M. A. Herrero
J. L. Vázquez

Asymptotic behaviour of the solutions of a strongly nonlinear parabolic problem

<http://www.numdam.org/item?id=AFST_1981_5_3_2_113_0>
ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS OF A STRONGLY NONLINEAR PARABOLIC PROBLEM

M.A. Herrero (1) and J.L. Vazquez (2)

(1) Departamento de Ecuaciones Funcionales, Facultad de Ciencias Matematicas, Universidad Complutense, Madrid 3 - España.
(2) Division de Matematicas, Universidad Autonoma de Madrid, Madrid - 34 - España.

Résumé : Nous étudions le problème d’évolution \(u_t + Au = 0 \) dans \((0,T) \times \mathbb{R}^N\), \(u(0) = u_0 \) dans \(\mathbb{R}^N \), avec \(N \geq 1 \), \(0 < T < \infty \), \(Au = - \text{div} (|Du|^{p-2} Du) \), \(Du \) étant le gradient de \(u \), \(1 < p < \infty \) et nous supposons que \(u_0 \) appartient à un espace de fonctions intégrables. On prouve l’existence d’un temps fini d’extinction si \(N \geq 2 \) et \(p < \frac{2N}{N+1} \). Dans le cas contraire (si \(N = 1 \) et \(p > 1 \) ou si \(N \geq 2 \) et \(p \geq \frac{2N}{N+1} \)) on prouve la loi de conservation : \(\int_{\mathbb{R}^N} u(t,x) dx = \int_{\mathbb{R}^N} u_0(x) dx \) pour tout \(t > 0 \). On estime aussi la convergence vers zéro des intégrales \(\int_{\mathbb{R}^N} |u(t,x)|^m dx \), \(m > 1 \) et on obtient certains effets régularisants.

Summary : The evolution problem \(u_t + Au = 0 \) in \((0,T) \times \mathbb{R}^N\), \(u(0) = u_0 \) in \(\mathbb{R}^N \) is considered where \(N \geq 1 \), \(0 < T \leq \infty \), \(Au = - \text{div} (|Du|^{p-2} Du) \), with \(Du \) the gradient of \(u \), \(1 < p < \infty \) and \(u \) is supposed to belong to some integrable space. If \(N \geq 2 \) and \(p < \frac{2N}{N+1} \) the existence of a finite extinction time is shown. On the contrary, if \(N = 1 \), \(p > 1 \) or \(N \geq 2 \), \(p \geq \frac{2N}{N+1} \) conservation of total mass holds, i.e. \(\int_{\mathbb{R}^N} u(t,x) dx = \int_{\mathbb{R}^N} u_0(x) dx \) for every \(t > 0 \). We prove also that the integrals \(\int_{\mathbb{R}^N} |u(t,x)|^m dx \), \(m > 1 \) converge to zero as \(t \) goes to infinity, and some regularizing effects are shown.
INTRODUCTION AND PRELIMINARIES

We shall consider the asymptotic behaviour in time of the solutions of

\[
\begin{cases}
 u_t + Au = 0 & \text{in } (0,T) \times \mathbb{R}^N \\
 u(0) = u_0 & \text{in } \mathbb{R}^N
\end{cases}
\]

with $N > 1$, $1 < p < \infty$ and $Au = -\sum_{i=1}^{N} \frac{\partial (|Du|^{p-2} Du)}{\partial x_i}$ where $Du = \left(\frac{\partial u}{\partial x_i} \right)$ is the gradient of u. The operator A has been widely considered in the literature in P.D.E., and arises in several physical situations, such as one-dimensional non newtonian fluids and glaciology.

This behaviour depends strongly on p and N: in fact, if $p \geq \frac{2N}{N+1}$ we show that the total mass $\int_{\mathbb{R}^N} u(t,x) dx$ is conserved, i.e., is independent of time. On the contrary if $p < \frac{2N}{N+1}$ we show that the solution corresponding to initial data $u_0 \in L^m(\mathbb{R}^N)$, $m = N \left(\frac{N-1}{p} \right)$ vanishes in finite time. The existence of a finite extinction time was found by Bénilan and Crandall [2] for the equation $u_t - \Delta u^m = 0$ in spatial domain \mathbb{R}^N (1) if and only if $0 < m < \frac{N-2}{N}$, $N > 3$.

As it is noted in [2], equation (E) in bounded domains with homogeneous Dirichlet conditions has also that property if $0 < m < 1$. The case $N = 1$ was considered by Sabinina [8]. Several properties of solutions of (E) related to the ones we consider here can be found in Evans [5]. Finite extinction times for (E_{β}) $u_t - \Delta \beta(u) = 0$ with β maximal monotone graph and bounded domain are discussed in terms of β in [3].

We also consider the homogeneous Dirichlet problem

\[
\begin{cases}
 u_t - \text{div}(|Du|^{p-2} Du) = 0 & \text{in } (0,T) \times \Omega \\
 u(x,t) = 0 & \text{in } (0,T) \times \partial \Omega \\
 u(x,0) = u_0(x) & \text{in } \Omega
\end{cases}
\]

for $\Omega \subset \mathbb{R}^N$ open and bounded. We show the existence of a finite extinction time if $p < 2$, $u_0 \in L^m(\Omega)$, and m as above, completing a result of Bamberger [1]: he showed that effect for $\frac{2N}{N+2} \leq p < 2$ and $u_0 \in L^2(\Omega)$. For $p \geq 2$ it is easy to see that solutions with positive initial data do not vanish.

