XIANLING FAN

A Viterbo-Hofer-Zehnder type result for hamiltonian inclusions

<http://www.numdam.org/item?id=AFST_1991_5_12_3_365_0>
A Viterbo-Hofer-Zehnder Type Result for Hamiltonian Inclusions

XIANLING FAN(1)

1. Introduction and Main Result

Hofer and Zehnder [1] extended the result of Viterbo [2]. The aim of the present paper is to extend the result of [1] to the case of Hamiltonian inclusions.

Let $H : \mathbb{R}^{2N} \to \mathbb{R}$ be locally Lipschitz continuous, which is written as $H \in C^{1-0}(\mathbb{R}^{2N}, \mathbb{R})$. Consider the Hamiltonian inclusion.

$$\dot{x} \in J\partial H(x) \quad (1)$$

where ∂H is Clarke's generalized gradient of H and J is the standard $2N \times 2N$ symplectic matrix (see [3]). By a solution of (1) we mean an
absolutely continuous function \(x(t) \) satisfying (1) for almost all \(t \). It is well-known that, if \(H \) is regular, then any solution of (1) is conservative, i.e. \(H(x(t)) \equiv \text{constant} \). However, in general, if \(H \) is not regular, then a solution of (1) need not be conservative.

Our main result is the following

Theorem 1. Let \(H \in C^{1-0}(\mathbb{R}^2, \mathbb{R}) \) and \(c \in \mathbb{R} \). Suppose that \(\Sigma_c = H^{-1}(c) \) is a nonempty compact subset of \(\mathbb{R}^2 \) and

\[
0 \notin \partial H(x) \quad \text{for} \quad x \in \Sigma_c.
\] (2)

Then for any bounded neighborhood \(\Omega \) of \(\Sigma_c \), there are positive constants \(\beta \) and \(d \) such that for any \(\delta > 0 \), (1) has a \(T = T(\delta) \)-periodic conservative solution \(x(t) \) in \(\Omega \) such that \(H(x(t)) \equiv c' \in (c - \delta, c + \delta) \) and

\[
\beta \leq \frac{1}{2} \int_0^T (-J \dot{x}, x) \, dt \leq d.
\] (3)

The following results obtained by the author [4] will be used in the proof of Theorem 1.

Proposition 1 ([4]). Let \(\Omega \) be an open subset of \(\mathbb{R}^2 \) and \(H \in C^{1-0}(\Omega, \mathbb{R}) \). Then for any continuous function \(\epsilon : \Omega \to (0, +\infty) \) there is a \(C^\infty \)-function \(g : \Omega \to \mathbb{R} \) such that

i) \(|g(x) - H(x)| \leq \epsilon(x) \) for \(x \in \Omega \),

ii) \(\forall x \in \Omega, \exists y \in \Omega \) and \(\xi \in \partial H(y) \) such that \(|x - y| \leq \epsilon(x) \) and \(|g'(x) - \xi| \leq \epsilon(x) \).

A \(C^1 \)-function \(g : \Omega \to \mathbb{R} \) satisfying the condition i) and ii) in Proposition 1 is called an \(\epsilon(x) \)-admissible approximation for \(H \) on \(\Omega \). In particular, when \(\epsilon(x) \equiv \epsilon \), \(g \) is called an \(\epsilon \)-admissible approximation for \(H \) on \(\Omega \).

Proposition 2 ([4]). Let \(\Omega \) be an open subset of \(\mathbb{R}^2 \), \(H \in C^{1-0}(\Omega, \mathbb{R}) \) and \(\epsilon_n \to 0 \) (\(n \to \infty \)) with \(\epsilon_n > 0 \). Suppose that for each \(n \), \(H_n \in C^1(\Omega, \mathbb{R}) \) is an \(\epsilon_n \)-admissible approximation for \(H \) on \(\Omega \) and \(x_n \) is a \(T_n \)-periodic solution of the Hamiltonian system

\[
\dot{x} = JH_n'(x).
\] (4)
If

\[\{ T_n \mid n = 1, 2, \ldots \} \text{ is bounded}, \]
\[\{ x_n(t) \mid t \in \mathbb{R}, n = 1, 2, \ldots \} \text{ is contained in a compact subset of } \Omega, \]

then \(\{ x_n \} \) has a subsequence \(\{ x_{n_k} \} \) which converges uniformly to a

