BORHEN HALOUANI

Local Peak Sets in Weakly Pseudoconvex Boundaries in \mathbb{C}^n

Tome XVIII, no 3 (2009), p. 577-598.

<http://afst.cedram.org/item?id=AFST_2009_6_18_3_577_0>
Local Peak Sets in Weakly Pseudoconvex Boundaries in \mathbb{C}^n (*)

BORHEN HALOUANI(1)

Abstract. — We give a sufficient condition for a C^ω (resp. C^∞)-totally real, complex-tangential, $(n-1)$-dimensional submanifold in a weakly pseudoconvex boundary of class C^ω (resp. C^∞) to be a local peak set for the class \mathcal{O} (resp. A^∞). Moreover, we give a consequence of it for Catlin’s multitype.

Résumé. — On donne une condition suffisante pour qu’une sous variété C^ω (resp. C^∞), totalement réelle, complexe-tangentielle, de dimension $(n-1)$ dans le bord d’un domaine faiblement pseudoconvexe de \mathbb{C}^n, soit un ensemble localement pic pour la classe \mathcal{O} (resp. A^∞). De plus, on donne une conséquence de cette condition en terme de multitype de D. Catlin.

1. Introduction and basic definitions

This article is a part of the Ph.D thesis of the author. The \mathcal{O} part was motivated by the paper of Boutet de Monvel and Iordan [B-I] and A^∞ part by the methods of Hakim and Sibony [H-S]. Let D be a domain in \mathbb{C}^n with C^ω (resp. C^∞)-boundary. We denote for an open set \mathcal{U} by \mathcal{O} (resp. A^∞) the class of holomorphic functions on \mathcal{U} (resp. the class of holomorphic functions in \mathcal{U} which have a C^∞-extension to $\overline{\mathcal{U}}$).

We say that $M \subset bD$ is a local peak set at a point $p \in M$ for the class \mathcal{O} (resp. A^∞), if there exist a neighborhood \mathcal{U} of p in \mathbb{C}^n and a function...
Let D be a pseudoconvex domain with C^ω (resp. C^∞)-boundary. Let M be an $(n-1)$ dimensional submanifold of bD which is totally real and complex-tangential in a neighborhood of a point $p \in M$. Let (V, γ) be a C^ω (resp. C^∞)-parametrization of M at p, where V is a neighborhood of the origin in \mathbb{R}^{n-1} such that $\gamma(0) = p$. Let X be a C^ω (resp. C^∞)-vector field on M such that $X(p) = 0$. Denote by $\zeta = (\zeta_1, \ldots, \zeta_{n-1})$ the coordinates of

2. Preliminaries
Local Peak Sets in Weakly Pseudoconvex Boundaries in \mathbb{C}^n

a point in V. Then X can be written as $X = \sum_i d_i(\zeta) \frac{\partial}{\partial \zeta^i}$ where d_i are C^ω (resp. C^∞)-functions on V. We set D_0 the Jacobian matrix at the origin: \[
\left\{ \frac{\partial d_i}{\partial \zeta^j}(0) \right\}_{i,j \leq n-1}.
\] Now, we introduce our first hypothesis:

(H_1) The matrix D_0 is diagonalizable and has $\tilde{m}_1 \geq \ldots \geq \tilde{m}_{n-1}$ eigenvalues with $\tilde{m}_i \in \mathbb{N}^*$ for all i.

We say that M admits a peak-admissible C^ω (resp. C^∞)-vector field X of weights $(\tilde{m}_1, \ldots, \tilde{m}_{n-1})$ at $p \in M$ for the class O (resp. A^∞). (H_1) is independent of the choice of the parametrization and the \tilde{m}_i and their multiplicities are uniquely determined. Using hypothesis (H_1), one can easily prove that there exists a C^ω (resp. C^∞)-change of coordinates on V such that $X = \sum_i \tilde{m}_i \zeta_i \frac{\partial}{\partial \zeta_i}$. This representation of X is invariant if we apply a “weight-homogeneous” polynomial transformation of coordinates as below:

Lemma 2.1. Let $\Lambda = (\Lambda_1, \ldots, \Lambda_{n-1})$ be a C^ω (resp. C^∞)-change of coordinates on V such that $\Lambda(0) = 0$ and $d\Lambda(X) = X$. Then Λ is a polynomial map. More precisely, if $\zeta = (\zeta_1, \ldots, \zeta_{n-1}) \in V$, $I = (i_1, \ldots, i_{n-1}) \in \mathbb{N}^{n-1}$ and we set $|I|_* = \sum \nu_i \tilde{m}_\nu$ then for every $1 \leq j \leq n-1$, $\Lambda_j(\zeta) = \sum_{|I|_* = \tilde{m}_j} a_j^{i_1} \cdots \zeta_{n-1}^{i_{n-1}}$ with $a_j^i \in \mathbb{R}$. Conversely, any Λ of this form preserves X.

Proof. The integral curves of X are $\kappa_\zeta(\lambda) = (\lambda^{\tilde{m}_1} \zeta_1, \ldots, \lambda^{\tilde{m}_{n-1}} \zeta_{n-1})$, $\lambda \in \mathbb{R}$. Since $d\Lambda(X) = X$, Λ transforms an integral curve passing through ζ to an integral curve passing through $\eta = \Lambda(\zeta)$. So we obtain

\[
(\lambda^{\tilde{m}_1} \Lambda_1(\zeta), \ldots, \lambda^{\tilde{m}_{n-1}} \Lambda_{n-1}(\zeta)) = (\Lambda_1(\kappa_\zeta(\lambda)), \ldots, \Lambda_{n-1}(\kappa_\zeta(\lambda))). \tag{2.1}
\]

Let $1 \leq j \leq n-1$ be fixed. We write Λ_j as: $\Lambda_j(\zeta) = \Lambda^*(\zeta) + R(\zeta)$ where $\Lambda^*(\zeta) := \sum_{|I|_* = \tilde{m}} a^{i_1} \cdots i_{n-1} \zeta_1^{i_1} \cdots \zeta_{n-1}^{i_{n-1}}$ is non identically zero for a smallest integer \tilde{m} that satisfies this condition: there exists a constant $C > 0$ such that $|R(\kappa_\zeta(\lambda))| \leq C|\lambda|^{\tilde{m}+1}$. From (2.1), we have

\[
\lambda^{\tilde{m}_j} \Lambda_j(\zeta) = \Lambda_j(\kappa_\zeta(\lambda)) = \lambda^{\tilde{m}} \Lambda^*(\zeta) + R(\kappa_\zeta(\lambda)). \tag{2.2}
\]

Now we divide (2.2) by $\lambda^{\tilde{m}}$. When λ tends to 0 we obtain $\tilde{m} = \tilde{m}_j$ and $\Lambda_j(\zeta) = \Lambda^*(\zeta)$ for all $\zeta \in \mathbb{R}^{n-1}$. \square
So let the coordinates be chosen such that $X = \sum_i \tilde{m}_i \zeta \frac{\partial}{\partial \zeta_i}$. For $\zeta = (\zeta_1, \ldots, \zeta_{n-1})$, $\eta = (\eta_1, \ldots, \eta_{n-1}) \in \mathbb{R}^{n-1}$ and $\lambda, \mu \in \mathbb{R}$, we set $\sigma := \zeta + i.\eta \in \mathbb{C}^{n-1}$, $\kappa_\zeta(\lambda) := (\lambda_1^m \zeta_1, \ldots, \lambda_{n-1}^m \zeta_{n-1})$ and $\kappa_\sigma(\mu, \lambda) := \kappa_\zeta(\mu) + i.\kappa_\eta(\lambda)$. Let ρ be a local defining function of D at $p \in bD$ and $\overline{\gamma} : \tilde{V} \to \theta(\tilde{V}) := \tilde{M}$ be a holomorphic-extension (resp. almost-holomorphic extension) of the parametrization γ of M. In the C^ω-case \tilde{M} is a complexification of M and \tilde{V} is an open neighborhood of the origin in \mathbb{C}^{n-1}. Let $M, K \in \mathbb{N}^*$ be such that $M \leq K$ and $m_j := M/\tilde{m}_j \in \mathbb{N}^*$, $k_j := K/\tilde{m}_j \in \mathbb{N}^*$. We set $E = \{\zeta \in \mathbb{R}^{n-1}/ \sum_j \zeta_j^{2m_j} = 1\}$. Now, we introduce our second hypothesis:

(\mathcal{H}_2) There exist constants $\varepsilon > 0$, $0 < c \leq C$ such that for every $\sigma = \zeta + i.\eta \in E + i.\mathbf{E}$, $|\lambda| < \varepsilon$, $|\mu| < \varepsilon$, we have: $c|\lambda|^{2M}(|\mu| + |\lambda|)^{2(K-M)} \leq \rho(\overline{\gamma}(\kappa_\sigma(\mu, \lambda))) \leq C|\lambda|^{2M}(|\mu| + |\lambda|)^{2(K-M)}$.

