BANG-YEN CHEN
Cohomology of CR-submanifolds

<http://www.numdam.org/item?id=AFST_1981_5_3_2_167_0>
COHOMOLOGY OF CR-SUBMANIFOLDS

Bang-Yen Chen (1)

(1) Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 - USA.

Résumé : Nous introduisons canoniquement une classe de cohomologie de Rham pour une CR-sous-variété compacte d'une variété kaehlerienne. Cette classe de cohomologie est utilisée pour montrer que si un certain groupe de cohomologie de dimension paire d'une CR-sous-variété, N est trivial, alors, soit la distribution holomorphe de N n'est pas intégrable, soit la distribution totalement réelle de N n'est pas minimale.

Summary : We introduce a canonical de Rham cohomology class for a closed CR-submanifold in a Kaehler manifold. This cohomology class is used to prove that if some even-dimensional cohomology group of a CR-submanifold N is trivial, then either the holomorphic distribution of N is not integrable or the totally real distribution of N is not minimal.

1. - INTRODUCTION

Let \tilde{M} be a Kaehler manifold with complex structure J and N a Riemannian manifold isometrically immersed in \tilde{M}. Let \mathscr{D}_x be the maximal holomorphic subspace of the tangent space T_xN, i.e., $\mathscr{D}_x = T_xN \cap J(T_xN)$. If the dimension of \mathscr{D}_x is constant along N, then \mathscr{D}_x defines a differentiable distribution \mathcal{D}, called the holomorphic distribution of N. A submanifold N in \tilde{M} is called a CR-submanifold [1,2] if there exists on N a holomorphic distribution \mathcal{D} such that its orthogonal complement \mathcal{D}^\perp is a distribution satisfying $J\mathcal{D}_x^\perp \subset T_xN$, $x \in N$. \mathcal{D}^\perp is called the totally real distribution of N.
Let \(\mathcal{H} \) be a differentiable distribution on a Riemannian manifold \(N \) with Levi-Civita connection \(\nabla \). We put

\[
\mathcal{O}(X,Y) = (\nabla_X Y)^\perp
\]

for any vector fields \(X, Y \) in \(\mathcal{H} \), where \((\nabla_X Y)^\perp\) denotes the component of \(\nabla_X Y \) in the orthogonal complementary distribution \(\mathcal{K}^\perp \) in \(N \). Let \(X_1, \ldots, X_r \) be an orthonormal basis of \(\mathcal{H} \), \(r = \dim_{\mathbb{R}} \mathcal{H} \). If we put

\[
\vec{H} = \frac{1}{r} \sum_{i=1}^{r} \mathcal{O}(X_i, X_i).
\]

Then \(\vec{H} \) is a well-defined \(\mathcal{K}^\perp \)-valued vector field on \(N \) (up to sign), called the mean-curvature vector of \(\mathcal{H} \). A distribution \(\mathcal{K} \) on \(N \) is called minimal if the mean-curvature vector \(\vec{H} \) of \(\mathcal{K} \) vanishes identically.

The main purpose of this paper is to introduce a canonical cohomology class and use it to prove the following.

THEOREM 1. Let \(N \) be a closed CR-submanifold of a Kaehler manifold \(\tilde{M} \). If \(H^{2k}(N; \mathbb{R}) = 0 \) for some \(k \ll \dim_{\mathbb{C}} \mathcal{D} \), then either \(\mathcal{D} \) is not integrable or \(\mathcal{D}^\perp \) is not minimal.

2. **THE CANONICAL CLASS OF CR-SUBMANIFOLDS**

Let \(M \) be a Kaehler manifold and \(N \) a CR-submanifold of \(\tilde{M} \). We denote by \(<, > \) the metric tensor of \(\tilde{M} \) as well as that induced on \(N \). Let \(\tilde{\nabla} \) and \(\tilde{\nabla} \) be the covariant differentiations on \(N \) and \(\tilde{M} \), respectively. The Gauss and Weingarten formulas are given respectively by

\[
\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X,Y),
\]

\[
\tilde{\nabla}_X \xi = -A_{\xi} X + D_X \xi
\]

for any vector fields \(X, Y \) tangent to \(N \) and any vector field \(\xi \) normal to \(N \). The second fundamental form \(\sigma \) and the second fundamental tensor \(A_{\xi} \) satisfy \(<A_{\xi} X, Y> = <\sigma(X,Y), \xi> \). We recall the following.

