ALEX BIJLSMA

A note on elliptic functions and approximation by algebraic numbers of bounded degree

<http://www.numdam.org/item?id=AFST_1983_5_5_1_39_0>
A NOTE ON ELLIPTIC FUNCTIONS AND APPROXIMATION
BY ALGEBRAIC NUMBERS OF BOUNDED DEGREE

Alex Bijlsma (1)

Résumé : Soit p une fonction elliptique de Weierstrass d’invariants g_2 et g_3 algébriques. Par un contre-exemple, on montre que pour l’obtention d’une minoration pour l’approximation simultanée de $p(a)$, b et $p(ab)$ par des nombres algébriques de degré borné, une hypothèse supplémentaire sur les nombres β qui approximent b est nécessaire.

Summary : Let p be a Weierstrass elliptic function with algebraic invariants g_2 and g_3. By a counterexample it is shown that lower bounds for the simultaneous approximation of $p(a)$, b and $p(ab)$ by algebraic numbers of bounded degree cannot be given without an added hypothesis on the numbers β approximating b.

Let p be a Weierstrass elliptic function with algebraic invariants g_2, g_3 ; for $a,b \in \mathbb{C}$ such that a and ab are not poles of p, we consider the simultaneous approximation of $p(a)$, b and $p(ab)$ by algebraic numbers. It was shown in [2], Theorem 2, that lower bounds for the approximation errors in terms of the heights and degrees of these algebraic numbers can only be given if the numbers β used to approximate b do not lie in the field \mathbb{K} of complex multiplication of p. (As this condition is equivalent to the algebraic independence of $p(z)$ and $p(\beta z)$ as functions of z, the result proves the conjecture on admissible sets in Appendix 2 of [3].)

Now consider simultaneous approximation of the same numbers by algebraic numbers of bounded degree. The sequences of algebraic numbers constructed in [2] have rapidly rising
degrees, so they do not provide a relevant counterexample. It is the purpose of this note to show how the original example should be modified for the new problem.

Let \(\Omega = \mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \) denote the period lattice of \(\rho \), and \(\mathbb{Q} = \mathbb{Q}(g_2, g_3) \). For every \(d \in \mathbb{N} \), the set of \(z \in \mathbb{C} \setminus \Omega \) such that \(\rho(z) \) is algebraic of degree at most \(d \) is denoted by \(A_d \).

Let \(B \) be an open set in \(\mathbb{C} \) such that its closure \(\overline{B} \) is contained in the interior of the fundamental parallelogram \([0,1] \omega_1 + [0,1] \omega_2\).

LEMMA 1. For every \(d > 2 \), the set \(A_d \) is dense in \(\mathbb{C} \).

Proof. Let \(\mathcal{O} \subset \mathbb{C} \) be an arbitrary open set. Take a \(a \in \mathcal{O} \setminus \Omega \) with \(\rho'(a) \neq 0 \). According to [1], Chapter 4, Theorem 11, Corollary 2, there exist open sets \(U, V \) with \(a \in U \subset \mathcal{O}, \rho(a) \in V \), such that \(\rho \) induces a bijection from \(U \) onto \(V \). As \(\{ z \in \overline{\Omega} \mid \text{dg } z \leq d \} \) is dense in \(\mathbb{C} \), we can find \(z \in V \cap \overline{\mathcal{O}} \) with \(\text{dg } z \leq d \). For the unique \(u \in U \) with \(\rho(u) = z \), we have \(u \in \mathcal{O} \cap A_d \).

LEMMA 2. Assume \(d > 2 \). Then, for every \(g : \mathbb{N} \to \mathbb{R} \), there exist sequences \((u_n)_{n=1}^\infty \), \((\beta_n)_{n=1}^\infty \), \((v_n)_{n=1}^\infty \), \((\varepsilon_n)_{n=1}^\infty \), such that for all \(n \in \mathbb{N} \) the following statements are true:

1. \(u_n \in A_d \cap B, \beta_n \in [0,1] \cap \mathbb{Q}, v_n \in A_d, v_n = \beta_n u_n, \varepsilon_n \in]0,1[\);
2. \(e_{n+1} < \exp(-n \mid g(H_n) \mid) \), where \(H_n := \max(H(\rho(u_n)), H(\beta_n), H(\rho(v_n))) \);
3. \(e_{n+1} < e_n^2, e_{n+1} < \frac{1}{4} \text{ den}^{-4} \beta_n ; \)
4. \(0 < |\beta_n - \beta_{n+1}| < e_{n+1}, |u_n - u_{n+1}| < e_{n+1} \).

