MASAYUKI ITÔ

On the Green type kernels on the half space in \mathbb{R}^n

<http://www.numdam.org/item?id=AIF_1978__28_2_85_0>
ON THE GREEN TYPE KERNELS
ON THE HALF SPACE IN \mathbb{R}^n

by Masayuki ITÔ

1. Let \mathbb{R}^n be the $n(\geq 2)$-dimensional Euclidian space and D be the half space $\{x=(x_1,x_2,\ldots,x_n) \in \mathbb{R}^n; x_1 > 0\}$. For a point $x=(x_1,x_2,\ldots,x_n) \in \mathbb{R}^n$, we write

$$\bar{x} = (-x_1,x_2,\ldots,x_n) \quad \text{and} \quad |x| = \left(\sum_{j=1}^{n} x_j^2\right)^{1/2}.$$

When $n \geq 3$, we put $G_2(x,y) = |x-y|^{2-n} - |x-\bar{y}|^{2-n}$ in $D \times D$. Then G_2 is the Green kernel on D. Analogously we set, for a number α with $0 < \alpha < n$,

$$G_\alpha(x,y) = |x-y|^{2-n} - |x-\bar{y}|^{\alpha-n}$$

in $D \times D$, and we call it the Green type kernel of order α on D. The following question was proposed to me in a letter by H. L. Jackson: Does G_α also satisfy the domination principle provided that $0 < \alpha < 2$?

This paper is inspired by this question. Let $C_\varepsilon(D)$ and $C(D)$ be the usual topological vector space of real-valued continuous functions in D with compact support and the usual topological vector space of real-valued continuous functions in D, respectively. We set

$$C_\varepsilon^+(D) = \{f \in C_\varepsilon(D); f \geq 0\}$$

and $C^+(D) = \{f \in C(D); f \geq 0\}$. For a given Hunt convol-
olution kernel \times on \mathbb{R}^n, we define the linear operator

$$V_{\times} : C_c(D) \ni f \mapsto (\times \ast f - \times \ast \overline{f})_D \in C(D)$$

where \overline{f} is the reflection of f about the boundary ∂D of D and where $(\times \ast f - \times \ast \overline{f})_D$ is the restriction of $\times \ast f - \times \ast \overline{f}$ to D. If V_{\times} is positive (that is, $f \geq 0 \implies V_{\times}f \geq 0$), we say that V_{\times} is the Green type kernel associated with \times.

The purpose of this paper is to show the following two theorems.

Theorem 1. Let \times be a Hunt convolution kernel on \mathbb{R}^n and $(\times_p)_{p \geq 0}$ be the resolvent associated with \times. Suppose that \times is symmetric with respect to ∂D. Then the following two conditions are equivalent:

1. V_{\times} is a Hunt kernel on D.
2. For each $p > 0$, $\frac{\partial}{\partial x_1} \times_p \leq 0$ in the sense of distributions in D.

Theorem 2. Let \times be a Dirichlet convolution kernel on \mathbb{R}^n and α be the singular measure (the Lévy measure) associated with \times. Suppose that \times is also symmetric with respect to ∂D. Then the following two conditions are equivalent:

1. V_{\times} is a Dirichlet kernel on D.
2. $\frac{\partial}{\partial x_1} \alpha \leq 0$ in the sense of distributions in D.

This theorem gives immediately that the question raised by H. L. Jackson is affirmatively solved.

2. Let \times be a convolution kernel on \mathbb{R}^n (2). Similarly we define V_{\times}. When V_{\times} is positive, we set

$$\mathcal{D}^+(V_{\times}) = \{ f \in C^+(D) : V_{\times}f \in C^+(D) \},$$

where

$$V_{\times}f(x) = \sup \{ V_{\times}g(x) : g \in C_c^+(D), g \leq f \}$$

(1) An $f \in C_c(D)$ may be considered as a finite continuous function in \mathbb{R}^n with compact support $\subset D$.

(2) In potential theory, a convolution kernel means a positive measure.
in D. Put $\mathcal{D}(V_x) = \{f \in C(D); f^+, f^- \in \mathcal{D}^+(V_x)\}$ and, for an $f \in \mathcal{D}(V_x)$, $V_xf = V_xf^+ - V_xf^-$. Then V_x is a linear operator from $\mathcal{D}(V_x)$ into $C(D)$.

Lemma 3. Let x and x' be two convolution kernels on \mathbb{R}^n. Suppose that x and x' are symmetric with respect to ∂D and that the convolution $x \ast x'$ is defined. If V_x is positive, then, for any $f \in C_c(D)$, $V_xf \in \mathcal{D}(V_x)$ and

$$V_x(V_xf) = (x \ast x' \ast f - x \ast x' \ast \bar{f})_D.$$

Proof. We may assume that $f \geq 0$. Since $x \ast x'$ is defined and $|V_xf| \leq x' \ast f + x' \ast \bar{f}$, we have $V_xf \in \mathcal{D}(V_x)$. Our convolution kernels x and x' being symmetric with respect to ∂D, $x \ast \bar{f}(x) = x \ast f(x)$ and $x' \ast \bar{f}(x) = x' \ast f(x)$.

For the sake of simplicity, we write $h(x) = V_xf(x)$ in D and $h(x) = 0$ on $\mathbb{R}^n - D$. Then, for a $g \in C_c^*(D)$, we have

$$\int_{\mathbb{R}^n} V_x(V_xf)(x)g(x) \, dx = \int_{\mathbb{R}^n} (x \ast h(x) - x \ast \bar{h}(x))g(x) \, dx$$

$$= \int_{\mathbb{R}^n} h(x)x \ast g(x) \, dx - \int_{\mathbb{R}^n} \bar{h}(x)x \ast g(x) \, dx$$

$$= \int_{\mathbb{R}^n} \left(x \ast f(x) - x \ast \bar{f}(x) \right) \bar{x} \ast g(x) \, dx$$

$$- \int_{\mathbb{R}^n} (x', x' \ast \bar{f}(x)) \bar{x} \ast g(x) \, dx$$

$$= \int x' \ast f(x)\bar{x} \ast g(x) \, dx - \int x' \ast \bar{f}(x)\bar{x} \ast g(x) \, dx$$

$$= \int x \ast x' \ast (f - \bar{f})(x)g(x) \, dx,$$

where \bar{x} is the adjoint convolution kernel of x; that is, $\bar{x}(E) = x\{\{x; x \in E\}$ for any Borel set E. Since g is arbitrary, we obtain the required equality.

Remark 4. In the above lemma, we have $V_xf \in \mathcal{D}(V_x)$ and $V_x(V_xf) = V_x(V_xf)$ provided that V_x is also positive.

Lemma 5. Let x be a convolution kernel on \mathbb{R}^n. Suppose that x is symmetric with respect to ∂D. Then V_x is positive if and only if $\frac{\partial}{\partial x_1}x \leq 0$ in the sense of distributions in D.

