JACOB SZNAJDMAN

An elementary proof of the Briançon-Skoda theorem

<http://afst.cedram.org/item?id=AFST_2010_6_19_3-4_675_0>
An elementary proof of the Briançon-Skoda theorem

JACOB SZNAJDMAN(1)

Abstract. — We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterion for when a function \(\phi \) belongs to an ideal \(I \) of the ring of germs of analytic functions at \(0 \in \mathbb{C}^n \); more precisely, the ideal membership is obtained if a function associated with \(\phi \) and \(I \) is locally square integrable. If \(I \) can be generated by \(m \) elements, it follows in particular that \(\overline{I}^{\min(m,n)} \subset I \), where \(J \) denotes the integral closure of an ideal \(J \).

Résumé. — Nous proposons une démonstration élémentaire du théorème de Briançon-Skoda. Ce théorème donne un critère d’appartenance d’une fonction \(\phi \) à un idéal \(I \) de l’anneau des germes de fonctions holomorphes en \(0 \in \mathbb{C}^n \); plus précisément, l’appartenance est établie sous l’hypothèse qu’une fonction dépendante de \(\phi \) et \(I \) soit de carré localement sommable. En particulier, si \(I \) est engendré par \(m \) éléments, alors \(\overline{I}^{\min(m,n)} \subset I \), où \(J \) dénote la clôture intégrale d’un idéal \(J \).

1. Introduction

Let \(\mathcal{O}_n \) be the ring of germs of holomorphic functions at \(0 \in \mathbb{C}^n \). The integral closure \(\overline{I} \) of an ideal \(I \) is the set of all \(\phi \in \mathcal{O}_n \) such that

\[
\phi^N + a_1\phi^{N-1} + \ldots + a_N = 0,
\]

(1.1)

for some integer \(N \geq 1 \) and some \(a_k \in I^k \), \(k = 1, \ldots, N \).
By a simple estimate, (1.1) implies that there exists a constant C such that

$$|\phi| \leq C|f|,$$

where $|f|$ is defined as $\sum |f_i|$ for any generators f_i of I. It is easy to see that the choice of generators f_i does not affect whether ϕ satisfies (1.2) for some C or not.

Conversely, (1.2) implies that $\phi \in \bar{I}$ (however, we do not need this in the present paper), which is a consequence of Skoda’s theorem, [S72] and a well-known determinant trick, see for example [D07], (10.5), Ch. VIII. Another proof is given in (the republication) [LTR08].

Theorem 1.1 (Briançon-Skoda). — Let I be an ideal of \mathcal{O}_n generated by m germs f_1, \ldots, f_m. Then $\overline{I^{\min(m,n)+l-1}} \subset I^l$ for all integers $l \geq 1$.

As noted above, $\phi \in \overline{I^{\min(m,n)+l-1}}$ implies that $|\phi| \leq C|f|^{\min(m,n)+l-1}$. Thus it suffices to show that any $\phi \in \mathcal{O}_n$ that satisfies this size condition belongs to I^l, in order to prove Theorem 1.1.

Another ideal that is common to consider is $\hat{I}^{(k)}$ which consists of all $\phi \in \mathcal{O}_n$ such that

$$\int_U |\phi|^2 |f|^{-2(k+\varepsilon)}dV < \infty,$$

for some neighbourhood U of $0 \in \mathbb{C}^n$ and some (sufficiently small) $\varepsilon > 0$, where dV is the Lebesgue measure.

Lemma 2.3 implies that $\overline{I^k} \subset \hat{I}^{(k)}$. The following theorem is thus a stronger version of Theorem 1.1:

Theorem 1.2. — For an ideal I as in Theorem 1.1, we have

$$\hat{I}^{(\min(m,n)+l-1)} \subset I^l,$$

for all integers $l \geq 1$.

In 1974 Briançon and Skoda, [BS74], showed Theorem 1.2 as an immediate consequence of Skoda’s L^2-division-theorem, [S72]. Usually Theorem 1.1 is the one referred to as the Briançon-Skoda theorem.

An algebraic proof of Theorem 1.1 was given by Lipman and Tessier in [LT81]. Their paper also contains a historical summary. An account of
more recent developments and an elementary algebraic proof of the result is found in Schoutens [Sc03].