Definition 2.2. — If a C^∞ (resp. C^∞)-vector field X on M verifies (\mathcal{H}_1) and (\mathcal{H}_2) we say that X is peak-admissible of peak-type $(K, M; \tilde{m}_1, \ldots, \tilde{m}_{n-1})$ at $p \in M$ for the class \mathcal{O} (resp. A^∞).

Remark 2.3. —

1) The hypothesis (\mathcal{H}_2) does not depend neither on the choice of the defining function of the boundary bD nor the choice of the almost-holomorphic extension (see Lemma 4.3 in section 4).

2) The geometric meaning of (\mathcal{H}_2) will become clear in inequality (\mathcal{H}).

3. A sufficient condition for the existence of local peak set for the class \mathcal{O}

Theorem 3.1. — Let D be a pseudoconvex domain in \mathbb{C}^n with C^ω-boundary. Let M be an $(n-1)$-dimensional C^ω-submanifold in bD that is totally real and complex-tangential at $p \in M$. We suppose that M admits a peak-admissible C^ω-vector field X of peak-type $(K, M; \tilde{m}_1, \ldots, \tilde{m}_{n-1})$ at p for \mathcal{O}. Then M is a local peak set at p for the class \mathcal{O}.

Proof. — The proof is based on Propositions 3.2 and 3.4 below after several holomorphic coordinates changes. Also we allow shrinking of M. □

Proposition 3.2. — Let D be a domain in \mathbb{C}^n with C^ω (resp. C^∞)-boundary bD. Let M be an $(n-1)$-dimensional C^ω-submanifold in bD which
Local Peak Sets in Weakly Pseudoconvex Boundaries in \mathbb{C}^n

is totally real and complex-tangential near p. Then there exists a holomorphic change (resp. an almost-holomorphic change) of coordinates (Z, w) with $Z = X + iY \in \mathbb{C}^{n-1}$ and $w = u + iv \in \mathbb{C}$, such that p corresponds to the origin and in an open neighborhood U of the origin, we have:

i) $\mathbf{M} = \{(Z, w) \in U/Y = w = 0\}$. Moreover, \mathbf{M} is contained in an n-dimensional totally real submanifold $\mathbf{N} = \{(Z, w) \in U/Y = u = 0\}$ of bD.

ii) For every $c \in \mathbb{R}$, $\mathbf{M}_c = \{(Z, w) \in \mathbf{N}/v = c\}$ is complex-tangential or empty.

iii) $D \cap U = \{(Z, w) \in U/\rho(Z, w) < 0\}$ with

$$\rho(Z, w) = u + A(Z) + vB(Z) + v^2R(Z, v).$$

iv) A and B vanish of order ≥ 2 when $Y = 0$.

Proof. — We give the proof in the C^ω-case. Let γ be a C^ω-parametrization of \mathbf{M} defined on a neighborhood of the origin in \mathbb{R}^{n-1}. After a translation and a rotation of the coordinates in \mathbb{C}^n we may assume that p is the origin and the real tangent space at 0 to bD is $T_0(bD) = \mathbb{C}^{n-1} \times i\mathbb{R}$. We set $L(Z, w) = i\mathbf{n}(Z, w)$ where \mathbf{n} is the vector field of the outer exterior normal to bD. Then, for every $(Z, w) \in bD$, there exists a C^ω-integral curve $l_{(Z, w)}(\lambda) \in bD$ of L satisfying $l_{(Z, w)}(0) = (Z, w)$ and

$$\frac{dl_{(Z, w)}}{d\lambda}(\lambda) = L(l_{(Z, w)}(\lambda)).$$

Now, we consider the map $\theta : (t, \lambda) \mapsto l_{\gamma(t)}(\lambda)$. It is clear that θ is a C^ω-diffeomorphism from a neighborhood U of the origin in \mathbb{R}^n into an n-dimensional submanifold $N' := \theta(U)$ of bD which is totally real. By complexification of θ in a neighborhood W of the origin in \mathbb{C}^n, we obtain in the new holomorphic coordinates (Z', w'), $M' = \{(Z', w') \in W/\gamma' = w' = 0\}$ and $N' = \{(Z', w') \in W/\gamma' = w' = 0\}$. We remark that the system

$$\{\Sigma_q = T_q(N') \cap T_q^{\omega}(bD), q \in W\}$$

is C^ω and involutive. By Frobenius theorem [Bo] the leaves $M'_c = \{(Z', w') \in W/\gamma'/w' = c\}_{c \in \mathbb{R}}$ are complex-tangential to bD. Now, we change coordinates again by defining: $Z = Z'$ and $w = iw'$. We obtain in a neighborhood U of the origin $i)$ and $ii)$. Representing bD as a graph over $\mathbb{C}^{n-1} \times i\mathbb{R}$, we obtain iii). Since $\mathbf{M} \subset bD$ is complex-tangential A vanishes of order ≥ 2 if $Y = 0$. As $\frac{\partial}{\partial v}$ is tangent to \mathbf{N} and the complex gradient $\nabla p = (0, -1)$ is constant along \mathbf{N}, we obtain that B vanishes of order ≥ 2 if $Y = 0$. This achieves iv) and the proposition. □

Let the change of coordinates of Proposition 3.2 for the vector field \mathbf{X} which verifies hypothesis (H_2) be achieved. Now we show the impact of (H_2). We set $\kappa := K/M = k_j/m_j \geq 1$. Since κ is independent of j,
we define in a sufficiently small neighborhood \(V \) of the origin in \(\mathbb{C}^{n-1} \) the following pseudo-norms of the \(Z = (z_1, \ldots, z_{n-1}) \) coordinates of Proposition 3.2:

\[
||Y|| = \left(\sum_j y_j^{2m_j} \right)^{1/2M} \quad \text{and} \quad ||Z||_* = \left(\sum_j |z_j|^{2k_j} \right)^{1/2K}.
\]

We note that

\[
A(Z) = \rho(\tilde{\gamma}(\kappa_{\sigma}(\mu, \lambda))) \quad \text{where} \quad Z = X + iY = \kappa_{\sigma}(\mu, \lambda).
\]

Therefore, from now on we may assume that \(A \) verifies:

\[
(\mathcal{H}) \quad \text{There exist two constants } 0 < c \leq C \text{ such that, for every } Z = X + iY \in \mathbb{C}^{n-1} \text{ near the origin, we have:}
\]

\[
c||Y||_*^{2M} \cdot ||Z||_*^{2K-2M} \leq A(Z) \leq C||Y||_*^{2M} \cdot ||Z||_*^{2K-2M}.
\]

Remark 3.3. —

1) The proof of Proposition 3.2 remains true in the \(C^\infty \)-case. We indicate the modification in Lemma 4.2 (section 4).

2) If \(Z = (z_1, \ldots, z_{n-1}) \in \mathcal{V} \) where \(\mathcal{V} \) is a small open neighborhood of the origin in \(\mathbb{C}^{n-1} \), then \(\sum z_j|^{2(k_j-m_j)} \approx \left(\sum |z_j|^{2m_j} \right)^{\kappa-1} \).

Moreover, we may replace \(k_j \) by \(m_j \) and \(K \) by \(M \) in the definition of the pseudo-norm \(||Z||_* \).

3) If \(K = M = \tilde{m}_1 = \ldots = \tilde{m}_{n-1} = 1 \), we find the property on \(A \) for a strongly pseudoconvex boundary.

Proposition 3.4. —

1) If the real hyperplane \(H = \mathbb{C}^{n-1} \times \mathbb{R} = \{(Z, iv)/Z \in \mathbb{C}^{n-1}, v \in \mathbb{R}\} \) lies outside of \(D \) in a neighborhood \(\mathcal{U} \) of the origin, then there exists a constant \(T > 0 \) such that \(B^2 \leq TA \) near the origin.

2) If there exists a constant \(T > 0 \) such that \(B^2 \leq TA \) near the origin, then there exist a sufficiently small neighborhood \(\mathcal{U} \) of the origin and a holomorphic function \(\psi \) on \(\mathcal{U} \) (resp. an almost-holomorphic function with respect to \(\mathcal{N} \cap \mathcal{U} \)) which satisfies: \(\Re \psi < 0 \) on \(\overline{D} \cap \mathcal{U} \) if \(w \neq 0 \) and \(\psi = 0 \) if \(w = 0 \). Here \(\psi = \frac{w}{1 - 2K_1w} \) with a suitable constant \(K_1 > 0 \).