Proof. — First we shall show the « if » part. For a \(t \in (0, \infty) \), put \(H_t = \{ x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n; x_1 = t \} \) and
\[
D' = \{ x = (x_1, x_2, \ldots, x_n) \in D; \int_{H_t} dx = 0 \}.
\]
It suffices to prove that, for any \(f \in C^\infty_c(D) \) and any \(x \in D' \),
\[
x \ast f(x) \geq x \ast f(\overline{x}),
\]
because \(\int_{D-D'} dx = 0 \) and
\[
x \ast f(\overline{x}) = x \ast f(x).
\]
We choose a sequence \((\varphi_k)_{k=1}^\infty \) of non-negative, spherically symmetric and infinitely differentiable functions such that \(\int \varphi_k dx = 1 \) and that the support of \(\varphi_k \), \(\text{supp}(\varphi_k) \), is contained in \(\{ x \in \mathbb{R}^n; |x| < 1/k \} \). Then \(x \ast \varphi_k \) is symmetric with respect to \(\partial D \) and
\[
\frac{\partial}{\partial x_1} x \ast \varphi_k(x) \leq 0 \quad \text{in}
\]
\[
\{ x \in \mathbb{R}^n; x_1 \geq 1/k \}.
\]
Let \(f \in C^\infty_c(D) \) and \(x = (x_1, x_2, \ldots, x_n) \in D' \). Then
\[
\int_{|y-x| \geq 1/m} f(y) x \ast \varphi_k(x - y) dy \geq \int_{|y-x| \geq 1/m} f(y) x \ast \varphi_k(\overline{x} - y) dy
\]
provided with \(0 < m \leq k \). By letting \(k \to \infty \) and \(m \to \infty \), we obtain that
\[
x \ast f(x) = \int f(y) d\lambda \ast \varepsilon_x(y)
\]
\[
\geq \int_{\mathbb{R}^n-H_t} f(y) d\lambda \ast \varepsilon_x(y)
\]
\[
\geq \int_{\mathbb{R}^n-H_t} f(y) d\lambda \ast \varepsilon_x(y)
\]
\[
\geq x \ast f(\overline{x}) - \left(\sup_{z \in \mathbb{R}^n} |f(z)| \right) \int_{H_t} dx = x \ast f(\overline{x})
\]
where \(\varepsilon_x \) denote the unit measure at \(x \). Since \(f \) and \(x \) are arbitrary, the « if » part is true.

Next we shall show the « only if » part. Suppose that the « only if » part is false. Then there exist a number \(t > 0 \), a point \(x = (x_1, x_2, \ldots, x_n) \in D \) with \(x_1 > t \) and a non-negative, spherically symmetric and infinitely differentiable function \(\varphi \) in \(\mathbb{R}^n \) with \(\text{supp}(\varphi) \subset \{ x \in \mathbb{R}^n; |x| < t \} \) such that
\[
\frac{\partial}{\partial x_1} x \ast \varphi(x) > 0.
\]
Hence we can choose a number
$s > 0$ such that $s < x_1 - t$ and that, for every $y \in D$ with $|y| < s$, $x * \varphi(x - y) < x * \varphi(x - \bar{y})$. Since

$$x * \varphi(x - \bar{y}) = x * \varphi(x - y),$$

we have, for an $f \neq 0 \in C_c^+(D)$ satisfying

$$\text{supp}(f) \subseteq \{y \in \mathbb{R}^n; |y| < s\},$$

$$x * f * \varphi(x) < x * f * \varphi(x) = x * f * \varphi(x).$$

But this contradicts the inequality $x * f \geq x * \overline{f}$ in D. Thus we see that the « only if » part is true.

In the same manner as above, we obtain the following

Lemma 6. — Let α be a positive measure in $\mathbb{R}^n - \{0\}$. Suppose that α is symmetric with respect to ∂D. If $\frac{\partial}{\partial x_1} \alpha \leq 0$ in the sense of distributions in D, then, for any $f \in C_c^+(D)$,

$$\int f(x - y) \, d\alpha(y) \geq \int \overline{f}(x - y) \, d\alpha(y)$$

in $D \cap C \text{ supp } (f)$.

3. We say that a convolution kernel x on \mathbb{R}^n is a Hunt convolution kernel if $x = \int_0^\infty x_t \, dt$, where $(x_t)_{t \geq 0}$ is a vaguely continuous semi-group of positive measures in \mathbb{R}^n; that is, $\alpha_0 = \varepsilon$ (the Dirac measure), $\alpha_t * \alpha_s = \alpha_{t+s}$ ($\forall t \geq 0, \forall s \geq 0$) and the application $\mathbb{R}^+ = [0, \infty) \ni t \to \alpha_t$ is vaguely continuous. In this case, $(x_t)_{t \geq 0}$ is uniquely determined (see, for example, [3]) and called the vaguely continuous semi-group associated with x. For a $p \in \mathbb{R}^+$, put

$$x_p = \int_0^\infty \exp(-pt) x_t \, dt;$$

then $(x_p)_{p \geq 0}$ is called the resolvent associated with x. This is characterized by a family $(x_p)_{p \geq 0}$ of convolution kernels on \mathbb{R}^n satisfying

$$x_p - x_q = (q - p)x_p * x_q (\forall p \geq 0, \forall q > 0)$$

and $\lim_{p \to 0} x_p = x_0 = x$ (vaguely).
Lemma 7 (see [3] or Theorem 5 in [6]). — Let \(x , (\alpha_i)_{t \geq 0} \) and \((x_p)_{p \geq 0} \) be the same as above. For a \(p > 0 \) and a \(t > 0 \), put

\[
\alpha_{p,t} = \exp (-pt) \sum_{k=0}^{\infty} \frac{p^k t^k}{k!} (px_p)^k \quad \text{and} \quad \alpha_{p,0} = \varepsilon;
\]

then \((\alpha_{p,t})_{t \geq 0} \) is a vaguely continuous semi-group of positive measures and we have

\[
x + \frac{1}{p} \varepsilon = \int_0^\infty \alpha_{p,t} \, dt \quad \text{and} \quad \lim_{p \to 0} \alpha_{p,t} = \alpha_t \quad \text{(vaguely)} \quad (t \geq 0).
\]

Lemma 8. — Let \(x = \int_0^\infty \alpha_t \, dt \) be a Hunt convolution kernel on \(\mathbb{R}^n \) and \((x_p)_{p \geq 0} \) be the resolvent associated with \(x \). If \(x \) is symmetric with respect to \(\partial D \), then, for any \(p \) and any \(t \), \(x_p \) and \(\alpha_t \) are also symmetric with respect to \(\partial D \).