\(T \)-periodic solution \(x \) of (1) with \(T = \lim T_{n_k} \) and

\[H(x(t)) \equiv c = \lim H_{n_k}(x_{n_k}(t)) \]

In section 2 we give the proof of theorem 1. In section 3 we extend
the a priori bound criterion of Benci-Hofer-Rabinowitz [5] to the case of
Hamiltonian inclusions.

2. Proof of theorem 1

Without loss of generality we may assume that \(c = 1 \) and \(\Omega_1 \) is connected.

Let \(\Omega \), a bounded neighborhood of \(\Omega_1 \), be given. By the upper semi-
continuity of \(H \), the compactness of \(\Omega_1 \) and the condition (2), we may
choose a bounded neighborhood \(V \) of \(\Omega_1 \) such that \(V \subset \Omega \) and \(0 \notin \partial H(x) \) for
\(x \in V \). Then there are positive constants \(m \) and \(M \) such that \(m < |\xi| < M \)
for \(\xi \in \partial H(V) \). Using the pseudo-gradient flow (see [6]) we can construct a
Lipschitz homeomorphism \(\psi : (-s, s) \times \Omega_1 \rightarrow V \) such that

\[H(\psi(t, x)) = 1 + t \text{ for } (t, x) \in (-s, s) \times \Omega_1. \]

Set

\[U = \psi((-s, s) \times \Omega_1), \quad D = \text{diam } U, \quad \Sigma_c = (H|_U)^{-1}(c). \]

We fix positive numbers \(r, b \), such that

\[D < r < 2D, \quad \frac{3}{2} \pi r^2 < b < 2\pi r^2. \]

Take a sequence \(\epsilon_n \rightarrow 0 \) such that \(0 < \epsilon_n < \min \{ s/3, m/3 \} \) for all \(n \). By
proposition 1, for each \(n \), there is an \(\epsilon_n \)-admissible approximation \(H_n \) for
\(H \) on \(U \) and \(H_n \in C^\infty(U, \mathbb{R}) \). Then we have

\[\begin{cases} |H_n(x) - H(x)| \leq \frac{s}{3} & \text{for } x \in U \text{ and all } n, \\ \frac{2}{3} m < |H'_n(x)| < M + \frac{m}{3} & \text{for } x \in U \text{ and all } n, \end{cases} \]
For each n let ψ_n be the flow in U generated by
\[\dot{x} = -\frac{H_n'(x)}{|H_n'(x)|^2}, \quad x(0) \in U. \]

Set $\Sigma_{1,n} = H_n^{-1}(1)$. It is easy to see that $\psi_n \left(\left[-s/2, s/2\right] \times \Sigma_{1,n} \right) \subset U$ and
\[H_n(\psi_n(t,x)) = 1 + t \quad \text{for} \quad (t,x) \in \left[-\frac{s}{2}, \frac{s}{2}\right] \times \Sigma_{1,n}. \]

Lemma 1. For each n, $\Sigma_{1,n}$ is a connected compact hypersurface in U.

Proof. It suffices to prove the connectedness of $\Sigma_{1,n}$. For fixed n let $x_1, x_2 \in \Sigma_{1,n}$. Then there are $-t_1 < 0$ and $-t_2 < 0$ such that
\[\psi_n(-t_1, x_1) = y_1 \in \Sigma_{1+s/2} \quad \text{and} \quad \psi_n(-t_2, x_2) = y_2 \in \Sigma_{1+s/2}. \]

Note that $\Sigma_{1+s/2}$ is connected since $\Sigma_{1+s/2}$ is homeomorphic to Σ_1. Let p be a path in $\Sigma_{1+s/2}$ joining y_1 to y_2. It is easy to see that along the descent flow lines of ψ_n, p can be deformed to a path in $\Sigma_{1,n}$ joining x_1 to x_2. So $\Sigma_{1,n}$ is connected and the proof of lemma 1 is complete.