Berenstein, Gay, Vidras and Yger [BGVY93] proved Theorem 1.1 for \(l = 1 \) by finding a representation \(\phi = \sum u_i f_i \) with \(u_i \) as explicit integrals. However, some of their estimates rely on Hironaka’s theorem on resolutions of singularities.

In this paper, we provide a completely elementary proof along these lines. The key point is an \(L^1 \)-estimate (Proposition 2.1), which will be used in Section 4.

Acknowledgements. — I am grateful to Mats Andersson for introducing me to the subject and providing many helpful comments and ideas. I also want to thank the referee who read the paper very carefully and gave many valuable suggestions.

2. The Main Estimate

In order to state Proposition 2.1, we will first recall the notion of the (standard) norm of a differential form in \(\mathbb{C}^n \). If \(x_i \) and \(y_i, 1 \leq i \leq n \), are standard coordinates for \(\mathbb{C}^n = \mathbb{R}^{2n} \), this norm is uniquely determined by demanding that the forms \(dx_i \wedge \ldots \wedge dx_j \wedge dy_{i+1} \wedge \ldots \wedge dy_k \) constitute an orthonormal basis (over \(\mathbb{C} \)) of \(\bigwedge^k T_p^* \mathbb{C}^n \).

Proposition 2.1. Let \(f_1, f_2, \ldots, f_m \) be generators of an ideal \(I \subset O_n \), and assume that \(\phi \in \hat{I}^{(k)} \). Then for any integer \(1 \leq r \leq m \),

\[
\frac{|\phi| \cdot |\partial f_1 \wedge \ldots \wedge \partial f_r|}{|f|^{k+r}}
\]

is locally integrable at the origin.

Remark 2.2. Using a Hironaka resolution, the proof of Proposition 2.1 can be reduced to the case when every \(f_i \) is a monomial, and then the proof becomes much easier. We proceed however with elementary arguments.

Lemma 2.3. For any ideal \(I = (f_1, \ldots, f_m) \neq (0) \), there is a positive number \(\delta \) such that \(1/|f|^{\delta} \) is locally integrable at the origin.

Proof. By considering \(F = f_1 \cdot f_2 \cdot \ldots \cdot f_m \) (remove any \(f_j \) that are identically zero), it suffices to show that \(1/|F|^{\delta} \) is locally integrable. We can
assume that \(F \) is a Weierstrass polynomial and we consider the integral of \(1/|F|^\delta \) on \(\Omega = D \times \Delta \), where \(D \) is a disk and \(\Delta = D^{n-1} \). By choosing \(D \) small enough, Rouché’s theorem gives that \(F \) has the same number of roots, \(s \), on each slice \(S_p = D \times \{ p \} \), \(p \in \Delta \). We partition \(S_p \) into sets \(E_p^j \), one for each root \(\alpha_j(p) \in S_p \), such that \(E_p^j \) consists of those points which are closer to \(\alpha_j(p) \) than to the other roots. We have

\[
F(z,p) = \prod_{s=1}^{s} (z - \alpha_j(p)),
\]

so on \(E_p^j \) we get

\[
\frac{1}{|F|^\delta} \leq |z - \alpha_j(p)| - \delta s.
\]

If \(\delta \) is sufficiently small, we thus get a uniform bound for the (one variable) integral of \(1/|F|^\delta \) on \(S_p \). Fubini’s theorem then gives the integrability on \(\Omega \).

Proof of Proposition 2.1.— We assume for the sake of simplicity that \(r = m \), but the proof works for the other cases as well. We begin by applying Hölder’s inequality to the product of \(|\phi|/|f|k+\delta'/2 \) and \(|\partial f_1 \wedge \ldots \wedge \partial f_m|/|f|^{m-\delta'/2} \). Assume that \(\delta' \) is small enough to make the first factor \(L^2 \)-integrable. It thus suffices to show that

\[
F = \frac{|\partial f_1 \wedge \ldots \wedge \partial f_m|^2}{\prod_{s=1}^{m} |f_j|^{2-\delta}}
\]

is locally integrable for any \(\delta > 0 \). We will proceed to show that this is a consequence of the Chern-Levine-Nirenberg inequalities. The special case of these inequalities that is needed here will be proved without explicitly relying on facts about positive forms or plurisubharmonic functions. For a shorter proof of the Chern-Levine-Nirenberg inequalities, which involves these notions, see [D07] (3.3), Ch. III.