Proof. — For a \(p \geq 0 \), we denote by \(\tilde{x}_p \) the reflection of \(x_p \) about \(\partial D \). Evidently \((\tilde{x}_p)_{p \geq 0} \) is the resolvent associated with \(\tilde{x} \). By using \(x = \tilde{x} \) and the unicity of the resolvent associated with \(x \), we have, for each \(p \geq 0 \), \(x_p = \tilde{x}_p \). This means that \(x_p \) is symmetric with respect to \(\partial D \). This gives also that, for any \(f \in C_c(D) \),

\[
\int_0^\infty \exp (-pt) f \, dx_t \, dt = \int_0^\infty \exp (-pt) \tilde{f} \, dx_t \, dt \quad (\forall p \geq 0).
\]

The Laplace transformation being injective, we have, for each \(t \geq 0 \), \(\int f \, dx_t = \int \tilde{f} \, dx_t \). Hence, \(f \) being arbitrary, we see that \(x_t \) is symmetric with respect to \(\partial D \).

Similarly we have the following

Remark 9. — If \(x \) is symmetric with respect to the origin 0 (resp. spherically symmetric), then \(x_p \) and \(x_t \) are also symmetric with respect to 0 (resp. spherically symmetric).

Let \(x \) be a convolution kernel on \(\mathbb{R}^n \). We say that \(x \) is a Dirichlet convolution kernel if the (generalised) Fourier transformation \(\hat{x} \) of \(x \) is defined and equal to \(\frac{1}{\psi} \), where \(\psi \) is a real-valued negative definite function in \(\mathbb{R}^n \) such that \(\frac{1}{\psi} \)

is locally summable. By virtue of the Lévy-Khinchine theorem, we have, for any \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \),

\[
\psi(x) = c + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j + \int (1 - \cos (2\pi x \cdot y)) \, d\alpha(y),
\]

where \(c \) is a non-negative constant, \(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j \) is a positive semi-definite form, \(x \cdot y \) is the inner product in \(\mathbb{R}^n \) and where \(\alpha \) is a positive measure in \(\mathbb{R}^n - \{0\} \) symmetric with respect to 0 and satisfying \(\int |x|^2/(1 + |x|^2) \, dx(x) < \infty \).

It is well-known that the above decomposition of \(\psi \) is unique. The positive measure \(\alpha \) in \(\mathbb{R}^n - \{0\} \) is called the singular measure associated with \(x \). Since, for each \(t \geq 0 \), \(\exp(-t\psi) \) is of positive type in \(\mathbb{R}^n \), there exists a positive measure \(\alpha_t \) in \(\mathbb{R}^n \) such that \(\alpha_t = \exp(-t\psi) \). Evidently \((\alpha_t)_{t \geq 0} \) is a vaguely continuous semi-group of positive measures and \(\alpha = \int_0^\infty \alpha_t \, dt \). Hence a Dirichlet convolution kernel is a Hunt convolution kernel and symmetric with respect to 0.

4. A positive linear operator \(V : C_c(D) \to C(D) \) is called a continuous kernel on \(D \) (Evidently \(V \) is continuous). Similarly as in the section 2, we define \(\mathcal{D}(V) \) and \(\mathcal{D}(V) \).

We say that \(V \) is a Hunt kernel on \(D \) if \(V = \int_0^\infty \tilde{V}_t \, dt \) (that is, for any \(f \in C_c(D) \), \(Vf(x) = \int_0^\infty \tilde{V}_t f(x) \, dt \) in \(D \)), where \(\tilde{(\tilde{V}_t)}_{t \geq 0} \) is a continuous semi-group of continuous kernels on \(D \); that is, \(\tilde{V}_0 = I \) (the identity), for any \(t \geq 0 \), \(s \geq 0 \) and any \(f \in C_c(D) \), \(\tilde{V}_t f \in \mathcal{D}(\tilde{V}_s) \), \(\tilde{V}_s (\tilde{V}_t f) = \tilde{V}_t (\tilde{V}_s f) = \tilde{V}_{t+s} f \) and the application \(\mathbb{R}^+ \ni t \to \tilde{V}_t f \) is continuous in \(C(D) \). Similarly as in [3], we see that \(\tilde{(\tilde{V}_t)}_{t \geq 0} \) is uniquely determined, and we call it the continuous semi-group associated with \(V \).

For a \(p > 0 \), put \(V_p = \int_0^\infty \exp(-pt) \tilde{V}_t \, dt \); then we call \((V_p)_{p \geq 0} \) the resolvent associated with \(V \). It is known that, for any \(p > 0 \), \(q > 0 \) and any \(f \in C_c(D) \), \(V_p f \in \mathcal{D}(V_q) \), \(V_q f \in \mathcal{D}(V_p) \),

\[
V_p f - V_q f = (q - p) V_q (V_p f) = (q - p) V_p (V_q f)
\]

(the resolvent equation) and \(\lim_{p \to 0} V_p f = V_0 f = Vf \) in \(C(D) \).
Let V_1 and V_2 two continuous kernels on D. If, for any $f \in C_c(D)$, $V_2f \in \mathcal{D}(V_1)$, the application $C_c(D) \ni f \to V_1(V_2f)$ is positive linear, we denote it by $V_1 \cdot V_2$.

Remark 10 (see [2]). — A Hunt kernel V on D satisfies the domination principle; that is, for two $f, g \in C_c^+(D)$, $Vf \leq Vg$ on $\text{supp}(f)$ implies the same inequality on D.

5. We shall show Theorem 1 mentioned in the section 1.

(1) \implies (2). By Lemmas 5 and 8, it suffices to prove that, for each $p > 0$, V_{zp} is positive. Let $(V_p)_{p \geq 0}$ be the resolvent associated with V_x. Then, for an $f \in C_c^+(D)$ and a $p > 0$, $V_pf = (pV_x + I)(V_pf)$. On the other hand, Lemmas 3 and 8 give the $V_{zp}f \in \mathcal{D}(V_x)$ and

$$V_xf = (x \ast (f - f))(D) = ((px + \varepsilon) \ast x_p \ast (f - f))_D = (pV_x + I)(V_{zp}f).$$

By using the resolvent equation, we have

$$V_pf - V_{zp}f = (I - pV_p)(pV_x + I)(V_pf - V_{zp}f) = 0.$$

The function f being arbitrary, we have $V_p = V_{zp}$, and hence V_{zp} is positive.

(2) \implies (1). By Lemma 5, V_{zp} is positive ($\forall p > 0$). Let α_p, be the positive measure defined in Lemma 7 ($\forall p > 0$, $\forall t > 0$) and $(\alpha_t)_{t > 0}$ be the vaguely continuous semi-group associated with x. By Lemmas 3 and 7,

$$V_{zp_t} = \exp(-pt) \sum_{k=0}^{\infty} \frac{p^{sk}}{k!} (pV_x)^k,$$

where $(pV_x)^0 = I$, $(pV_x)^1 = pV_x$ and

$$(pV_{zp})^{n+1} = (pV_{zp})^n \cdot (pV_{zp}).$$

Therefore V_{zp_t} is positive. From Lemma 7, it follows that, for any $f \in C_c(D)$, $\lim_{p \to \infty} V_{zp_t}f = V_xf$ in $C(D)$ ($\forall t > 0$). Hence V_{zp_t} is a continuous semi-group of continuous kernels on D and that

$$V_x = \int_0^\infty V_{zp_t} dt.$$ Consequently V_x is a Hunt kernel on D. This completes the proof.
Question 11. — Let \(x \) be a Hunt convolution kernel on \(\mathbb{R}^n \) satisfying \(x = \overline{x} \). Is it true that \(V_x \) is a Hunt kernel on \(D \) provided that \(V_x \) is positive?