Proof. — The proof is elementary. See also [B-I]. \(\square \)

In order to apply Proposition 3.4 2), we should determine the order of vanishing for certain functions on \(M \) at \(p = 0 \in M \). We begin by defining the \(Z \)-weights and the \(Y \)-weights for polynomial functions.
Definition 3.5. — Let $\chi = a_{I,J} z_1^{i_1} \ldots z_n^{i_n}$, with $a_{I,J} \neq 0$, be a monomial. We define the Z-weight $P_Z(\chi)$ of χ as: $P_Z(\chi) = \sum_{\nu} \tilde{m}_\nu (i_\nu + j_\nu)$.

If $g \neq 0$ is a polynomial function in Z and \bar{Z} we define the Z-weight of g as the smallest Z-weight in the decomposition of g by monomials. If g is a sum of monomials which have the same Z-weight L, we say that g is homogeneous with respect to the Z-weight. Let $X \in \mathbb{R}^{n-1}$ be fixed and $\Xi = \alpha_{I,J} (X) y_1^{i_1} \ldots y_n^{i_n}$, with $\alpha_{I,J} (X) \neq 0$, be a monomial at Y. We define the Y-weight $P_Y(\Xi)$ of χ as $\sum_{\nu} \tilde{m}_\nu i_\nu$. If $h \neq 0$ is a polynomial function in Y we define the Y-weight of h to be the smallest Y-weight in the decomposition of h. If h is a sum of monomials which have the same Y-weight L', we say that h is homogeneous with respect to the Y-weight of order L'.

Lemma 3.6. — Let $R, S \in \mathbb{N}$, $R \geq S$ and $F(X,Y) = \sum_{I,J} F_{I,J} Y^I X^J$ be a C^ω-function on an open neighborhood of the origin of \mathbb{C}^{n-1} such that, for all multi-indices $I = (i_1, \ldots, i_{n-1})$, $J = (j_1, \ldots, j_{n-1})$ in \mathbb{N}^{n-1}, $F_{I,J} = 0$ or $P_Y(F_{I,J} Y^I X^J) \geq S$ and $P_Z(F_{I,J} Y^I X^J) \geq R \geq S$. Then, there exists a constant $C > 0$ such that, $|F(Z)| \leq C ||Y||_N^S ||Z||_N^{R-S}$, $\forall Z = X + i Y$ near the origin.

Proof. — This can be seen by Taylor expansion and standard arguments.

Lemma 3.7. — With the notations of Lemma 3.6, if $S \geq M$ and $R \geq K = \kappa M$, then $\frac{|F|^2}{A}$ is uniformly bounded on a sufficiently small neighborhood of the origin.

Proof. — This follows immediately from Lemma 3.6 and inequality (\mathcal{H}).

In order to know the weights of A and B we analyze the restrictions which are imposed on the functions A and B by the pseudoconvexity of bD. We assume that $B \neq 0$ and we set $(P_Y(B), P_Z(B)) = (S, R)$. From (\mathcal{H}) we have $(P_Y(A), P_Z(A)) = (2M, 2K)$. Next, a simple computation of the Levi form at a point near the origin to bD for $t = \sum_{\nu} \tilde{m}_\nu y_\nu \chi_\nu \in T^C(bD)$, with $\chi_\nu = i \left[\frac{\partial}{\partial z_\nu} - \frac{i}{\eta} \frac{\partial}{\partial z_\nu} \frac{\partial}{\partial w} \right]$ and $\eta = \frac{1}{2} \left(i + B + 2vR + v^2 \frac{\partial R}{\partial v} \right)$, gives $\text{Lev}_\nu[t] = \mathcal{A}(Z) + v \mathcal{B}(Z) + v^2 \mathcal{R}(v, Z)$, Z varying on \overline{M}, the complexification of M. By pseudoconvexity of bD and Proposition 3.4.1) there exists a positive constant $T^* > 0$ such that

$$B \geq T^* A.$$ \hspace{1cm} (3.1)
It remains to study the Z-weight and Y-weight of A and B and their relationship with the weights of A and B and finally to show $S \geq M$ and $R \geq K$. Some necessary auxiliaries results are given in Lemmas 3.8 and 3.9 below. We denote by $\partial^2_{\nu\mu}$ the partial derivative $\frac{\partial^2}{\partial \nu \partial \mu}$ and $O_Y(L)$ (resp. $O_Z(L)$) is the set of functions that admit an Y-weight (resp. a Z-weight) $\geq L$ ($L \in \mathbb{N}$).

- Suppose that $S < M$.

The expressions of A and B are:

$$A = \sum_{\nu,\mu} \partial^2_{\nu\mu} A \tilde{m}_\nu \tilde{m}_\mu y_\nu y_\mu + O_Y(2M + 1)$$

$$B = \sum_{\nu,\mu} \partial^2_{\nu\mu} B \tilde{m}_\nu \tilde{m}_\mu y_\nu y_\mu + O_Y(2S).$$

By Lemma 3.8 $A = A_{2M} + \bar{A}$ with $\mathcal{P}_Y(A_{2M}) = 2M$ and every term of \bar{A} has an Y-weight $> 2M$. We put $A_{2M} := \sum_{\nu,\mu} \partial^2_{\nu\mu} A_{2M} \tilde{m}_\nu \tilde{m}_\mu y_\nu y_\mu$. By Lemma 3.9 we obtain $A_{2M} \neq 0$ and $\mathcal{P}_Y(A_{2M}) = 2M$. Similary, we have $B = B_S + \bar{B}_S$ where every term of \bar{B}_S has an Y-weight $> 2M$. We put $B_S := \sum_{\nu,\mu} \partial^2_{\nu\mu} B_S \tilde{m}_\nu \tilde{m}_\mu y_\nu y_\mu$. We obtain $B_S \neq 0$ and $\mathcal{P}_Y(B_S) = S$. Inequality (3.1) becomes:

$$(B_S + O_Y(S + 1)^2 \leq T^*(A_{2M} + O_Y(2M + 1)). \quad (3.2)$$

Since $B_S \neq 0$ there exists $Z_0 = X_0 + iY_0$ with $Y_0 = (y_{0,1}, \ldots, y_{0,n-1}) \neq 0$ such that $B_S(Z_0) \neq 0$. Since every term in the decomposition of B_S has an Y-weight S, we consider for $\lambda > 0$, $\phi_{Y_0}(\lambda) = (\lambda^m y_{0,1}, \ldots, \lambda^m y_{0,n-1})$. Then $B_S(X_0 + i, \phi_{Y_0}(\lambda))$ becomes an homogeneous polynomial in λ of degree S (i.e. $B_S(X_0 + i, \phi_{Y_0}(\lambda)) = \lambda^S B_S(X_0 + i, Y_0)$). Therefore, we obtain

$$\lim_{\lambda \to 0^+} \frac{1}{\lambda^S} B_S(X_0 + i, \phi_{Y_0}(\lambda)) \neq 0.$$

Now we replace Z by $X_0 + i, \phi_{Y_0}(\lambda)$ in inequality (3.2) and divide by λ^{2S}. We obtain $B_S^2(X_0 + i, \phi_{Y_0}) \leq 0$ when λ tends to 0^+. So $B_S(X_0 + i, Y_0) = 0$ which is a contradiction. Thus, $S \geq M$.

- The case $R < K$ can be falsified in an analogous way by using Lemma 3.9.

Now Lemma 3.7 shows that $\frac{|B|^2}{A}$ is uniformly bounded. Then Proposition 3.4 implies the theorem.

Lemma 3.8. — Let $X = (x_1, \ldots, x_{n-1}) \in \mathbb{R}^{n-1}$ be fixed and $P_X \in \mathbb{R}[y_1, \ldots, y_{n-1}]$ be homogeneous with respect to the Y-weight L. Then we have the following equations:
Local Peak Sets in Weakly Pseudoconvex Boundaries in \mathbb{C}^n

1) \[\sum_{\nu=1}^{n-1} \frac{\partial P_X}{\partial y_\nu}(y_1, \ldots, y_{n-1})\tilde{m}_\nu y_\nu = LP_X(y_1, \ldots, y_n). \]

2) \[\sum_{\nu, \mu} \frac{\partial^2 P_X}{\partial y_\nu \partial y_\mu}(y_1, \ldots, y_{n-1})\tilde{m}_\nu \tilde{m}_\mu y_\nu y_\mu + \sum_{\nu=1}^{n-1} \frac{\partial P_X}{\partial y_\nu}(y_1, \ldots, y_{n-1})\tilde{m}_\nu^2 y_\nu = L^2 P_X(y_1, \ldots, y_{n-1}). \]

Proof. — For $1 \leq \nu \leq n - 1$, we set $y_\nu = \tilde{y}_\nu^{m_\nu}$. Now, we consider the polynomial Q_X defined by: $Q_X(\tilde{y}_1, \ldots, \tilde{y}_{n-1}) = P_X(\tilde{y}_1^{m_1}, \ldots, \tilde{y}_{n-1}^{m_{n-1}})$. Q_X is an homogeneous polynomial at $\tilde{Y} = (\tilde{y}_1, \ldots, \tilde{y}_{n-1})$ in the classic sense, of degree L. Then the result follows from Euler’s equation. \hfill \Box