Let us first set

\[
\beta = \frac{i}{2} \partial \bar{\partial} |\zeta|^2 = \frac{i}{2} \sum d\zeta_j \wedge d\zbar_j, \quad \text{and} \quad \beta_k = \frac{\beta^k}{k!}.
\]

Then \(\beta_n \) is the Lebesgue measure \(dV \). A simple argument gives that for any \((1,0)\)-forms \(\alpha_j \),

\[
\frac{i}{2} \alpha_1 \wedge \bar{\alpha_1} \wedge \ldots \wedge \frac{i}{2} \alpha_p \wedge \bar{\alpha_p} \wedge \beta_{n-p} = |\alpha_1 \wedge \ldots \wedge \alpha_p|² dV.
\]

(2.1)

Fix a sufficiently small \(\delta > 0 \) as in Lemma 2.3. We will need at least \(\delta < 2 \) in the sequel. We now compute

\[
\partial \bar{\partial} (|f_j|^2 + \varepsilon)^{\delta/2} = \frac{\delta}{2} \left(1 + \frac{(\delta - 1)}{|f_j|^2 + \varepsilon} \right) (|f_j|^2 + \varepsilon)^{\delta/2 - 1} \partial f_j \wedge \bar{\partial} f_j
\]

which yields that

\[
\frac{i \partial f_j \wedge \bar{\partial} f_j}{(|f_j|^2 + \varepsilon)^{1-\delta/2}} = G_j i \partial \bar{\partial} (|f_j|^2 + \varepsilon)^{\delta/2},
\]

(2.2)
An elementary proof of the Briançon-Skoda theorem

where

\[G_j = \frac{2}{\delta} \left[1 + \left(\frac{\delta}{2} - 1 \right) \frac{|f_j|^2}{|f_j|^2 + \varepsilon} \right]^{-1}. \]

Observe that

\[\left(\frac{2}{\delta} \right) \leq G_j \leq \left(\frac{2}{\delta} \right)^2. \tag{2.3} \]

We introduce forms \(F^\varepsilon_k dV \) by setting

\[F^\varepsilon_k dV = \frac{|\partial f_k \wedge \ldots \wedge \partial f_m|^2}{\prod_k (|f_j|^2 + \varepsilon)^{1-\delta/2}} = \prod_k G_j \frac{i}{2} \partial \bar{\partial} (|f_j|^2 + \varepsilon)^{\delta/2} \wedge \beta_{n+k-m-1}. \tag{2.4} \]

Note that \(F^1 dV \) is a regularization of \(F dV \). From the equality \(|w \wedge \bar{w}| = 2^p |w|^2\), that holds for all \((p,0)\)-forms \(w \), and (2.2), we get

\[F^\varepsilon_k dV = \frac{|\prod_k (\frac{i}{2} \partial f_j \wedge \partial f_j)|}{\prod_k (|f_j|^2 + \varepsilon)^{1-\delta/2}} = \prod_k G_j \frac{i}{2} \partial \bar{\partial} (|f_j|^2 + \varepsilon)^{\delta/2} \wedge \beta_{n+k-m-1}. \tag{2.5} \]

Comparing (2.4) with (2.5), we get

\[H^\varepsilon_k dV := \prod_k i \partial \bar{\partial} (|f_j|^2 + \varepsilon)^{\delta/2} \wedge \beta_{n+k-m-1} = \prod_k i \partial \bar{\partial} (|f_j|^2 + \varepsilon)^{\delta/2} \wedge \beta_{n+k-m-1}. \tag{2.6} \]