Remark 12. — Let \(k(x) \) be a non-negative continuous function in the wide sense in \(\mathbb{R}^n \) satisfying \(k(x) = k(\overline{x}) \).
Suppose that \(x = k(x) \, dx \) is a Hunt convolution kernel and that \(V_x \) is also a Hunt kernel on \(D \). Put

\[
G(x,y) = k(x-y) - k(x-y)
\]
in \(D \times D \).

If the function kernel \(k(x-y) \) satisfies the continuity principle (\(^3\)), then \(G \) satisfies the domination principle; that is, for two positive measures \(\mu \) and \(\nu \) in \(D \) with compact support and with \(\int G \mu \, d\mu < \infty \), then \(G\mu \leq G\nu \) on \(\text{supp}(\mu) \) implies the same inequality in \(D \), where

\[
G\mu(x) = \int G(x,y) \, d\mu(y).
\]

It is known that \(k(x-y) \) satisfies the continuity principle when \(x \) is a Dirichlet convolution kernel (see [4]).

We show this remark. We see that \(G \) also satisfies the continuity principle. Therefore it suffices to prove that, for a positive measure \(\mu \) in \(D \) with compact support and an \(x \in D \), \(G\mu \leq G\varepsilon_x \) in \(D \) provided that \(G\mu \leq G\varepsilon_x \) on \(\text{supp(\mu)} \) and that \(G\mu \) is finite continuous (see [8]). Since \(V_x \) is a Hunt kernel, there exists \(f \in C_c^+ (D) \) such that \(V_x f = Gf \geq 1 \) on \(\text{supp}(\mu) \), where \(Gf(y) = \int G(y,z) f(z) \, dz \). Here we remark that \(\mu \) is considered as a positive measure in \(\mathbb{R}^n \). For a given positive number \(\delta \), there exists a neighborhood \(U \) of 0 such that, for any finite continuous function \(\varphi \geq 0 \) in \(\mathbb{R}^n \) with \(\text{supp}(\varphi) \subset U \) with \(\int \varphi \, dx = 1 \), \(\mu * \varphi, \varepsilon_x * \varphi \in C_c^+ (D) \) and \(G(\mu * \varphi) \leq G(\varepsilon_x * \varphi) + \delta Gf \) on \(\text{supp}(\mu * \varphi) \). By letting \(\varphi \, dx \to \varepsilon \) (vaguely) and \(\delta \downarrow 0 \), we have \(G\mu \leq G\varepsilon_x \).

(\(^3\)) This means that, for a positive measure \(\mu \) in \(\mathbb{R}^n \) with compact support, the function \(\int k(x-y) \, d\mu(y) \) of \(x \) is finite continuous provided that its restriction to \(\text{supp}(\mu) \) is finite continuous.
6. Theorem 1 gives the following

Corollary 13. — Let \(x = \int_0^\infty \alpha_t \, dt \) be a Hunt convolution kernel on \(\mathbb{R}^n \). Then \(x \) is symmetric with respect to \(\partial D \) and \(V_x \) is a Hunt kernel on \(D \) if and only if, for each \(t \geq 0 \), \(\alpha_t \) is symmetric with respect to \(\partial D \) and \(\frac{\partial}{\partial x_1} \alpha_t \leq 0 \) in the sense of distribution in \(D \).

Corollary 14. — Let \(x = \int_0^\infty \alpha_t \, dt \) be a Hunt convolution kernel on \(\mathbb{R}^n \) and \(\mu \) be a Hunt convolution kernel on \(\mathbb{R}^1 \) supported by \(\mathbb{R}^+ \). Suppose that \(x_\mu = \int_0^\infty \alpha_t \, d\mu(t) \) is defined (in the sense of measures) and that \(x \) is symmetric with respect to \(\partial D \). If \(V_x \) is a Hunt kernel on \(D \), then \(V_{x_\mu} \) is also a Hunt kernel on \(D \).

Proof. — We denote by \((\mu_p)_{p \geq 0} \) the resolvent associated with \(\mu \). Since \(\mu_p \leq \mu \), \(x_{\mu,p} = \int \alpha_t \, d\mu_p(t) \) is defined (\(\forall p \geq 0 \)). It is known that \(x_{\mu,p} \) is a Hunt convolution kernel on \(\mathbb{R}^n \) and that \((x_{\mu,p})_{p \geq 0} \) is the resolvent associated with \(x_\mu \) (see Theorem 1 in [5]). By Theorem 1 and Corollary 13, \(\alpha_t \) is symmetric with respect to \(\partial D \) and \(\frac{\partial}{\partial x_1} \alpha_t \leq 0 \) in the sense of distributions in \(D \). Hence \(x_\mu \) is also symmetric with respect to \(\partial D \) and \(\frac{\partial}{\partial x_1} x_{\mu,p} \leq 0 \) in the sense of distributions in \(D \) (\(\forall p \geq 0 \)). Consequently Theorem 1 gives this corollary.

In the same manner as above, we have the following

Corollary 15. — Let \((\alpha_t)_{t \geq 0} \) be a vaguely continuous semi-group of positive measures in \(\mathbb{R}^n \) and \(\mu \) be a Hunt convolution kernel on \(\mathbb{R}^1 \) supported by \(\mathbb{R}^+ \). Suppose that \(\int_0^\infty \alpha_t \, d\mu(t) \) is defined and that, for each \(t \geq 0 \), \(\alpha_t \) is symmetric with respect to \(\partial D \) and \(\frac{\partial}{\partial x_1} \alpha_t \leq 0 \) in the sense of distributions in \(D \). Then \(V_{x_\mu} \) is a Hunt kernel on \(D \), where

\[
x_\mu = \int_0^\infty \alpha_t \, d\mu(t).
\]
We shall show that the question raised by H. L. Jackson is affirmatively solved.

Remark 16. — Let \(\nu \) be a positive measure in \((0, 2)\) such that \(\int_0^2 \frac{1}{x} \, d\nu(x) < \infty \) and \(c_0, c_1 \) be non-negative constants. Put

\[
\chi = \begin{cases}
 c_0 \varepsilon + \left(\int |x|^{s-n} \, d\nu(x) \right) \, dx & \text{if } n = 2 \\
 c_0 \varepsilon + \left(\int |x|^{s-n} \, d\nu(x) + c_1 |x|^{2-n} \right) \, dx & \text{if } n \geq 3.
\end{cases}
\]

Then \(V_\chi \) is a Hunt kernel.