LEMMA 3.9. — If $P_X \not\equiv 0$ is a polynomial in $\mathbb{R}[y_1, \ldots, y_{n-1}]$ not containing neither constant nor linear terms which is homogeneous with respect to the Y-weight $L \geq 2$ then \[\sum_{\nu, \mu} \frac{\partial^2 P_X}{\partial y_\nu \partial y_\mu}(y_1, \ldots, y_{n-1})\tilde{m}_\nu \tilde{m}_\mu y_\nu y_\mu \not\equiv 0. \]

Proof. — Let P_X be a polynomial which depends exactly on $(n - r - 1)$-variables, where $0 \leq r \leq n - 2$. By a permutation of variables we may assume that $P_X(y_{r+1}, \ldots, y_{n-1}) = \sum_{I=(i_{r+1}, \ldots, i_{n-1})} a_I(X) y_{r+1}^{i_{r+1}} \cdots y_{n-1}^{i_{n-1}}$. We suppose that the assertion of lemma is false. From Lemma 3.8, we have \[\sum_{\nu=r+1}^{n-1} \frac{\partial P_X}{\partial y_\nu}(y_1, \ldots, y_{n-1})\tilde{m}_\nu^2 y_\nu = L^2 P_X. \]

Since $\sum_{\nu=r+1}^{n-1} \frac{\partial P_X}{\partial y_\nu}(y_1, \ldots, y_{n-1})\tilde{m}_\nu y_\nu = LP_X$ we get, for all $(y_{r+1}, \ldots, y_{n-1})$:

\[\sum_{\nu=r+1}^{n-1} \tilde{m}_\nu (L - \tilde{m}_\nu) \frac{\partial P_X}{\partial y_\nu}(y_{r+1}, \ldots, y_{n-1})y_\nu = 0 \quad (3.3) \]

Now, for every $r + 1 \leq \nu \leq n - 1$, we set $\tau_\nu = \tilde{m}_\nu (L - \tilde{m}_\nu)$. We have $\tau_\nu > 0$. In fact, let us suppose that $\tau_\mu = 0$ for a μ with $r + 1 \leq \mu \leq n - 1$.

For every term of P_X we have: $L = \sum_{\nu=r+1}^{n-1} \tilde{m}_\nu i_\nu$. Then, two cases are possible for this term:
• $i_\mu = 1$ and $i_\nu = 0$ for all $\nu \neq \mu$.
• $i_\mu = 0$.

Since there are no linear terms, the first case is impossible. So, $i_\mu = 0$ for this term. But, this is also impossible from the choice of variables.

Now we show that P_X vanishes identically. In fact, let $Y \neq 0$ be fixed. We consider $f(\lambda) = P_X(\lambda^{r+1} y_{r+1}, \ldots, \lambda^{n-1} y_{n-1})$, $\lambda > 0$. So, we have:

$$f'(\lambda) = \sum_{j=r+1}^{n-1} \frac{\partial P_X}{\partial y_j}(\lambda^{r+1} y_{r+1}, \ldots, \lambda^{n-1} y_{n-1}) \tau_j \lambda^{\tau_j-1} y_j.$$

For $r + 1 \leq j \leq n - 1$, we set $w_j = \lambda^{\tau_j} y_j$. We get by (3.3):

$$f'(\lambda) = \frac{1}{\lambda} \sum_{j=r+1}^{n-1} \tau_j w_j \frac{\partial P_X}{\partial y_j}(w_{r+1}, \ldots, w_{n-1}) = 0.$$

So, f is constant. As $f(1) = P_X(y_{r+1}, \ldots, y_{n-1}) = \lim_{\lambda \to 0} f(\lambda) = P_X(0) = 0$, P_X vanishes identically. Therefore, we obtain a contradiction.

\[\square\]

4. A sufficient condition for the existence of a local peak sets for the class A^∞

This part was inspired by the article of Hakim and Sibony [H-S]. The following lemma can be shown by standard methods [Na].

Lemma 4.1. — Let \widetilde{U}_X be a neighborhood of the origin in \mathbb{R}^n and $h : (X, Y) \mapsto h(X, Y)$ a C^∞-function on $\widetilde{U}_X \times \mathbb{R}^n$. We suppose that h is m-flat where $Y = 0$. Then there exist a neighborhood V_Y of the origin in \mathbb{R}^n, a neighborhood $U_X \subset \subset \widetilde{U}_X$ of the origin and a function $g \in C^\infty(U_X \times \mathbb{R}^n)$ which vanishes on $U_X \times V_Y$ and verifies for $\varepsilon > 0$:

$$\|g - h\|_{U_m^X \times \mathbb{R}} < \varepsilon.$$

Lemma 4.2. — Let $\theta : \widetilde{U} \to \mathbb{C}^n$ be a C^∞-parametrization of the submanifold N in a neighborhood of the origin in \mathbb{R}^n. Then θ has an extension $\widetilde{\theta}$ defined on a neighborhood U of the origin in \mathbb{C}^n and which is almostholomorphic with respect to $N \cap U$.

Proof. — Let $T_m(X, Y) = \sum_{|\alpha| \leq m} \frac{1}{\alpha!} D_X^\alpha \theta(X)(iY)^\alpha$ and $U_X \subset \subset \widetilde{U}_X$ be a neighborhood of the origin in \mathbb{R}^n. For $k \in \mathbb{N}$ it is clear that $T_{k+1} - T_k$ is k-flat at Y when $Y = 0$. Now we apply the preceding Lemma 4.1 to $T_{k+1} - T_k$.

\[\text{– 586 –}\]
Local Peak Sets in Weakly Pseudoconvex Boundaries in \(\mathbb{C}^n \)

Then there exist a neighborhood \(V_k^\gamma \) of the origin in \(\mathbb{R}^n \) and a \(C^\infty \)-function \(g_k(X,Y) \) which vanishes on \(U_X \times V_k^\gamma \) such that

\[
||T_{k+1} - T_k - g_k||_{U_X \times \mathbb{R}^n}^k < 2^{-k}. \tag{4.1}
\]

For \(m \in \mathbb{N}^* \), we set \(\tilde{T}_m := T_0 + \sum_{k=0}^m (T_{k+1} - T_k - g_k) \in C^\infty(U_X \times \mathbb{R}^n) \). By (4.1) \(\sum_{k} (T_{k+1} - T_k - g_k) \) is a normal series for all norms \(C^l \) on \(U_X \times \mathbb{R}^n \), \(l \in \mathbb{N} \). So, the sequence \((\tilde{T}_m)_m \) converges uniformly to \(\tilde{\theta} \in C^\infty(U_X \times \mathbb{R}^n) \). It is clear that for \(m \) and \(k \), \(T_m(X,0) = \theta(X) \), \(g_k(X,0) = 0 \). Hence, \(\tilde{\theta}(X,0) = \lim_{m \to +\infty} \tilde{T}_m(X,0) = \theta(X) \). So \(\theta \) is an \(C^\infty \)-extension of \(\theta \) on \(U_X \times \mathbb{R}^n \). That \(\tilde{\theta} \) is almost-holomorphic with respect to \(U_X \times \mathbb{R}^n \) can be seen by similar arguments as in [H-S]. \(\square \)

The following lemma shows that \((\mathcal{H}_2) \) does not depend on the choice of the almost-holomorphic extension.

Lemma 4.3. — Let \(\bar{\gamma} : \bar{V} \longrightarrow \mathbb{C}^{n-1} \) be an almost-holomorphic extension of \(\gamma \) with respect to \(\bar{V} \cap \mathbb{R}^{n-1} \) which satisfies the hypothesis \((\mathcal{H}_2) \) (here \(\gamma \) is the \(C^\infty \)-parametrization of \(\mathcal{M} \) defined in section 2). Let \(\bar{\phi} : \bar{W} \longrightarrow \mathbb{C}^{n-1} \) be another almost-holomorphic extension of \(\gamma \) with respect to \(\bar{W} \cap \mathbb{R}^{n-1} \). Then, the hypothesis \((\mathcal{H}_2) \) is satisfied for \(\bar{\phi} \).

Proof. — The passage from \(\bar{\gamma} \) to \(\bar{\phi} \) is given by the transformation \(\bar{\psi} : \bar{W} \longrightarrow \bar{V} \) which is almost-holomorphic with respect to \(\bar{W} \cap \mathbb{R}^{n-1} \). So, we have \(\bar{\psi}|_{\bar{W} \cap \mathbb{R}^{n-1}} = Id \) and \(\bar{\phi} = \bar{\gamma} \circ \bar{\psi} \). It is sufficient to prove for every \(\sigma \in \bar{W} \) and for all \(l \in \mathbb{N} \): \(|\bar{\psi}(\sigma) - \sigma| \lesssim |\Im \sigma|^l \).

