat{d}\Phi_x = \hat{d}\left(\sum_{s>1} \Phi_{2s,x}\right).$$

By lemma 1,
$$\hat{d}x = \Phi_x + \sum_{s>1} \hat{d}\Psi_{x,2s+1}$$

with
$$\Psi_{x,2s+1} \in B^{\varrho} \otimes \Lambda^{2s+1}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})$$
.

Thus $d\left(x - \sum_{x \ge 1} \Psi_{x,2s+1}\right) = \Phi_x + \Omega_x$ with $\Omega_x \in \mathbb{R}^{>\ell+1} \otimes \Lambda X$. The linear map $g: X \longrightarrow B \otimes \Lambda X$ defined by g(x) = x if $x \in X^{\text{even}}$ $g(x_{\alpha}) = x_{\alpha} - \sum_{s>1} \psi_{\alpha,2s+1}$ if (x_{α}) is a minimal K.S basis of X^{odd} uniquely extends to a c.g.d.a isomorphism $B \otimes \Lambda X \xrightarrow{\cong} B \otimes \Lambda X$ with $g/B = Id_B$.

Define \mathscr{E}' by $(B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X, g^{-1} dg) \xrightarrow{\iota} (\Lambda X, \overline{d})$ then \mathscr{E}' satisfies hypothesis (H_{0+1}) .

2) Suppose $\ell = 2\ell' + 1$. In the same way as in the preceding case we get a K.S minimal extension &, and an isomorphism $(\mathrm{Id}_{\mathbf{B}}, g_1, \mathrm{Id}_{\Lambda X})$ between \mathscr{E} and \mathscr{E}_1 such that,

$$\mathscr{E}_1: (B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X, d_1) \xrightarrow{\rho} (\Lambda X, \overline{d})$$

with

We put

$$B^{\ell} = K^{\ell} \oplus dB^{\ell-1}$$
 if $\ell \ge 2$
 $B^{1} = K^{1}$ if $\ell = 1$

Using only degree argument, we prove that there exists a minimal K.S-extension \mathscr{E}_2 and an isomorphism $(\mathrm{Id}_B, g_2, \mathrm{Id}_{\Lambda X})$ between \mathscr{E}_1 and \mathscr{E}_2 such that

$$\mathscr{E}_2: (B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X, d_2) \xrightarrow{\rho} (\Lambda X, \overline{d})$$

with

$$\begin{cases} d_2(x) = 0, & \text{if} \quad x \in \mathbf{X}^{\text{even}} \\ d_2(x) \in (\mathbf{B} \otimes \Lambda \mathbf{X}^{\text{even}}) \oplus (\mathbf{K}^{\ell} \otimes \Lambda^1(\mathbf{X}^{\text{odd}}) \otimes \Lambda(\mathbf{X}^{\text{even}})) \\ & \oplus (\mathbf{B}^{>\ell+1} \otimes \Lambda^+ \mathbf{X}^{\text{odd}} \otimes \Lambda \mathbf{X}^{\text{even}}), & \text{if} \quad x \in \mathbf{X}^{\text{odd}} \end{cases}$$

so that in the quotient algebra $(\hat{B}_{\varrho} \otimes \Lambda X, \hat{d}_{2})$, we write

$$\hat{d}_2 x_{\alpha} = \overline{d} x_{\alpha} + \sum_{r \ge 1} \Phi_{\alpha, 2r} + \sum_{s=1}^{\alpha-1} \phi_{\alpha, s} x_s$$

with (x_{α}) a K.S-minimal basis of \mathscr{E}_2 and $x_{\alpha} \in X^{\text{odd}}$,

$$\Phi_{\alpha,2r} \in B^{2r} \otimes \Lambda(X^{\text{even}}) \quad \phi_{\alpha,s} \in K^{\varrho} \otimes \Lambda(X^{\text{even}}).$$

