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SUR LES OSCILLATIONS ELECTRIQUES

Par Pieree DUHEM

INTRODUCTION

L’étrange engouement qui favorise les ilngiques doctrines de Maxwell a fait
délaisser, d’une maniére presque compléte, la seule théorie électrodynamique qui
fit construite d’une maniére raisonnable, la théorie de Helmholtz; a ce qu’avait
donné l'auteur de cette théorie, presque personne n’a rien ajouté; elle semble capable',
cependant, de fournir un ample développement et d’éclairer une partie de la Phy-
sique, demeurée fort obscure jusqu’ici. - _

A poursuivre les conséquences de la théorie de Helmholtz, nous avons consacré
divers écrits et, tout récemment, deux Mémoires intitulés : Sur le diamagnélisme (*)
et Le probléeme général de U'Electrodynamique pour un systéme de corps immobiles (*).
Le présent travail fera, pour ainsi dire, suite & ces deux-la; il aura pour objet I'étude
des oscillations électriques.

Tous les systémes employés par les physiciens dans la production et dans I'ana-
lyse des oscillations électriques comportent des corps conducteurs qui y jouent un
- 1dle essentiel. Les lois auxquelles obéissent les oscillations électriques au sein de
systémes ou ne figure aucun corps conducteur ne peuvent donc avoir qu’un intérét
purement théorique; mais cet intérét est trés grand. Plus simple que l'étude des
oscillations électriques sur les corps conducteurs, I'étude des oscillations électriques
au sein de masses diélectriques est trés propre a éclairer la premiére, soit par les
analogies qu’elle présente avec elle, soit par les différences qui I'en séparent. Cest
pourquoi nous avons consacré toute la premiére partie de ce travail & dire comment

(*) Sur le Piamagnétisme (Journal de Mathématiques, 6° séric, t. IX, 1913, p. 8g).

(*) Le probléme général de UElecirodynamique pour un systéme de corps immobiles (Journal
de Mathématiques, 6° série, t. X, 1914, p. 347). Les théorémes énoncés et démontrés dans
ce Mémoire doivent tous étre restreints au cas ou le systéme renferme un corps homogene
unique; en effel, la condition aux limites (37) n’est point exacte; il y manque, comme dans
les conditions (34) ct (35), des termes qui dépendent des fonctions &, 3. J6 de Helmholtz.
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les oscillations électriques se comportaient au sein d’un systéme exclusivement
formé de corps non conducteurs.

Nous avons examiné, d’abord, le cas le plus simple qui se puisse proposer, celui
ou le systéme se compose d’un seul corps homogéne. .

Sur un diélectrique homogéne unique, il y a deux maniéres trés naturelles de
déterminer sans ambiguité le champ électrique; l'une consisle & se donner, en tout
point de la surface terminale et & chaque instant, les trois composantes du champ
électrique; l'autre consiste a se donner les trois compbsantes du champ magnétique
et la composante normale du champ électrique. Des deux problémes auxquels on
est ainsi conduit, le premier trouve son analogue dans un probléme de Mécanique
bien connu, celui qui consiste & déterminer les petits mouvements d’un corps élas-
tique, isotrope, homogéne, dont les divers léments de masse ne sont soumis & I'action
d’aucune force, et dont chaque point de la surface éprouve un déplacement connu.

Ces deux maniéres de déterminer, sur un corps diélectrique, le mouvement élec-
trique compatible avec des conditions initiales connues correspondent & deux ma-
niéres d’y entretenir un état vibratoire ¢lectrique, a deux maniéres d’en définir les
vibrations électriques propres.

Définie de la premiére maniére, une vibration électrique propre est celle que le
corps peut éprouver quand, en chaque point de sa surface, on maintient le champ
¢lectrique constamment égal & zéro. Une telle vibration électrique propre suit les
mémes lois que les vibrations mécaniques infiniment petites d’'un corps élastique,
isotrope, homogeéne, dont la surface est maintenue immobile. Les périodes propres
pour lesquelles ces derniéres vibrations sont possibles ont ét¢ déterminées par Henri
Poincaré dans ses Legons sur la Théorie de UElaslicité; I'analyse de I'illustre géométre
peut s'appliquer de toutes piéces & I'étude des vibrations électriques définies de la
premiére facon.

D’une autre maniére, on peut entendre par vibrations électriques propres celles
dont le corps diélectrique considéré est susceptible lorsqu’en chaque point de sa sur-
face on maintient constamment nulles la composante normale du champ électrique
‘et les trois composantes du champ magnétique; ces nouvelles vibrations propres ne
suivent pas du tout les mémes lois que les premiéres.

Pour marquer les propriétés essentielles de ces nouvelles vibrations, rappelons
qu’au sein d’un diélectrique exempt de conductibilité, deux vitesses de propagation
doivent étre distinguées; 1'une, ¥, est la vitesse de propagation des champs trans-
versaux ; l'autre, £, est la vitesse de propagation des champs longitudinaux.

Cela posé, deux problémes purement mécaniques peuvent étre considérés.

Dans le premier de ces problémes, un vase absolument rigide, de méme forme
que le corps diélectrique étudié, est rempli d’un fluide compressible homogéne dans
lequel la vitesse du son aurait pour valeur &. Dans un tel vase absolument fermé,

"pourraient se produire certaines vibrations sonores qui lui soient propres. Les pé-
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riodes, en nombre illimité, de ces vibrations sont ce que nous appelons les périodes
longitudinales propres de notre diélectrique.

Dans le second probléme, nous considérons encore un fluide homogéne et com-
pressible de méme figure que notre diélactrique, mais nous supposons que la vitesse
du son y soit égale & : de plus, au lieu de maintenir rigoureusement immobile la
surface qui encldt ce fluide, nous maintenons & la pression, en chaque point de cette
surface, une valeur invariable. Nous obtenons ainsi ce qu'on pourrait appeler un vase
absolument ouvert. Dans un tel vase, se produiraient des vibrations sonores propres
dont les périodes, en nombre illimité, sont ce que nous nommons les périodes trans-
versales propres de notre diélectrique.

Ces deux sortes de périodes propres, longitudinales et transversales, interviennent
dans I'étude des vibrations ¢lectriques propres définies de la seconde fagon. Cette
étude conduit au résultat suivant : ,

Dans les conditions fixées par la seconde définition, toute vibration électrique
propre au systéme a pour période une des périodes longitudinales; le champ élec-
trique qui constitue cette vibration est toujours un champ longitudinal; il est recti-
ligne et a méme phase en tous les points du corps diélectrique.

L’étude des vibrations électriques sur un corps diélectrique unique ne suffirait
pas a I'examen de la moindre expérience. Si I'on veut se rapprocher des conditions
expérimentales, on doit considérer un systéme formé de plusieurs corps diélectriques
dont un au moins, qui enveloppe tous les autres, s’étend a l'infini. Des vibrations
électriques peuvent étre entretcnues sur un tel systéme par les actions électriques
vibratoires d’'un excitateur qu'on suppose infiniment éloigné. Sur le systéme, cer-
taines vibrations électriques se peuvent produire lors méme que l'action de 1'exci-
tateur serait supprimée: ce sont les vibrations propres du systéme. Si I'excitateur
exerce des actions vibratoires presque synchrones & une vibration propre du systéme,
celui-ci devient le siége d’une vibration électrique extrémement intense; il y a réson-
nance électrique; l'existence et les propriétés du pliénoméne de la résonnance élec-
trique dépendent donc de l'existence et des propriétés des vibrations propres.

Or, ce que généralisent les propriétés des vibrations propres d’un systéme infi-
niment étendu et formé de plusieurs corps, ce ne sont pas les propriétés des vibra-
tions propres qui, sur un corps unique, résultent de la premicre définilion; ce sont
les propriétés des vibrations propres définies de la seconde maniére.

En effet, on peut, tout d’abord, en notre syst_éme complexe et illimité, considérer
des périodes longitudinales propres qui soient la généralisation des périodes longitu-

2

dinales propres & un corps unique. Cela fait, on peut énoncer les propositions sui-
vantes :

Sur un systéme illimité, formé de plusieurs corps diélectriques dont aucun
n’offre de conductibilité, toute vibration électrique propre a pour période une des
périodes longitudinales qui sont propres au systéme; une vibration électrique propre
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est toujours constituée par un champ électrique longitudinal ; ce champ est rectiligne
et sa phase est la méme en tous les points du systéme.

Partant, pour qu'un excitaleur produise une résonnance électrique dans un sys-
téme dénué de toute conductibilité, il faut que I'influence oscillatoire exercée par cet
excitateur soit sensiblement synchrone & I'une des périodes longitudinales propres
au systéme oscillant.

Mais les expériences sur la résonnance électrique ne se font pas, en général, avec
des systémes dénués de conductibilité; c’est avec des corps conducteurs qu’on les
exécute. Il convient donc de reprendre l'analyse que nous venons de résumer en
supposant que quelques-uns, au moins, des corps contenus dans le systéme, soient
conducteurs; c’est I'objet de notre seconde partie. ‘

L’étude des systémes doués de conductibilité se peut mener suivant le méme
ordre que 1'étude des systémes dénués de conductibilité. On peut examiner, d’abord,
les propriétés d’un corps homogéne unique, puié celles d’un ensemble illimité con-
tenant plusieurs corps hdmogénes. Lorsqu’on a seulement affaire & un corps homo-
géne unique, on peut y déterminer le champ électrique en se donnant & chaque
instant, en chaque point de la surface terminale, les trois composantes de ce champ;
on péut aussi, en chacun de ces points et & chaque instant, se donner la composante
normale du champ électrique et les trois composantes du champ magnétique. Les
diverses maniéres de définir les vibrations propres qui ont été données pour les sys-
témes dénués de toute conductibilité se peuvent étendre de la sorte aux systémes
contenant des corps conducteurs.

Or, I'étude de ces systémes conduit, tout d’abord, & la proposition suivante :

Sur un corps conducteur ou sur un systéme contenant des corps conducteurs,
aucune vibration électrique propre et, plus généralement aucun champ électrique
propre, périodiquement variable, ne se peut produire. La ot la conductibilité n'est
pas entiérement absente, le mouvement électrique tend toujours & s'évanouir.

11 semble, au premier abord, que cette conclusion soit incompatible avec les phé-
noménes de résonnance électrique dont Heinrich Hertz nous a enseigné a reconnaitre
I'existence et les propriétés. Mais cette incompatibilité n’est qu'apparente. Pour que
les phénoménes de résonnance électrique soient explicables, il n’est pas nécessaire
qu’un systéme contenant des corps conducteurs puisse étre le si¢ge de champs élec-
triques propres rigoureusement périodiques, rigoureusement vibratoires; il suffit
qu'on y puisse observer des champs électriques propres presque périodiques, des
mouvements électriques propres différant trés peu de mouvements vibratoires.

Or, pour qu'un systéme contenant des corps conducteurs puisse étre le siége de
mouvements propres presque périodiques ou quasi-vibratoires, il faut, nous le prou-
vons par diverses démonstrations, que deux conditions soient remplies.

En premier lieu, la constante k introduite par Helmholtz dans Uexpression de la lot
élémentaire de Uinduction doit avoir une trés grande valeur.
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En second lieu, la conslante <' donl dépend l'action électrostatique mutuelle de deux
2

a
charges électriques doit avoir une trés grande valeur par rapport & la constante 'y

des actions électrodynamiques.