For $p \geq \frac{2N}{N+1}$ L. Véron [11] shows a smoothing and decay effect for the solutions

\[u_0 \in L^\beta(\mathbb{R}^N) \cap L^1(\mathbb{R}^N)\] for $\beta = \beta(m,N)$.
of \((P_\Omega)\) : in fact, if \(N\left(\frac{2}{p} - 1\right) < m_0 < m \leq \infty\) and \(u_0 \in L^{m_0}(\Omega)\), then \(u(t,.) \in L^m(\Omega)\) and in addition \(\|u\| \leq C t^{-\delta}\). \(\|u_0\|_{m_0} \leq \sigma m_0\) where \(\delta, \sigma\) depend on \(m, m_0, p\) and \(N\). We adapt his proof for \((P)\) to get similar results. We know that for \(m_0 = N\left(\frac{2}{p} - 1\right)\) solutions vanish. For \(1 < m_0 < N\left(\frac{2}{p} - 1\right)\) we prove a «backwards» effect : for \(t > 0\), \(u(t,.) \in L^1(\mathbb{R}^N)\) and \(\|u\|_1 \leq C t^{-\delta}\). \(\|u_0\|_{m_0} \leq \sigma m_0\) with \(\delta, \sigma > 0\) as before.

We shall need some facts about the operator \(A\) in \(L^2(\mathbb{R}^N)\) and in \(C^0(\mathbb{R}^N)\) bounded with homogeneous Dirichlet conditions : First, if \(J(u) = \frac{1}{p} \int_{\mathbb{R}^N} |Du|^p\) when \(u \in L^p(\mathbb{R}^N)\) and \(\|Du\| \in L^p(\mathbb{R}^N)\), \(J(u) = + \infty\) otherwise, \(J\) is a convex l.s.c. proper functional in \(L^2(\mathbb{R}^N)\) whose subdifferential \(A\) is defined as \(Au = - \text{div}(|Du|^{p-2}Du)\) in the domain \(D(A) = \left\{ u \in L^2(\mathbb{R}^N) : |Du| \in L^p(\mathbb{R}^N), \text{div}(|Du|^{p-2}Du) \in L^2(\mathbb{R}^N) \right\}\) and for every \(v \in D(A)\), \(\int_{\mathbb{R}^N} Au \cdot v = \int_{\mathbb{R}^N} |Du|^{p-2}Du \cdot Dv\). If \(p > 2\), the last condition may be omitted as it follows by density. \(A\) is accretive in \(L^1(\mathbb{R}^N)\) and \(L^\infty(\mathbb{R}^N)\), hence in every \(L^p(\mathbb{R}^N)\), \(1 \leq p \leq \infty\) : in fact for \(t > 0\) and \(u_1, u_2 \in D(A) \cap L^p(\mathbb{R}^N)\), \(\|u_1(t,.) - u_2(t,.)\|^p \leq \|u(0,.) - u_0(0,.)\|^p \) where \(u^* = \max(u,0)\). This implies a comparison principle that allows us to consider only nonnegative initial data and solutions ; for nonpositive data we consider \(-u\) instead of \(u\). Defining for \(p \neq 2\), \(A_p = A \cap (L^p(\mathbb{R}^N) \times L^p(\mathbb{R}^N))\) we may close \(A_p\) to find \(A_{p^*}\) m-accretive in \(L^p(\mathbb{R}^N)\).

As \(\mathcal{D}(\mathbb{R}^N) \subset D(A_p), D(A_{p^*}) = L^p(\mathbb{R}^N)\).

The corresponding results for \(\Omega\) bounded and homogeneous Dirichlet conditions are well known ; \(Au = - \text{div}(|Du|^{p-2}Du)\) and \(D(A) = \left\{ u \in W^{1,p}_0(\Omega) \cap L^2(\Omega) : Au \in L^2(\Omega) \right\}\). On the other hand \(A_p\) is defined as m-accretive operator in \(L^p(\mathbb{R}^N)\) by restriction if \(p > 2\) and closure if \(p < 2\).

We shall use the following inequality due to Nirenberg and Gagliardo (see [6], Th. 9.3.).

Lemma 0. Let \(q, r\) be any numbers satisfying \(1 \leq q, r \leq \infty\) and \(u \in C^1_0(\mathbb{R}^N)\). Then

\[
\|u\|_q \leq C \|Du\|_r \|u\|_q^{1-a}
\]

where \(\frac{1}{p} = a \frac{1}{r} + (1-a) \frac{1}{r^*}\) and \(\frac{1}{q} = \frac{1}{r} - \frac{1}{r^*}\) for all \(a\) in the interval \(0 \leq a \leq 1\), with \(C = C(N, q, r, a)\), with the following exception : \(r = N\) and \(a = 1\) (hence \(p = \infty\)).