From the relation $\hat{d} \circ \hat{d} x_{\alpha} = 0$ and lemma 1 we obtain for each α ,

$$d_2(x_{\alpha} - \theta_{\alpha}) = \overline{d} x_{\alpha} + \sum_{r \ge 1} \Phi_{\alpha,2n} + \Omega_{\alpha}$$

with

$$\Omega_{\alpha} \in B^{\geqslant \ell+1} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})$$
$$\theta_{\alpha} \in B^{\ell} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})$$

and so there exists a minimal K.S-extension \mathscr{E}' and an isomorphism $(\mathrm{Id}_{\mathrm{B}}, g', \mathrm{Id}_{\Lambda\mathrm{X}})$ between \mathscr{E}_2 and \mathscr{E}' such that

$$\mathscr{E}': (B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X, d') \xrightarrow{\rho} (\Lambda X, \overline{d})$$

and \mathscr{E}' satisfies H_{Q+1} . This ends the proof of lemma 2.

5. Derivations in Poincaré duality algebras and proof of theorem 3.

Let $(A, d) = (\Lambda(x_1, \ldots, x_n, y_1, \ldots, y_n), d)$ a K.S complex such that the y_i and x_j have respectively even degree $|y_i|$ and odd degree $|x_i|$ and

$$|y_1| \le |y_2| \le \dots \le |y_n|$$

$$|x_1| \le |x_2| \le \dots \le |x_n|.$$

Suppose

$$dy_i = 0 \quad i = 1, ..., n$$

$$dx_i = f_j \in \Lambda(y_1, ..., y_n) \quad j = 1, ..., n$$

then (A, d) is a pure K.S complex and from [10] if $\dim H(A, d) < +\infty$ then $H(A, d_A) = \Lambda(y_1, \ldots, y_n)/(f_1, \ldots, f_n)$ is a Poincaré duality algebra of formal dimension

$$N = |f_1| + \ldots + |f_n| - |y_1| - \ldots - |y_n|$$

(i.e.)

i)
$$H^{i}(A, d) = 0$$
 if $i > N$

ii)
$$H^{N}(A, d) = ke$$

iii) the bilinear form $\langle , \rangle : H^{P}(A, d) \times H^{N-p}(A, d) \longrightarrow k$ defined by $\langle a, b \rangle e = a.b$ is non degenerate.

Since dim $H(A, d) < +\infty$ and $H^0(A, d) = k$, one verifies immediately:

LEMMA 1. – Any derivation $\theta \in \text{Der}_{\leq 0}(H(A), d)$ satisfies $I_m \theta \cap H^0(A, d) = 0$ and hence maps $H^+(A, d)$ to itself.

We put \overline{y}_i the class of y_i in H(A,d) and we say that a derivation $\widetilde{\theta}$ of $H(A,d_A)$ is nilpotent with respect to $(\overline{y}_1,\ldots,\overline{y}_n)$ if $\widetilde{\theta}(y_i)$ is polynomial in $\overline{y}_1,\ldots,\overline{y}_{i-1}$. We denote by $\widetilde{Der}_{\leq 0}(H(A),d)$ the subspace of $Der_{\leq 0}(H(A),d)$ of such derivations.

LEMMA 2. – Any derivation $\widetilde{\theta} \in \widetilde{Der}_{0}(H(A, d))$ satisfies $\widetilde{\theta}(H^{N}(A, d)) = 0$.

Proof. – Let m_1 be the largest integer such that $\overline{y}_1^{m_1} \neq 0$ and $\overline{y}_1^{m_1+1} = 0$.

Let m_i be the largest integer such that $(\overline{y}_1^{m_1}, \ldots, \overline{y}_{i-1}^{m_i-1}) \overline{y}_i^m \neq 0$ and $(\overline{y}_1^{m_1}, \ldots, \overline{y}_{i-1}^{m_{i-1}}) \overline{y}_i^{m_{i+1}} = 0$, then we obtain an element $\Phi = \overline{y}_1^{m_1} \overline{y}_2^{m_2} \ldots \overline{y}_n^{m_n}$ such that for every $a \in H^+(A, d)$ $a \cdot \Phi = 0$.