Pour quiconque admet la théorie électrodynamique de Helmholtz, ces deux pro-
positions doivent étre regardées comme établies par la seule existence, expérimenta-
lement constatée, des phénomeénes de résonnance électrique.

Or, comme nous I'avons montré ailleurs, ces deux propositions entrainent cette
conséquence : Au sein d’'un milieu conducteur, un champ électrique longitudinal,’
bien qu’étant rigoureusement incapable de présenter des ondes persistantes, se com-

porte sensiblement comme un champ qui se propagerait par ondes; et la vitesse de
r

cette quasi-propagation longitudinale a pour valeur & =2T°/€, en sorte qu’elle est la
méme pour tous les corps conducteurs: en outre, elle est sensiblement égale a la
vitesse de véritable propagation d’un flux longitudinal quelconque au sein dun
milieu diélectrique dénué de conductibilité.

11 est désormais possible d’étendre & un corps conducteur unique ou & un sys-
téme illimité contenant des corps conducteurs, la notion de quasi-périodes propres
longitudinales. Dans le cas ou le corps est unique, ces quasi-périodes sont égales aux
périodes longitudinales qui seraient propres a un corps diélectrique de méme forme.

On peut alors formuler les propositions suivantes : '

Sur un corps conducteur unique, ou bien sur un systéme illimité en tous sens,
qui contient des corps conducteurs, toute quasi-vibration électrique propre a pour
période une des quasi-périodes longitudinales propres au systéme.

Cette quasi-vibration électrique propre est toujours constituée par un champ
électrique longitudinal. Mais, en général, ce champ n’est pas rectiligne et sa forme
change d’un point & I'autre du systéme.

Pour qu'un excitateur détermine, dans un systéme contenant des corps conduc-
teurs, le phénoméne de la résonnance électrique, il faut, on le voit, que I'influence
oscillante de I'excitateur soit sznsiblement synchrone a 'une des quasi-périodes lon-
gitudinales propres au systéme.

Aprés avoir ainsi résumé a grands traits les conclusious de notre analyse, disons
quelques mots de I'histoire de chacune de ces conclusions.

L’hypothése qui consiste & donner une trés grande valeur 4 la constante ' met
sous une forme acceptable une supposition sur les actions diélectriques qui, prise
au pied de la lettre, serait inadmissible, et qui a été plus ou moins explicitement
proposée par Faraday et par Mosotti (*).

(*) Pierre Dungm, Les théories éleciriques de J. Clerk Maxwell. Etude hislorique et critique,
17 partie, chap. I, § 4 (Annales de la Sociélé scientifique de Bruxelles, t. XXV, a2¢ partic,
Mémoires, pp. 1-9o, 19o1).

Fac. de T., 3¢ S., VI

I3
_
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Helmholtz a montré (') qu'une partie des doctrines proposées par Maxwell coin-
cidait avec la forme limite que prend sa propre doctrine lorsqu’on y fait croitre ¢’ au
dela de toute limite. C’est ainsi que, dans ces conditions, la théorie de la propagation
des champs électriques transversaux au sein des diélectriques, construite selon les

" principes de Helmholtz, a pour forme limite la théorie électrodynamique de la
lumiére de Maxwell. On peut le reconnaitre en simplifiant d’abord les équations de
Helmholtz par I'hypothése que ¢’ a une trés grande valeur, et en faisant usage de ces
équations simplifiées pour étudier la réflexion et la réfraction des vibrations trans-
versales: c’est ainsi qu'a fait M. H.-A. Lorentz (*). On peut aussi le reconnaitre en
développant d’une maniére générale, selon la doctrine de Helmholtz, les lois de la
réflexion et de la réfraction des vibrations électriques, et en introduisant sculement
dans les formules finales la supposition que ¢’ est trés grand (°).

Jusqu’ici, donc, la supposition que ¢ a une trés grande valeur s’est présentée
comme un postulat introduit. dans 'Electrodynamique de Helmholtz, par le désir
de tirer de cette Electrodynamique une théorie électromagnétique de la lumiére.
Cette méme supposition se présente maintenant comme une conséquence forcée de
cet enseignement expérimental incontestable : Des phénoménes de résonnance élec-
trique se peuvent observer dans des systémes contenant des corps conducteurs. La
possibilité de tirer, de I'Elecirodynamique de Helmholtz, une théorie électromagné-
tique de la lumiére, résulte & son tour de cette conséquence, et sans aucune hypo-
thése nouvelle.

Helmholtz n’a jamais rien dit sur la valeur de la constante k; il s’est contenté de
remarquer qu’on retrouvait certaines suppositions de Maxwell si I'on donnait a & la
valeur de zéro.

Nous avions jadis fait la remarque (*) que, dans les corps conducteurs habituelle-
ment employés, en raison de la valeur de leur résistance spécifique, les champs élec-
triques longitudinaux se comportent sensiblement comme s’ils se propageaient par

I

g

atl’

ondes avec la vitesse & —

(") H. Hervuorrz, Ueber die Geselze der inconstantem elekirischen Strome in korperlich
ausgedehnlten Leitern (Verhandlungen der nalurhistorisch-medicinischen Vereins zu Heidelberg,
21 janvier 1870, p. 89. — Wissenschaftliche Abhandlungen, Bd. 1, p. 543). — Ueber die Bewe-
gungsgleichuhgen der Eleklricilit fir ruhende leitende Korper (Borchardls Journat fiir reine
und angewandle Mathematik, Bd. LXXIL, p. 127 ct p. 129. — Wisscnschaftliche Abhandlungen,
Bd. I, p. 625 et 628). — Voir aussi : H. Porxcarg, Electricilé el Oplique; 11. Les (héories de
Helmholliz et les expériences de Herlz, p. vi et p. 203. Paris, 18g1.

(®) H.-A. Lorextz, Zeilschrift fir Mathemalik und Physik, Bd. XXII, p. 25, 1877.

(®) Pierre Duugm, Sur la théorie élecirodynamique de Helmhollz et la théorie éleciroma-
gnétique de la lumiére (Archives Néerlandaises, série 2, t. V, p. 227, 1go1).

(*) Pierre DuueM, Sur Uinlerprélation théorique des expériences herlziennes (I’Eclairage
électrique, t. 1V, p. 494, 1895).
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D’autre part, nous avions regardé certaines expériences bien connues de
M. Blondlot comme équivalentes i cette loi : La vitesse de quasi-propagation des
flux longitudinaux dans les conducteurs est égale & la vitesse de la lumiére dans le
vide, partant au coefficient v qui sert & passer des unités électrostatiques aux unités
électromagnétiques.

Cette loi exigeait que la constante k de Helmholtz fiit égale au pouvoir inducteur
spécifique (1 + 4=<'K’,) du vide; partant, qu'elle fit, comme ¢'K,, un trés grand
nombre (*).

Cette derniére proposition : & est un trés grand nombre, se trouve maintenant
établie par la seule existence de la résonnance électrique dans un systéme contenant
des conducteurs, et sans aucun recours aux mesures de M. Blondlot; celles-ci demeu-
reraient, d’ailleurs, nécessaires pour démontrer que k est égal au pouvoir inducteur
spécifique du vide. Nous reviendrons ultérieurement, dans un autre Mémoire, sur ces
mesures de M. Blondlot et sur I'interprétation qu’il convient d’en donner; ce qui
sera dit au présent Mémoire ne dépendra point de cette interprétation.

Dailleurs, de ce que ¢’ et & ont de trés grandes valeurs, il résulte que sur un
corps conducteur, les champs longitudinaux se comportent sensiblement comme

2

'k’

s’ils se propageaient par ondes avec la vitesse & = et cela, quel que soit I'ordre

de grandeur de la résistance spécifique de ce corps.

On voit ainsi comment plusieurs des suppositions essentielles qui avaient été
introduites en Electrodynamique, par Helmholtz ou par nous-méme, a I'aide de con-
sidérations diverses et, parfois, quelque peu incertaines, se peuvent toutes tirer
maintenant de cette scule donnée de I'expérience : Des effets de résonnance électrique
se manifestent sur des corps conducteurs.

Dés 1895, dans notre article Sur Uinlerprélation théorique des expériences herl-
ziennes, nous formulions, & titre de principe essentiel, cette proposition :

« Dans les expériences hertziennes, les corps conducleurs nous paraissent agir
surlout par les flux longiludinaux qui les traversent. »

La présente analyse nous permet d’étre encore plus catégorique (*) : Qu'on veuille
étudier les phénomeénes de résonnance électrique sur un systéme dénué de conduc-
tibilité ou qu’on prétende les analyser sur un systéme contenant des conducteurs,
les seules périodes propres qu'on ait & considérer sont des périodes longitudinales;
les seules vibrations propres qui se puissent produire sont constituées par des
champs longitudinaux. En toutes circonstances, la théorie de la résonnance élec-
trique dépend exclusivement des propriétés des champs longitudinaux.

(*) Pierre DuneM, Sur la théorie électrodynamique de Helmhollz, loc. cil.
(*) Toutefois, dans un travail ultérieur, nous serons conduits a rendre cette conclusion
moins catégorique en lui imposant certaines restrictions.
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On voit donc combien on se fourvoierait si I'on persistait & chercher dans I'Elec-
trodynamique de Maxwell 'explication des oscillations électriques. Cette Electrody-
namique déclare que tout champ électrique est transversale; elle exclut donc préci-
sément ces champs longitudinaux qui, seuls, rendent compte des phénoménes de
résonnance électrique.

Peut-8tre s’étonnerait-on que I'Electrodynamique de Helmholtz efit, pour expli-
quer ces effets, un pouvoir refusé & I'Electrodynamique de Maxwell. Souvent, en
effet, on dit que I'Electrodynamique de Ilelmholtz tend vers I'Electrodynamique de
Maxwell lorsque la constante <’ croit au dela de toute limite: or, précisément, nous
avons attribué a la constante <’ une valeur trés grande. C’est que le propos en ques-
tion n’est pas absolument exact; il lui faut substituer celui-ci : Lorsque la con-
stante ¢ croit au dela de toute limite, une partie, mais une partie seulement de
I'Electrodynamique de Helmholtz, celle qui formule les lois des champs transver-
saux, tend vers I'Electrodynamique de Maxwell; aussi, les vibrations lumineuses
étant transversales, les principes de Helmholtz donnent-ils alors une théorie électro-
magnétique de la lumieére qui concorde avec celle de Maxwell. Mais si grande qu’on
suppose la valeur de la constante ¢, I'Electrodynamique de Helmholtz continue, du
moins en général, de considérer des champs longitudinaux qui sont inconcevables
suivant les idées de Maxwell; & coté des vibrations transversales de la lumiére, elle
admet des vibrations longitudinales soumises & des lois qu’elle formule. Pour que
I'Electrodynamique de Helmholtz coincidat pleinement avec celle de Maxwell, il
faudrait qu’elle déclardt impossibles les flux longitudinaux; il faudrait pour cela,
comme Helmholtz I'a répété & plusieurs reprises, qu'on ne se contentit pas de
donner & ¢' une trés grande valeur, mais encore qu’on prit la constante k égale a zéro.
Alors, en effet, comme I'Electrodynamique de Maxwell, I'Electrodynamique de
Helmholtz deviendrait incapable de rendre compte des phénoménes de résonnance
électrique, car ceux-ci requiérent une trés grande valeur de la constante k.




PREMIERE PARTIE

Les corps dénués de conductibilité.

CHAPITRE PREMIER

Le systéme est formé d'un corps diélectrique unique.