We remark that by density the result remains true for \(u \in L^q(\mathbb{R}^N) \cap L^p(\mathbb{R}^N)\) such that \(Du \in L^r(\mathbb{R}^N)\) if \(r, q < \infty\) and \(q \leq r^*\) if \(r^*\) is positive. To show this, approach \(u\) by \(u^1\) bounded, then convolve \(u^1\) with a regular kernel to get \(u^2 \in C^\infty(\mathbb{R}^N)\) and finally cut \(u^2\) with a smooth function \(\xi_n\) which vanishes outside \(B_{2n}(0)\) and is equal to 1 on \(B_n(0)\); let us check this last step.
Assume \(u \in C^\infty(\mathbb{R}^N) \) and put \(u_n = u \cdot \xi_n \), where \(\xi_n(x) = \xi_o \left(\frac{|x|}{n} \right) \), \(0 < \xi_n = 1 \), \(\xi_o(x) = 1 \) if \(|x| \leq 1 \), \(\xi_o(x) = 0 \) if \(|x| > 2 \) and \(D\xi_n(x) \leq C \). It is clear that \(u_n \to u \) in \(L^q(\mathbb{R}^N) \) and \(L^p(\mathbb{R}^N) \). Also \(D\xi_n = Du \cdot \xi_n + u \cdot D\xi_n \). Therefore \(\xi_n \to u \) in \(L^q(\mathbb{R}^N) \) and we have to prove that \(u \cdot D\xi_n \to 0 \) in \(L^q(\mathbb{R}^N) \). Then, \(C \) representing different constants independent of \(n \):

\[
\| u \cdot D\xi_n \|_{L^q} ^r = \int_{\mathbb{R}^N} \| u \|_r \| D\xi_n \|_r \leq \frac{C}{n^r} \int_{n|x| \leq 2n} \| u \|_r
\]

if \(q < r \), \(\int \| u \|_r \leq \| u \|_{\infty}^{-q} \cdot \int \| u \|_q \), so \(\| u \cdot D\xi_n \|_r \leq \frac{C \| u \|_{\infty}^{-q}}{n^r} \cdot \| u \|_q \to 0 \);

if \(r > q < q^* \) and \(q^* < r \), \(\int \| u \|_r \leq \left(\| u \|_q \right)^{q/r} \cdot \left(\int 1 \right)^{1-q/r} \), so:

\[
\| u \cdot D\xi_n \|_r \leq \frac{C}{n^r} \cdot \| u \|_r \cdot L^q(n \leq |x| \leq 2n). \]

If \(r^* < 0 \) the previous proof applies as well for every \(q \), \(1 \leq q < \infty \).

Our plan is as follows: Sections 1, 2, 3 are devoted to problem (P). Section 1 studies the existence of a finite extinction time when \(p \leq \frac{2N}{N+1} \), \(u_0 \in L^m(\mathbb{R}^N) \), \(m = N(\frac{2}{p} - 1) \). Section 2 is devoted to conservation of mass and Section 3 to the regularizing effects and decay of the integral norms \(\| u(t,.) \|_m \) as \(t \to \infty \). Finally Section 4 gathers the results on \((P_{\Omega}) \), \(\Omega \) open and bounded.

1. **FINITE EXTINCTION TIME**

We obtain the following result.

Theorem 1. Let \(N \geq 2 \), \(1 < p < \frac{2N}{N+1} \) and let \(u_0 \in L^m(\mathbb{R}^N) \) where \(m = N(\frac{2}{p} - 1) \). Then for every \(t > 0 \) \(u(t,.) \in L^\infty(\mathbb{R}^N) \) and there exists \(t_0 > 0 \) such that \(u(t,.) = 0 \) a.e. if \(t \geq t_0 \).

Proof. We may assume that \(u_0(x), u(t,x) \) are nonnegative. A formal proof to be justified later by discretization in time runs as follows: As \(p < \frac{2N}{N+1} \) if \(m = N(\frac{2}{p} - 1) \) we have \(m > 1 \). Let

\[
p^* = \frac{Np}{N-p} \quad \text{and} \quad q = \frac{m+p-2}{p};
\]

then \(m = p^*q \). Also for \(k \geq 0 \) we write \((u-k)_+ = \max(u-k,0) \) and \(v = v_k = (u-k)_+^q \). Multiply \(u_t - \text{div}(|Du|^{p-2}Du) = 0 \) by \(m(u-k)_+^{m-1} \) and integrate over \(\mathbb{R}^N \) to obtain:

\[
(1.1) \quad \frac{d}{dt} \int_{\mathbb{R}^N} (u-k)_+^m = m \int_{\mathbb{R}^N} u_t(u-k)_+^{m-1} = m \int_{\mathbb{R}^N} \text{div}(|Du|^{p-2}Du)(u-k)_+^{m-1}
\]
Integration by parts and Sobolev’s inequality give

\begin{equation}
- \int_{\mathbb{R}^N} \text{div}(|Du|^p - 2Du)(u-k)^{m-1} = (m-1)q^p \int_{\mathbb{R}^N} |Du|^p \geq C_p (m-1)q^p \left(\int_{\mathbb{R}^N} v^{p^*} \right)^{p/p^*} \tag{1.2}
\end{equation}