Necessarily $|\Phi| = N$ and we may put $e = \overline{y}_1^{m_1} \dots \overline{y}_n^{m_n}$. Then $\widetilde{\theta}(e) = 0$, since $\widetilde{\theta}$ is nilpotent with respect to $(\overline{y}_1, \dots, \overline{y}_n)$. From lemmas 1 and 2 we deduce,

COROLLARY. $-If \ \widetilde{\theta} \in \widetilde{Der}_{\leq 0}(H(A, d))$ then

i)
$$\langle \widetilde{\theta}(a), b \rangle = -\langle a, \widetilde{\theta}(b) \rangle$$

ii)
$$\operatorname{Im} \widetilde{\theta} \subseteq \bigoplus_{i=1}^{N-1} \operatorname{H}^i$$
.

LEMMA 3. – If
$$\widetilde{\theta} \in \widetilde{\mathrm{Der}}_{\leq 0}(\mathrm{H}(\mathrm{A}\,,\,d))$$
 then
$$(\widetilde{\theta}(\overline{y}_1) = \widetilde{\theta}(\overline{y}_2) = \ldots = \widetilde{\theta}(\overline{y}_{n-1}) = 0) \Longrightarrow (\widetilde{\theta} \equiv 0).$$

Proof. – Suppose that $\widetilde{\theta}(\overline{y}_n) = \Phi' \neq 0$ and let

 P_1 be the largest integer such that $\Phi'\overline{y}_1^{P_1} \neq 0$ and $\Phi'\overline{y}_1^{P_1+1} = 0$

 P_i be the largest integer such that $\Phi'\overline{y}_1^{P_1} \dots \overline{y}_i^{P_i} \dots \overline{y}_i^{P_i} \neq 0$ and $\Phi'\overline{y}_1^{P_1} \dots \overline{y}_i^{P_{i+1}} = 0$.

So we obtain an element $\Psi = \Phi' \overline{y}_1^{P_1} \dots \overline{y}_n^{P_n}$ such that $\Psi \in H^N(A, d)$ and $\widetilde{\theta} \left(\frac{1}{P_n + 1} \overline{y}_1^{P_1} \dots \overline{y}_{n-1}^{P_{n-1}}, \overline{y}_n^{P_{n+1}} \right) = \Psi$ which contradicts part (ii) of the corollary above.

In particular if n = 2 since $\hat{\theta}(y_1)$ is always zero,

$$Der_{\leq 0}(H(A,d)) = 0.$$

This is what we will need to prove theorem 3.

Proof of Theorem 3.

A) Suppose dim $\Pi_{\psi}(F) = 2$ then theorem 3 is equivalent to the following.

THEOREM 3'. - Let & a K.S-minimal extension

$$(B, d_B) \xrightarrow{\iota} (B \otimes \Lambda(x, y), d) \xrightarrow{\rho} (\Lambda(x, y), \overline{d})$$

such that B is a connected algebra, dim $H((x, y), \overline{d}) < + \infty$ and |x| odd, |y| even then ρ^* is surjective.

Proof. – Since dim $H(\Lambda(x, y), \overline{d}) < + \infty$, we have $\overline{d}x = \lambda y^m$ with $\lambda \in \mathbf{k} - \{0\}$ and $m \ge 2$. Thus

$$dx = \lambda y^m + b_1 y^{m-1} + \ldots + b_m$$

with $|b_i| = i |y|$, whence

$$d\left(y+\frac{1}{m\lambda}\ b_1\right)=0$$

$$\rho\left(y + \frac{1}{m\lambda} b_1\right) = y$$

and $\rho^* : H(B \otimes \Lambda(x, y)) \longrightarrow \Lambda(y)/(y^m) = H(\Lambda X, \overline{d})$ is surjective.