§ 1. — Notations.

[1] Comme dans nos précédents Mémoires, nous désignerons
par ¢ la constante des actions magnétiques,
par ¢ la constante des actions électrostatiques,

a . ] .
par — la constante des actions électrodynamiques,
par k la constante de Helmholtz,
par K le coeflicient de polarisation magnétique,
par K' le coefficient de polarisation diélectrique,
par p. =1 4 4=eK la perméabilité magnétique,
par D'=1 + 4=<'K’ le pouvoir inducteur spécifique.
La stabilité de I'équilibre électrique et magnétique sur le corps ou sur le systéme
de corps ¢tudic¢ exige, comme nous I'avons vu dans nos précédents Mémoires, qu’on
ait

(1) k>o, wZ'O, K'>o.

= U=

Non seulement nous supposerons que ces conditions soient vérifiées, mais méme.
4 moins d’avertissement contraire, nous supposerons I'exactitude des inégalités

(ﬁ) k>o, w>o, K' >o.

Ces inégalités nous permettent d’écrire

I

3 =
( ) I 27:a2lJ,K_, ’
. D’
V= ———
® ¢ ana’kK'’

¥ et & désignant deux quantités réelles et finies.
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Soit W la fonction potentielle électrostatique totale qui, dans le cas d’un systéme

purement diélectrique, se réduit a la fonction potentielle V' de la polarisation diélec-
trique. Les trois quantités
W ;W W

" . e A
() X=—¢ S Y——¢ Yy Z—=—¢ ~

sont les composantes du champ électrostatique.

Soient &, (j, J6 les trois fonctions de Helmholtz; les trois quantités

fal
oG - a K

AL TR _
g | =——= o’ YY)
Vo Vo Vo

sont les composantes du champ électrodynamique et électromagnétique.
Les trois quantités

(6) N=—

2

() P=X4®, =Y+,  (=Z+3

seront alors les composantes du champ électrique total.
Nous poserons :

a7, Rl Wk P
(8) =" _2 @ p=—= p=—__1
0z dy e 0z dy oL

Alors, si nous désignons par L, M, N les composantes du champ magnétique,
nous aurons :

wa  OL wa M wa N
| = =7 m-=— =7’ n— — Y .
dy/2 ¢y/2 o VIR

Enfin, nous poserons :

(9)

0 22 n Y| hld
10 e —_— —
(10) dx - dy 0z
§ 2. — Equations du champ électrique tolal. Deux cas ol la solution est déterminée

sans ambiguité.

[2] D’apreés les équations (171) de notre Mémoire Sur le diamagnélisme, les trois
composantes du champ électrique total vérifient, en chaque point d’un corps diélec-

trique privé de conductibilité, trois équations dont voici la premiére :

2

~/

ST

I . . uD'—k 0
ana®yK' 7 amd’pkK 2

©

J

{

Mais on a identiquement
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L’équation précédente devient donc, en vertu des égalités (3) et (4), la premiére
des équations

zz<3n_bm>+£2 w ¥

dy iz dx A1
dl an pL} o,
2 2 [}

1T — L ——F =0
(1) z ( oz bm) + dy 2
om ol 20 P

g (dm 2 e 2,
\ QX dy 0z o

Les deux derniéres s’établissent d’une maniére analogue.

5o

z 7, Pl
= a6, Sde, —
3w 49 340

étant un élément de volume du diélectrique homogéne et unique qui constitue le

[3] Multiplions ces équations respectivement par de, do

systéme; ajoutons membre & membre les résultats obtenus, intégrons pour le

volume entier du systéme et, 4 'aide d’intégrations par parties, transformons certains
termes; nous trouvons l'égalité

(‘V d ggeg iz 12+ 2+ «z)+< 2+ B-r‘ z+<£>2 dc)‘
‘“cl?f[+(m'" )(M) at]

— 2”/[5 cos(N, x) 4+ v cos (N, y) + {cos(N, 2)] 6 dZ

/)

(=4
&~ | Y

(12)
+ %2/3[ncos(N,z)—Ccos(N,y)]l-{—[Ccos(N,x)—Ecos(N,z)]m

k + [Ecos(N,y)—v,cos('N,w)]n%dZ:o.

Dans cette égalité, d3 est un élément quelconque de la surface 2 qui borne le
systéme; N est la demi-normale a cet élément, dirigée vers l'intérieur du systeme.

Cette égalité (12) va nous étre particuliérement utile dans certains cas ou les inté-
grales, étendues 4 la surface %, qui y figurent, sont égales & zéro.

La premiére intégrale s’annule lorsqu’on a, en tout point de la surface X, soit

(13) h=o,
soit
(14) Zcos (N, ) + 7 cos (N, ) + {cos (N, z) = o.

La seconde intégrale s’annule lorsqu’on a, en tout point de la surface X, soit

(15) l=o, m=o, n=o,
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soit
&'qcos(N, 2)— ¢cos(N,y)=o,
(16) ~ L cos (N, x)— Zcos (N, 2) = o,
( Zcos(N,y) — ncos(N,x)=o.
L’égalité (13) n’exprime pas une condition physique simple. Il n’en est pas de
méme des égalités (14), (15) et (16).
L’égalité (14) exprime qu’en tout point de la surface 3, la composante normale

du champ électrique est maintenue constamment égale & zéro.
En vertu des égalités (g), les égalités (15) peuvent s’écrire :

(17) bL:O, DM___O’ DNZ
ot N4 A
Elles expriment donc qu’en chaque point de la surface X, la grandeur et la direc-
tion du champ magnétique demeurent invariables.
Enfin les égalités (16) expriment qu’en tout point de la surface ¥, le champ élec-
trique est maintenu constamment normal & cette surface.
Si nous voulons donc que les intégrales étendues & la surface T disparaissent du
premier membre de I'égalité (12), nous pourrons considérer deux combinaisons par-
ticulicrement intéressantes, qui sont les suivantes :

Compivarsox A. — Nous supposons qu’on réunisse entre elles les conditions (14)
et (16), c’est-d-dire que le champ électrique soit maintenu constamment nul en chaque
point de la surface X.

ComsivatsoN B. — Nous supposons qu'on unisse la condition (14) aux condi-
tions (15) ou (17), c'est-a-dire qu'en tout point de la surface 3, le champ électrique
demeure constamment tangent a cetle surface, et que le champ magnétique y garde une
grandeur et une direction constanies.

Qu’on admette I'une ou l'autre de ces combinaisons, 1'égalit¢ (12) devient :

T S AR VA a:>2 .
(18) —d;fL&e +i(l+’"+”)+<3?>+<at>+(§ :Id(()_ov.

[4] Considérons, sur le méme corps diélectrique, deux mouvements électriques
distincts, dont I'un corresponde au champ (%', 4/, {), lautre au champ (&', ', ;s
posons :

» N vl '
(19) =3-3 n=1"—1, (=¢—-1.

Les équations (11) doivent &tre vérifiées, d’'une part, par les quantités &, 7/, ¢,
d’autre part, par les quantités 2’, ", {"; elles sont donc vérifides, ainsi que I'éga-

lité (12), par 2, 7, .
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Supposons, cn outre, qu'on se trouve en I'un des deux cas suivants :

Cas A. — En chaque point de la surface =, au cours des deux mouvements consi-
dérés, la grandeur et la direction du champ électrique varient suivant la méme lot.

Cest dire qu’en tout point de la surface X, le champ électrique &, 4, { demeure
constamment nul. '

Cas B. — En chaque point de la surface T, au cours des deux mouvements consi-
dérés, la composante normale du champ électrique, la grandeur et la direction du
champ magnétique varient suivant la méme loi.

C’est dire qu’en tout point de la surface X, le champ électrique (%, 7, {) demeure
constamment tangent a la surface; que le champ magnétique qui lui correspond
demeure constamment nul.

Dans un cas comme dans I'autre, le champ (%, v, ) véritie I'égalité (11); linté-
grale qui figure au premier membre de cette égalité garde donc une valeur indépen-
dante du temps.

PN I ’

o) gy .
—— solenl res-
a T AT

Supposons qu’a I'instant initial, les valeurs de %', 4/, ',

D‘::” DT‘” DICH

On aura alors, a cet

pectivement égales aux valeurs de %", ", ¢,

U7 AT

instant initial,
‘ E.:Oa =0, {=o,
(20) %, M A _
a8 N N

La valeur initiale de T'intégrale qui figure au premier membre de 1'égalité (18)
sera zéro, en sorte (que cette intégrale restera constamment nulle :

A2 \? xn\? \?
(21) /[2“'0“+i"(12+n1“+n2)+<\—£>+<-\«2—>—|—< '>]d(5:o.

e
o
Cette égalité exige qu’on ait, en tout point du systéme et & tout instant,

NS o hldg
=——3¢) == 0 —= 0.
o TN Tt

Mais, en vertu des égalités (20), & I'instant initial, les quantités %, =, ¢ sont nulles
en tout point du systéme; on a donc, en tout point du systéme et A tout instant,

:‘:::O, =0, C:o
ou bien, en vertu des égalités (19),

| —— PO A Iyl

T =% =", =t

Fac, de T., 3¢ S., VI. : 25
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Les deux champs (%, v', ), (%", ", {") sont identiques. D’'oi la proposition
suivante :

Sur un systéme formé d’un corps diélectrique homogéne et unique, le mouvement
électrique est determiné sans ambiguité si Uon connait :

1° En tout point du systéme. & Uinstant initial, les trois composanies &, v, 7 du

¥

S
champ électrique total et leurs dérivées premiéres —- -St— par rapport au temps.

AR
2° En tout point de la surface = qui borne le systéme, el a tout instant,
soit (cas A) les trois composantes du champ électrique,
soil (cas B) la composante normale du champ électrique et les trois composantes du
champ magnétique.

§ 3. — Stabilité du mouvement élecirique.

15] Avant d’aborder I'étude de la stabilité du mouvement électrique, nous allons
faire une courte remarque.

Si, en tout point du corps dié¢lectrique considéré, on a

(22) E—o, n=o0, {=—o,
on a aussi
f=o,
(23) .
l=o, m=—o, n=o.

‘
Réciproquement, supposons qu’en tout point du corps considéré, les égalités (23)
soient vérifiées, et qu’en outre, 1'égalité

(14) Ecos(N, &) + v cos(N,y) + {cos(N,2)=o0

soit vérifiée en tout point de la surface £ qui limite le corps. 1l est aisé de voir que
les égalités (22) sont vérifiées en tout point du corps.

En effet, en vertu des égalités (8), les trois derniéres équations (23) requiérent
I'existence d’une fonction f telle qu’en tout point du corps,

2 y o
(2[‘) &:-— lf, = — — ::—— — .
dx dy oz

En vertu de la premicre égalité (23), la fonction f vérifie, en tout point du corps,
I'équation de Laplace
Af=o0,

tandis qu'en vertu de l'égalité (14), elle vérifie, en tout point de la surface X,
I'égalité
of

=o0.
N
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1l en résulte, on le sait, que la fonction fa méme valeur en tous les points du
corps. Dés lors, les égalités (24) se réduisent aux égalités (22).

De ce théoréme. il ne faudrait pas conclure que, pour un systéme a la surface
duquel I'égalité (14) est constamment vérifiée, il revienne au méme d’imposer des
limites supérieures aux valeurs absolues de Z. 7, {. ou bien d’en imposer aux valeurs
absolues de 6, I, m, n; ni qu’il revient au méme d’imposer une limite supérieure a la
valeur de l'intérale

JACEREaoLE

ou bien d’en imposer aux valeurs des intégrales

fe"d(.i, f(l’—l—m’-{—n’)dci.