Set $U_n = \psi_n \left(\left[-s/2, s/2\right] \times \Sigma_{1,n} \right)$. Then $\psi_n : \left(-s/2, s/2\right) \times \Sigma_{1,n} \to U_n \subset U$ is a diffeomorphism. We denote by A_n and B_n the unbounded and bounded component of $\mathbb{R}^{2N} \setminus U_n$ respectively and by B the bounded component of $\mathbb{R}^{2N} \setminus U$. We may assume that $0 \in B$, then $0 \in B_n$ since $B \subset B_n$ for all n.

Let $\delta > 0$ be given. We may assume $\delta < s/2$.

Following [1], we pick a C^∞-function $f : \left(-s/2, s/2\right) \to \mathbb{R}$ satisfying
\[f|_{(-s/2, -\delta)} = 0, \quad f|_{[\delta, s/2]} = b \quad \text{and} \quad f'(t) > 0 \quad \text{for} \quad -\delta < t < \delta. \]

Choose a C^∞-function $g : (0, \infty) \to \mathbb{R}$ such that
\[
\begin{align*}
g(t) &= b \quad \text{for} \ t \leq r, \\
g(t) &= \frac{3}{2} \pi t^2 \quad \text{for} \ t \geq r, \\
g(t) &= \frac{2}{3} \pi t^2 \quad \text{for} \ t > r, \\
0 < g'(t) &\leq 3 \pi t \quad \text{for} \ t > r.
\end{align*}
\]
For each n define a C^∞-function $G_n : \mathbb{R}^{2N} \to \mathbb{R}$ by

$$G_n(x) = \begin{cases} 0 & \text{if } x \in B_n \\ f(t) & \text{if } x \in \psi_n(t \times \Sigma_{1,n}), -\delta \leq t \leq \delta \\ b & \text{if } x \in A_n \text{ and } |x| \leq r \\ g(|x|) & \text{if } |x| > r. \end{cases}$$

Then, by [1], for each n the Hamiltonian system

$$\dot{x} = JG'_n(x)$$

has a 1-periodic solution x_n in U_n such that

$$H_n(x_n(t)) = c_n \in (1 + \delta, 1 - \delta) \quad \text{for all } t$$

and

$$\beta \leq \frac{1}{2} \int_0^1 \langle -J\dot{x}_n, z_n \rangle \, dt \leq d,$$

where β and $d = 16 \pi D^2$ are positive constants independent of n and δ.

By the definition of G_n we have

$$G_n(x) = f(H_n(x) - 1) \quad \text{and} \quad G'_n(x) = f'(H_n(x) - 1)H'_n(x)$$

for $x \in (H_n|_{U_n})^{-1}((1 - \delta, 1 + \delta))$.

Set $z_n(t) = x_n(f'(c_n - 1)t)$. Then z_n is a T_n-periodic solution in U_n of the Hamiltonian system

$$\dot{z} = JH'_n(z)$$

with $T_n = f'(c_n - 1)$ and

$$\beta \leq \frac{1}{2} \int_0^{T_n} \langle -J\dot{z}_n, z_n \rangle \, dt \leq d.$$ \hspace{1cm} (7)

From the fact that $|c_n - 1| < \delta$ and f' is bounded on $(-\delta, \delta)$ it follows that $\{T_n \mid n = 1, 2, \ldots\}$ is bounded. Noting that

$$U_n \subset \left\{ x \in U \mid 1 - \frac{5}{6}s \leq H(x) \leq 1 + \frac{5}{6}s \right\} \subset U,$$

from proposition 2 it follows that $\{z_n\}$ has a subsequence $\{z_{nK}\}$ which converges uniformly to a conservative T-periodic solution z of (1) such that

$$T = \lim T_{nK}, \quad H(z(t)) = \bar{c} = \lim c_{nK} \in [1 - \delta, 1 + \delta] \quad \text{and} \quad z(t) \in U, \forall t.$$ \hspace{1cm} (3) follows from (7). The proof of theorem 1 is complete. □
3. A criterion for a priori bounds