B) Suppose dim $\Pi_{\psi}(F) = 4$ then theorem 3 is equivalent to the following.

THEOREM 3". - Let & a K.S-minimal extension

$$(B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, d)$$

such that B is a connected algebra, $\dim H(\Lambda X, d) < + \infty$, $\dim X^{\text{odd}} = \dim X^{\text{even}} = 2$ then & is pure.

We prove theorem 3" by induction on ℓ , in the following manner

$$H^1_{\varrho} \implies H^2_{\varrho} \implies H^3_{\varrho} \implies H^1_{\varrho+1}$$

where the hypothesis $H_{\mathfrak{Q}}^{i}$ are defined by:

$$H_{\varrho}^{1} = \begin{cases} dx \in B^{\geqslant \varrho} \otimes \Lambda X, & \text{if } x \in X^{\text{even}} \\ dx \in (B \otimes \Lambda(X^{\text{even}})) \oplus (B^{\geqslant \varrho} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})), & \text{if } x \in X^{\text{odd}} \end{cases}$$

$$H_{\varrho}^{2} = \begin{cases} dx \in (B^{\geqslant \varrho} \otimes \Lambda(X^{\text{even}})) \oplus (B^{\geqslant \varrho+1} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})), & \text{if } x \in X^{\text{even}} \end{cases}$$

$$dx \in (B \otimes \Lambda(X^{\text{even}})) \oplus (B^{\geqslant \varrho} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})), & \text{if } x \in X^{\text{odd}} \end{cases}$$

$$H_{\varrho}^{3} = \begin{cases} dx \in (B^{\geqslant \varrho} \otimes \Lambda(X^{\text{even}})) \oplus (B^{\geqslant \varrho+1} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})), & \text{if } x \in X^{\text{odd}} \end{cases}$$

$$dx \in (B \otimes \Lambda(X^{\text{even}})) \oplus (B^{\varrho} \otimes \Lambda^{1}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}}), & \text{if } x \in X^{\text{even}} \end{cases}$$

$$\oplus B^{\geqslant \varrho+1} \otimes \Lambda X), & \text{if } x \in X^{\text{odd}} \end{cases}$$

$$To \text{prove } H^{1} \Longrightarrow H^{2} \text{ and } H^{2} \Longrightarrow H^{3} \text{ we use lemma 1 of } M^{2} \Leftrightarrow M^{2} \otimes M^{$$

To prove $H^1_{\varrho} \longrightarrow H^2_{\varrho}$ and $H^2_{\varrho} \longrightarrow H^3_{\varrho}$, we use lemma 1 of IV which again follows from the relation $d \circ d = 0$.

In the case $\ell=2\ell'$ for degree reasons $H^3_{\ell}=H^1_{\ell+1}$. When $\ell=2\ell'+1$ we prove $H^3_{\ell}\Longrightarrow H^1_{\ell+1}$.

First, we can assume that

$$\begin{cases} dx \in (K^{\varrho} \otimes \Lambda(X^{\text{even}}) \oplus (B^{\geqslant \varrho+1} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})), & \text{if } x \in X^{\text{even}} \\ dx \in (B \otimes \Lambda X^{\text{even}}) \oplus (K^{\varrho} \otimes \Lambda^{1}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})) & \\ \oplus (B^{\geqslant \varrho+1} \otimes \Lambda^{+}(X^{\text{odd}}) \otimes \Lambda(X^{\text{even}})), & \text{if } x \in X^{\text{odd}} \end{cases}$$

with

$$B^{\ell} = K^{\ell} \oplus dB^{\ell-1}$$
 if $\ell > 1$
 $B^{1} = K^{1}$ if $\ell = 1$