Cette remarque était nécessaire pour que fussent exactement comprises les défi-

nitions qui vont étre données.

[6] Sur le méme corps diélectrique, considérons deux mouvements électriques
distincts, I'un qui corresponde au champ (&, 7', {'), Tautre au champ (&', ", {');
définissons %, v, £ par les égalités (19). Supposons que soit réalisé, sur la surface

> 2 9 q
qui limite le systéme, soit le cas A, soit le cas B.

Imaginons qu’aux valeurs absolues de certaines quantités dépendant des déter-
¥ XK
rieures telles qu'on ait, quel que soit ¢, 'inégalité

minations initiales de %, 7, {, on puisse imposer des limites supé-

(25) | S Errrnae<i,

ou II désigne une quantité positive, quelconque d’ailleurs, donnée d’avance. Nous
dirons que, pour la nature de perturbation initiale considérée, le mouvement ¢lec-
trique posséde la stabilité électrostatique intégrale proprement dite ou stabilité électro-
statique de premiére espéce ().

() Les mots : stabilité électroslatique, stabilité étectrodynamique, reprennent, dans le
présent Mémoire, le sens qui leur a été donné au n° 33 de notre Mémoire Sur le diamagné-
tisme (Journal de Mathématiques, 6° série, t. IX, 1913, pp. 148 sqq). Dans notre Mémoire :
Le probléme général de UElectrodynamique pour un systéme de corps immobiles, le sens de ces
mots était tout autre; ils désignaient soit la stabilité de la fonction potentielle électrosta-
tique, soit la stabilité des fonctions de Helmholtz; ou encore la stabilité du champ électro-
statique et la stabilité du champ électrodynamique.
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Si 'on a de méme, quel que soit ¢, non plus Yinégalité (25), mais les deux

inégalités
g /0 dey <0,

(26)
( /‘(l‘Z + m* 4 n')do << A,

ol O et A sont deux quanlités positives, quelconques d’ailleurs, données d’avance,
on dit que le mouvement électrique posséde la stabilité électrostatique intégrale de
seconde espéce.

Si u', v', w' désignent les composantes de la densité de- courant de déplacement,
on a

o 22

-

w=K —

. .

! ] » ’ 4
27 =K== V=K —, .
(7) 21 N} N,

On dira alors que le mouvement électrique possede la stabilité électrodynamique
intégrale de premiére espéce si 'on a, quel que soit 7,

‘ N N\ /N L
(28) f[( v) +<7> +(\t>]do<n,

IT’ étant une quantité positive quelconque, donnée d’avance. 11 possédera la stabilité
électrodynamique intégrale de secconde espéce si I'on a, quel que soit /, les deux

2\
S (F)as<e
A dm\* an\? 16— A
S G+ (G o<,

O', A' étant deux quantités positives données d’avance.

inégalités

,

s

(29)

[7] Posons
o a/ge . AZ\® a\® AN .
(30) J= @6 + I+ m* 4+ n') + (——) + (——) + <——> :Idci
oM o o
ct désignons par J, la valeur initiale de J, valeur (ui ne peut étre négative. L’éga-
lité (18) pourra s’écrire :

31) J=1J

0"
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Nous en pourrons conclure que les trois conditions suivantes sont constamment
vérifiées :

J,
(32) f(l + m? +n)d0—z*’

WAKG I CORICHNTE

o

Mais, quelles que soient les constantes positives ©, A, I1

, on peut toujours
imposer aux valeurs absolues initiales de

/

f

l, m, n,
(33) \
/ g e
SAaT Tt

des limites supérieures telles qu’on ait les trois inégalité

(34) J,<eo, I <A, T <Il.

On peut done, aux valeurs absolues initiales des quantités (33), imposer des limiles

supérieures telles que toul mouvement électrigue sur le corps diélectrique considéré

posséde la stabilité électrostatique intégrale de seconde espéce et la stabilité électrodyna-
mique intégrale de premicre espéce

[8] Si les conditions imposées au mouvement en tout point de la surface X sont
celles qui constituent le cas'A, on peut limiter supérieurement la perturbation ini-

tiale de telle sorte que le mouvement posséde la stabilité électrostatique intégrale
de premiére espéce.

Nous prendrons pour point de départ un théoréme bien connu de Clebsch.
Les quantités %, 7, ¢, définies par les égalités

(19), vérifiant les équations (11), on
les peut toujours mettre sous la forme

dD
(35) 1

dx

gav

‘ oP .
+1” N = Dy + (1’ &

2D

ou ¢ est une intégrale de I'équation

=P
36 A B
(36) C—
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et ol p, ¢, r sont de la forme

QR AR P P20
37 =50 4= =——,
2z dy oz 2z dy e
P, Q, R vérifiant les trois équations
1 P 1 YQ 1 PR
p .  _ — AQ —— — =0, —_——_——
(38) Al iﬁ bts O’ Q ii’. ‘\tﬁ o AB zz th
et 'équation
W QR

(39)

o dy 2z

Ily a, en général, une infinité de maniéres de choisir les quatre fonctions &, P,Q, R;
supposons qu’on se soit arrété a I'un de ces choix.
Les égalités (35), (37) et (10) donnent

(ho) AP =—09.
Les égalités (35), (36), (39) et (8) donnent:

(41) AP=—1, AQ=—m, - AR=—n.

[9] Posons, d’autre part,

—_ L[z v w1 [t
4) U= [m/rdci, Ve M/rda, W= lmfrdd,

r étant la distance de I'élément d O au point auquel se rapportent U, V, W, et cha-
cune des intégrales s’étendant au volume entier du corps considéré; en tout point
de ce corps, ces égalités (42) nous donneront :

(43) - AU=2¢, AV =1, AW =¢.
Posons
(46) @,z_(%_ l\‘y’_ %‘:i)
0 () o= () ()
(46) p,= Q, R, - 3R, QP _ ¥, 0,

oz dy N 0z’ )y d
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Les égalités (43) nous donneront :

(47) &=—a‘i‘ +p,s n=—°f’y‘+qn c=—%+r,.
Les égalités (44), (46), (47) et (10) donnent

(48) AP, =—9.
Les égalités (43), (45) et (8) donnent

(49) AP, =—1, AQ,=—m, AR,=—n.

Les égalités (45) et (46) donnent, d’ailleurs,

P, 2, R,
(50) dx +»by + w0

La comparaison des égalités (35) et (47) montre qu'on a, en tout point du sys-
téme et & tout instant, '

2D b, P 2D,
G 20 2,
—_——tr=— +r,.
oz oz

Désignons par (A), la valeur de la quantité A a I'instant initial; posons

(52) (@), =(®), + 2,
'(53) (Pa)o = (P)o + Q’ (Ql)o == (Q)o + 9 ) (Rx)o = (R)o + 5{ ’
o, €, 9, R étant quatre quantités indépendantes de {.

Les équations (40) et (48), vraies quel que soit £, sont vraies & I'instant initial; il
résulte alors de 'égalité (52) que

(54) Ao =o.

Les équations (41) et (49) sont vraies quel que soit {; elles le sont donc, en parti-
culier, a l'instant initial; les égalités (53) donnent alors

(55) A® =o, A —o, AR —=o.

1

~ Les égalités (3g) et (50), vraies quel que soit £, sont vraies & I'instant initial;
alors, il résulte des égalités (53) que
X9 R

56 =
(6 Bw+by+bz ©
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Enfin, les égalités (51), vraies quel que soit £ et, en particulier, & I'état initial,
donnent, en vertu des égalités (52) et (53),

[ g N MR
, —o,
Dw dy
6 23 MR hEY
927 -_ _——
2 Ty T T e T
Du, PO
\ 2z Dy Y ’
Posons de méme
8 (% = ) +,

. P, oP . 20, 2Q R\ /2R o
(%9) (Dt )0_<_DZ—>0+J" <Dt> (at>+ <at>o‘<bt>+‘ﬂ'
¢, &', Q' R’ étant quatre quantités indépendantes de {.

Les égalités (40) et (48) étant vraies quel que soit ¢, donnent, quel que soit ¢, et,
en particulier, & Uinstant initial,

A 0P, _ Al
o o
ou, en vertu de I'égalité (58),
(60) Ag'=o0.

Les ¢égalités (41) et (49) donnent, quel que soit £,

2 2 20 d N
2P INRAVREPNDLY. AR 2R

Sy A a T W] Y

Appliquées & linstant initial, et en tenant compte des égalités (59), ces égalités
donnent

(61) Af'=o, AQ =o0, AR =o.

Les égalités (39) et (50), vraies quel que soit ¢, donnent, quel que soit ¢,

) P, ) 2Q, d R, 2 P 3 W d R
A dy M P Y Y dy ot z A

Appliquée & l'instant initial, et en tenant compte des égalités (59), ces égalités
donnent
N \97 \'ERY

(62) 4 + ¢ + (4

QX dy dy

= 0.
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Enfin, les égalités (51), vraies quel que soit ¢, donnent aussi, quel que soit ¢,

?d, p, *P p »b, ¥ ¥ g
Tt Tt T T dxar Tt ya T o
»P, O 2P
Tz T T T

Si 'on applique ces identités & I'instant initial, en tenant compte des égalités (37),
(46), (58) et (5g), on trouve les trois égalités

a?l DQ, b{R!
oy hF4 dy

XMW W

- ’

63 ) —
(63) dy & Xz ’
29’ 21 Y
Y Y
Posons maintenant :
(64) O, =0+ ¢ + ¢'t,

gE:P+£+TL
(65) Q=Q+ 2 + 21,
RR=R+£+£%

En vertu des égalités (57) et (63), les égalités (35) et (37) continuent de donner
les mémes valeurs de &, 7, { si 'on y remplace &, P, Q, R par &, P,. Q,, R,.

En vertu des égalités (54), (60) et (64), I'égalité (36) reste vérifiée si 'on y rem-
place & par ®,.

En vertu des égalités (55), (61) et (65), les égalités (38) demeurent vérifiées si I'on
y remplace P, Q, R par P,, Q,, R,.

Enfin, en vertu des égalités (56), (62) et (65), I'égalité (39) demeure vérifiée si 'on
y remplace P, Q, R par P,, Q,, R,.

Mais I'égalité (64) donne

D(I), hKi i) ,
(@)= (D), + 3, <Y>0= < T >o+ i

ou bien, en vertu'des égalités (52) et (58),

XP, )P
. ()=(8),

Fac, de T., 3¢ S., VI. 26
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Les égalités (53), (59) et (65) donnent de méme

®n=en (5 =(F).
Q=@ () =(5).