Let \(\sigma = \zeta + i.\eta \) with \(\zeta \in \bar{W} \cap \mathbb{R}^{n-1} \) and \(l \in \mathbb{N} \) be fixed. Then, we have

\[
\bar{\psi}(\sigma) = \sum_{|I| \leq l} \frac{1}{I!} \frac{\partial^{\vert I \vert} \bar{\psi}}{\partial \eta^I}(\zeta)\eta^I + O(|\eta|^{l+1}).
\]

\[
\bar{\psi}(\sigma) = \zeta + \sum_{1 \leq |I| \leq l} \frac{1}{I!} \frac{\partial^{\vert I \vert} \bar{\psi}}{\partial \eta^I}(\zeta)\eta^I + O(|\eta|^{l+1}).
\]

So we can write \(\bar{\psi} \) as \(\bar{\psi}(\sigma) = \zeta + \sum_{j=1}^l \bar{\psi}^{(j)}(\sigma) + O(|\eta|^{l+1}) \) with \(\bar{\psi}^{(j)}(\sigma) = \sum_{|I|=j} \frac{1}{I!} \frac{\partial^{\vert I \vert} \bar{\psi}}{\partial \eta^I}(\zeta)\eta^I \). In particular,
we have
\[
\tilde{\psi}(\sigma) = \zeta + \tilde{\psi}^{(1)}(\sigma) + O(|\eta|^2) = \sum_{i=1}^{n-1} \frac{\partial \tilde{\psi}}{\partial \eta_i}(\zeta) \eta_i + O(|\eta|^2).
\]

Since \(\partial \tilde{\psi} = O(|\eta|) \), we have \(\delta_{kj} \ldots \tilde{U} \) of \(p, \tilde{\theta} \) preserves the distances. In particular, we have: \(\text{dist}(q',N') \approx \text{dist}(q,N) \) with \(q' = \tilde{\theta}(q) \) and \(q \in \tilde{U} \).

Proof. — We set \(N' = \tilde{\theta}(N) \) and \(M' = \tilde{\theta}(M) \). Since \(\tilde{\theta} \) is a local \(C^\infty \)-diffeomorphism on an open neighborhood \(\tilde{U} \) of \(p, \tilde{\theta} \) preserves the distances. In particular, we have: \(\text{dist}(q',N') \approx \text{dist}(q,N) \) with \(q' = \tilde{\theta}(q) \) and \(q \in \tilde{U} \).
Local Peak Sets in Weakly Pseudoconvex Boundaries in \mathbb{C}^n

Set $\Psi = \tilde{\theta}^{-1}$, $w = z_n$ and $w' = z'_n$. Since $\tilde{\theta}$ is an almost-holomorphic change of coordinates, the matrix

$$\left\{ \frac{\partial \Psi_i}{\partial z'_j} \right\}_{1 \leq i, j \leq n}^{1 \leq i \leq n}$$

is nonsingular \hspace{1cm} (4.2)

on a sufficiently small neighborhood of the origin.

For $1 \leq i \leq n$, we have

$$\frac{\partial}{\partial z'_j} = \sum_{j=1}^{n} \frac{\partial \Psi_j}{\partial z'_i} \frac{\partial}{\partial z'_j} + \sum_{j=1}^{n} \frac{\partial \Psi_j}{\partial z'_i} \frac{\partial}{\partial z_j}$$

$$= \sum_{j=1}^{n} \frac{\partial \Psi_j}{\partial z'_i} \frac{\partial}{\partial z'_j} + \sum_{j=1}^{n} O \left(\text{dist}(q, N)^{L+1} \right) \frac{\partial}{\partial z_j}$$

The domain D' is defined by $\rho' = \rho \circ \Psi$. Let $t' = (t'_1, \ldots, t'_n) \in T^C_q(bD')$

Thus $\sum_{j=1}^{n} \frac{\partial \rho'(q^i)}{\partial z'_j} t'_j = 0$. This implies

$$\sum_{i, j=1}^{n} \frac{\partial \rho}{\partial z_i} \frac{\partial \Psi_i}{\partial z'_i} t'_j + O \left(\text{dist}(q, N)^{L+1} \right) = 0.$$

For $1 \leq i \leq n$ we set $t_i = \sum_{i, j=1}^{n} \frac{\partial \Psi_i}{\partial z'_i} t'_j$.

From (4.2) we get: $\sum_{i=1}^{n} \frac{\partial \rho}{\partial z_i} t_i = O \left(|t'| \text{dist}(q, N)^{L+1} \right) = O \left(|t| \text{dist}(q, N)^{L+1} \right)$.

Now we decompose t into tangential component t^H and a normal component t^N. So, $t = t^H + t^N$ with $t^H \in T^C_q(bD)$, $t^N \perp T^C_q(bD)$ and $|t^H| + |t^N| \leq 2|t|$. Moreover, $t^N = \kappa(q) \mathbf{n}(q)$ with $\kappa(q) \in \mathbb{C}$ and, for all $1 \leq i \leq n$, we have $t^N_i = \kappa(q) \frac{\partial \rho(q)}{\partial z_i}$. This implies

$$\kappa(q) \sum_{i=1}^{n} \left| \frac{\partial \rho(q)}{\partial z_i} \right|^2 = \sum_{i=1}^{n} \frac{\partial \rho(q)}{\partial z_i} \kappa(q) \frac{\partial \rho(q)}{\partial z_i}$$

$$= \sum_{i=1}^{n} \frac{\partial \rho(q)}{\partial z_i} t_i^N = \sum_{i=1}^{n} \frac{\partial \rho(q)}{\partial z_i} t_i$$

$$= O \left(|t| \text{dist}(q, N)^{L+1} \right).$$

Consequently,

$$|t^N| = |\kappa(q)| = O \left(|t| \text{dist}(q, N)^{L+1} \right).$$

(4.3)
Now, we compute the Levi form of ρ'. As
\[
\frac{\partial \rho'(q')}{\partial z'_i} = \sum_{i=1}^{n} \frac{\partial \rho(q)}{\partial z'_i} \frac{\partial \Psi_i(q')}{\partial z'_i} + O(\text{dist}(q, N)^{L+1})
\]
and by replacing L by $L + 1$, we get
\[
\frac{\partial^2 \rho'(q')}{\partial z'_i \partial z'_j} = \sum_{k,l=1}^{n} \frac{\partial^2 \rho(q)}{\partial z_k \partial z'_l} \frac{\partial \Psi_i(q')}{\partial z'_i} \frac{\partial \Psi_j(q')}{\partial z'_j} + O(\text{dist}(q, N)^{L+1})
\]
By (4.3) it follows that
\[
\sum_{i,j=1}^{n} \frac{\partial^2 \rho'(q')}{\partial z'_i \partial z'_j} t'_i t'_j = \sum_{k,l=1}^{n} \frac{\partial^2 \rho(q)}{\partial z_k \partial z'_l} \left(\sum_{i=1}^{n} \frac{\partial \Psi_i(q')}{\partial z'_i} t'_i \right) \left(\sum_{j=1}^{n} \frac{\partial \Psi_j(q')}{\partial z'_j} t'_j \right) + O(\text{dist}(q, N)^{L+1})
\]
\[
= \sum_{k,l=1}^{n} \frac{\partial^2 \rho(q)}{\partial z_k \partial z'_l} t'_k t'_l + O(|t|^2 \text{dist}(q, N)^{L+1})
\]
From (\mathcal{H}_3) and (4.3) we get:
\[
\sum_{k,l=1}^{n} \frac{\partial^2 \rho(q)}{\partial z_k \partial z'_l} t'_k t'_l \geq C |t|^2 \text{dist}(q, N)^L
\]
\[
\geq C |t|^2 \text{dist}(q, N)^L + O(|t|^2 \text{dist}(q, N)^{L+1})
\]
Thus there exists a constant $C' > 0$ such that $\text{Lev } \rho'(q'[t']) \geq C'|t|^2 \text{dist}(q, N)^L$. This means that D' is a locally pseudoconvex at the origin. □

Definition 4.5. — Let F be a C^∞-function on a neighborhood \mathcal{V} of the origin in \mathbb{C}^{n-1}. We say that F has Y-weight $\mathcal{P}_Y(F) \geq S$ ($S \in \mathbb{N}$) if there exists a constant $C > 0$ such that $|F(X,Y)| \leq C ||Y||_s^S$, $\forall Z = X + iY \in \mathcal{V}$. Also, we say that F has Z-weight $\mathcal{P}_Z(F) \geq R \geq S$ ($R \in \mathbb{N}$) if there exists a constant $c > 0$ such that $|F(X,Y)| \leq c ||Z||_s^R$, $\forall Z = X + iY \in \mathcal{V}$.