In the quotient algebra $(\hat{B} \otimes \Lambda X, \hat{d})$ (4, B₂), we have

$$\begin{cases} dy_{i} = \psi_{i} & i = 1, 2 \\ dx_{j} = \overline{d}x_{j} + \sum_{r} \Phi_{j,2r} + \sum_{s=1}^{j-1} \phi_{j,s} x_{s} & j = 1, 2 \end{cases}$$

for a K.S-minimal basis (y_i, x_j) of X with $|y_i|$ even and $|x_j|$ odd, with

$$\begin{split} & \psi_1 \in \mathbf{K}^{\ell}, \quad \psi_2 \in \mathbf{K}^{\ell} \otimes \Lambda(y_1) \\ & \Phi_{j,2r} \in \mathbf{B}^{2r} \otimes \Lambda(y_1,y_2) \\ & \phi_{j,s} \in \mathbf{K}^{\ell} \otimes \Lambda(y_1,y_2). \end{split}$$

And from the relation $\hat{d} \circ \hat{d} = 0$ we obtain

$$\hat{d}(\overline{d}x_j) = \sum_{s=1}^{j-1} \phi_{js} dx_s.$$

Let (b_{ϵ}) a base of K^{ℓ} and put for each $\Phi \in \Lambda(y_1, y_2)$

$$\hat{d}(\Phi) = \sum_{\epsilon} \ b_{\epsilon} \otimes \theta^{\epsilon}(\Phi).$$

This defines a degree 1- ℓ derivation θ^{ϵ} on $\Lambda(y_1, y_2)$ which respects the ideal $(\overline{dx}_1, \overline{dx}_2)$. So θ^{ϵ} induces a derivation $\widetilde{\theta}^{\epsilon}$ on $\Lambda(y_1, y_2)/(\overline{dx}_1, \overline{dx}_2) = H(\Lambda X, \overline{d})$ which is nilpotent with respect to $(\overline{y}_1, \overline{y}_2)$. From our results on such derivations, $\widetilde{\theta}^{\epsilon} \equiv 0$ and necessarily

thus,
$$\begin{array}{ll} \theta^{\epsilon}(y_1) = 0 & \theta^{\epsilon}(y_2) = \overline{d}\Phi^{\epsilon} & \Phi^{\epsilon} \in \Lambda X^{\text{even}} \otimes \Lambda^1 X^{\text{odd}} \\ & \left(\hat{d}_3 \Big(y_2 + \sum_{\epsilon} b_{\epsilon} \otimes \Phi^{\epsilon}\Big) = 0 \\ \hat{d}_3(y_1) = 0 \end{array} .$$

A standard argument now ends the proof.

6. Proof of the corollaries 4 and 5.

A) Corollary 4. – Since $H^{odd}(F, \mathbf{k}) = H^{odd}(B_G, \mathbf{k}) = 0$, the Serre spectral sequence collapses at the E_2 term so that the fibration

$$(*) \quad F \longrightarrow E_G \underset{G}{\times} F \longrightarrow B_G$$

is T.N.C.Z. By [1], $H(B_G, \mathbf{Q}) = \Lambda Z$, $Z = Z^{even}$ and so $(\Lambda Z, 0)$ is the minimal model for B_G . From theorem 2 there exists a K.S.-minimal model of (*)

$$\mathscr{E}: (\Lambda Z, 0) \xrightarrow{\iota} (\Lambda Z \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, \overline{d})$$

with

$$dX^{\text{even}} = 0$$

$$dX^{\text{odd}} \subset \Lambda Z \otimes \Lambda X^{\text{even}}.$$

So we have the Koszul complex,

$$\longrightarrow \Lambda(Z \oplus X^{\text{even}}) \otimes \Lambda^{i+1}(X^{\text{odd}}) \xrightarrow{d} \Lambda(Z \oplus X^{\text{even}}) \otimes \Lambda^{i}X^{\text{odd}}$$
$$\xrightarrow{d} \Lambda(Z \oplus X^{\text{even}}) \otimes \Lambda^{i-1}X^{\text{odd}} \longrightarrow$$