PROPOSITION 2 [2]. The totally real distribution \(\mathcal{D}^\perp \) of any CR-submanifold in any Kaehler manifold is integrable.

For a CR-submanifold \(N \) of a Kaehler manifold \(M \), we choose an orthogonal local
frame $e_1,...,e_h,J e_1,...,J e_h$ of D. Let $\omega^1,...,\omega^h,\omega^{h+1},...,\omega^{2h}$ be the $2h$ 1-forms on N satisfying

\begin{equation}
\omega^j(Z) = 0, \quad \omega^j(e_i) = \delta_{ij}, \quad i, j = 1,\ldots, 2h
\end{equation}

for any $Z \in D \perp$ where $e_{h+j} = J e_j$. Then

\begin{equation}
\omega = \omega^1 \wedge \ldots \wedge \omega^{2h}
\end{equation}

defines a $2h$-form on N. This form is a well-defined global $2h$-form on N because D is orientable. We give the following.

THEOREM 3. For any closed CR-submanifold N of a Kaehler manifold M, the $2h$-form ω is closed which defines a canonical deRham cohomology class given by

\begin{equation}
\text{c}(N) = [\omega] \in H^{2h}(N; \mathbb{R}), \quad h = \dim_D D.
\end{equation}

Moreover, this cohomology class is nontrivial if D is integrable and $D \perp$ is minimal.

Proof. First we give the following.

LEMMA 4. If N is a CR-submanifold of a Kaehler manifold M, then the holomorphic distribution D is minimal.

Let X and Z be vector fields in D and $D \perp$, respectively. Then we have

\begin{equation}
< Z, \nabla_X X > = < JZ, \nabla_X JX > = - < \nabla_X JZ, JX > = < A JZ X, JX >.
\end{equation}

Thus we find

\begin{equation}
\end{equation}

Combining (2.6) and (2.7) we get $< \nabla_X X + \nabla_J X JX, Z > = 0$ from which we conclude that the holomorphic distribution D is minimal. This proves the lemma.

From (2.4) we have

\begin{equation}
d\omega = \sum_{i=1}^{2h} (-1)^i \omega^1 \wedge \ldots \wedge \omega^i \wedge \ldots \wedge \omega^{2h}.
\end{equation}

It is clear from (2.3) and (2.8) that $d\omega = 0$ if and only if
for any vectors \(Z_1, Z_2 \in \mathcal{D} \perp \) and \(X_1, \ldots, X_{2h-1} \in \mathcal{D} \). However, it follows from straight-forward computation that (2.9) holds when and only when \(\mathcal{D} \perp \) is integrable and (2.10) holds when and only when \(\mathcal{D} \) is minimal. But for a CR-submanifold in a Kaehler manifold these two conditions hold automatically (Proposition 2 and Lemma 4). Therefore, the 2h-form \(\omega \) is closed. Consequently, \(\omega \) defines a deRham cohomology class \(c(N) \) given by (2.5).

Let \(e_{2h+1}, \ldots, e_{2h+p} \) be an orthonormal local frame of \(\mathcal{D} \perp \) and let \(\omega^{2h+1}, \ldots, \omega^{2h+p} \) be the p 1-forms on \(N \) satisfying \(\omega^\alpha(X) = 0 \) and \(\omega^\alpha(e_\beta) = 0 \) for any \(X \) in \(\mathcal{D} \), where \(\alpha, \beta = 2h+1, \ldots, 2h+p \).