Write \(E_{m,k}(t) = \int_{\mathbb{R}^N} (u-k)^m \, dx \). (1.1) and (1.2) give

\begin{equation}
\frac{d}{dt} E_{m,k}(t) + C_p m(m-1)q^p E_{m,k}^p(t) (t) \leq 0 \tag{1.3}
\end{equation}

Integrating (1.3) gives

\begin{equation}
\begin{cases}
E_{m,k}(t) \leq E_{m,k}(0) \left[1 - \frac{C_p m(m-1)p}{Nq^p (E_{m,k}(0))^{p/N}} \cdot t \right]^N_p \\ E_{m,k}(t) = 0 \quad \text{for } t \geq t_{0,k}
\end{cases} \tag{1.4}
\end{equation}

where

\[t_{0,k} = \frac{Nq^p}{pC_p m(m-1)} E_{m,k}(0)^{p/N} \]

If we take \(k = 0 \) the existence of a finite extinction time \(t_0 = t_{0,0} \) results. Given \(T > 0 \), if we take \(k > 0 \) large enough extinction of \(E_{m,k}(t) \) in time \(t_{0,k} \leq T \) may be obtained. Hence \(u(t,.) \in L^\infty(\mathbb{R}^N) \) for \(t > 0 \), a regularizing effect.

This formal proof can be made rigorous by means of the discrete scheme and Crandall-Liggett’s results. Assume that \(u_0 \in L^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \), let \(h > 0 \) and define a discrete approximation to the solution of (P) thus: \(u_{i+1} \in L^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \) is defined implicitly in terms of \(u_i \) by

\begin{equation}
\frac{u_{i+1} - u_i}{h} + Au_{i+1} = 0 \tag{1.5}
\end{equation}

Now repeat the previous argument on (1.5) to obtain a discrete version of (1.3) and pass to the limit as \(h \to 0 \). The assumption on \(u_0 \) can be weakened by approximation for \(t_{0,k} \) depends only on \(\| u_0 \|_m \). The details repeat those in [2] for \(u_t - \Delta u^m = 0 \) and we omit them. Only the integration by parts needs some care: if \(m \geq 2, u_0 \in D(A) \cap L^1(\mathbb{R}^N) \cap L^\infty(\mathbb{R}^N) \), then

\begin{equation}
- \int_{\mathbb{R}^N} Au_i u_i^{m-1} + (m-1) \int_{\mathbb{R}^N} |Du_i|^p u_i^{m-2} = 0 \tag{1.6}
\end{equation}

by the characterization of \(D(A) \). If \(m < 2 \) we have to linearize the function \(\phi(u) = u^{m-1} \) near the
origin to apply integration by parts. Passing to the limit it follows by Fatou in this case that

\[-\int_{\mathbb{R}^N} Au u^{m-1} + m \int_{\mathbb{R}^N} |Du|^p u^{m-2} \leq 0 \]

For \(u_0 \) as in the theorem the result follows by density for \(A \) is accretive.

2. MASS CONSERVATION

We say that the mass conservation law (MCL) holds for (P) if for every \(t > 0 \)
\[\int_{\mathbb{R}^N} u(t,x) dx = \int_{\mathbb{R}^N} u_0(x) dx. \]

In this section the validity of MCL is discussed in terms of \(p \):

Theorem 2. MCL holds for (P) if and only if \(N = 1, p > 1 \) or \(N \geq 2, p > \frac{2N}{N+1} \).

In order to prove Theorem 2 we need some previous results. A variant of the following Lemma has been used in [10]:

Lemma 1. Let \(\Omega \subset \mathbb{R}^N \) be an open set and let \(u \in L^2(\mathbb{R}^N) \) be such that \(u \in D(A) \) and \(-Au = u \) a.e. in \(\Omega \). Let \(\eta \in C^\infty(\Omega) \) be such that \(\text{supp}(\eta) \subset \subset \Omega \), \(\| \eta \|_\infty = 1 \) and let \(\chi \) be the characteristic function of \(\text{supp}(D\eta) \). Then

\[\| \eta Du \|_p \leq p \| D\eta \|_\infty \cdot \| \chi u \|_p. \]

Proof. Multiply \(u = Au \) by \(u \eta^p \), integrate over \(\mathbb{R}^N \), integrate by parts \((u \in D(A))\) and apply Hölder's inequality.