and we easily verify that $H_+(\Lambda(Z \oplus X), d) = 0$. Thus if x_i is a homogeneous basis of X^{odd} and if we put $dx_i = g_i$ then

$$H(\Lambda(Z \oplus X), d) = H_0(\Lambda(Z \oplus X), d) = \Lambda(Z \oplus X^{\text{even}})/(g_1, \dots, g_n)$$

where (g_1, \ldots, g_n) is a regular sequence of $\Lambda(Z \oplus X^{\text{even}})$. This proves directly from commutative algebra that $H(F_G, \mathbf{k})$ is a Cohen Macaulay ring of Krull dimension dim Z equal to the rank of G and minimalizing $(\Lambda(Z \oplus X), d)$ we obtain the brigaded model of $H(F_G, \mathbf{k})$ in the sense of [11]. This is two stage, and so F_G is intrinsically formal (i.e. F_G is formal and there is no space $M \not \uparrow F_G$ such that $H(F_G, \mathbf{k}) = H(M, \mathbf{k})$).

- B) COROLLARY 5. i) Since $H^{\text{even}}(F, \mathbf{k})$ and $H^{\text{even}}(E, \mathbf{k}) = 0$ the condition j^* surjective is impossible.
- ii) From the long exact sequence of ψ -homotopy we deduce that in a pure fibration we have

$$rk(\Pi_{2n}(\mathsf{F})) \leq rk(\Pi_{2n}(\mathsf{E}))$$

which is impossible if F non contractible and E a Lie group.

iii) A fibration satisfying the hypothesis is pure by Theorem 3 and hence has a K.S minimal model of the form

$$(B, d_B) \longrightarrow (B \otimes \Lambda X, d) \longrightarrow (\Lambda X, \overline{d})$$

with

$$dX^{\text{even}} = 0$$
 $\dim X^{\text{even}} = \dim X^{\text{odd}}$
 $dX^{\text{odd}} = B \otimes \Lambda X^{\text{even}}$

Necessarily dim $X^{\text{even}} = 1$ and if we choice $x \in X^{\text{odd}} - \{0\}$ $dx = y^p + b_1 y^{p-1} + \cdots + b_p$ with $p \ge 2$, $y \in X^{\text{even}} - \{0\}$. Since j^* is surjective p = 2 then $F_{\mathbf{Q}} \sim S^{2n}$.

7. Proof of propositions 6 and 7.

Proposition 6. — The two following lemmas are easily proved and the first is well known.

LEMMA 1. — A Serre fibration (*) is T.N.C.Z. (resp. CT) if and only if there exists a graded vector space homomorphism (resp. a graded algebra homomorphism)

$$\tau: H^*(F, k) \longrightarrow H^*(E, k)$$

such that

$$j^*\tau=\mathrm{Id}_{\mathrm{H}^*(\mathrm{F},\mathbf{k})}.$$

LEMMA 2. — A rational fibration (*) is H.T. if and only if there exists a K.S-minimal model (\mathscr{E} , ϕ) and a graded differential algebra homomorphism

$$\sigma: (\Lambda X, \overline{d}) \longrightarrow (A(M) \otimes \Lambda(X), d)$$

such that

$$\rho \circ \sigma = \mathrm{Id}_{\Lambda X}$$
.

Remarks. — i) These two lemmas prove in particular that the notions of T.N.C.Z, C.T or H.T fibration are invariant by pull back.

ii) Every T.N.C.Z. Serre fibration is a rational fibration, when base or fibre has finite type.

Proof of a). – Since $H(F, k) = \Lambda X$, the fibration (*) admits a K.S-minimal model

$$\mathscr{E}: (A(M), d_M) \xrightarrow{\iota} (A(M) \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, 0)$$

with ρ^* surjective. Choose a homogeneous basis of X, $(x_{\alpha})_{\alpha}$ and for each α , an element $c_{\alpha} \in (A(M) \otimes \Lambda X) \cap \ker d$ such that $\rho^*([c_{\alpha}]) = x_{\alpha}$ so that σ in lemma 2 is defined by $\sigma(x_{\lambda}) = c_{\alpha}$.