R,\ /R,
(R = (R, ( ; >‘< a )

En supprimant l'indice » désormais inutile, nous voyons que nous pouvons con-
tinuer d’écrire les égalités (35) a (39), mais supposer, en outre, que les fonctions @,
P, Q, R sont assujetties aux conditions initiales que voici :

(66)

AliY 2P,
( o >O_< ot )

(31}>_<apl> <3Q>_<3Q,> (bR B M{,)
BRI a /N /) N )"( it /)

A .
[40] Multiplions les deux membres de 1'égalité (36) par _\_tdd’ intégrons pour

/ ((I') - ((I )o’
& (p)o:(pn)o ’ (Q)l):((gl)l)' (R)o:(Ra)a’
\

le volume entier du systéme, et transformons un des termes & I'aide d’une intégra-
tion par parties ; nous trouvons l'égalité <

2 2 o d a«p )b WD\ 1 /2D \?
(6’)/ ! 2dt/[<ax ( >+<Dz> +§<TF)]‘Z‘3“°‘

Les égalités (37) donnent identiquement

op o or

= 0.
dx dy o2

dP .,
Multiplions les deux membres de cette égalité par ‘Tt—dci, intégrons et trans-
¢

formons comme nous venons de le faire; nous obtenons I'égalité

. d .
| '/ﬂ [p cos (N, &) + ¢ cos (N, y) + rcos (N, 2)] dX

M 3 >N
+f<maz’ svatq+b:az'>””_°'

Les égalités (37) et (3g) donnent

q or
ap—— (2 _ '>, AQ:-(” —

\ oz dy dx

(68)

~/

p n N
:>’ Al{ﬁﬂ(byﬁba;)‘

-
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Les équations (38) peuvent donc étre mises sous la forme suivante :

PN/ 1 P

(69) v w T

P Q

Multiplions respectivement ces équations par —ﬁd(’)’ Y —de,
. [y

membre 3 membre les résultats obtenus, puis intégrons pour le volume entier du
systéme, en effectuant certaines intégrations par parties; nous trouvons I'égalité

/

: >
(70) + [qcos (N, ) — pos (N, )] Sl d=
1 d/( 5—|—(’—}—r2+ Il: DP>2+ D() 2 DB>2‘|ed ) .
Tya ) Pt T <bt <bt>+<7\7 e =

Enfin, on a identiquement

P ~ 2Q
[rcos(N,y) — gcos(N, 2)] ~ + [pcos (N, z) — rcos (N, )] Y3

- . e opP \Q R .
Multiplions respectivement ces égalités par Ttdcﬁ —da, —dC) ajoutons

membre & membre les résultats obtenus, puis intégrons pour tout le systéme, en
intégrant par parties certains termes; nous trouvons, en tenant compte des éga-

lités (37) :

Sil=

op

2P
2) — “— cos (N,
)z .

oP
N, ¥) ———y—coa(\ z)]

ALIY : YPp ) d
+ [WCOS (N, x)— —(\?cos (N, y):l 3

S

1

Ajoutons membre & membre les égalités (67) et (70); retranchons en membre &

Rd' outons
+ 4@ ajoutons

R
o

P \p P Vg P or ,
.\+f<\w W Ty 7%»7?)‘“ =o.



(72)

200 P. DUHEM.

membre les égalités (68) et (71): en tenant compte des égalités (35), nous trouverons
‘égalité

/ )
__f[g cos (N, ) + 7 cos (N, y) + L cos (N, z)]—\(—pd,‘.“

—fg [ cos (N, 2) — ¢ cos (N, y)]——+[ cos (N, x)—&cos(\,‘)]

(4
:c'w.

+ [Zcos (N, y) — v cos (N, x)] g

+df++t'+ N 2Ry DQ) ) =0
2 dl i <\t>+¥_<bt>+<at < :
Cette égalité est vraie pour tout ensemble de trois fonctions %, 7, ¢ qui vérifient les
conditions (35) & (39); appliquons-la, en particulier, aux fonctions &, v, ¢ définies
par les égalités (19) ou, en chaque point de la surface = ef & chaque instant, les

wn

quantités Z', «", {" sont respectivement identiques & =/, 7', ¢'. Alors, en chaque point
de la surface X et & chaque instant,

(73)

U

=o, n=o, {=o0.

Si donc on pose

GOy S EE m+§g[<§;>u(%:(Agy]gm

I'égalité (72) deviendra

(79) H=H,

H, étant la valeur de H & I'instant initial.

[44] Cest cette valeur H, que nous nous proposons d’étudier.

En vertu de I'égalité (74) et des quatre derniéres égalités (66), nous pouvons
écrire

76 o= [ @+ +0de+K,
en posant
M0\ O\ 2Q,N
K= ./3 (N ER az>+<v 2 )])dﬁ

Soit (', ', 2') un point du systéme ot U est donné par la premiére égalité (42) :

U,y 2"y = ——;—ﬂfli do.
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Dans cette égalité, r est la distance d'un point (x, y, z) de I'élément d@ au

point (x', ', 2).
De cette égalité, nous tirons

1

d Ly

R 1 r
— U, v, 2 :——-——-/ 2 dO =

DJ:' ( ’y’ ) 1: ® ‘\wl

—_ = 2___ —_—
== / cos (N, x)d . awd

d
r

Cette égalité et deux égalités analogues, jointes & 'égalité (44) et & 1'égalité (o),

donnent

I 0 1 - . N 1
(78 & :[‘—wf—l_—dci —|—A—-ﬂv/[3cos(N,x)+v,cos(N,y)+scos(N.z)] = dx.

Par des démonstrations analogues, on établit les trois égalités
. I l I : I
p,— _f_dcs + f [ cos (N, 2) —  cos (N, y)] —d,
ZITE r [l-n; r

) m 1 I
- 0 it . z LT = N, —_— Y
Gy Je=p [ "o+ [ [teos (N m)—Feos (N. ) d

1{,:L/ﬁdo +Lfrgcos(N,y)-—y,cos(N,x)]-‘—dz.
L r L = r

Ces égalités sont générales; mais, dans le cas qui nous intéresse, les quantités
%, w, { vérifient constamment les égalités (73) en chaque point de la surface X; les

égalités (78) et (79) se réduisent donc &

I 0
‘”'—z.—wf?d‘i"
P,:_‘-fidcs, Q=7 [ a5, R = ‘fldo.
4 r 4 - b= r

Ces égalités (80) ont lieu quel que soit £, en sorte.qu’on en tire

(80)

P 0
L 19 4,
NI Y

(81)
P I 1ol 2Q I L m R I 1o
= ——do, ~t— ——do, —':—/————dci
/ root oM 1% r o J N L~ roo

o 1%

La quantité fT(lO est une quantité positive qui demeure finie dans tout le

systéme; soit v la limite supérieure, essentiellement positive, des valeurs que prend
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cette quantité aux divers points du systéme. Soit ¢’ la limile supérieure des valeurs

20 . . \ . , s
absolues de 37 dux divers points du systéme, & un instant donné ¢{. A ce méme
[

. oW, . \ L.
instant, la valeur absolue de = n’est, en aucun point du systéme, supérieure
C

, b . . P, 2Q, IR,
4 —. Cette remarque, et des remarques analogues faites au sujet de TRAEYRERY
(¥4 A ¢ d

s »

montrent qu’'a un instant donné ¢, on peut, aux valeurs absolues de

am on
AT a’

LoV IV
ISR
v:/l ~
S~ ~

imposer des limites supérieures telles que les valeurs absolues de

D, ap 2Q, 3R

ot Auq 7 A7 A

soient, & ce méme instant et dans tout le systéme, inférieures respectivement & telles
quantités positives qu’on voudra.

Dés lors, si nous désignons par Il une quantité positive quelconque donnée
d’avance, nous pourrons, a l'instant initial et dans tout le systéme, imposer aux
valeurs absolues de

des limites supérieures telles que nous ayons strement

I
(82) K, <~

1

Aux valeurs absolues initiales de %, v, {, nous pouvons aussi, dans tout le sys-
téme, imposer des limites supérieures telles que nous ayons

L 1
(83) f (3 4 7+ ) AS < -

En réunissant I'égalité (76) aux inégalités (82) et (83), nous voyons qu’aux valeurs
absolues initiales de '

AN

(84)

fd
<
~
E
=
|~
~|

~—
o~

T T ———
—
==
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nous pouvons imposer des limites supérieures telles que nous ayons
H, <II.
Mais l’.égalité (75) nous donnera alors, quel que soit l\,
H<II

et 1'égalité (74) nous donnera a fortiori
(2) f G+t + ) do < 11.

On peut done, dans toul le systéme et & Uinstant initial, imposer aux valeurs abso-
lues des quantités (84) des limiles supérieures telles que le mouvement posséde la stabi-
lité électrostatique intégrale de premiére espéce.

Si nous réunissons ce que nous venons de démontrer avec ce qui a été démontré
au n° [6], nous parvenons au résultat suivant :

Supposons qu’a tout instant et en lout point de la surface qui borne le corps diélec-
trique étudié. le champ électrique total soit donné en grandeur et en direction (cas A).
Aux valeurs absolues initiales des quantités

VY

g. P g
(85) { 0,
(l, m, n

et de leurs dérivées premiéres par rapport au lemps, on peul imposer des limites supé-
rieures telles qu’on ail constamment

(s5) f( Fo o de <1,

= \? o7, 2 AL\ 2 ,
(39 S1E) G+ () Jo<w.

Il et I1' élant deux quantilés positives_quelconques données d’avance. En d’autres

termes, le systéme posséde les deux stabilités intégrales de premiére espéce, la stabililé
électrostatique et la stabilité électrodynamique.

Cette démonstration comble une lacune de notre Mémoire Sur le Diamagnétisme.
En effet, au n° 3o de ce Mémoire (*), nous avions énoncé cette vérité que 1'équilibre
de polarisation est stable sur un corps diélectrique lorsque les conditions (2) sont

vérifiées, mais les conditions qui assuraient cette stabilité ne consistaient pas & main-

(") Journal de Mathémaliques pures el appliquées, 6° série, t. T\, 1913, pp. 129-130.
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tenir constantes la grandeur du champ électrique total en chaque point de la surface
du diélectrique; cependant, c’est dans ces conditions que nous démontrions l'insta-
bilité¢ de I'équilibre lorsque quelqu’une des conditions (1) n’était pas vérifide; la
réciprocité des deux propositions n’étail pas compléte; elle 'est maintenant.

§ 4. — Oscillations électriques au sein d'un corps diélectrique, quand on donne, ¢ la
surface de ce corps, la grandeur et la direclion du champ magnélique et, en outre,
la composante normale du champ électrique

(Cas B)

[42] Nous dirons qu'un corps est le siége de vibrations.ou d’oscillations électri-
ques simples lorsqu’en chaque point, les trois composantes %, v, { du champ élec-
trique total seront de la forme

t . t
E:EO-{-&'COS 27!—7+E_,”Sll'l 27—,
T T T
, L, t
(86) 1=, +1/C08 2w o + 1 sin 2w,
or t "o t
(= + ({ cosan—+ {"sin an—,
0 ) T
les neuf quantités
” nr "
I g, £,
MNo> i >
[ ¢, ¢

étant neuf quantités indépendantes de ¢.
En vertu des égalités (10) et (86), si I'on pose

87) 0= 2z, n dn, Pl o — N N Y N AN - N T N ’
7T e T )y 2z’ dx dy i’ o dy dz

on aura

v , t .t

(88) 0="6,+0 cosznT+6 smz::-i,-.

On aura de méme les trois égalités

t . t
(89) =1+ 1lcos zn-T——}—l"sm AT ,

en posant, selon les égalités (8) et (86),

- l—)'r‘o . D»o I —
(90) T Ty T e Yy
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Désignons par ‘b, en un point de la surface X, la composante normale du champ
{lectrique total :

(91) Yo==%cos (N, ) + 7 cos (N, y) + {cos(N, z).
En chaque point de la surface X, donnons-nous, pour b, une expression de la
forme
t . l
(92) ']1) p— (r(% - TU COS 27 _'I‘- + T(r)” Sin 27w T N

b, 10', 16" étant des quantités données, variables d’un point & I'autre de la surface 2.
mais indépendantes de ¢.