Lemma 2. Let \(2 \leq p \leq 2 \) and let \(u \) be a solution of \(-Au + u = f \), \(f \in L^1(\mathbb{R}^N) \). Then
\[\int_{\mathbb{R}^N} Au = 0. \]

Proof. By accretivity of \(A \) in \(L^1(\mathbb{R}^N) \), we may restrict ourselves to consider \(f \in L^\infty_0(\mathbb{R}^N) \). We obtain first an estimate for \(\| Du \|_p \) over the exterior of a ball: Assume \(\text{supp}(f) \subset B_R(0) \) and take \(n > R \). Choose \(\eta_n \in C^\infty(\mathbb{R}^N) \) such that \(0 \leq \eta_n \leq 1 \), \(\eta_n = 0 \) if \(|x| \leq n \), \(\eta_n = 1 \) if \(|x| > 2n \) and \(\| D\eta_n \|_\infty \leq \frac{C_1}{n} \), \(C_1 > 1 \). Put \(A_n = \{ x \in \mathbb{R}^N : n \leq |x| \leq 2n \} \) and \(D_n = \{ x \in \mathbb{R}^N : |x| \geq n \} \). Then (2.1) gives in \(\Omega = \mathbb{R}^N - B_R(0) \):

\[\| Du \|_{L^p(D_n)} \leq \frac{C}{n} \| \chi u \|_{L^p(\mathbb{R}^N)} \leq \frac{C}{n} \| u \|_{L^p(A_n)}. \]
Hereafter C denotes several positive constants depending only on p and N and not on n.

By virtue of [9], Corollary 2, the following estimate applies to $u(x)$, for $|x| > R$:

\[
(2.3) \quad u(x) \leq C |x| \frac{p}{2-p}
\]

Also by accretivity $\|u\|_1 \leq \|f\|_1$, so that

\[
\|u\|_{L^p(A_n)} \leq \|u\|_{L^1(A_n)} \leq \|u\|_{L^\infty(A_n)} = o(1) \quad n \rightarrow \infty
\]

\[
\|Du\|_{L^p(D_n)} = o(1) \cdot n^{-\frac{p-1}{2-p}}. \quad \text{Putting } \xi_n(x) = 1 - \eta_n(x) \text{ we have}
\]

\[
(2.4) \quad \left| \int \int \right| \leq \left| \int \int \right| \leq o(1) \cdot n^{-\frac{p-1}{2-p}} \cdot n = 0(n). \quad n \rightarrow \infty
\]

Since $\int \int Au = \lim_{n \rightarrow \infty} \int \int Au \xi_n$, the desired result follows whenever

\[
\frac{N}{p} \frac{1}{2-p} \leq 0 \quad \text{i.e.} \quad p > \frac{2N}{N+1}
\]

We say that the finite propagation property (PF) holds for (P) if for every admissible initial datum $u_0(x)$ having compact support in \mathbb{R}^N, the corresponding solution $u(t,x)$ is such that for every $t > 0$ $u(t,\cdot)$ has compact support in \mathbb{R}^N. It is known that (PF) holds for (P) if and only if $p > 2$ (see [4]). There exists a simple relation between (FP) and (MCL):

LEMMA 3. If $p > 2$, then (MCL) holds.

Proof. Let $u(t,\cdot)$ be a solution of (P) such that $u(x,0) = u_0(x)$ has compact support. If $t > 0$ we know that there exists n such that $\text{supp } u(t') \subset B_n(0)$ for $0 \leq t' \leq t$. Take ξ_n as before. Then for t' fixed:

\[
\int \int Au = \int \int Au \cdot \xi_n = \int \int \left| \int \int Du \cdot D_\xi_n = 0
\]

Hence $\int \int u_t \, dx = 0$ and it follows that $\int \int u(t,x) = \int \int u_0(x)$. This last assertion can be justified by means of the discrete scheme as before.

If $\text{supp}(u_0)$ is not compact, approximate u_0 by $\left\{u_{0,n}\right\}$, a sequence of initial data with compact support #

(1) Here $o(1)$ denotes a quantity that goes to 0 as $n \rightarrow \infty$.

Proof of Theorem 2. If \(N = 1, \ p > 1 \) or \(N > 2, \ 2 > p > \frac{2N}{N+1} \) the result follows from Lemma 2 applied to the discrete scheme

\[
\frac{u_{i+1} - u_i}{h} + Au_{i+1} = 0
\]

for then \(\int_{\mathbb{R}^N} u_i = \int_{\mathbb{R}^N} u_{i+1} \). If \(p > 2 \) it follows from Lemma 3 in the same way. The case \(p = 2 \) is classic (and it falls within the scope of [2]).

For the negative part it is sufficient to remind Theorem 1, for (MCL) is incompatible with extinction.

3. DECAY OF THE INTEGRAL NORMS. REGULARIZING EFFECT

Our first result is the extension to \(\mathbb{R}^N \) of the work of L. Véron [11] for the case \(\Omega \) bounded.

Theorem 3. Let \(p > \frac{2N}{N+m_0} \), \(u_0 \in L^{m_0}(\mathbb{R}^N) \) with \(m_0 \gg 1 \). If \(t > 0 \), \(u(t, \cdot) \in L^m(\mathbb{R}^N) \) for every \(m \) such that \(m_0 < m \leq \infty \). In addition, the following estimate holds:

\[
\| u(t, \cdot) \|_m \leq \frac{C}{t^\delta} \| u_0 \|_{m_0} \quad \text{for some constant } C = C(m, m_0, N, p), \quad \delta = \frac{N(m - m_0)}{m_0 p + N(p-2)} \text{ if } m < +\infty, \quad \delta = \frac{N}{m_0 p + N(p-2)} \text{ if } m = +\infty.
\]

\[
\sigma = \begin{cases}
\frac{m_0(mp + N(p-2))}{m_0 p + N(p-2)} & \text{if } m < +\infty, \\
\frac{m_0 p}{m_0 p + N(p-2)} & \text{if } m = +\infty.
\end{cases}
\]