Proof of b). — By Theorem 2 there is a K.S minimal model \mathscr{E} of (*):

$$\mathscr{E}: (B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, \overline{d})$$

with $\dim X^{\operatorname{odd}} = \dim X^{\operatorname{even}}$, $dX^{\operatorname{even}} = 0$, $dX^{\operatorname{odd}} \subset B \otimes \Lambda X^{\operatorname{even}}$. From [10], we have $H(\Lambda X, \overline{d}) = \Lambda X^{\operatorname{even}}/\overline{d}(X^{\operatorname{odd}}) \cdot (\Lambda(X^{\operatorname{even}}))$. Let τ be as in lemma 1; then for each $y \in X^{\operatorname{even}}$, there exists $\alpha_y \in (B \otimes \Lambda X) \cap \ker d$ such that

$$\tau([y]) = [\alpha_v].$$

One verifies that

$$\rho(\alpha_{\nu}) = y + \overline{d}\beta_{\nu}^{+} \quad \text{with} \quad \beta_{\nu}^{+} \in \Lambda X^{\text{even}} \otimes \Lambda^{\geqslant 1} X^{\text{odd}}.$$

Hence

$$\alpha_{\nu} = y + d\beta_{\nu}^{+} + \Omega_{\nu} \quad \text{with} \quad \Omega_{\nu} \in B^{+} \otimes \Lambda X.$$

Put

$$\sigma(y) = \alpha_{v} - d\beta_{v}^{+}$$

then

$$\rho \circ \sigma = \operatorname{Id} \mid_{\Lambda(X^{\operatorname{even}})} \quad \text{and} \quad \sigma^* = \tau.$$

On the other hand, from the formulas

$$\tau[\overline{d}x] = [\sigma(\overline{d}x)] = 0$$
 and $\rho(\sigma d\overline{d}x) = \overline{d}x$, $x \in X^{\text{odd}}$

we deduce

$$\sigma(\overline{d}x) = \overline{d}x + \Omega_x^+ = d\beta_x$$

with

$$\Omega_x^+ \in B^+ \otimes \Lambda X$$
 and $\beta_x \in B \otimes \Lambda X$.

Thus

$$\sigma(\overline{d}x) = dx + d\hat{\Omega}_x^+ .$$

with $\hat{\Omega}_x^+ \in B^+ \otimes \Lambda X$ so we put

$$\sigma(x) = x + \hat{\Omega}_x^+.$$

This defines σ as required in lemma 2.

Proposition 7. — The next lemma is straightforward.

LEMMA 3. – A rational fibration (*) is a σ -fibration (resp. W.H.T.) if and only if there exists a K.S-minimal model

$$\mathscr{E}: (B, d_B) \xrightarrow{\iota} (B \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, \overline{d})$$

with B a connected algebra (resp. with B = ΛZ the minimal model of M) such that :

$$\forall x \in X, \ dx - \overline{d}x \in B^+ \otimes \Lambda^+(X)$$

(resp.,
$$\forall x \in X$$
, $dx - \overline{d}x \in (\Lambda^+ Z \cdot \Lambda^+ Z) \oplus (\Lambda^+ Z \otimes \Lambda^+ X)$).

Proof of a). - This results directly from lemma 3.

Proof of b). — Let $(\Lambda Z, d_B)$ be a K.S-minimal model of M and $\mathscr{E}: (\Lambda Z, d_B) \xrightarrow{\iota} (\Lambda Z \otimes \Lambda X, d) \xrightarrow{\rho} (\Lambda X, \overline{d})$ a K.S-minimal

model of (*). Since M is coformal $d_B Z \subset \Lambda^2 Z$ and since dim $H(F) < + \infty$, from [6] we deduce that $\partial^{\#}(X^{even}) = 0$.