Proof. Take \(u_1 \in A_d \cap B \) (the existence of such an \(u_1 \) follows from Lemma 1). Define \(v_1 := u_1, \beta_1 := 1, \varepsilon_1 := \frac{1}{2} \). Then (1) is true for \(n = 1 \). Now suppose \(u_1, \ldots, u_N, \beta_1, \ldots, \beta_N, v_1, \ldots, v_N, \varepsilon_1, \ldots, \varepsilon_N \) have been chosen in such a way that (1) holds for \(n = 1, \ldots, N \) and (2), (3), (4) hold for \(n = 1, \ldots, N - 1 \), and proceed by induction.

Choose \(\varepsilon_{n+1} \in]0,1[\) so small that (2) and (3) hold for \(n = N \). Take \(r > e^{-1}_{N+1} \) and consider the function \(f : \mathbb{C} \to \mathbb{C} \) defined by \(f(z) := rz \). As \(f \) is a continuous bijection, there exists an open set \(U \subset \mathbb{C} \) with \(fU \subset B \cap B(u_N, \varepsilon_{N+1}) \). Take \(w \in U \) such that \(\rho(w) \in \overline{\mathcal{O}} \) with \(\text{dg } \rho(w) \leq 2 \) (the existence of \(w \) again follows from Lemma 1). Define \(u_{N+1} := rw \). By Lemma 6.1 of [4], \(\rho(u_{N+1}) \in \overline{\mathcal{O}} \) and

\[\text{dg } \rho(u_{N+1}) \leq [\mathbb{IF}(\rho(w)) : \mathcal{G}] \leq 2 [\mathbb{IF} : \mathbb{Q}] \leq d, \]

so \(u_{N+1} \in A_d \). Furthermore the definition of \(U \) gives \(u_{N+1} \in B \) and \(|u_N - u_{N+1}| < e_{N+1} \). Take
s \in \mathbb{N} with 0 \leq s \leq r and 0 < |\beta_N - \frac{s}{r}| < \epsilon_{N+1}; \text{ define } \beta_{N+1} := \frac{s}{r}; \text{ then } \beta_{N+1} \in [0,1] \cap \mathbb{Q} and (4) holds for n = N. Define \(v_{N+1} := \beta_{N+1} u_{N+1} = sw; \) then as above we find that \(v_{N+1} \in \mathbb{A}_d \) and (1) holds for \(n = N + 1. \)

THEOREM. Assume \(d \geq 2 \). Then, for every \(g : \mathbb{N} \to \mathbb{R} \), there exist \(a \in \mathbb{C}, b \in \mathbb{C} \setminus \mathbb{K}, \) such that \(a \) and \(ab \) are not poles of \(p \) and such that for every \(C \in \mathbb{R} \) there exist infinitely many tuples \((u, a, v) \in \mathbb{C}^3\) satisfying \(u, v \in \mathbb{A}_d, \beta \in \mathbb{Q} \) and

\[
\max(|p(a) - p(u)|, |b - \beta|, |p(ab) - p(v)|) < \exp(-Cg(H))
\]

while \(\max(H(p(u)), H(\beta), H(p(v))) \leq H. \)

Proof. According to Lemma 3 of [2], the sequences \((u_n)_{n=1}^{\infty}\) and \((\beta_n)_{n=1}^{\infty}\) constructed in Lemma 2 above are Cauchy sequences and their limits \(a, b \) satisfy

\[
\max(|a - u_n|, |b - \beta_n|) \leq e^{1/2}n+1
\]

for almost all \(n \). Thus \(a \in \overline{B} \) and therefore \(a \) cannot be a pole of \(p \). Formula (4) implies the existence of arbitrarily large \(n \) for which \(\beta_n \neq b \) ; as by (3) and (5), every \(\beta_n \) is a convergent of the continued fraction expansion of \(b \) and \(\lim \beta_n = b \), it follows that \(b \) has infinitely many convergents. Thus \(b \in \mathbb{R} \setminus \mathbb{Q} \) and therefore \(b \notin \mathbb{K}. \) On particular, \(b \neq 0 \); hence \(ab \) cannot be a pole of \(p \) either.

By the continuity of \(p \) in \(ab \), (5) implies

\[
\max(|p(a) - p(u_n)|, |b - \beta_n|, |p(ab) - p(v_n)|) \leq ce^{1/2}n+1
\]

for almost all \(n \), where \(c \) does not depend on \(n \). In the notation of (2), the right hand member of (6) satisfies

\[
ce^{1/2}n+1 < c \exp(-\frac{1}{2}n |g(H_n)|) \leq \exp(-Cg(H_n))
\]

if \(n \) is sufficiently large in terms of \(C \) and \(c. \)
REFERENCES

(Manuscrit reçu le 1er septembre 1981)