Donnons-nous également des expressions de méme forme pour chacune des trois
composantes L, M, N du champ magnétique; en vertu des égalités (g), cela reviendra
a se donner pour [, m, n, en chaque point de la surface X, des expressions de la
forme (89).

Supposons que £, v, { soient assujettis & prendre, dans tout le diélectrique, des
expressions de la forme (86), et demandons-nous si, dans de telles conditions, ces
quantilés sont déterminées sans ambiguité. '

Si, dans de telles conditions, le champ électrique total était susceptible de plu-
sieurs déterminations distincles, deux de ces déterminations ne pourraient différer
I'une 'une de I'autre que par un champ (%, 1, {) dont les composantes seraient de la
forme (86) et s’accorderaient, en tout point de la surface limite £ et a tout instant,

avec les égalités
(93) Yo =o0,.

(94) l=o, m=o, n=o.

S'il existe un tel champ, il constitue une oscillation électrique propre du corps
diélectrique considéré, placé dans les conditions indiquées.

Il s’agit pour nous de rechercher s’il existe de telles oscillations électriques
propres et, lorsqu’il en existe, de déterminer quelle en est la nature.

Les travaux de M. H. Schwartz, de Henri Poincaré, de M. Stekloff, de M. Zaremba,
d’aulres géometres, nous permettent de regarder comme démontrées, du moins sous
certaines conditions extrémement larges, les deux propositions suivantes :

1° Il existe une infinité de valeurs de T :

(95) T=2, X, k.
pour lesquelles on peut trouver une fonction F, non identiquement nulle, qui vérifie
I'équation

(96) <2>2~=
| AF + T F=o

Fac. de T., 3¢ S., VL. 27
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en tout point du volume G du systéme, et, en tout point de la surface ¥ qui le
borne, la condition

(97)

Si F est une solution de ce probléme, toute autre solution, relative & la méme
valeur de T, est de la forme AF, ou A est une constante arbitraire.

Aux quantités %,, %,, X, ... nous donnerons le nom de périodes longitudinales du
systéme.

2° Il existe une infinité de valeurs T :
(98) T—=t,7, 7. .....

pour lesquelles on peut trouver une fonction f, non identiquement nulle, qui vérifie
I'équation

(99) Af + < )f_o

en tout point du volume @ du systéme, et la condition
(100) S=o0

en tout point de la surface X qui borne ce systeme.

Si f est une solution de ce probléme, toule autre solution, relative & la méme
valeur de T, est de la forme «f, ol « est une constante arbitraire.

Aux quantités t,, 7,. 7, ... nous donnerons le nom de périodes transversales du
sysléme.

Cela posé, voyons si un ensemble de trois quantités %, 4, ¢, de la forme (86), peut
constituer une oscillation propre du systéme.

Soit T la période de la partie de 2, +, £ qui varie avec (.

Nous distinguerons trois cas :

[13] Premier cas. — La période I n’est égale & aucune période, longitudinale ou
transversale, du systéme.

Les égalités (8) et (11) donnent aisément les trois égalités

: A4 1 ’m 1 on
(101) AI-—L—~—:o, Am—— —5=o, An——,i—,——_—o
3 EE T

qui doivent étre vérifiées en tout point du systéme et & tout instant; en écrivant que
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la premiére est vérifiée & tout instant par une expression de la forme (89g), nous trou-
vons qu’on doit avoir, en tout point du systéme,

N] — ' 27 21_ A 27 2”__
(102) Al,=o, Al 4 (z’l‘) l'=—o, Al + (%l) l'=o.

D’autre part, pour qu'en chaque point de la surface ¥, une expression de la
forme (89) vérifie, & tout instant, la premiére égalité (94), il faut qu’on ait, en tout
point de cette surface,

(103) l,=o, I'=o, I"'—o.

Comme, par hypothése, T n’est pas une période transversale du systéme, les éga-
lités (102) et (103) exigent qu’on ait, en tout point du systéme, les trois premiéres

cgalités
l,=o, l!'=o, I"—=o,
(104) “my=o, m =o, m'=o,
n,=o, n'=o, n"—=o.

Les six derniéres se démontrent d’'une maniére analogue.
En vertu des égalités (go), les égalités (104) exigent I'existence de trois fonc-
tions ®,, ®', " telles qu’on ait

(105) 2 : Qe - Qe - dx

Les égalités (10) et (11) donnent, en tout point du systéme,

1 %0
(106) A)— e °
Cette égalité ne peut étre, quel que soit ¢, vérifiée par une expression de 0 de la
forme (88), si 'on na, en tout point du systéme,

4

am \*
er)/

(107) A),=o0, A0'+< o =o, Ae”+<“)e"=o,

eT,

ou bien, en vertu des égalités (105),

) d 27 \? ] 27 \*
e A e ! JE— &' — " " —
(108) 3 = ab,=o0, - I:A‘I) + <g'r> I)] 0, — [A(I) + (—{ T) " | =o,
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ou bien enfin -

am\? am\*
AP —q ! — t— ', " — "= q"
(109) b, =79, AP’ + <£,]> b= AD" + <£]> D' =14",

%, @', " étant trois constantes.
Mais en vertu des égalités (91), (92) et (103), I'égalité (93) ne peut étre vérifice &
tout instant, en tout point de la surface X, si I'on n’a, en tout point de cette surface,

2P, 2 2P
=0, — =0, —_— =
N N N

(110)

o.

En multipliant les deux membres de la premiére -égalité (109) par dG et en inté-
grant pour le volume entier du systéme, nous trouvons

_ M,
Cj:?OZ/A(I)odCSV—‘————fde

ou, en vertu de la premiére ¢égalité (110),

(111) 9,=0.
k3
Nous voyons alors que ®, doit, dans toute I'étendue du systéme, vérifier 'équation
de Laplace

(112) AP, =o,

tandis que sur la surface ¥, cette méme quantité ®_ doit vérifier la premicre éga-
0

lité (110); dés lors, dans toute I'étendue du systeme, &, se réduit 4 une simple

0

constante.
Posons
eT\* LT\*
3 an:(I)!___ <__> ”I’ llpﬂ:(b"_< ) ol
(XI ) 2T ¥ 27 v
En vertu des deux derniéres égalités (10g), on aura, dans toute 'étendue du
systéme,
nf 27 * nt " 2ﬂ>2 *n
Y'—o, AW — | "=o,
(114) s+ (g7) w=o +(an

tandis qu’en tout point de la surface X, en vertu des égalités (113) et des deux der-
niéres ¢galités (110), on aura :

: - B‘v’ a\pﬂ
1o = =0, N —
(119) W

o.
oN
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Comme T n’est pas une des périodes longitudinales du systeme, les égalités (114)
et (115) exigent qu’on ait, dans tout le systéme,

J'—=o, Yy’ —o

ou bien, en vertu des égalités (113),

‘ T\® T\®
(116) tb’=<§—> ', (I)”:(g—> 4"
27 27

®,, &', ®" étant ainsi de simples constantes, les égalités (10b) deviennent

-6

t=o0. I=o,  &=o,
7, =0, 7' =0, 7'=o,
Co:‘)r C,—_"O’ Z”—'O
ou, en vertu des égalités (86),
(117) E=o, =0, {=o.

Le systéme ne peut admellre aucune vibration propre de période T si celle
période west ni période longitudinale, ni période transversale ; une oscillation électrique
de période T est délerminée sans ambiguité lorsqu'on connait, en chaque point de la
surface qui borne le systéme, les trois composantes du champ magnétique et la compo-
sante normale du champ électrique.

[44] Secoxp cas. — La période T est période transversale, mais n’est pas période
longitudinale du systéme.

Nous devons avoir encore, en tout point du diélectrique, les égalités (102), et, en
tout point de la surface £ qui le borne, les égalités (103); en éutre, en tout point du
diélectrique et & tout instant, les égalités (8) donnent

ol om n

o dy oz

Une telle égalité ne peut étre vérifiée, & tout instant, par les expressions (89)
de [, m, n que si l'on a, en tout point du diélectrique,

RIA am, on,
oy e
(118) A n dm + an'
1 =N}
, da dy 2z ’
A"
+ + =o.
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La premiére égalité (102) et la premiére égalité (103) donnent encore, en tout
point du diélectrique, la premiére des égalités

(119) l,=o, m,=o. n,=o.

Les deux derniéres se démontrent d’une maniére analogue.

T étant égale & I'une des périodes transversales = du systéme, les équations (99)
el (100) admettent des intégrales non identiquement nulles; soit f une de ces inté-
grales; soient A', B’, C' trois constantes; la seconde égalité (102) et la seconde éga-
lité (103) nous donnent la premiére des égalités

(120) =AY, m'=B'f, n'=C'f.

Nous nous proposons de démontrer que les trois constantes A', B', C' sont égales
a zéro.
Supposons, en effet, qu’elles ne le soient pas.

En vertu des égalités (120), la seconde égalité (118) peut s’écrire :

A Y LY
(121) ‘A—S;—*_BW_*_C ‘D—Z*—O.

Elle exprime que la fonction f(x, y, z) ne varie pas lorsque le point (zx,y, z)
décrit, au sein du diélectrique, une droite perpendiculaire au plan

(122) A'x +By+ Cz=o.

11 en est forcément de méme des produits A'f, B'f, C'f ou, selon les égalités (120),
de I', m', n'. Or, par tout point du diélectrique, on peut mener un segment de droite,
perpendiculaire au plan représenté par I'équation (122), et dont les deux points
extrémes soient sur la surface ¥ qui borne le diélectrique. En ces deux points, la
seconde égalité (103) et deux égalités analogues nous enseignent quon a I'=o,
m'==0, ' =o0. On voit alors que ces égalités doivent étre vérifiées en tout point du
diélectrique, ce que voulions démontrer.

En joignant & cette démonstratration une seconde démonstration toute sem-
blable, nous trouverons qu’on a, en tout point du diélectrique,

n'=o,
(123)
"
n"=o.
Les égalités (119) et (123) sont les mémes que les égalités (104); nous pouvons
donc reprendre ici tous les raisonnements qui, au n° [43], ont suivi les égalités (104);
ces raisonnements nous conduiront a la conclusion suivante :
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Si T est une période transversale du systéme, mais n’en est pas une période longilu-
dinale, le systéme ne saurait admelire d’oscillation électrique propre dont T soit la pé-
riode; une oscillation électrique de celle période est déterminée sans ambiguité lorsqu’on
donne, en tout point de la surface qui borne le diélectrique, les trois composanies du
champ magnélique el la composante normale du champ éleclrique total.

[45] TroisibmE cas. — La période T est période longitudinale du systéme.

Si la période T n’est pas une période iransversale du systéme, nous pouvons
répéter les raisonnements qui, au n°[43], nous ont donné les égalités (104); si T est
une période transversale, nous pouvons répéter les raisonnements qui, au n° [14],
nous ont fourni les égalités (119) et (123), identiques aux égalités (104). De ces éga-
lités (104), nous pourrons encore, et de la méme maniére, déduire les égalités (109)
auxquelles, de nouveau, les égalités (110) devront é&tre jointes.

La premitre égalité (109) et la premiére égalilé (110) nous donneront, comme
précédemment, cette conséquence que P, est une simple constante.