In fact, we have, with a positive constant \(c(\alpha) \),

\[
|x|^{s-n} = c(\alpha) \int_0^\infty \frac{1}{(2\pi t)^{n/2}} \exp \left(-\frac{|x|^2}{2t} \right) t^{\alpha-1} \, dt
\]

\((0 < \alpha < 2 \text{ if } n = 2, 0 < \alpha \leq 2 \text{ if } n \geq 3)\). Evidently the function \(c(\alpha) \) of \(\alpha \) is finite continuous. Put

\[
\mu = \begin{cases}
 c_0 \varepsilon + \left(\int c(\alpha) t^{s/2-1} \, d\nu(x) \right) \, dt & \text{if } n = 2 \\
 c_0 \varepsilon + \left(\int c(\alpha) t^{s/2-1} \, d\nu(x) + c_1 c(2) \right) \, dt & \text{if } n \geq 3
\end{cases}
\]

in \(\mathbb{R}^1 \). Since \(\int_0^2 \frac{1}{x} \, d\nu(x) < \infty \), \(\chi_\mu \) is a convolution kernel on \(\mathbb{R}^n \) and

\[
\chi_\mu = \left(\int \frac{1}{(2\pi t)^{n/2}} \exp \left(-\frac{|x|^2}{2t} \right) d\mu(t) \right) \, dx.
\]

Hence \(\mu \) is a convolution kernel on \(\mathbb{R}^1 \) supported by \(\mathbb{R}^+ \). Then \(\mu \) is a Hunt convolution kernel on \(\mathbb{R}^1 \) (cf. [5]), and Corollary 14 gives our remark.

Let \(G_\alpha \) be the Green type kernel of order \(\alpha \) in \(D \). Put

\[
G(x,y) = \begin{cases}
 G_\alpha(x,y) \, d\nu(x) & \text{if } n = 2 \\
 G_\alpha(x,y) \, d\nu(x) + c_1 G_2(x,y) & \text{if } n \geq 3
\end{cases}
\]

Then Remarks 12 and 16 give that \(G \) satisfies the domination principle.

7. Let \(L_{\text{loc}}(D) \) be the usual Fréchet space of real-valued locally summable functions in \(D \). A Hilbert space \(H(D) \)
contained in $L_{\text{loc}}(D)$ is called a Dirichlet space on D if the following three conditions are satisfied:

1. For each compact set K in D, there exists a constant $A(K) > 0$ such that, for any $u \in D$, $\int_K |u| \, dx \leq A(K)\|u\|$.
2. $C_c(D) \cap H(D)$ is dense both in $C_c(D)$ and in $H(D)$.
3. For any normalized contraction T on \mathbb{R}^1 (4) and any $u \in H(D)$, $T \cdot u \in H(D)$ and $\|T \cdot u\| \leq \|u\|$.

This is the definition by A. Beurling and J. Deny (see [1]). Here we denote by $\|\cdot\|$ and by (\cdot, \cdot) the norm in $H(D)$ and the associated inner product, respectively. For an $f \in C_c(D)$, (1) gives that there exists uniquely $u^*_f \in H(D)$ such that, for any $u \in H(D)$, $(u^*_f, u) = \int uf \, dx$.

Let V be a linear operator from $C_c(D)$ into $L_{\text{loc}}(D)$. We say that V is a Dirichlet kernel on D if there exists a Dirichlet space $H(D; V)$ on D such that, for any $f \in C_c(D)$, $Vf = u^*$.

Evidently $H(D; V)$ is uniquely determined. We call $H(D; V)$ the Dirichlet space associated with V and V the kernel of $H(D; V)$. For a Dirichlet kernel V on D, we set

$$\mathcal{D}(V) = \left\{ f \in L_{\text{loc}}(D); \sup \left\{ \frac{\int uf \, dx}{\|u\|} ; \quad u \neq 0 \in C_c(D) \cap H(D; V) \right\} < \infty \right\}$$

and $\mathcal{D}^+(V) = \{ f \in \mathcal{D}(V); f \geq 0 \}$, where $\|\cdot\|$ denote the norm in $H(D; V)$. By virtue of (2), for an $f \in \mathcal{D}(V)$, there exists uniquely $Vf \in H(D; V)$ such that, for any

$$u \in C_c(D) \cap H(D; V), \quad (Vf, u) = \int uf \, dx,$$

where (\cdot, \cdot) denote the inner product in $H(D; V)$. Thus V may be considered as a linear operator from $\mathcal{D}(V)$ into $H(D; V)$. It is known that V is positive (that is, $f \in \mathcal{D}^+(V) \Rightarrow Vf \geq 0$ a.e.) (see [1]).

(4) This means that T is an application: $\mathbb{R}^1 \to \mathbb{R}^1$ such that $R(0) = 0$ and $|Ta - Tb| \leq |a - b|$ ($\forall a, \forall b \in \mathbb{R}^1$).
Lemma 17. — Let x be a Hunt convolution kernel on \mathbb{R}^n satisfying $x = \bar{x}$. If V_x is a Dirichlet kernel on D, then V_x is a Hunt kernel.

Proof. — For the sake of simplicity, we write $H = H(D; V_x)$. Denote by $\| \cdot \|$ and by (\cdot , \cdot) the norm in H and the inner product in H, respectively. Let $L^2(D)$ be the Hilbert space of real-valued square summable functions in D. For a $p \geq 0$, H_p denotes the Hilbert space associated to the norm $\| u \| _p = \left(p \int |u|^2 \, dx + \| u \|^2 \right)^{1/2}$ on $H \cap L^2(D)$. Evidently H_p is a Dirichlet space on D. Let $f \in C_c(D)$. For any $u \in C_c(D) \cap H$, we have

$$
\int V_p f(x) u(x) \, dx = \frac{1}{p} ((V_p f, u)_p - (V_p f, u))
$$

$$
= \frac{1}{p} ((V_x f, u) - (V_p f, u))
$$

$$
\leq \frac{1}{p} (\| V_x f \| + \| V_p f \|) \| u \|,
$$

where V_p is the kernel of H_p and where $(\cdot , \cdot)_p$ is the inner product in H_p. Hence $V_p f \in L^2(V)$. Since, for any $u \in C_c(D) \cap H$,

$$p(V_x(V_p f), u) = p \int u(x) V_p f(x) \, dx
$$

$$
= (V_p f, u)_p - (V_p f, u) = (V_x f - V_p f, u),
$$

(2) gives $V_x f - V_p f = p V_x(V_p f)$ a.e. in D. Let $(x_p)_{p \geq 0}$ be the resolvent associated with x. By Lemmas 3 and 8, we have $V_x f - V_{x_p} f = p V_x(V_{x_p} f)$. In the same manner as in the proof of Theorem 1, we have $V_p f = V_{x_p} f$ a.e. in D, and hence V_{x_p} is positive ($\forall p > 0$). By Theorem 1 and Lemma 5, we see that V_x is a Hunt kernel.

We shall prove Theorem 2 mentioned in the section 1.

(1) \Rightarrow (2). Let $(x_p)_{p \geq 0}$ be the resolvent associated with x. Then it is known that $p^2 x_p \to x$ vaguely in $\mathbb{R}^n - \{0\}$ as $p \to \infty$ (see [1]), and hence theorem 1 and Lemma 17 give that $\frac{\partial}{\partial x_1} x \leq 0$ in the sense of distributions in D.