For \(x \in \mathbb{R}^{2N} = \mathbb{R}^N \times \mathbb{R}^N \) set \(x = (p, q) = (\pi_1 x, \pi_2 x) \). Note that in general neither of the sets \(\partial_p H(x) \times \partial_q H(x) \) and \(\partial H(x) \) need be contained in the other, but both of them are contained in \(\pi_1 \partial H(x) \times \pi_2 \partial H(x) \) (see [3]). The following theorem is an extension of the result of Benci-Hofer-Rabinowitz [5].

Theorem 2. Under the assumptions of theorem 1, if there is a function \(K \in C^1(\mathbb{R}^{2N}, \mathbb{R}) \) and constants \(a, b \geq 0 \) with \(a + b > 0 \) such that

\[
\begin{align*}
 a\langle \pi_1 x, \pi_1 \xi \rangle + b\langle \pi_2 x, \pi_2 \xi \rangle + \langle K'(x), J \xi \rangle &> 0, \\
 \forall x \in \Sigma_c, \xi \in \partial H(x)
\end{align*}
\]

then (1) has a periodic solution on \(\Sigma_c \).

Proof. We use the notations used in the proof of theorem 1 and assume \(c = 1 \). By the upper semicontinuity of \(\partial H \) and the compactness of \(\Sigma_c \), for \(s > 0 \) small, there is a constant \(\gamma > 0 \) such that

\[
\begin{align*}
 a\langle \pi_1 x, \pi_1 \xi \rangle + b\langle \pi_2 x, \pi_2 \xi \rangle + \langle K'(x), J \xi \rangle &> \gamma, \\
 \forall x \in U, \xi \in \partial H(x)
\end{align*}
\]

where \(U = \psi((-s, s) \times \Sigma_1) \).

Let \(z \) be a conservative \(T \)-periodic solution of (1) in \(U \). Setting \(\xi(t) = -J \dot{z}(t) \), then \(\xi(t) \in \partial H(z(t)) \) a.e. and

\[
A(z) := \frac{1}{2} \int_0^T \langle -J \dot{z}, z \rangle dt = \int_0^T \langle \pi_1 z, \pi_1 \xi \rangle dt = \int_0^T \langle \pi_2 z, \pi_2 \xi \rangle dt.
\]

Noting that

\[
\int_0^T \langle K'(z), J \xi \rangle dt = \int_0^T \langle K'(z), \dot{z} \rangle dt = 0,
\]

integrating for (9) over \([0, T]\) gives

\[
(a + b)A(z) \geq \gamma T. \quad (10)
\]
We now take a sequence $\delta_n \to 0$ with $0 < \delta_n < \delta/2$. By theorem 1, for each n, (1) has a conservative T_n-periodic solution z_n in U such that $A(z_n) \leq d$ and $|H(z_n(t)) - 1| < \delta_n$. From (10) it follows that $\{T_n \mid n = 1, 2, 3, \ldots\}$ is bounded. It is easy to see that $\{z_n\}$ has a subsequence which converges uniformly to a conservative T-periodic solution z of (1) and $z(t) \in \Sigma_1, \forall t$.

The proof is complete.

COROLLARY 1. — Suppose that $H \in C^{1-0}(\mathbb{R}^2, \mathbb{R})$, $c \in \mathbb{R}$ and $\Sigma_c = H^{-1}(c)$ is compact. If

$$\langle x, \xi \rangle > 0 \text{ for } x \in \Sigma_c \text{ and } \xi \in \partial H(x),$$

then (1) has a periodic solution on Σ_c.

Proof. — Note that (11) implies (2). Hence all assumptions of theorem 1 are satisfied. Taking $a = b = 1$ and $K = 0$ gives (8). Corollary 1 follows from theorem 2.