Enfin, en définissant les fonctions W', ¥" par les égalités (113), nous trouverons
que ces fonctions doivent vérifier les égalités (114) et (115). Mais ici, comme T est
une période longitudinale du systéme, il n’en résultera plus que les deux fonc-
tions W', " sont égales & zéro. Si F est une intégrale non identiquement nulle des
équations (96) et (97), et si A', A" sont deux constantes, nous aurons

(124) ¥ =A'F, ¥'=A"F
ou bien, en vertu des égalités (113),

oy 2 l‘ 2
(125) o' A’F+<’“> g, D= A'F +k” >

Les égalités (86), (105) et (125) nous donneront alors

/ A/, t , !
-,,:-—ax <A T + A"sin 2% T)
t t
(126) —_— (A’cos M'l_‘ 4+ A"sin 2w T> ,
DF

N

(%

t t
(A’cos 27:—,1—, + A”sin 2% T> .

Ces égalilés peuvent encore s’écrire un peu autrement; soient A, x deux constantes
définies par les égalités

(127) A cos ama= A'o Asinaza=A".
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Les ¢galités (126) pourront s’écrire :

RN

F t
—A: Cos 27 (——a),

o O t
(128) = — Yy CoS 27 T %)
F t
\K:_A_B?COSZW<T_Q>'

. 8i la période T est égale a une des périodes longitudinales & du systéme, celui-ci
peut élre le siége d’une vibration électrique propre de période T ; cetle vibration est rec-
tiligne, longitudinale, et elle a méme phase en tous les points du systéme. Une vibration
éleclrique de lelle période n’est pas entiérement déterminée par la connaissance des
valeurs prises, en chaque point de la surface terminale, par les trois composantes du
champ magne’tiqué et par la composante normale du champ électrique.

§ 5. — Oscillations électriques au sein d’un corps diélectrique, quand on donne, en
chaque point de la surface du corps, les trois composantes du champ électrique. -

(Cas A)

[16] On supposeé maintenant qu'on se donne, en chaque point de la surface =
qui borne le diélectrique, les trois composantes du champ électrique, représentées
par des expressions de la forme (86); on suppose qu’en tout point intérieur au diélec-
trique, les trois composantes du champ électrique soient représentées par des expres-
sions de méme forme; on se demande si ces conditions suffisent & déterminer sans
ambiguité ces trois composantes.

Si elles n’y suffisent pas, deux déterminations distinctes du champ différent évi-
demment l'une de l'autre par l'addition d’un champ qui posséde les propriétés
suivantes :

1° En tout point du diélectrique, les trois composan‘tes Z, 7, ¢ de ce champ sont
de la forme (86);

2° En tout point du diélectrique, ces trois composantes vérifient les égalités (11);

3° En tout point de la surface ¥ qui borne le diélectrique, on a

LAY

(129) =o, n=o0, {=o.
Un tel champ constitue une vibration électrique propre du diélectrique considéré,
soumis aux conditions, aux limiles qui viennent d’étre définies.

Les égalités (11) et (86) ne pourraient étre vérifiées, & tout instant, en tout point



SUR LES OSCILLATIONS ELEGTRIQUES. 213

du diélectrique, si I'on n’avait, en tout point du diélectrique, les neuf équations

2 N 20
(130) i’( T m"> + & —=0, . ............ ,

(131)

wm' o am" N
2 2 nn
i(ay ) T et =

Les égalités (129) et (86) ne pourraient étre vérifiées, & tout instant, en tout point
de la surface T, si 'on n’avait, en tout point de cette surface,

-

(132) to‘:o Ny=—0, S, —0,
! ! !
(=0, 7'=o0, ['=o,
(133) - "___ "___
f=0, 1'=o, ('=o.

[47] Multiplions respectivement les trois égalités (130) par &,d0, 1,d0, {,dC;
ajoutons membre & membre les résultats obtenus; intégrons pour le volume entier
du systéme, en intégrant par parties certains termes; nous trouvons I'égalité

| / g’ ~/<g['r,0 cos (N, z) —¢, cos.(N, ) 4, + [E, cos (N, x) — %, cos (N, 2)]m,

008 (N, ) — 003 (N, | 2
(134)
+ & / [&,cos (N, x) + 7,cos (N, y) + ¢, cos (N, 2)]6,dx

+ / (22 + m® + 1) + €63 6 —o
ou bien, en vertu des égalités (132),
(135) / [BE +m:+nd) 4+ 6]dO=o0.
Cette égalité exige qu’on ait, en tout point du diélectrique,

(136)
1020, mozo, n —o.

En vertu de la démonstration donnée au n° [5], les équations (136), vérifiées en

tout point du diélectrique, et les équations (132), vérifiées en tout point de la surface
limite, exigent qu’on ait, en tout point du diélectrique,

(137) i, =o, 7, =0, {,=o.

<o i0- )

Fac, de T., 3° S., VI. 28
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(18] II existe une infinité de valeurs de T pour lesquelles les équations (131)
et (133) admettent des intégrales différentes de zéro; cela peut étre démontré ou,
du moins, rendu vraisemblable & I'aide d’un raisonnement indiqué par H. Poincaré(');
nous allons reprendre ce raisonnement avec quelques modifications.

En appliquant aux trois premiéres équations (131) et aux trois premiéres équa-
tions (133) une transformation analogue & celle qui, des équations (130) et (132), a
tiré 1'égalité (135), nous obtiendrons 1'égalité

(138) f% "+ m"” + n") 4+ £6"]d ™ f E" 41"+ " dS=o0.

Prenons un ensemble de trois fonctions %', v/, " assujetties & vérifier, en tout point
de surface Z, les trois premiéres égalités (133), et & vérifier en outre la condition

(139) jf(””+n”4~C3d0:=1-
Ces fonctions font prendre & la quantité
(140) J :/ (" 4+ m" 4+ n") + £°67] dO

une valeur qui ne peut étre négative, et qui ne peut non plus étre nulle, en vertu de
la démonstration donnée au commencement du n° [5].

ApyETTONS : 1°.QUe la limile inférieure J, de cette quantité J soit positive et non pas
nulle;

2° Qu'il existe au moins une détermination (3',, v',, ') de l'ensemble de fonc-
tions (8, +', ') ponr lequel J alleigne la valeur J,.

Si nous admettons cette double hypothése, qui n’est nullement évidente, le reste de
la démonstration se poursuit sans objection ni difficulté.

Parmi toutes les fonctions &, 7', ', assujetties a la condition (13()) et, en tout
point de la surface ¥, aux trois premicres égalités (133), §'=%,, +'=+/,, ' =,
rendent J minimum. On doit donc avoir

(141) / (30 +m'sm', + n'an') 4 £9',301d0 =0

-u-, ~

pour tout systéme de valeurs de 33'. 37/, 3¢’ qui vérifient la condition

(169) S i + s =0

(") 1. Pomcark, Lecons sur la théorie de Uélgslicilé, Paris, 1892, chap. V, Da et 53,
pp- 103 sqq.
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et, en outre, en tout point de la surface X,

(143) 82'=o0, ¥j'=o, 3'=o
Les égalités (87) et (go) donnent
/ O P 1
36" — ‘-’7 |
() \ V=T dy T
T
. %y ., wrow , e
ol = — , am' = — s n' = —_
hF4 dy dx 2z dy

Introduisons ces expressions (144) au premier membre de I'égalité (141); dans ce
premier membre, effectuons certaines intégrations par parties en tenant compte des

conditions (143); nous trouvons I'égalité

( B 2 bm,| bn'l 8! DO'l ] i\:!
f _% 2y > dr | o
B 2 bn,l Dl’l 2 DO,l 7] r
B ' am' 6
+ ig<\—‘— m’>+$’~—'~ji‘>§’ ddd =o.
| dy QX iz | 7))

Cette égalité doit avoir lieu pour tout systéme de valeurs de 8Z', 3/,

rifient les conditions (142) et (143).
11 faut et il suffit pour cela qu’il existe :

1° Une constante C, ;

', 3¢ qui vé-

a® Trois quantités «, §, v variables d’'une maniére continue sur la surface X,

vl

telles que tout ensemble de valeurs de %', 84/, 3¢/,

dans le diélectrique, vérifie 1'égalité

variables d’'une maniére continue

R i
+ —z”( :ly — \$> + & :0 +CY, 5§'§do
+ /‘(;83' + 887" + vy3{)dx _ =o.
Nous en concluons qu’on doit avoir :
1° En tout point du diélectrique,
(147) () T red=
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2° En tout point de la surface limite X,

(148) a=o0, B=o, v=o0.

Si, sur les égalités (147). nous effectuons 'opération qui, des trois premiéres éga-
lités (131), a tiré 'égalité (138), nous obtenons I'égalité

Wy [ @@ s e0as — ¢, f @4t ie=0
ou bien, en vertu des égalités (139g) et (140),
(150) c,=1,.
Comme J, est essentiellement positif, cette égalité (150) nous permet de poser

(151) C, :l,ll—f: . .
1
Alors, les égalités (147) prennent la forme des trois premiéres égalités (131), ou
AT, 7, v', {, on aurait substitué T,, &', +',, {',. On voit donc que si I'on donne a T
la valeur T,, les trois premiéres équations (131) et les trois premiéres équations (133)
admettent une solution &'=2", v'=+',, { =¥, qui ne peut &tre identiquement
nulle puisqu’on a, en vertu de la condition (139),

(152) SJ s =1
Si, & la condition (13g), nous avions substitué la condition
(153) f(!élz + 7‘!2 + :m) do :Az’

ol A est une constante quelconque, nous eussions obtenu un nouveau systéme de
trois fonctions %', 7', <, respectivement égales aux produits des précédentes par A.

Imaginons maintenant que les quantités %', ', { coient soumises non seulement,
en tout point de la surface ¥, aux trois premiéres conditions (133), non seulement a

la condition (139), mais encore a la condition
(134) S GF s =o.
La quantité J, définie par I'égalité (140), prendra une valeur assurément positive.

Les valeurs prises par la quantité J dans ces conditions se trouvent au nombre des
valeurs qu’elle prenait dans les conditions précédentes: la limite inférieure J, des
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valeurs prises par J dans ces conditions-la est donc au moins égale & la limite infé-
rieure J, des valeurs prises par J dans ces conditions-ci.

Nous ADMETTRONS : 1° Que J, est supérieur a J,; nous pourrons alors poser pour
(155) B

et, en vertu des égalités (150) et (151), T, sera assurément inférieur & T,.

2° Qu’il existe un ensemble de déterminations %', ', U',, des quantités &, +', I,
assujetties aux conditions (133), (139) et (154), pour lesquelles J atteinl sa limite infé-
rieure J,.

Nous devrons avoir, alors, 8J = o, c’est-a-dire, en vertu d’un calcul semblable &
celui qui a donné I'égalité (145),

/ 5 3 Dm,e ‘\n"z o 36'2 ] N
/{ 2 )y T s
: ./, A, L 0T,
(156) +[z(bx — bz)+g v |
., am/, . 0, .,
\ -{—[%(Dy — Dm>+£ ‘Z~3..‘, dd=o

pour tous les systémes de valeurs de 8%, &+, 3’ qui vérifient les deux conditions

(157) f (&35 4 1" 37 + ¢ ,3¢) do =0,
(158) f (5,85 + 4,54 + {,30)dO =0

et, en outre, en tout point de la surface ¥,

f <
I
°

(143) 3% =o, 8'=o, 3¢

Le raisonnement qui fournit les équations (147) nous apprend ici I'existence de
deux constantes, C,, D,, telles que

{ am’ in' 2, . .