Proof. The case \(m = m_0 \) follows from the accretivity property; it suffices to show the case \(m = +\infty \), the intermediate cases being obtained from these by interpolation. Assume (for simplicity) that \(u \geq 0 \); for \(p \leq N \) we adapt the iterative procedure of L. Véron [11] as follows. Define the sequences \(m_n, r_n \) by:

\[
m_n = \gamma^n \cdot m_0 \quad \text{with } 1 < \gamma < \frac{N}{N-1}, \quad m_0 \left(\frac{\gamma p}{N(\gamma-1)} - 1 \right) > \frac{1}{\gamma-1}
\]

\[
r_n + \frac{p-2}{m_n} = \frac{r_n}{m_{n-1}} - \frac{p}{N}.
\]

Note that from (3.3) and (3.4) it follows:
Now we claim that, if we write \(v = u \) with \(q_n = \frac{m_{n-1} + p - 2}{p} \), Nirenberg-Gagliardo's inequality applies to \(v \). Namely one has:

\[
\frac{r_n^{p-2}}{m_{n-1}} \ll v \ll \frac{r_n^{-m_{n-1}}}{q_{n-1}}
\]

That is a consequence of the following facts: i) As it was pointed out in Theorem 1, we can suppose \(u \in D(A) \cap L^1(\Omega_N) \cap L^{\infty}(\Omega_N) \) hence \(v \in L^1(\Omega_N) \cap L^{q_{n-1}}(\Omega_N) \) for each \(m_{n-1} > 1 \), for then \(m_{n-1} \) is always greater than one, ii) \(Dv \in L^p(\Omega_N) \) as a consequence of the validity of formula (1.7), iii) Nirenberg-Gagliardo's inequality (Lemma 0) applies with the present regularity, as it was observed at the introduction.

We shall give a formal proof, just as at the first part of Theorem 1 (rigorous justification by means of the discrete schema approximation is made in the same way as there). Assume first \(p < N \). Multiply the equation \(Au = 0 \) by \(u^{-m_{n-1}} \) and integrate over \(\Omega_N \) to get

\[
\frac{d}{dt} \left(\int_{\Omega_N} v^{m_{n-1}} \right) + C_{m,n} \left(\int_{\Omega_N} |Dv|^p \right) \leq 0
\]

Next multiply (3.7) by \(\|u\|^{r_n - m_{n-1}} \) and use (3.6). It follows that

\[
\|u\|^{r_n - m_{n-1}} \cdot \frac{d}{dt} \left(\|u\|^{m_{n-1}} \right) + C \|u\|^{r_n + p - 2} \leq 0
\]

where \(C \) involves \(C_{m,n} \) and the constant in (3.6), which depends only on \(N \) and \(p \). Take \(t_n = t(1 - \frac{1}{2^n}) \) and integrate (3.8) in \([t_{n-1}, t_n]\). In this way we obtain:

\[
\left| u(t_n) \right|^{r_n + p - 2} \leq \frac{2^n}{C_n} \left| u(t_{n-1}) \right|^{r_n}
\]

The previous argument remains true if we replace \(u \) by \(u_k = (u-k)_+ \) for some \(k > 0 \). But then \(|\Omega_{k,t}| = \text{meas} \{ x : u_k(t) > 0 \} \) is finite and

\[
\|u_k(t)\|_\infty = \lim_{m_n \to \infty} \sup_{u_k(t)} \|u_k(t)\|^{m_n} \leq \lim_{m_n \to \infty} \sup_{u_k(t_n)} \|u_k(t_n)\|^{m_n}.
\]
Now (3.1), (3.2) follow from two facts: a) \(\lim_{m_n \to \infty} \sup u(t_n) \| m_n \) can be evaluated now just in the same way as in [11], which implies estimates (3.1) (3.2) for \(u_k \). b) These estimates do not depend on \(k \), and consequently we can pass to the limit and obtain the desired results for \(k = 0 \).

When \(p = N \), choose \(\{ \beta_n \} \) such that

\[
(3.10) \quad \beta_n = q_n + m_n \left(1 - \frac{1}{N} \right)
\]

Write \(w_{n-1} = u^{\beta_n} \). Then \(D \left(u^{q_{n-1}} \right) \frac{q_{n-1} - \beta_n}{\beta_n} \cdot D w_{n-1} \), i.e.,

\[
Dw_{n-1} = \frac{\beta_{n-1} - q_{n-1}}{q_{n-1}} \cdot D \left(u^{q_{n-1}} \right) w \cdot \frac{\beta_{n-1}}{\beta_n}.
\]

Now by Hölder

\[
(3.11) \quad \left(\int_{\mathbb{R}^N} |Dw_{n-1}| \right)^N \leq \left(\int_{\mathbb{R}^N} |D \left(u^{q_{n-1}} \right)| \right)^N \cdot \left(\int_{\mathbb{R}^N} u^{m_{n-1}} \right)^{N-1}
\]

On the other hand, by Sobolev

\[
(3.12) \quad \left(\int_{\mathbb{R}^N} |Dw_{n-1}| \right)^N \geq C_N \left(\int_{\mathbb{R}^N} u^{N\beta_{n-1}} \right)^{N-1}
\]

Now multiply (3.7) by \(u \| m_{n-1} \), use (3.11), (3.12) and a standard interpolation argument to get:

\[
(3.13) \quad \| u \| m_{n-1} \frac{d}{dt} \left(\| u \| m_{n-1} \right) + C \cdot \| u \| m_{n}^{N-2} \leq 0
\]

where \(C = C_{m,n} \cdot \left(\frac{\beta_{n-1}}{q_{n-1}} \right)^N \cdot C_N \). (3.13) is the analogous of (3.8) and we can now argue as in the previous case.