(2) \Rightarrow (1). Since $p^2 x_p \to x$ vaguely in $\mathbb{R}^n - \{0\}$ as $p \to \infty$, Lemma 8 gives that x is symmetric with respect to ∂D. Let A be the diagonal set of $D \times D$ and β be the
positive measure in \(D \times D - A \) defined by

\[
\int \int f(x)g(y) \, d\beta(x,y) = \int \int (f(x-y) - f(x-y))g(x) \, d\alpha(y) \, dx
\]

for any couple \(f, g \in C_c(D) \) with \(\text{supp}(f) \cap \text{supp}(g) = \emptyset \) (see Lemma 6). For any \(p, x_p \) being symmetric with respect to the origin, we have \(\alpha = \widetilde{\alpha} \), and hence \(\beta \) is symmetric with respect to \(A \). Let \(C_c^\infty(D) \) be the topological vector space of real-valued and infinitely differentiable functions in \(D \) with compact support (we identify an element of \(C_c^\infty(D) \) and an infinitely differentiable function in \(\mathbb{R}^n \) with compact support in \(D \)).

Let \(f \in C_c^\infty(D) \). Consider the approximation of the function \(|f(x) - f(y)|^2 \) of \((x,y) \) by the functions of form \(\sum_i \varphi_i(x)\psi_i(y) \) in \(D \times D \), where \(\varphi_i \in C_c^\infty(D) \) and \(\psi_i \in C_c^\infty(D) \) with \(\text{supp}(\varphi_i) \cap \text{supp}(\psi_i) = \emptyset \).

Then we see that

\[
0 \leq \int \int |f(x) - f(y)|^2 \, d\beta(x,y) + \int |f(x)|^2 a(x) \, dx
\]

\[
= \int \int |f(x-y) - f(x)|^2 \, d\alpha(y) \, dx
\]

\[
- \int \int (\widetilde{f}(x-y) - \widetilde{f}(x))(f(x-y) - f(x)) \, d\alpha(y) \, dx < \infty \tag{5}
\]

where, for \(x = (x_1, x_2, \ldots, x_n) \in D \), \(a(x) = 2 \int_{x_i \geq x_i} d\alpha(y) \).

Let \(\tilde{H} \) be the specialized Dirichlet space with the kernel \(x \) (see [1]). We denote by \(||| \cdot ||| \) and by \(\langle \cdot, \cdot \rangle \) the norm in \(\tilde{H} \) and the associated inner product. For a couple \(f, g \in C_c^\infty(D) \), we put

\[
(f, g) = \int f g \left(\frac{a}{2} + c \right) \, dx + \frac{1}{4\pi^2} \sum_{i=1}^n \sum_{j=1}^n a_{ij} \int \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} \, dx
\]

\[
+ \frac{1}{2} \int (f(x) - f(y))(g(x) - g(y)) \, d\beta(x,y)
\]

\[
= \langle (f - \widetilde{f}, g) \rangle = \langle (f, g - \widetilde{g}) \rangle = \frac{1}{2} \langle (f - \widetilde{f}, g - \widetilde{g}) \rangle,
\]

(\(\dagger \)) The author would like to express his hearty thanks to Prof. F. Hirsch for the correction of this formula.
where $\hat{x} = \left(c + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} + \int (1 - \cos (2\pi x \cdot y)) \, dx(y) \right)^{-1}$.

Then (\cdot, \cdot) is an inner product in $C_c^\infty(D)$. For a compact set K in D, we have

$$\sup_{u \in C_c^\infty(D)} \frac{\int_K |u| \, dx}{\|u\|} = \sup_{u \in C_c^\infty(D) \backslash \{0\}} \frac{\sqrt{2} \int_K |u - \bar{u}| \, dx}{\|u - \bar{u}\|} < \infty,$$

where $\|u\| = (u, u)^{1/2}$. Hence the completion H of $C_c^\infty(D)$ by $\|\cdot\|$ is contained in $L_{loc}(D)$. Evidently, for any $u \in C_c^\infty(D)$ and any normalized contraction T on R^1, $T \cdot u \in H$ and $\|T \cdot u\| \leq \|u\|$. For a $u \in H$, we choose a sequence $(u_k)_{k=1}^\infty \subset C_c^\infty(D)$ such that

$$\lim_{k \to \infty} \|u_k - u\| = 0.$$

Since $(T \cdot u_k)_{k=1}^\infty$ converges weakly to $T \cdot u$ in H as $k \to \infty$ (see [1]), we have $T \cdot u \in H$ and $\|T \cdot u\| \leq \|u\|$. Hence H is a Dirichlet space on D. We shall show that V_x is the kernel of H. For an integer $m \geq 1$, let T_m denote the projection from R^1 into $\left[-\frac{1}{m}, \frac{1}{m} \right]$. Let $f \in C_c(D)$; then $x \ast (f - \bar{f}) - T_m \cdot x \ast (f - \bar{f}) \in \hat{H}$ and

$$V_x f - T_m \cdot V_x f \in C_c(D),$$

because $x \ast (f - \bar{f}) = 0$ on ∂D and $\lim_{|x| \to \infty} x \ast (f - \bar{f})(x) = 0$.

Therefore there exists a neighborhood V_m of the origin such that, for any non-negative, spherically symmetric and infinitely differentiable function φ in R^1 with supp $(\varphi) \subset V_m$ and $\int \varphi \, dx = 1$, $f \ast \varphi \in C_c^\infty(D)$ and

$$(V_x f - T_m \cdot V_x f) \ast \varphi \in C_c^\infty(D).$$

Since

$$(x \ast (f - \bar{f}) - T_m \cdot x \ast (f - \bar{f})) \ast \varphi = (V_x f - T_m \cdot V_x f) \ast \varphi - (V_x f - T_m \cdot V_x f) \ast \varphi$$

and, for a $u \in \hat{H}$,

$$\|u \ast \varphi\|^2 = \int \int ((u \ast \varepsilon_x, u \ast \varepsilon_y)) \varphi(x) \varphi(y) \, dx \, dy \leq \|u\|^2,$$
we have

\[\| (V_x f - T_m \cdot V_x f) * \varphi \|^2 \]

\[\leq \frac{1}{2} \| \| \chi * (f - \bar{f}) - T_m \cdot \chi * (f - \bar{f}) \| \|^2 \leq 2 \| \chi * (f - \bar{f}) \| \|^2. \]

By letting \(\varphi d\mu \rightarrow \varepsilon \) (vaguely) and \(m \rightarrow \infty \), we see that \(V_x f \in H \) and, for any \(u \in C_c^\infty(D) \),

\[(V_x f, u) = ((\chi * (f - \bar{f}), u)) = \int u(f - \bar{f}) \, dx = \int uf \, dx. \]

This implies immediately that, for any \(u \in H \),

\[(V_x f, u) = \int uf \, dx. \]

Consequently \(V_x \) is the kernel of the Dirichlet space \(H \). This completes the proof.