Then by a similar argument for \(\omega \), we may conclude that if \(\mathcal{D} \) is integrable and \(\mathcal{D} \perp \) is minimal, then the p-form \(\omega = \omega^{2h+1} \Lambda \ldots \Lambda \omega^{2h+p} \) is closed. Thus, the 2h-form \(\omega \) is coclosed, i.e., \(\delta \omega = 0 \). Since \(N \) is a closed submanifold, \(\omega \) is harmonic. Because \(\omega \) is nontrivial, the cohomology class [\(\omega \)] represented by \(\omega \) is nontrivial in \(H^{2h}(N; \mathbb{R}) \). This proves the Theorem.

2. PROOF OF THEOREM 1

Let \(N \) be a closed CR-submanifold of a complex \(m \)-dimensional Kaehler manifold \(M \).

Let \(h = \dim_{\mathbb{R}} \mathcal{D} \) and \(p = \dim_{\mathbb{R}} \mathcal{D} \perp \). We choose an orthonormal local frame

\[
e_1, \ldots, e_h, e_{h+1}, \ldots, e_{h+p}, e_{h+p+1}, \ldots, e_m, j_1, \ldots, j_m
\]

in \(\tilde{M} \) in such a way that, restricted to \(N \), \(e_1, \ldots, e_h, j_1, \ldots, j_h \) are in \(\mathcal{D} \) and \(e_{h+1}, \ldots, e_{h+p} \) are in \(\mathcal{D} \perp \). We denote by \(\omega^1, \ldots, \omega^m, \omega^1*, \ldots, \omega^m* \), the dual frame of \(e_1, \ldots, e_m, j_1, \ldots, j_m \). We put

\[
\theta^A = \omega^A + \sqrt{-1} \omega^{A*}, \quad \bar{\theta}^A = \omega^A - \sqrt{-1} \omega^{A*}, \quad A = 1, \ldots, m.
\]

Then, restrict \(\theta^A \)'s and \(\bar{\theta}^A \)'s to \(N \), we have

\[
\theta^\alpha = \bar{\theta}^\alpha = \omega^\alpha \quad \text{for} \quad \alpha = h+1, \ldots, h+p
\]

\[
\theta^r = \bar{\theta}^r = 0 \quad \text{for} \quad r = h+p+1, \ldots, m.
\]

The Kaehler form \(\tilde{\Omega} \) of \(\tilde{M} \) is a closed 2-form on \(\tilde{M} \) given by

\[
\tilde{\Omega} = \frac{\sqrt{-1}}{2} \sum A \theta^A \Lambda \bar{\theta}^A.
\]
Let $\Omega = i^*\widetilde{\Omega}$ be the 2-form on N induced from $\widetilde{\Omega}$ via the immersion $i : N \to \widetilde{M}$. Then, (3.1) and (3.2) give

$$\Omega = \frac{\sqrt{-1}}{2} \sum_{i=1}^{h} \theta^i \wedge \overline{\theta}^i.$$

(3.3)

It is clear that Ω is a closed 2-form on N and it defines a cohomology class $[\Omega]$ in $H^2(N ; \mathbb{R})$. (2.4) and (3.3) imply that the canonical class $c(N)$ and the class $[\Omega]$ satisfy

$$[\Omega]^h = (-1)^{h}(h!) c(N).$$

(3.4)

If \mathcal{D} is integrable and \mathcal{D}^\perp is minimal, then Theorem 3 and (3.4) imply that $H^{2k}(N ; \mathbb{R}) = 0$ for $k = 1, 2, \ldots, h$. (Q.E.D).

Because every hypersurface of a Kaehler manifold is a CR-hypersurface, Theorem 1 implies the following.

COROLLARY 5. Let N be a $(2m-1)$-dimensional closed manifold with $H^{2k}(N ; \mathbb{R}) = 0$ for some $k < m$. Then any immersion from N into a (complex) m-dimensional Kaehler manifold \widetilde{M} is a CR-hypersurface such that either its holomorphic distribution is not integrable or its totally real distribution is not minimal.

Remark. CR-products of a Kaehler manifold are examples of CR-submanifold whose holomorphic distributions are integrable and whose totally real distributions are minimal. Therefore, the assumption on cohomology groups are necessary for Theorem 1.
REFERENCES

(Manuscrit reçu le 18 mai 1981)