When \(p > N \) we do not need to use the iterative procedure. For note that Nirenberg-Gagliardo’s inequality reads:

\[
(3.14) \quad \| v \|_\infty \leq C \| Dv \|_p \cdot \| v \|_m^{1-a} \quad \text{where} \quad a = \frac{N(m+p-2)}{mp+N(p-2)}, \quad m > 1
\]

(3.14) and (3.7) give

\[
(3.15) \quad \| u \|_m^{a} \frac{d}{dt} \left(\| u \|_m \right) + C_m \left(\frac{1}{c} \right)^p \| u \|_\infty^{p} \leq 0, \quad q = \frac{m+p-2}{p}
\]
Now note that from the inequality
\[\phi(t)^a \frac{d}{dt} \phi(t) + k \psi(t)^\theta \leq 0 \]
it follows, integrating between 0 and t
\[\psi(t) \leq \left(\frac{1}{kt^\theta} \frac{\phi(0)}{\phi(t)^\theta} \right)^{\omega+1} \]
(3.16)

Use (3.16) with \(\psi(t) = \| u(t) \|_\infty \), \(\phi(t) = \| u \|_m^m \), \(\omega = \frac{(1-\alpha)pq}{a} \), \(\theta = \frac{p}{a} \) and (3.1), (3.2) follow. Note that this argument includes the case \(N = 1 \) which was discarded in [11] #

When \(1 < m_0 < N \left(\frac{2}{p} - 1 \right) \) we have the following result, concerning a «backwards regularizing effect.

THEOREM 4. Let \(1 < m_0 < N \left(\frac{2}{p} - 1 \right) \), \(u_0 \in L^m(moN) \). If \(t > 0 \), \(u(t,.) \in L^m(moN) \) for every \(m \) such that \(1 < m < m_0 \). In addition the following estimate holds :

\[\| u(t,.) \|_m \leq \frac{c}{t^\delta} \| u_0 \|_m \quad \text{for some constant} \quad C = C(m,m_0,N,p), \quad \text{where} \]
\[
\delta = \frac{N(m_0-m)}{m[N(2-p)-m_0p]} \quad \text{and} \quad \sigma = \frac{m[N(2-p)-m_0p]}{m[N(2-p)-m_0p]} \]
(3.17)

Proof. Let us see first that \(u(t,.) \in L^m(moN) \) for each \(m \) such that \(1 < m < m_0 \) (the case \(m = m_0 \) follows by accretivity). Remark that

\[\| v \|_{m/q} \leq \frac{C}{t^\sigma} \| Dv \|_{p} \cdot \| v \|_{m_0/q} \]
(3.18)

where \(v, q \) are as in the last part of Theorem 3, the validity of (3.18) is justified as there, and

\[a = \frac{pq}{m[m_0(N-p)-m(m+p-2)]} \]. Arguing as in Theorem 1 (with \(k = 0 \)), we arrive at

\[\frac{d}{dt} E_m(t) + k E_m(t)^{\alpha m} \leq 0, \quad E_m(t) = \int_{\mathbb{R}^N} u_m(t,x)dx \]
(3.19)

Now notice that solutions of the inequality \(f' + af^\gamma \leq 0 \) with \(\gamma > 1 \) satisfy \(f \leq \frac{1}{((\gamma-1)\alpha t)^{\gamma-1}} \). This gives (3.17).

The case \(u(t,.) \in L^1(moN) \) is obtained by modifying slightly the previous argument :
instead of (3.18) write

\[\|v\|_{1/q} \leq C \|Dv\|_p^a \cdot \|v\|_{1-a}^{m/q} \quad \text{with} \quad 1 < m < 3 - \frac{1}{N} \). \]

\[a = \frac{N(m-1)(p-1)}{m(N-p)-N(p-1)} \]. Corresponding to (3.19) we have

\[\|u\|_{m}^{(1-a)\frac{pq}{a}} \cdot \frac{d}{dt}(\|u\|_{n}^{m}) + C_m \left(\frac{1}{\gamma}\right)^{\frac{p}{c}} \|u\|_1^{a} \leq 0. \]

Now integrate (3.21) between 0 and t and use the fact that \(\|u(t)\|_m \) is not increasing in t to get the result #

4. - BOUNDED DOMAINS

Concerning \((P_{\Omega})\) with \(\Omega\) bounded, it is known that there is a finite extinction time if \(u_0 \in L^2(\Omega)\) and \(\frac{2N}{N+2} \leq p < 2\) ([1]). In that paper, extinction of the \(L^2\) norm of the solution implies this result. The method of the proof of Theorem 1, based on the extinction of the \(L^m\) norm of solutions for some \(m > 1\), enables us to extend the above mentioned result to get the following complete picture.