In the sequel we have to take into account the following obvious assertions.

Remark 4.6. —

1) Let F be a polynomial function with respect to Y. Then $\mathcal{P}_Y(F) \geq S$ if and only if
\[
S \iff F(X,Y) = \sum_{I=(i_1,\ldots,i_{n-1})}^{n-1} F_I(X)Y^I \text{ with } \sum_{\nu=1}^{n-1} \bar{m}_\nu i_\nu \geq S.
\]
Local Peak Sets in Weakly Pseudoconvex Boundaries in \mathbb{C}^n

2) Let F be a polynomial function with respect to X and Y. Then

$$\mathcal{P}_Z(F) \geq R \iff F(X,Y) = \sum_{I=(i_1,\ldots,i_{n-1})}^n \sum_{J=(j_1,\ldots,j_{n-1})} F_{I,J} X^I Y^J$$

with $\sum_{\nu=1}^{n-1} \tilde{m}_\nu (i_\nu + j_\nu) \geq R$.

3) If $||Y|| < 1$ then there exists a constant $a > 0$ such that $||Y|| \leq a ||Y||^*$.

Now, we give a version of Lemma 3.6 in the C^∞-case. Its proof is similar.

Lemma 4.7. — Let $R, S \in \mathbb{N}$, $R \geq S$ and F be a C^∞-function on an open sufficiently small neighborhood \mathcal{V} of the origin in \mathbb{C}^n. We suppose

\begin{itemize}
 \item There exist two positives constants C and L such that
 \begin{equation}
 \text{Lev} \rho(q)[t] \geq C|t|^2 \text{dist}(q, M)^L, \forall q \in \mathcal{U} \cap bD, \forall t \in T^\mathbb{C}_q(bD).
 \end{equation}
 \item M admits a peak-admissible C^∞-vector field X of peak-type $(K, M; \tilde{m}_1, \ldots, \tilde{m}_{n-1})$ at p for A^∞.
\end{itemize}

Then,

i) M is a local peak set at p for the class A^∞.

ii) M is a local interpolation set at p for the class A^∞.

Proof. — i) After an almost-analytic change of coordinates we obtain the following properties: The point $p \in M$ corresponds to the origin and in an open neighborhood of the origin, we have $M' = \tilde{\theta}(M) = \{(Z', w')/Y' = w' = 0\}$, $D' = \tilde{\theta}(D)$ has $\rho'(Z', w') = u' + A(Z') + v'B(Z') + v'^2 R(Z', v')$ as local defining function at the origin. Moreover, M' is locally contained in an n-dimensional submanifold $N' = \{(Z', w')/Y' = 0 \text{ and } u' = 0\}$ of bD' which is totally real. By Lemma 4.4, the condition (\mathcal{H}'_3) guarantees that D' is a locally pseudoconvex at the origin. Moreover, the hypothesis on M implies:
There exist two constants $0 < c_1' \leq c'2$ such that, for every $Z' = X' + i.Y' \in \mathbb{C}^{n-1}$ near the origin, we have:

$$c_1'||Y'||^2_{*}||Z'||^{2K-2M}_{*} \leq A(Z') \leq c_2'||Y'||^2_{*}||Z'||^{2K-2M}_{*}.$$

From (H) and Lemma 4.7 we get $\frac{|B|^2}{A}$ is uniformly bounded in a sufficiently small neighborhood of the origin in \mathbb{C}^{n-1}. By Proposition 3.4, there exists an almost-holomorphic function with respect to $N' \cap \mathcal{U}'$, $\widetilde{\psi}(w') = \frac{w'}{1-2K_1w'}$ defined on an open neighborhood \mathcal{U}' of the origin in \mathbb{C}^{n} such that: $\Re \widetilde{\psi} < 0$ on $\overline{D'} \cap \mathcal{U}'$ if $w' \neq 0$ and $\psi = 0$ if $w' = 0$.

As $|\tilde{\psi}(w')| \lesssim |w'|$, we have for every $(Z', w') \in \overline{D'} \cap \mathcal{U}'$,

$$A(Z') = \rho'(Z', w') - v'B(Z') - v'^2R(Z', v') - u' \leq -v'B(Z') - v'^2R(Z', v') - u' \lesssim |u'| + |v'| \lesssim |w'|.$$

Moreover, if \mathcal{U}' is sufficiently small we get:

$$\text{dist}((Z', w'), M') \lesssim ||Y'|| + |w'|. \quad (4.4)$$

Since $||Y'||^2_{*}||Z'||^{2(K-M)}_{*} \lesssim A(Z') \lesssim |w'|$ and $||Y'||_{*} \leq ||Z'||_{*}$ we have $||Y'||^{2K}_{*} \lesssim |w'|$. By Remark 4.6 inequality (4.4) gives: For every $(Z', w') \in \overline{D'} \cap \mathcal{U}'$: $\text{dist}((Z', w'), M') \lesssim |w'|^{1/2K}$. This has two consequences:

a) $\overline{D}' \left(\frac{1}{\widetilde{\psi}} \right)$ has a C^∞-extension on $\mathcal{U}' \cap \overline{D'}$.

b) If $F \in C^\infty(\mathcal{U}' \cap D')$ is an almost-holomorphic function with respect to $N' \cap \mathcal{U}'$ then $\frac{1}{\widetilde{\psi}} F$ has a C^∞-extension on $\mathcal{U}' \cap \overline{D'}$.

(Here $\overline{\partial'}$ denotes the $\overline{\partial}$-operator on D'. Set $\widetilde{\Psi} := \overline{\partial}^{-1}$. If $f' \in C^\infty(\mathcal{U}' \cap D')$ then $\overline{\partial}' f' = \widetilde{\Psi}^* \left(\overline{\partial} (f' \circ \overline{\partial}) \right)$ where $\widetilde{\Psi}^*$ is the pull-back of $\widetilde{\Psi}$).

Proof. —

a) On $\mathcal{U}' \cap D'$ we have $\overline{\partial}' \left(\frac{1}{\psi} \right) = - \left(\frac{1-2K_1w'}{w'} \right)^2 \overline{\partial}' \tilde{\psi}$. As $\tilde{\psi}$ is an almost-holomorphic function with respect to $N' \cap \mathcal{U}'$ we get for all $L \in \mathbb{N}^*$ and $(Z', w') \in \mathcal{U}' \cap \overline{D'}$,

$$|\overline{\partial}' \tilde{\psi}(w')| \lesssim \text{dist}((Z', w'), N')^L \lesssim \text{dist}((Z', w'), M')^L \lesssim |w'|^{L/2K}. \quad (4.5)$$
b) With an analogous reasoning, we have for every \((Z', w') \in \mathcal{U}' \cap \mathcal{D}'\) and for all \(L \in \mathbb{N}^*\), \(|\overline{\partial} F(Z', w')| \lesssim \text{dist}((Z', w'), \mathcal{M})^L \lesssim |w'|^{L/2}\). By (4.5) we see that the \((0,1)\)-form \(\overline{\partial} \left(\frac{1}{\psi}\right)\) has a \(\overline{\partial}\)-closed \(C^\infty\)-extension on \(\mathcal{U}' \cap \mathcal{D}'\). We set \(\psi = \tilde{\psi} \circ \tilde{\theta}\) and get that \(\overline{\partial} \left(\frac{1}{\psi}\right)\) is a \(\overline{\partial}\)-closed \((0,1)\)-form of class \(C^\infty\) on \(\mathcal{U} \cap \mathcal{D}\).