Let \(B \) be a ball about the origin and let \(\chi_B \) be a smooth cut-off function supported in a concentric ball of twice the radius. We now use (2.5), (2.6) and (2.3) and integrate by parts (going from the second to the third line below) to see that

\[\int_B F^\varepsilon_1 dV \leq C_\delta \int \chi_B \left| i \partial \bar{\partial} (|f_1|^2 + \varepsilon)^{\delta/2} \wedge \ldots \wedge i \partial \bar{\partial} (|f_m|^2 + \varepsilon)^{\delta/2} \right| dV \]

\[= C_\delta \int \chi_B i \partial \bar{\partial} (|f_1|^2 + \varepsilon)^{\delta/2} \wedge \ldots \wedge i \partial \bar{\partial} (|f_m|^2 + \varepsilon)^{\delta/2} \wedge \beta_{n-m} \]

\[= C_\delta \left| \int (\partial \bar{\partial} \chi_B) (|f_1|^2 + \varepsilon)^{\delta/2} \wedge \ldots \wedge i \partial \bar{\partial} (|f_m|^2 + \varepsilon)^{\delta/2} \wedge \beta_{n-m} \right| \]

\[\leq C_1 C_\delta \sup_{2B} |f_1|^\delta \int_{2B} \left| i \partial \bar{\partial} (|f_2|^2 + \varepsilon)^{\delta/2} \wedge \ldots \wedge i \partial \bar{\partial} (|f_m|^2 + \varepsilon)^{\delta/2} \right| dV \]

\[\leq C_1 C_\delta \sup_{2B} |f_1|^\delta \int_{2B} \chi_{2B} H^\varepsilon_{\delta} dV, \]
where $C_\delta = 2^m / \delta^{2m}$ and $C_1 = \sup \chi_B$. Should the reader have any doubts about the integration by parts, note that $d(\alpha \wedge \beta \wedge \gamma) = \partial \alpha \wedge \beta \wedge \gamma + \alpha \wedge \partial \beta \wedge \gamma$, for any function α and forms β and γ such that γ is a closed $(n-1, n-1)$-form and β is a $(0,1)$-form. A similar relation holds for the $\bar{\partial}$-operator. Since the second integral on the first line in the calculation above is nothing but $\int \chi_B H_\varepsilon^1 dV$, we can proceed by induction over k to obtain
\[
\int_B |F_\varepsilon| dV \leq \frac{C}{\delta^{2m}} \sup_{2^{m+1}B} |f_1 \cdots f_m|^\delta < \infty,
\]
so if we let ε tend to zero, we get the desired bound. □

Remark 2.4. — It is not hard to see that essentially the same proof gives that $|\partial f_1 \wedge \cdots \wedge \partial f_r| / \prod_i |f_i|$ is locally integrable.

3. Division by weighted integral formulas

We will use a division formula introduced in [B83], but for convenience, we use the formalism from [A03] to describe it.

Consider a fixed point $z \in \mathbb{C}^n$ and define the operator $\nabla_{\zeta - z} = \delta_{\zeta - z} - \bar{\partial}$, where $\delta_{\zeta - z}$ is contraction with the vector field
\[
2\pi i \sum_{k=1}^n (\zeta - z_k) \frac{\partial}{\partial \zeta_k}.
\]
Recall that $\delta_{\zeta - z}$ anti-commutes with $\bar{\partial}$. We allow these operators to act on forms of all bidegrees. In particular, the contraction of a function is zero.

A weight with respect to z is a smooth differential form $g = g_{0,0} + g_{1,1} + \cdots + g_{n,n}$ such that $\nabla_{\zeta - z} g = 0$ and $g_{0,0}(z) = 1$. The subscripts denote bidegree.

Let s be any $(1,0)$-form such that $\delta_{\zeta - z} s = 1$ outside of $\{\zeta = z\}$, e.g.,
\[
s = \frac{\partial |\zeta|^2}{2\pi i (|\zeta|^2 - \bar{\zeta} \cdot z)},
\]
where the dot sign denotes the pairing given by $a \cdot b = \sum a_i b_i$. Next we set
\[
u = s + s \wedge \bar{\partial}s + \cdots + s \wedge (\bar{\partial}s)^{n-1},
\]
which is defined whenever s is defined. We note that $\delta_{\zeta - z} \bar{\partial}s = -\bar{\partial}\delta_{\zeta - z} s = -\bar{\partial}1 = 0$. Since $s \wedge (\bar{\partial}s)^n$ must vanish, we have $(\bar{\partial}s)^n = \delta_{\zeta - z} (s \wedge (\bar{\partial}s)^n) = 0.$
The reader may check that $\nabla_{\zeta-z} u = 1$. In fact, this can be seen elegantly by using functional calculus of differential forms; then $u = s/\nabla_{\zeta-z} s = s/(1 - \overline{\partial}s) = s \wedge \sum_{1}^{n-1} (\overline{\partial}s)^{k}$, and $\nabla_{\zeta-z} u = \nabla s/\nabla s = 1$.