Theorem 2 gives also that the question raised by H. L. Jackson is affirmatively solved. In fact, the singular measure associated with the convolution kernel \(r^\alpha \) is equal to \(c_\alpha |x|^{2-n} \, dx \) provided that \(0 < \alpha < 2 \), where \(c_\alpha \) is a positive constant, where \(|x|^{2-n} \, dx \) is symbolically denoted by \(r^\alpha \) \((0 < \alpha < n)\).

We denote now by \(\Delta \) the laplacian on \(\mathbb{R}^n \). We say that a convolution kernel \(\chi \) on \(\mathbb{R}^n \) is a Frostman-Kunugui kernel if \(\chi \) is spherically symmetric, vanishes at infinity \(^6\), and if \(\Delta \chi \geq 0 \) in the sense of distributions outside the origin 0. Theorem 2 and Theorem 1 in [7] give the following

Corollary 18. — Suppose \(n \geq 3 \). Then the following two statements hold.

1. For a Frostman-Kunugui kernel \(\chi \neq 0 \) on \(\mathbb{R}^n \) satisfying

\[\frac{\partial}{\partial x_1} \Delta \chi \leq 0 \] in the sense of distributions in \(D \), there exists uniquely a spherically symmetric Dirichlet convolution kernel \(\chi' \) on \(\mathbb{R}^n \) such that \(V_{\chi'} \) is a Dirichlet kernel on \(D \) and that, for any \(f \in C_c(D) \), \(V_x(V_{\chi'} f)(x) = V_x(V_{\chi'} f)(x) = G_{\chi'}(x) \) in \(D \).

2. For a spherically symmetric Dirichlet kernel \(\chi \) on \(\mathbb{R}^n \) such that \(V_{\chi} \) is a Dirichlet kernel on \(D \), there exists uniquely

\(^6\) This means that, for any finite continuous function \(f \) in \(\mathbb{R}^n \) with compact support, \(\chi * f(x) \rightarrow 0 \) as \(|x| \rightarrow \infty \).
a Frostman-Kunugui kernel \(x' \) on \(\mathbb{R}^n \) such that \(\frac{\partial}{\partial x_1} \Delta x \leq 0 \) in the sense of distributions in \(D \) and that, for any \(f \in C_c(D) \), \(V_x(V_x f)(x) = V_x(V_x f)(x) = G_x f(x) \) in \(D \).

Proof. — First we shall show (1). By Theorem 1 in [7], there exists uniquely a spherically symmetric Dirichlet kernel \(x' \) on \(\mathbb{R}^n \) such that \(x \ast x' = r^{2-n} \). We have, with a positive constant \(c \), \((\Delta x) \ast x' = -c \varepsilon \) in the sense of distributions in \(\mathbb{R}^n \). This implies that the singular measure associated with \(x' \) is equal to \(\frac{1}{c} \Delta x \) outside 0. Theorem 2 and our assumption give that \(V_x \) is a Dirichlet kernel on \(D \). Since \(\Delta x \geq 0 \) in the sense of distributions in \(\mathbb{R}^n - \{0\} \) and \(x \) vanishes at infinity, \(\frac{\partial}{\partial x_1} x \leq 0 \) in the sense of distributions in \(D \). By Lemma 5, \(V_x \) is positive, and by Lemma 3 and Remark 4, we obtain the required equality. Let’s show the uniqueness of \(x' \). Let \(x'' \) be a Dirichlet convolution kernel on \(\mathbb{R}^n \) which is possessed of the same properties as of \(x' \). Since \(x \) is injective (see Theorem 1 in [7]) \((7)\) and
\[
x \ast (V_{x'} f - V_{x''} f) = x \ast (V_{x'} f - V_{x''} f)
\]
in \(\mathbb{R}^n \) \((8)\), we have \(V_{x'} f = V_{x''} f \) \(\forall f \in C_c(D) \). This implies that, for any \(f \in C_c(D) \), \((x' - x'') f = (x' - x'') \ast \tilde{f} \). In the same manner as in Lemma 5, we have \(\frac{\partial}{\partial x_1} (x' - x'') = 0 \) in the sense of distributions in \(D \). Since \(x' - x'' \) is spherically symmetric and vanishes at the infinity, we have \(x' = x'' \). Thus we see that (1) holds.

Next we shall show (2). By Theorem 1 in [7], there exists uniquely a Frostman-Kunugui kernel \(x' \) on \(\mathbb{R}^n \) such that \(x \ast x' = r^{2-n} \). Since the singular measure associated with \(x \) is equal to \(\frac{1}{c} \Delta x' \) outside 0, Theorem 2 gives that \(\frac{\partial}{\partial x_1} \Delta x' \leq 0 \) in the sense of distributions in \(D \). Similarly as

\((7)\) This means that, for an \(f \in C(D) \), \(f = 0 \) provided that \(x \ast |f| \) is defined and that \(x \ast f = 0 \).

\((8)\) We may assume that \(V_{x'} f \) is a continuous function in \(\mathbb{R}^n \) with support \(\subset D \).
above, we see that $V_{\kappa'}$ is positive and the required equality holds. Since κ is also injective (see, for example, [1]), we can similarly show the uniqueness of κ'.

Remember the Riesz decomposition formula

$$r^{a-n} \ast r^{(2-a)-n} = a_{2}r^{2-n} \quad (0 < a < 2),$$

where a_{2} is a positive constant (see [9]). Then, by this corollary, we see that G_{κ} satisfies the domination principle provided with $n \geq 3$ and $0 < a < 2$.

Remark 19. — For a spherically symmetric convolution kernel κ on \mathbb{R}^{n}, $\frac{\partial}{\partial x_{1}} \kappa \leq 0$ in the sense of distributions in D if and only if $\frac{\partial}{\partial r} \kappa \leq 0$ in the sense of distributions in $\mathbb{R}^{n} - \{0\}$, where $r = |x|$. In this case, κ is absolutely continuous outside 0.

By using Theorem 1, Corollary 13 and this remark 19, we have the following

Remark 20. — Let $\kappa = \int_{0}^{\infty} \kappa_{t} dt$ be a spherically symmetric Dirichlet kernel on \mathbb{R}^{n}. Then V_{κ} is a Dirichlet kernel on D if and only if, for any $t > 0$, κ_{t} is of form

$$\kappa_{t} = c_{t}e + k_{t}(|x|) dx,$$

where c_{t} is a non-negative constant and k_{t} is a non-negative decreasing (in the wide sense) function on \mathbb{R}^{+}.

8. First we shall show that the inverse of the question raised by H. L. Jackson is also affirmative.

Proposition 21. — If the Green type kernel G_{κ} $(0 < \kappa < n)$ on D satisfies the domination principle, then $0 < \kappa \leq 2$.