Suppose that there exists $x \in X^{\text{odd}}$ such that $\partial^{\#} x = b \neq 0$ then

$$dx = \overline{d}x + h + \Phi + \Omega$$

with

$$b \in \Lambda^1 Z$$
, $\Phi \in \Lambda^1 Z \otimes \Lambda^+ X$, $\Omega \in \Lambda^{>2} Z \otimes \Lambda X$,

We can suppose $x=e_{\alpha_0}$ where α_0 is the smallest index in a K.S-minimal basis such that $\partial^{\#}e_{\alpha}\neq 0$. A simple calculation from $d^2x=0$ and the fact that $db\in \Lambda^2 Z$ gives db=0. Hence [b] lives in the spherical cohomology of M and from our hypothesis, b is coboundary which is impossible. This proves $\partial^{\#}=0$.

I would like to take this opportunity to thank Professors S. Halperin and D. Lehmann for their helpful advice.

BIBLIOGRAPHY

- [1] A. Borel, Sur la cohomologie des espaces fibrés..., Ann. of Math., vol. 57, n° 1 (1953), 115-207.
- [2] A. BOREL and J.P. SERRE, Impossibilité de fibrer. . . C.R.A.S., (1950), 2258 et 943-945.
- [3] H.J. BAUES, J.M. LEMAIRE, Minimal model in homotopy theory, Math. Ann., 225 (1977), 219-242.
- [4] H. CARTAN, La transgression dans un groupe de Lie... Colloque de Topologie, Masson, Paris, (1951) 51-71.
- [5] W. Greub et al., Connection curvative and cohomology, Vol. III, Academic Press (1976).
- [6] Y. Felix, Classification homotopique des espaces rationnels à cohomogie fixée, *Nouveaux Mémoires de la S.M.F.*, (1980).
- [7] J.B. FRIEDLANDER and S. HALPERIN. An arithmetic Characterization of the rational homotopy groups of certain spaces, *Invent. Math.*, 53 (1979), 117-133.

- [8] S. Halperin, Lecture notes on minimal models, Preprint 111, Université de Lille I, (1977).
- [9] S. HALPERIN, Rational fibration, minimal models..., Trans of the A.M.S., vol. 244 (1978), 199-223.
- [10] S. HALPERIN, Finiteness in the minimal model of Sullivan, *Trans.* of the A.M.S., vol. 230 (1977), 173-199.
- [11] S. HALPERIN and J. STASHEFF, Obstruction to homotopy equivalences, Advances in Math., 32 (1979), 233-279.
- [12] J.L. Koszul, Homologie et cohomologie des algèbres de Lie, *Bull. S.M.F.*, 78 (1950).
- [13] J.M. LEMAIRE, "Autopsie d'un meurtre"..., Ann. Sc. E.N.S. 4^{ème} série, t. 1.1 (1978), 93-100.
- [14] J. Neisendorfer, Formal and coformal spaces, *Illinois Journal of Mathematics*, vol. 22, Number 4 (1978), 565-580.
- [15] J.P. Serre, Homologie singulière des espaces fibrés, Ann. of Math., Vol. 54 (1951), 425-505.
- [16] D. SULLIVAN, Infinitesimal computation in topology, *Publi. de l'I.H.E.S.*, n° 47 (1977).
- [17] J.C. THOMAS, Homotopie rationnelle des fibrés de Serre, Thèse Université de Lille I (1980) et C.R.A.S., n° 290 (1980), 811-813.

Mansucrit reçu le 29 décembre 1980.

Jean-Claude THOMAS, ERA au CNRS 07 590 Université des Sciences & Techniques U.E.R. de Mathématiques Pures & Appliquées B.P. 36 59650 Villeneuve d'Ascq.