COROLLARY 2. — Suppose that $H \in C^{1-0}(\mathbb{R}^2, \mathbb{R})$, $c \in \mathbb{R}$ and $\Sigma_c = H^{-1}(c)$ is compact. If

(p_1) $\langle \pi_1 x, \pi_1 \xi \rangle > 0$ for $x \in \Sigma_c$ with $\pi_1 x \neq 0$ and $\xi \in \partial H(x)$,

(p_2) $0 \notin \pi_2 \partial H(x)$ for $x \in \Sigma_c$ with $\pi_1 x = 0$,

then (1) has a periodic solution on Σ_c.

Proof. — It is clear that (p_1) and (p_2) imply (2). By the upper semicontinuity of ∂H and the compactness of Σ_c there is a bounded neighborhood U of Σ_c such that (p_1) and (p_2) are also true if Σ_c is replaced by U. Applying the acute angle approximation theorem (see e.g. [7]) for the multivalued map $\pi_2 \partial H : \mathbb{R}^2 \to 2^{\mathbb{R}^N}$, it is not difficult to construct a map $W \in C^1(\mathbb{R}^2, \mathbb{R}^N)$ such that

$$\langle W(x), \pi_2 \xi \rangle > 0 \text{ for } x \in U \text{ with } \pi_1 x = 0 \text{ and } \xi \in \partial H(x).$$

Set $K(x) = \langle -W(x), \pi_1 x \rangle$ for $x \in \mathbb{R}^2$. Then $K \in C^1(\mathbb{R}^2, \mathbb{R})$ and

$$\langle K'(x), J\xi \rangle = \langle -W'(x) \cdot J\xi, \pi_1 x \rangle + \langle W(x), \pi_2 \xi \rangle$$

for $x \in \mathbb{R}^2$ and $\xi \in \partial H(x)$.

- 371 -
It is easy to see that there are constants $\sigma, \gamma > 0$ such that
\[
\langle W(x), \pi_2 \xi \rangle \geq 2\gamma \quad \text{and} \quad |\langle W'(x) \cdot J \xi, \pi_1 x \rangle| \leq \gamma
\]
for $x \in U$ with $|\pi_1 x| \leq \sigma$, and $\xi \in \partial H(x)$. Let
\[
M = \sup \left\{ \langle K'(x), J \xi \rangle \mid x \in U, \xi \in \partial H(x) \right\},
\]
\[
m = \inf \left\{ \langle \pi_1 x, \pi_1 \xi \rangle \mid x \in U \text{ with } |\pi_1 x| \geq \sigma, \xi \in \partial H(x) \right\}.
\]
Set $a = (M + \gamma)/m$ and $b = 0$. Then for $x \in U$ and $\xi \in \partial H(x)$ we have
\[
a\langle \pi_1 x, \pi_1 \xi \rangle + \langle K'(x), J \xi \rangle \geq 0 + 2\gamma - \gamma = \gamma - 0 \text{ if } |\pi_1 x| \leq \sigma,
\]
\[
a\langle \pi_1 x, \pi_1 \xi \rangle + \langle K'(x), J \xi \rangle \geq M + \gamma - M = \gamma > 0 \text{ if } |\pi_1 x| \geq \sigma.
\]
Thus (8) holds and corollary 2 follows from theorem 2.

Remark. — When $H \in C^1$, (2) and (p_1) imply (p_2) (see [5]), but such conclusion is not true when $H \in C^{1-0}$.

References

[1] **HOFER (H.)** and **ZEHNDER (E.)** — Periodic solutions on hypersurfaces and a result by C. Viterbo,

[2] **VITERBO (C.)** — A proof of the Weinstein conjecture in \mathbb{R}^{2n},

[3] **CLARKE (F.)** — Optimization and Nonsmooth Analysis

[4] **FAN (X.)** — The C^1-admissible approximation for Lipschitz functions and the Hamiltonian inclusions,

[5] **BENCI (V.), HOFER (H.)** and **RABINOWITZ (P.)** — A remark on a priori bounds and existence for periodic solutions of Hamiltonian systems,

[7] **BORISOVICH (YU.), GELMAN (B.), MUSCHKIS (A.)** and **OBUHOVSKII (V.)** — Topological methods in the fixed point theory of multivalued mappings,