One can construct a weight $g_{z}(\zeta)$ with respect to z, compactly supported in the ball of radius $r + \varepsilon$, such that $(z, \zeta) \mapsto g_{z}(\zeta)$ is holomorphic in z in the ball of radius $r - \varepsilon$. This is accomplished by setting

$$g_{z}(\zeta) = \chi - \overline{\partial}\chi \wedge u,$$

where χ is a cut-off function that is 1 whenever $|\zeta| \leq r - \varepsilon$ and 0 whenever $|\zeta| > r + \varepsilon$. Note that u is well-defined on the support of $\partial\chi$. We see that g_{z} is a weight since $\nabla_{\zeta-z}$ is an anti-derivation; $\nabla_{\zeta-z} g_{z} = -\overline{\partial}\chi + \overline{\partial}\delta_{\zeta-z} \chi \wedge u + \overline{\partial}\chi = 0$ (as χ is a function, we have $\delta_{\zeta-z} \chi = 0$).

Proposition 3.1. — If g is a weight with respect to z which has compact support, and if ϕ is holomorphic in a neighbourhood of the support of g, then

$$\phi(z) = \int \phi(\zeta)g(\zeta). \quad (3.1)$$

Proof. — As in the construction of a weight with compact support above, we define forms

$$b = \frac{\partial|\zeta - z|^{2}}{2\pi i|\zeta - z|^{2}}$$

and $u = b \wedge \sum (\overline{\partial}b)^{k}$ such that $\delta_{\zeta-z} b = 1$ and $\nabla_{\zeta-z} u = 1$ hold outside of $\{\zeta = z\}$. The highest degree term of u is the Bochner-Martinelli kernel. We now want to determine the residue $R = 1 - \nabla_{\zeta-z} u$ (where $\nabla_{\zeta-z}$ is taken in the sense of currents) at $\{\zeta = z\}$. The $(k, k-1)$ bidegree component $u_{k,k-1}$ of u is $\mathcal{O}(|\zeta-z|^{-2k+1})$, so only the highest component, $\overline{\partial}u_{n,n-1} = \overline{\partial}(b \wedge (\overline{\partial}b)^{n-1})$ of $\nabla_{\zeta-z} u$ will contribute to the residue. Using Stokes’ theorem, it is easy to check that $R = [z]$, the point evaluation current at z. Clearly $\nabla_{\zeta-z}(\phi g) = 0$, so $\nabla_{\zeta-z}(u \wedge \phi g) = \phi g - [z] \wedge \phi g$. Taking highest order terms, we get

$$d(u \wedge \phi g)_{n,n-1} = \overline{\partial}(u \wedge \phi g)_{n,n-1} = [z] \wedge \phi g_{0,0} - \phi g_{n,n} = [z] \wedge \phi - \phi g_{n,n},$$

so by Stokes’s theorem

$$\int \phi(\zeta)g(\zeta) = \int \phi(\zeta)g_{n,n}(\zeta) = [z].\phi = \phi(z).$$

□
4. Finishing the proof of Theorem 1.2

We now begin constructing a weight associated with Berndtsson’s division formula for an ideal \(I \subset \mathcal{O}_n \). Take \(h = (h_i) \) to be an \(m \)-tuple of so called Hefer forms with respect to the generators \(f_i \) of \(I \); these (germs of) \((1, 0)\)-forms are holomorphic in \(2n \) variables, and satisfy \(\delta_{\zeta - z} h_i = f_i(\zeta) - f_i(z) \). To see that \(h \) exists, write

\[
 f_i(\zeta) - f_i(z) = \int_0^1 \frac{d}{dt} f_i(z + t(\zeta - z)) dt,
\]

and compute the derivative inside the integral. Define \(\sigma_i = \bar{f}_i / |f|^2 \) and let \(\chi_\varepsilon = \chi(|f|/\varepsilon) \) be a smooth cut-off function, where \(\chi \) is approximatively the characteristic function for \([1, \infty)\). Recall that the dot sign refers to the pairing \(a \cdot b = \sum a_i b_i \).