Proof. — Since G_{κ} satisfies the domination principle, G_{κ} also satisfies the balayage principle (see, for example, [8]); that is, for a positive measure μ in D with compact support and a compact set F in D, there exists a positive measure μ' supported by F such that $G_{\kappa} \mu \geq G_{\kappa} \mu'$ in D and
ON THE GREEN TYPES KERNELS ON THE HALF SPACE

$G_\alpha \mu = G_\alpha \mu_F$ G_α-n.e. on F (*) Let $\mu \not= 0$ and F be a closed ball contained in D such that $\text{supp} (\mu) \cap F = \emptyset$. Suppose that $\alpha > 2$. Let t be positive integer satisfying $0 < \alpha - 2t \leq 2$ and $\beta = \alpha - 2t$. Then

$$G_\alpha(x,y) = \int G_{2t}(x,z)G_{2t}(z,y) \, dz$$

(see Lemma 3). Since $G_{2t}(G_{\beta} \mu) = G_{2t}(G_{\beta} \mu_F)$ a.e. on F, we have $G_{\beta} \mu = G_{\beta} \mu_F$ a.e. on F, because

$$\Delta^t(G_{2t}(G_{\beta} \mu) - G_{2t}(G_{\beta} \mu_F)) = (-c)^t(G_{\beta} \mu - G_{\beta} \mu_F)$$

in the sense of distributions in D, where c is the positive constant satisfying $\Delta r^{a-n} = -cr$. Since $G_{\beta} \mu$ is continuous on F and $G_{\beta} \mu_F$ is lower semi-continuous, we have $G_{\beta} \mu \geq G_{\beta} \mu_F$ on F, and so $\int G_{\beta} \mu_F \, d\mu_F < \infty$. The function kernel G_β satisfying the domination principle, we have $G_{\beta} \mu \geq G_{\beta} \mu_F$ in D. By virtue of the injectivity of G_β, we have $G_{\beta} \mu \not= G_{\beta} \mu_F$. But this contradicts the equality $G_{2t}(G_{\beta} \mu) = G_{2t}(G_{\beta} \mu_F)$ G_α-n.e. on F. Thus we achieve the proof.

We raise a question.

Question 22. — Let x be a convolution kernel on \mathbb{R}^n satisfying $x = x$. Suppose that V_x is a Hunt kernel on D. Then is it true that x is the sum of a Hunt convolution kernel and of a non-negative constant?

The following proposition shows that the answer is "yes" in a special case.

Proposition 23. — Let x be a convolution kernel on \mathbb{R}^n satisfying $x = \bar{x}$. Suppose that V_x is a Hunt kernel on D. If $\int d\alpha < \infty$ and x is absolutely continuous outside 0, then x is a Hunt convolution kernel.

Proof. — We may assume that $\int d\alpha < 1$. For a $p \in (0,1]$, we put

$$x_p = \sum_{k=0}^{\infty} (-p)^k(x)^{k+1};$$

(*) We write $G_\alpha \mu = G_\alpha \mu_F$ G_α-n.e. on F if, for any positive measure ν in D with $\text{supp} (\nu) \subset F$ and $\int G_\alpha \nu \, d\nu < \infty$, $\int G_\alpha \mu \, d\nu = \int G_\alpha \mu_F \, d\nu$.

then μ_p is a real measure in \mathbb{R}^n, absolutely continuous outside 0, $\mu_p = \overline{\mu}_p$ and $\int d|\mu_p| < \infty$, where $|\mu_p|$ denote the total variation of μ_p. Since $(p\chi + \varepsilon) * \mu_p = \mu$, Lemma 3 gives that, for any $f \in C_c(D)$, $(pV_\mu + 1)(V_{\mu}*f) = V_xf$. Let $(V_\mu)_{\mu \geq 0}$ the resolvent associated with V_x. In the same manner as in Theorem 1, we have, for any $f \in C_c(D)$, $V_\mu f = V_{\mu}*f$ in D. Hence V_{μ} is positive. In the same manner as in Lemma 5, we have $\frac{d}{dx_1}\mu_p \leq 0$ in the sense of distributions in D. We show that μ_p is a convolution kernel. It suffices to prove that, for any $f \in C_c(D)$, $\int_D f d\mu_p > 0$, because

$$\mu_p(\{0\}) = \frac{\chi(\{0\})}{1 + p\chi(\{0\})} > 0,$$

and μ_p is absolutely continuous outside 0. For each integer $k \geq 1$, we choose a non-negative, spherically symmetric and infinitely differentiable function φ_k in \mathbb{R}^n such that $\int \varphi_k dx = 1$ and $\text{supp} (\varphi_k) \subset \left\{ x \in \mathbb{R}^n ; |x| < \frac{1}{k} \right\}$. Since $\frac{d}{dx_1} \mu_p * \varphi_k(x) \leq 0$ in the set

$$\left\{ x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n ; x_1 \geq \frac{1}{k} \right\}$$

and $\lim_{|x| \to \infty} \mu_p * \varphi_k(x) = 0$, we have $\mu_p * \varphi_k(x) \geq 0$ in the above set. Hence, for any $f \in C_c(D)$,

$$\int_D f d\mu_p = \lim_{k \to \infty} \int_{x_1 \geq \frac{1}{k}} f(x) \mu_p * \varphi_k(x) dx > 0.$$

Consequently μ_p is a convolution kernel ($\forall p \in (0,1]$). Since $\mu - \mu_p = p\mu * \mu_p$, $\mu \geq \mu_p$. For a $p \in (1, 2]$, we put

$$\mu_p = \sum_{k=0}^{\infty} (1 - p)^k (\mu_1)^{k+1};$$

then μ_p is also a real measure in \mathbb{R}^n, absolutely continuous outside 0, $\mu_p = \overline{\mu}_p$, $\int d|\mu_p| < \infty$ and $\mu - \mu_p = p\mu * \mu_p$. In the same manner as above, μ_p is a convolution kernel. Inductively we obtain a family $(\mu_p)_{p \geq 0}$ of convolution ker-
nels satisfying $x - x_p = p_x * x_p$ and $\lim_{p \to 0} x_p = x$ (vaguely). By Lemma 3.2 in [6], we obtain that, for each $p \geq 0$ and $q > 0$, $x_p - x_q = (q - p)x_p * x_q$ and $\lim_{p \to 0} x_p = x$ (vaguely), where $x_0 = x$. Since V_x is a Hunt kernel on D, $x \neq 0$, and hence, for any $x \neq 0 \in \mathbb{R}^n$, $x \neq x * \varepsilon_x$, because

$$\lim_{|x| \to \infty} x * f(x) = 0$$

for any finite continuous function f in \mathbb{R}^n with compact support. Hence, by Corollary 1 of Theorem 5 in [6], x is a Hunt convolution kernel. This completes the proof.

Remark 24. — In the above proposition, if x is spherically symmetric, the same conclusion holds without the assumption that x is absolutely continuous outside 0. See Remark 19.

BIBLIOGRAPHY

Manuscrit reçu le 10 janvier 1977
Proposé par G. Choquet.

Masayuki Irô,
Mathematical Institute
Nagoya University
Nagoya, Japon.