THEOREM 5. Assume that \(\Omega\) is bounded and regular. Let \(u_0 \in L^m(\Omega)\) where \(m > \max\left\{N\left(\frac{2}{p} - 1\right), 1\right\}\) and \(p < 2\). The corresponding solution of \((P_{\Omega})\) vanishes in a finite time \(t_0\). If \(p \geq 2\) there are, for \(u_0 \in C^\infty(\Omega)\) and \(u_0 > 0\), solutions which are strictly positive for every \(t > 0\).

Proof. Let \(m > N\left(\frac{2}{p} - 1\right)\) (the case \(m = N\left(\frac{2}{p} - 1\right)\)) is an easy modification of the proof in Theorem 1. We write again \(q = \frac{m+p-2}{p}, v = u^q\). By Hölder

\[\left(\int_{\Omega} u^m\right)^{\frac{m}{p}} \leq \left(\int_{\Omega} u^{p^*q}\right)^{\frac{m}{p^*q}} \cdot \|\Omega\| \left(\int_{\Omega} |Dv|^{p}\right)^{\frac{p^*q-m}{p^*q}}, \text{where } p^* = \frac{Np}{N-p}, \|\Omega\| = \text{meas}(\Omega). \]

Starting as in Theorem 1 (with \(k = 0\)) we arrive at

\[\frac{d}{dt} \left(\int_{\Omega} u^m\right) + \frac{m(m-1)}{q^p} \left(\int_{\Omega} |Dv|^{p}\right) \leq 0 \]

Next use Sobolev \((\|Dv\|_p \geq c \|v\|_{p^*})\) and (4.1) to obtain
From (4.3) we conclude that u vanishes at most at t_0, where

$$t_0 = \frac{(2-p)q^p}{cm^2(m-1)}. \quad \Omega \mid \omega \cdot \|u_0\|^{2-p} \cdot \frac{\omega}{m}$$

Assume now that Ω is connected (1). When $p = 2$ the fact that for $u_0 > 0$, $u(t,.) > 0$ and $t > 0$, $u(t,.) > 0$ follows from the strong maximum principle of L. Nirenberg (see [7]). If $p > 2$ take $S_\lambda = \phi$ and g a positive eigenfunction corresponding to the first eigenvalue λ of $-\Delta$ in $B_\lambda(0)$ with homogeneous Dirichlet conditions; g is radially symmetric, C^∞ and $Ag \leq Cg$ for some $C > 0$. To check this last assertion, note that

$$-g'' - \frac{N-1}{r} g' = g \quad \text{and hence} \quad Ag = -\lambda(p-1) \int g' |g|^{p-2} g'' - \frac{N-1}{r} |g'|^{p-2} =$$

$$= \lambda(p-1) |g'|^{p-2} + (p-1) \frac{N-1}{r} |g'|^{p-2} - \frac{N-1}{r} |g'|^{p-2} \leq \lambda(p-1) |g'|^{p-2} \leq Cg.$$

Now try as a subsolution $\tilde{v}(t,x) = T(t) g(x)$, where $T(t) = \frac{T_0}{(1+c(p-2)T_0^{p-2} t)^{1/p-2}}$ solves $T'(t) + CT(t)^{p-1} = 0$. It follows from the maximum principle that if $u_0(x) > T_0 g(x)$, the corresponding $u(t,x)$ is greater or equal than $\tilde{v}(t,x)$ for each $t > 0$.

Remark. Observe that as a consequence of the decay of some m-norm, $m > 1$ and Ω being bounded, MCL never holds. When $p \neq 2$ we have shown that for smooth initial data there is a retardation property: if $u_0(x) > T_0 g(x)$, the corresponding $u(t,x)$ is greater or equal than $\tilde{v}(t,x)$ for each $t > 0$.

We conclude by noting that the results of this paper are valid when Au is replaced by other similar nonlinear.

$$\Delta_p u = \sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(|\frac{\partial u}{\partial x_i}|^{p-2} \frac{\partial u}{\partial x_i} \right)$$

As a natural generalization we may consider operators like

$$Bu = \sum_{i=1}^{N} \frac{\partial}{\partial x_i} \beta_i \left(\frac{\partial u}{\partial x_i} \right)$$

(1) For general Ω argue on each connected component.
where \(\sum_{i=1}^{N} \beta_i(s_i) \geq c \| s \|_P^p \) with \(s = (s_1, \ldots, s_N) \).

Some of the previous results have immediate counterparts. In particular Theorem 1 remains valid unchanged.

Acknowledgements. The authors wish to thank L. Véron for some useful conversations on Section 3.
REFERENCES

[2] P. BENILAN - M.G. CRANDALL. «The continuous dependence on ϕ of solutions of $u_t - \Delta \phi(u) = 0$». MRC report MC 578-01245.

(Manuscrit reçu le 6 juillet 1980)