Let \(0 < \varepsilon \ll 1\) be such that \(\overline{B}(0, \varepsilon) \subset \mathcal{U}\) and \(bB(0, \varepsilon) \cap bD\) be a transversal intersection. Due to Corollary 2 in [Mi] there exists a function \(g \in C^\infty(\overline{B}(0, \varepsilon) \cap \overline{D})\) such that \(\overline{\partial} g = \overline{\partial} \left(\frac{1}{\psi}\right)\) on \(\overline{B}(0, \varepsilon) \cap \overline{D}\). Adding a constant, we may assume that \(\Re g > 0\). If \(\varepsilon\) is sufficiently small, we get \(|g\psi| \leq \frac{1}{2}\) on \(\overline{B}(0, \varepsilon) \cap \overline{D}\). Now we consider \(h = \frac{\psi}{1 - g\psi}\). It is clear that \(h \in C^\infty(\overline{B}(0, \varepsilon) \cap \overline{D})\). As \(\overline{\partial} h = -\frac{1}{(\frac{1}{\psi} - g)^2} \overline{\partial} \left(\frac{1}{\psi} - g\right) = 0\) on \(B(0, \varepsilon) \cap \overline{D}\) we obtain \(h \in A^\infty(B(0, \varepsilon) \cap \overline{D})\). Moreover, \(\psi \mid_\mathcal{M} = 0\) so \(h \mid_\mathcal{M} = 0\). For every \((Z, w) \in B(0, \varepsilon) \cap \overline{D} \setminus \mathcal{M}\) we have \(\Re h = \Re \left(\frac{1}{\frac{1}{\psi} - g}\right) = \frac{\Re \psi - \Re g}{|\frac{1}{\psi} - g|^2} < 0\). Thus, \(\mathcal{M}\) is a local peak set at \(p\) for the class \(A^\infty\). \(\square\)

ii) Using the notations as above, let \(F \in C^\infty(\overline{\mathcal{M} \cap B(0, \varepsilon_1)})\) with \(0 < \varepsilon_1 \leq \varepsilon\). Let \(\tilde{F}\) be an almost-holomorphic extension of \(F\) on \(B(0, \varepsilon_2)\) with respect to \(\mathcal{N} \cap B(0, \varepsilon_2)(\varepsilon_2 \leq \varepsilon_1)\). By b) the \((0,1)\)-form \(\frac{1}{\psi} \overline{\partial} \tilde{F}\) has a \(C^\infty\)-extension on \(\overline{B}(0, \varepsilon_2) \cap \overline{D}\). Since \(\frac{1}{h} = (1 - g\psi)^{-1} \frac{\psi}{h}\), \(\frac{1}{h} \overline{\partial} \tilde{F}\) is \(\overline{\partial}\)-closed on \(B(0, \varepsilon_2) \cap \overline{D}\). Moreover, \(\frac{1}{h} \overline{\partial} \tilde{F}\) has a \(C^\infty\)-extension on \(\overline{B}(0, \varepsilon_2) \cap \overline{D}\).

Let \(0 < \varepsilon_3 \leq \varepsilon_2\) be such that \(bB(0, \varepsilon_3) \cap bD\) is a transversal intersection. By Corollary 2 of [Mi] there exists a function \(G \in C^\infty(\overline{B}(0, \varepsilon_3) \cap \overline{D})\) such that \(\overline{\partial} G = \frac{1}{h} \overline{\partial} \tilde{F}\) on \(\overline{B}(0, \varepsilon_3) \cap \overline{D}\). Now we set \(f = \tilde{F} - hG\) on \(\overline{B}(0, \varepsilon_3) \cap \overline{D}\). It is clear that \(f \in C^\infty(\overline{B}(0, \varepsilon_3) \cap \overline{D})\). Moreover, we have \(f \mid_{\mathcal{M} \cap \overline{B}(0, \varepsilon_3)} = \tilde{F} \mid_{\mathcal{M} \cap \overline{B}(0, \varepsilon_3)} = F\) and \(\overline{\partial} f = \overline{\partial} \tilde{F} - h \overline{\partial} G = 0\). The theorem is completely proved. \(\square\)
5. Some implications from the sufficient hypotheses for the multitype

We want to interpret the sufficient hypotheses \((\mathcal{H}_1)\) and \((\mathcal{H}_2)\) in terms of Catlin’s multitype. In this section we first recall various concepts of types and we give the multitype for the points on the submanifold \(M\).

Let \(D\) be a bounded pseudoconvex in \(\mathbb{C}^n\) with \(C^\infty\)-boundary. Let \(\rho\) be a local defining function at a point \(p \in bD\). The variety (1-)type \(\Delta_1(bD, p)\) (or \(\Delta_1(p)\) if no confusion can occur), introduced by D’Angelo [DA], is defined as

\[
\Delta_1(bD, p) := \sup_z \left\{ \frac{\nu(z^* \rho)}{\nu(z - p)} \right\},
\]

where the supremum is taken over all germs of nontrivial one-dimensional complex curves \(z : (\mathbb{C}, 0) \rightarrow (\mathbb{C}^n, p)\) with \(z(0) = p\). Here, \(\nu(f)\) denotes the vanishing order of the function \(f\) at 0 and \(z^* \rho \equiv \rho \circ z\).

More generally, one can define the \(q\)-type, \(\Delta_q(bD, p)\) [DA], \(1 \leq q \leq n\),

\[
\Delta_q(bD, p) := \inf_z \Delta_1(bD \cap S, p).
\]

Here \(S\) runs over all \((n - q + 1)\)-dimensional complex hyperplanes passing through \(p\), and \(\Delta_1(bD \cap S, p)\) denotes the 1-type of the domain \(D \cap S\) (considered as a domain in \(S\)) at \(p\). Note that the \(q\)-types are biholomorphic invariants [DA], [Ca].

Next we recall the definition of Catlin’s multitype. Let \(\Gamma_n\) denote the set of all \(n\)-tuples of numbers \(\mu = (\mu_1, \ldots, \mu_n)\) with \(1 \leq \mu_i \leq \infty\) such that

(i) \(\mu_1 \leq \mu_2 \leq \ldots \leq \mu_n\);

(ii) For each \(k\), either \(\mu_k = \infty\) or there is a set of nonnegative numbers \(a_1, \ldots, a_k\), with \(a_k > 0\) such that \(\sum_{j=1}^{k} a_j / \mu_j = 1\).

An element of \(\Gamma_n\) will be referred to as a weight. The set of weights can be ordered lexicographically, i.e., if \(\mu' = (\mu'_1, \ldots, \mu'_n)\) and \(\mu'' = (\mu''_1, \ldots, \mu''_n)\), then \(\mu' < \mu''\) if for some \(k\), \(\mu'_j = \mu''_j\) for all \(j < k\), but \(\mu'_k < \mu''_k\). A weight \(\mu \in \Gamma_n\) is said to be distinguished if there exist holomorphic coordinates \((z_1, \ldots, z_n)\) about \(p\), with \(p\) mapped to the origin, such that

\[
\text{If } \sum_i \frac{\alpha_i + \beta_i}{\mu_i} < 1, \text{ then } D^\alpha \overline{D}^\beta \rho(p) = 0. \tag{5.1}
\]
Here D^α and \overline{D}^β denote the partial differential operators:

\[
\frac{\partial^{|\alpha|}}{\partial z_1^{\alpha_1} \ldots \partial z_n^{\alpha_n}} \text{ and } \frac{\partial^{|\beta|}}{\partial \overline{z}_1^{\beta_1} \ldots \partial \overline{z}_n^{\beta_n}},
\]

respectively.

Definition 5.1. — The multitype $\mathcal{M}(bD, p)$ (or $\mathcal{M}(p)$) is defined to be the least weight \mathcal{M} in Γ_n (smallest in the lexicographic sense) such that $\mathcal{M} \geq \mu$ for every distinguished weight μ.

We call a weight μ linearly distinguished if there exist a complex linear change of coordinates about p with p mapped to the origin and such that in the new coordinates (5.1) holds. The linear multitype $\mathcal{L}(bD, p)$ is defined to be the smallest weight $\mathcal{L} = (l_1, \ldots, l_n)$ such that $\mathcal{L} \geq \mu$ for every linearly distinguished weight μ.

Clearly $\mathcal{L}(bD, p)$ is invariant under linear change of coordinates and we have $\mathcal{L}(bD, p) \leq \mathcal{M}(bD, p)$. It is easy to see that the first component of $\mathcal{M}(p)$ is always 1.

Let us $\Delta(p) := (\Delta_n(p), \ldots, \Delta_1(p))$ where $\Delta_q(p)$ stands for the q-type. Let the multitype of p be $\mathcal{M}(p) = (\mu_1, \ldots, \mu_n)$. By the main theorem (property 4) in [Ca] it is always true that $\mathcal{M}(p) \leq \Delta(p)$ in the sense that $\mu_{n-q+1} \leq \Delta_q(p)$, for all $q = 1, \ldots, n$.

Theorem 5.2. — Let D be a pseudoconvex domain in \mathbb{C}^n with C^ω-boundary. Let \mathcal{M} be an $(n-1)$-dimensional submanifold of bD which is totally real and complex-tangential in a neighborhood U of $p \in \mathcal{M}$. We suppose that \mathcal{M} admits a peak-admissible C^ω-vector field X of peak-type $(K, \tilde{M}; \tilde{m}_1, \ldots, \tilde{m}_{n-1})$ at p for the class \mathcal{O}. Then

(i) $\mathcal{M}(p) = \Delta(p) = (1, 2k_1, \ldots, 2k_{n-1})$.

(ii) $\mathcal{M}(p') = \Delta(p') = (1, 2m_1, \ldots, 2m_{n-1})$ for $p' \in \mathcal{M} \cap U - \{p\}$.

Here, $m_j = M/\tilde{m}_j$, $k_j = K/\tilde{m}_j$ for all $1 \leq j \leq n-1$.

Remark 5.3. — An analogous result holds true in the A^∞-case.