We now set

\[
 \mu = \min(m, n + 1)
\]

and define the weight

\[
 g_B = (1 - \nabla_{\zeta - z} (h \cdot \chi_\varepsilon \sigma))^\mu = (1 - \chi_\varepsilon + f(z) \cdot \chi_\varepsilon \sigma + h \cdot \overline{\partial} (\chi_\varepsilon \sigma))^\mu \quad (4.1)
\]

where

\[
 A_\varepsilon = \sum_{k=0}^{\mu-1} C_k \chi_\varepsilon \sigma [f(z) \cdot \chi_\varepsilon \sigma]^k [1 - \chi_\varepsilon + h \cdot \overline{\partial} (\chi_\varepsilon \sigma)]^{\mu-k-1} \quad (4.2)
\]

and

\[
 B_\varepsilon = (1 - \chi_\varepsilon + h \cdot \overline{\partial} (\chi_\varepsilon \sigma))^\mu. \quad (4.3)
\]

For convenience, we assume that \(l = 0 \) in Theorem 1.2. The proof goes through verbatim for general \(l \) by just replacing \(\mu \) with \(\mu + l \) in the definition of \(g_B \).

Let \(g \) be any weight with respect to \(z \) which has compact support and is holomorphic in \(z \) near 0. Substitution of the last line of (4.1) into (3.1) applied to the weight \(g_B \wedge g \) yields

\[
 \phi(z) = f(z) \cdot \int \phi(\zeta) A_\varepsilon \wedge g + \int \phi(\zeta) B_\varepsilon \wedge g. \quad (4.4)
\]

To obtain the division we will show two claims:
Claim 4.1. — The second term in (4.4),
\[\int \phi(\zeta) B_\varepsilon \wedge g, \]
converges uniformly to zero for small \(|z|\).

Claim 4.2. — If \(m \leq n \), the tuple of integrals in (4.4),
\[\int \phi(\zeta) A_\varepsilon \wedge g, \]
converges uniformly as \(\varepsilon \to 0 \).

We give an argument for the case \(m > n \) of Theorem 1.2 at the end of
the paper. Letting \(\varepsilon \) go to zero in (4.4), these claims give that \(\phi \in I \).

To prove Claim 4.1, we will soon find a function \(F(\zeta) \) integrable near
\(\zeta = 0 \), such that \(|\phi(\zeta) B_\varepsilon| \leq F \). Now we note that the integrand of Claim 4.1
has support on the set \(S_\varepsilon = \{|f| \leq 2\varepsilon\} \); outside of \(S_\varepsilon \), we have that \(\chi_\varepsilon = 1 \),
so \(B_\varepsilon = (h \cdot \partial \sigma)^\mu \), which vanishes regardless of whether \(\mu = n+1 \) or \(\mu = m \).
In the latter case apply \(\partial \) to \(f \cdot \sigma = 1 \) to see that \(\partial \sigma \) is linearly dependent.
Thus for small \(|z|\), we get
\[\lim_{\varepsilon \to 0} \left| \int \phi(\zeta) B_\varepsilon \wedge g \right| \leq C \lim_{\varepsilon \to 0} \int_{S_\varepsilon} F = 0, \]
where we used that \(g \) is smooth.

The existence of \(F \) is a consequence of the main estimate of the previous
chapter and a little bookkeeping that we will now carry out. Straightforward
calculations, based on the fact that \(\chi' \) is bounded, give that
\[\bar{\partial} \chi_\varepsilon = \mathcal{O}(1) |f|^{-1} \sum \bar{\partial} f_j \quad \text{and} \quad \bar{\partial} \sigma_i = \mathcal{O}(1) |f|^{-2} \sum \bar{\partial} f_j, \]
(4.5)
since \(|f| \sim \varepsilon \) on the support of \(\bar{\partial} \chi_\varepsilon \). Note also that \(|\sigma| = |f|^{-1}\). It is easy to
see that \(\mathcal{O}(1) \) actually represents a function that does not depend on \(\varepsilon \).