Proof. — i) From Proposition 3.2 we know that there exists a holomorphic coordinates change (denoted θ) such that the point $p \in \mathcal{M}$ corresponds to the origin and in an open neighborhood of the origin in \mathbb{C}^n, the defining function ρ' of the boundary of $D' = \theta(D)$ is $\rho' = u' + A + v'B + v'^2R$. By hypothesis inequality (\mathcal{H}) holds in the new coordinates. So, we may identify the complexification $\mathcal{M} = \mathcal{M} + i.\mathcal{M}$ of \mathcal{M} to $\mathbb{C}^{n-1} = T_0^C(bD')$ and we may
assume that $\rho^t|_M \equiv A$ in a sufficiently small neighborhood of the origin in \mathbb{C}^{n-1}. Let $Z'_0 = X'_0 + i.Y'_0 \neq 0$ near the origin in \mathbb{C}^{n-1} be fixed. We consider $f(\lambda) = A(\lambda Z'_0)$, $\lambda \in [0, 1]$. We set $m = \max_{1 \leq i \leq n-1} m_i$, $m' = \min_{1 \leq i \leq n-1} m_i$ and $\kappa = K/M \geq 1$. As

$$f(\lambda) = \left(\sum_{i=1}^{n-1} \lambda^{2m_i} \frac{i_{\nu} \cdot j_{\nu}}{y_{0,i}} \right) \left(\sum_{i=1}^{n-1} \lambda^{2m_i} \left(x_{0,i}^2 + y_{0,i}^2 \right) \right)^{\kappa-1},$$

we have $\lambda^{2m_\kappa} f(1) \leq f(\lambda) \leq \lambda^{2m_\kappa} f(1)$. Therefore, we obtain

$$\frac{f(1)}{2m_\kappa + 1} \leq \int_0^1 f(\lambda) d\lambda \leq \frac{f(1)}{2m_\kappa + 1}.$$

By Remark 4 in [B-S], the 1-type of bD' at 0 is equal to line type in the new system of coordinates. This means that $\Delta_1(bD', 0) = \sup_{v \in \mathbb{C}^{n}, |v| = 1} (\rho^t \circ \ell_v)$, where $\ell_v: \zeta \mapsto \zeta + v$ is a complex line passing through the origin and having v as direction. Inequality (H) implies $\Delta_1(bD', 0) = 2k_{n-1}$. Now we prove that $\Delta(bD', 0) = (1, 2k_1, \ldots, 2k_{n-1})$ is a linearly distinguished weight at 0. Let $F: Z = (z_1, \ldots, z_n) \mapsto (\tilde{z}_1, \tilde{z}_2, \ldots, \tilde{z}_{n-1})$ be a C-linear change of coordinates. We set $Z = (\tilde{z}_1, Z') = F(Z)$ with $\tilde{Z}' = (\tilde{z}_2, \ldots, \tilde{z}_n)$ and $\tilde{\rho} = \rho^t \circ F^{-1}$. As $\tilde{\rho}(\tilde{Z}) = \Re(\tilde{\zeta}_1) + A(\tilde{Z}') + (\Im \tilde{\zeta}_1)B(\tilde{Z}') + (\Im \tilde{\zeta}_1)^2R(\tilde{Z}', \Im \tilde{\zeta}_1)$, $\frac{\partial \tilde{\rho}}{\partial \tilde{z}_1}(0) \neq 0$ because $\frac{\partial \rho^t}{\partial z_n}(0) \neq 0$. This implies that $\alpha_1 = \beta_1 = 0$ for the property (5.1). Thus it is sufficient to verify that:

$$\sum_{i=2}^n \frac{\alpha_i + \beta_i}{2k_{i-1}} < 1 \quad \text{implies} \quad D^\alpha D^\beta A(0) = 0.$$

In fact, let $\alpha = (\alpha_2, \ldots, \alpha_n)$, $\beta = (\beta_2, \ldots, \beta_n) \in \mathbb{N}^{n-1}$ be such that

$$\sum_{\nu=2}^n \frac{\alpha_\nu + \beta_\nu}{2k_{\nu-1}} < 1.$$

Then, $\sum_{\nu=2}^n \tilde{m}_{\nu-1}(\alpha_\nu + \beta_\nu) < 2k$. Since A is C^ω on a sufficiently small neighborhood of the origin in \mathbb{C}^{n-1}, $A(X, Y) = \sum_{I=(i_2, \ldots, i_n)} A_{I,J} X^J Y^I$ with $X = (x_2, \ldots, x_n)$ and $Y = (y_2, \ldots, y_n)$. We know that the Z-weight of A is $\geq 2K$. By Remark 4.6, we have $\sum_{\nu=2}^n \tilde{m}_{\nu}(i_\nu + j_\nu) \geq 2K$. Thus,

$$P_Z(D^\alpha D^\beta A) \geq \sum_{\nu=2}^n \tilde{m}_{\nu-1}(i_\nu + j_\nu) - \sum_{\nu=2}^n \tilde{m}_{\nu-1}(\alpha_\nu + \beta_\nu) > 0.$$

– 596 –
We obtain $D^\alpha D^\beta A(0) = 0$. Therefore $\Delta(bD', 0)$ is linearly distinguished and $\Delta(bD', 0) \leq \mathcal{M}(bD', 0)$.

It remains to show that $\mathcal{M}(bD', 0) \leq \Delta(bD', 0)$. Setting $\mathcal{M}(bD', 0) = (\mu_1, \ldots, \mu_n)$, by property 4 of Catlin in [Ca] we have $\mu_{n+1-q} \leq \Delta_q(bD', 0)$ for all $q = 1, \ldots, n$.

It is sufficient to prove that $\Delta_q(bD', 0) = 2k_{n-q}$ for all $1 \leq q \leq n - 1$.

- For $q = 1$, we have already shown that $\Delta_1(bD', 0) = 2k_{n-q}$.

- Let $2 \leq q \leq n - 1$ be fixed. Let $\{e_1, \ldots, e_n\}$ be the standard basis of C^n with $T_0^C(bD') = \text{Span}_C\{e_1, \ldots, e_{n-1}\}$. Consider $V_q = \text{Span}_C\{e_{n-q}, \ldots, e_{n-1}\}$ and S an $(n - q + 1)$-dimensional complex hyperplane in C^n.

As

$$\dim (V_q \cap S) = \dim V_q + \dim S - \dim (V_q + S) \geq q + n - q + 1 - n = 1,$$

it follows that there exists a complex line ℓ in $S \cap V_q$ that has order of contact $\geq 2k_{n-q}$ with the boundary bD' at 0. Therefore $\Delta_q(bD', 0) = 2k_{n-q}$. Moreover, if we set $\tilde{S} = \text{Span}_C\{e_1, \ldots, e_{n-q}, e_n\}$ then $\tilde{S} \cap V_q = \text{Span}_C\{e_{n-q}\}$. So $\Delta_1(\tilde{S} \cap bD', 0) = 2k_{n-q}$. We therefore obtain $\mathcal{M}(bD', 0) \leq \Delta(bD', 0) = (1, 2k_1, \ldots, 2k_{n-1})$. With $\Delta(bD', 0) = (1, 2k_1, \ldots, 2k_{n-1}) \leq \mathcal{M}(bD', 0)$, we find i).

ii) Let $p' \in \mathcal{M} \cap \mathcal{U} - \{p\}$. We work with the preceding system of coordinates and we set $\theta(p') = \vec{p}' \neq 0$. \vec{p}' is a boundary point of bD' near the origin such that $\Re(\vec{p}') \neq 0$. Let $Z_0' = X_0' + iY_0' \in C^{n-1}$ be fixed such $Y_0' \neq 0$. We consider $f(\lambda) = A(\lambda Z_0' + \vec{p}')$, $\lambda \in [0, 1]$. In this case, there exist two constants $0 < c_1 \leq c_2$ which depend only of \vec{p}' satisfying:

$$c_1 \sum_{i=1}^{n-1} \lambda^{2m_i} y_{0,i}^{2m_i} \lesssim f(\lambda) \lesssim c_2 \sum_{i=1}^{n-1} \lambda^{2m_i} y_{0,i}^{2m_i}.$$

Hence, $\lambda^{2m} f(1) \lesssim f(\lambda) \lesssim f(1) \lambda^{2m'}$. We obtain

$$\frac{f(1)}{2m + 1} \lesssim \int_0^1 f(\lambda) \, d\lambda \lesssim \frac{f(1)}{2m' + 1}.$$

with constants that depend only of \vec{p}'. By Remark 4 in [B-S] the 1-type of \vec{p}' is equal to line type. So, $\Delta_1(bD', \vec{p}') = 2m_{n-1}$. In the same way as
before one shows that $\Delta(\bar{p}') = (1, 2m_1, \ldots, 2m_{n-1})$ is linearly distinguished weight. Next, we proceed analogously as i) we obtain the equality and ii) holds. □

Bibliography