Using these facts, as we binomially expand (4.3), we get that \(\phi(\zeta) B_\varepsilon \) is
a linear combination of terms that are given by
\[\phi(\zeta) (\bar{\partial} \chi_\varepsilon h \cdot \sigma)^a \wedge (\chi_\varepsilon h \cdot \bar{\partial} \sigma)^b (1 - \chi_\varepsilon)^c = \phi(\zeta) |f|^{-2(a+b)} \bar{\partial} f_j \wedge \mathcal{O}(1), \]
(4.6)
where $a + b + c = \mu$, $J \subset \{1, 2 \ldots m\}$, $|J| = a + b$ and $\partial f_J = \bigwedge_{i \in J} \overline{\partial f_i}$. Since $\partial f_J = 0$ whenever $a + b > n$ we can assume that $a + b \leq \min(m, n)$. We now set F to be the sum of the right hand side of (4.6) over all possible J, i.e.

$$F = \sum_{|J| \leq \min(m, n)} \phi(\zeta)|f|^{-2|J|} \overline{\partial f_J} \wedge \mathcal{O}(1).$$

(4.7)

Clearly $|\phi(\zeta)B_\varepsilon| \leq F$. Applying Proposition 2.1 with $k = \min(m, n)$ to (4.7), it follows that F is indeed locally integrable. □

Before dealing with Claim 4.2, we note that there is a way around it; clearly, the integrals in the claim are holomorphic for each $\varepsilon > 0$, so the first term (4.4) belongs to I for fixed $\varepsilon > 0$. Thus, due to Claim 4.1, ϕ is in the closure of I with respect to uniform convergence. All ideals are however closed under uniform convergence, see [H90] Chapter 6, so ϕ belongs to I.

The proof of Claim 4.2 is similar to the proof of Claim 4.1. Since we have assumed $m \leq n$, we have $\mu = \min(m, n + 1) = m$. Expanding $\phi(\zeta)A_\varepsilon$, displayed in (4.2), we get a linear combination of terms that are given by

$$\phi(\zeta)(f(z) \cdot \chi_\varepsilon \sigma)^k (\overline{\partial \chi_\varepsilon} h \cdot \sigma)^a \wedge (h \cdot \overline{\partial \sigma})^b = \phi(\zeta)|f|^{-(1+k+2a+2b)} \overline{\partial f_J} \wedge \mathcal{O}(1),$$

where $a + b \leq \mu - k - 1$, $k \leq \mu - 1$ and $|J| = a + b$. The sum $1 + k + 2a + 2b$ is at most $2\mu - 1$, and this happens when $k = 0$ and $a + b = \mu - 1$. By an argument almost identical to the one proving that F was integrable, we get an integrable upper bound for ϕA_ε independent of z and ε. This is, of course, an upper bound also for the limit

$$A := \lim_{\varepsilon \to 0} A_\varepsilon = \sum_{k=0}^{\mu-1} C_k \sigma[f(z) \cdot \sigma]^k [h \cdot \overline{\partial \sigma}]^{\mu-k-1}.$$

As in the beginning of the proof of Claim 4.1, one sees that $\int \phi(\zeta)A_\varepsilon \wedge g$ converges uniformly to $\int \phi(\zeta)A \wedge g$. □

The case $m > n$ presents an additional difficulty as our upper bound fails to be integrable. Also, $\phi A \wedge g$ will not be integrable. A remedy is to consider a reduction of the ideal I, that is, an ideal $\mathfrak{a} \subset I$ generated by n germs such that $\mathfrak{a} = \overline{I}$, see for example Lemma 10.3, Ch. VIII in [D07]. If a_i generate \mathfrak{a} we have that $|a| \sim |f|$, so $\mathfrak{a}^{(k)} = \overline{I}^{(k)}$ for any integer $k \geq 1$. Thus we have reduced to the case $m \leq n$, which has already been proved. □
An elementary proof of the Briançon-Skoda theorem

Bibliography