Multiplions ces équations par ',d0, +/,d0, ',dG; ajoutons membre & membre
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les résultats obtenus, intégrons pour le volume entier du systéme; nous trouverons
() e )y,
() w2 e

+C ,/‘(E,ﬂ:’ +fl,7l +~5 l)dO

++>

(160)

D, [ @ —o.

Comme &', 7', (', vérifient, en tout point de la surface T, les trois premiéres
égalités (133), une intégration par parties donne

am' n' 2,
2 2 2 2 14
_/ [g(bz by>+£ \x]*‘+ ......... %dcﬁ
' an,« 2 Deln =r
\—f“: (\z — by>+8 Sp |t gdo.

&, 4, {, vérifiant, en tout point de la surface X, les trois premiéres égalités (133)
et, en outre, la condition (154), on voit que 'égalité (145) doit étre vérifiée par des
valeurs de &', 8v', 8¢’ respectivement proportionnelles a &, v',, {,; cest dire que le
second membre de I'égalité (161) est égal a zéro, qu’il en est donc de méme du
premier membre, c’est-d-dire du premier lerme figurant au premier membre de
I'équation (160).

(161)

Si I'on observe alors que Yégalité (139) doit étre vérifice lorsqu’on y fait £'=¥&',

7 =1, (=, que &=¥, 4=/, { =, vérifient la condition (139), on voit

que I'équation (160) se réduit a

(162) D,=o.

2

Introduisons cette valeur de D, dans les équations (159); multiplions-les respec-
tivement par £',d3, +',dd, {,dd, ajoutons membre & membre les résultats obtenus;
effectuons enfin des transformations semblables & celles qui ont donné 1’égalité (149);
nous trouvons :

(163) f [R5 + m + ) + £67] d6 — C, f £ 4 0 400 dG =o.

La condition (139) devant étre vérifiée quand on y remplace &', ', {' par &',, 7,, ¢,
cette égalité (163) se réduit a
C,=1J

2 2
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ou bien, en vertu de I'égalité (155), &

4z
(161‘) Cg — e
2
Si, dans les équations (159), nous remplacons G, et D, par leurs valeurs (164)
et (162), nous voyons que ces équations sont ce que deviennent les trois premiéres

équations (131) lorsqu’on y fait

r

’
??

T—T.,

2

AN
CaN)

I

g%
®

L 12
=" A}

T, est donc une nouvelle période propre du systéme.

Une troisitme période propre correspondrait au minimum des valeurs prises
par J lorsque %', «/, {' sont assujettis & s'annuler-en tout point de la surface X et a
vérifier, en outre, les trois conditions

J@E i+ ndo=o,
S @E o+ ndo=o,
J @ yao=r.

On continuerait ainsi indéfiniment.

[49] Si T n’est pas une période propre du systéme, les trois premiéres équa-
tions (131) doivent déterminer sans ambiguité les valeurs prises par %', %', {' en tout
point du systéme lorsque 1'on connait les valeurs prises par ces quantités en chacun
des points de la surface ¥; les trois derniéres équations (131) détermineraient de
méme &, 1", .

11 est aisé d’imaginer comment ces fonctions se pourraient développer en séries de -
fonctions fondamentales.

[. — Cherchons trois fonctions f', ¢', k', telles qu’on ait, en tout point de la
surface X,

(165) ' So=

! ro__ ! [}
s g.=1, W, =1,

DN

et, en tout point du volume occupé par le diélectrique,

[ (V 2 W
dx \ M dy 0z,

(x66) = 2 <bf; S A Wy N
)T dy \ dy dx Dz(bx 2z >:|—_ ’




220 P. DULIEM.

Ces fonctions f’o, g',, /', si elles existent, sont déterminées sans ambiguité; en
effet, si elles étaient susceptibles de deux déterminations distinctes, nous pourrions
désigner la premiére de ces déterminations par f',, ¢',, #',. et la seconde par f', + &,
g+ 1., M+ ¢, Alors 2, 1, {, devraient vérifier les conditions (130)-et (132) qui,
nous 'avons vu au n° [47], entrainent

g’l‘
I

°

)

Apuerroxs que les fonctions f', ¢',, I', existent.

II. — Cherchons trois fonctions f',, ¢',, ', telles qu'on ait, en tout point de la
surface X, '
(167) fl,=o0, g¢g,=o, I,=o

1

et, en tout point de I'espace occupé par le diélectrique,
2 D ‘\f'd Dg'l Dh'l
( ¢ aw<3w+ dy + Dz)

(168) AN A Y/ D M,
- +%2[ < f1 . gl> __(;L__‘[L>]:——f'o,
dy \ oy ox i\ @ 2z

On peut montrer, comme dans le cas précédent, que les fonctions /', ¢',, &', sont
déterminées sans ambiguité si elles existent.

ApuEeTTONS que les fonctions f',, g',, ', existent.

I11. — Répétons ce qui vient d’étre dit en remplacant f', ¢, &', par f', g',, ',
et f', 9, I, par f',, ¢, ..

Continuons indéfiniment de la sorte.

Considérons les développements suivants :

. ) [/ 2m\?, (27:)", <2. "
nr ! s
Y=+ () S () S+ IV
=\*, T\, 27\’
(169) *«’=9'0+<%—;>9'.+<?r>gg+<{—>gs+--w
\§'=h’o+<%%>h’%+<21—f‘>h;+<ﬁ>h;+“..

T
Suprosoxs que ces développements soienl, en tout point du diélectrique, absolument

el uniformément convergents, ainsi que les développemenls qu'en déduisent une ou deux
dérivalions par rapport & &, dy ou d z.

Alors, 1° En vertu des égalités (165), (167), ..., 2, 7/, ¢’ prendront, en tout point
de la surface ¥, les valeurs données.
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2° En vertu des égalités (166), (168), ..., &', %, {’ vérifieront, en tout point du
di¢lectrique, les trois premiéres équations (131).

Les développements (169g) fourniront donc la solution du probléme posé.

De cette solution, nous ne donnons ici qu'une sorte d’esquisse; pour transformer
celte esquisse en une véritable solution, il faudrait donner la démonstration rigou-
reuse des propositions que nous nous sommes contenté d’admettre.

On remarquera que le probléme éludié dans ce paragraphe a son correspondant
dans la théorie de I'élasticité; tout ce que nous venons de dire demeure vrai si, par
Z, 7, ¢, on n’entend plus les composantes du champ électrique total au sein d’un
diélectrique homogtne, mais les composantes du déplacement infiniment petit d’'un
corps isolrope soumis exclusivement a des pressions exercées aux divers points de sa
surface.

Fac, de T., 3° S., VL. 29



CHAPITRE 1II

Le systéme est formé de plusieurs corps diélectriques.

§ 1. — Formation des équations qui régissent les vibrations pendulaires engendrées
par un excitateur.

[20] Nous allons aborder maintenant I'étude d'un systéme que forment plusicurs
corps diélectriques dislincts, entiérement dénués de conductibilité.

Pour ne pas compliquer inutilement les écritures, nous réduirons 4 deux les
diélectriques qui forment le systéme; nous les désignerons par 1 et 2; ©,, @, seront
les régions de I'espace respectivement occupées par chacun d’eux; S, sera la surface
qui les sépare, X continuera de désigner la surface qui borne le systéme.

Hors du systéme étudié, se trouvera un autre systéme, l'excilaleur, dont 1'état
¢lectrique et magnétique sera supposé connu a chaque instant. En chaque point du
systéme que nous étudions, et & chaque instant, I'excitateur produira un champ dont
nous désignerons les composantes par %, 7, {,; ces composantes doivent étre regar-
dées comme connues.

Sous linfluence de l'excilateur et des conditions initiales, le systéme porle, &
chaque instant et en chacun de ses points, une polarisation magnétique, une pola-
risation diélectrique et des courants de déplacement; & ces polarisations et a ces
courants correspondent, en chaque point et & chaque instant, un champ électrique
dont les composantes sont Z, v, {. Les composantes du champ électrique total sont
ainsi, en chaque point et & chaque instant,

E+E5 metw, L AL

Ces composantes du champ électrique total doivent, en tout point du systéme et
a tout instant, vérifier les équations (rr); si donc on pose

27
iz( on, Dmo> e M, G,

y 2 oW
(170) YRR RV S
/ 2z & dy NR o
e
% am, NA e 20, ¥ .
& dy 2z o o

égalités dans lesquelles /,, m, n,, 0, sont liés & &, =, {, par des égalités analogues
aux égalités (8) et (10), et ou, par conséquent, les quantités o, 8, v, sont regardées

0’ io
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comme données, on devra avoir, en chaque point du systéme ct & chaque inslant,

d N 2 P
z,(m m>+£=__0___._:a

dy oz NN ©’
' s > 0y
171 g _—— 4 ——— =8
(71) K 2z dx dy T
am o 20 hige
T~ — + &=,
X dy N4 o

En chaque point de la surface S,, et & chaque instant, on doit avoir

D' [(5, + &) cos (n,, &) + (1, + 1) cos (n,, ¥) + (¢, + L) cosn,, 2)

172) )
(o + D, [(%, + &) cos (n,, &) + (4, + 7) cos (n,, ¥) + (£, + O cos (n,, 2)] = o.

Dans cette égalité, n, désigne la demi-normale dirigée vers l'intérieur du corps t
et n, la demi-normale dirigée vers U'intérieur du corps 2. Au premier terme, s Nos
¢, E, , ¢ se rapportent & un point infiniment voisin du point que 'on considére sur

la surface S

127

mais appartenant au corps 1; au second terme, les mémes quantités
ont trait & un point analogue, mais appartenant au corps 2. '
La quantité
oy Dios(n @) ncos )+ Leos )
A ‘1
+ DI[‘:D cos (ni’ x) + 710 cos (ns‘ y) + Co COS (n'-z’ Z)] - So
est censée connue, & chaque inslant, en chaque point de la surface 8,,. L'égalité (172)
peut s’écrire
(1) D' [% cos (n,, x) + 7 cos (n,, y) + {cos(n,, 2)]
174 . .
! + D',[Zcos(n,, &) + 7 cos(n,, y) + Lcos(n, z)] =s,.
En tout point de la surface £ qui limile le systéme, nous supposerons qu’on
donne, A tout instant, la valeur de la composante normale du champ électrique total

(% + 2 cos (N, @) + (1, + 1) cos (N, ) + (¢, + §cos (N, 2

ct les trois composantes du champ magnétique total, qui font connaitre les valeurs
des trois quantilés
I+, m, +m, n,+n.

Mais les quantités 2, 1,, &, {,, m,, n, sont, par hypothé¢se, connues en tout point
du systéme et & tout instant. Il revient donc au méme de supposer qu'on a, en tout
point de la surface X et & tout instant,

(175) Zcos (N, x) + mcos (N, y) + {cos (N, 2)=¢,
(1756) =4, m=.b, n="10,

¢. €, b, 10 ¢lant des quanlités données.
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En général, lorsqu’on voudra traiter un probléme de résonnance électrique, on
supposera que l'excilateur, qui doit toujours étre extérieur a la surface X, est rejeté
alinfini; on admettra, en outre, que cette surface ¥ est aussi, tout entiére, rejetée a
Iinfini, de telle fagon que le systéme soit illimité; enfin on admettra que sur cette
surface ¥, c'est-a-dire a l'infini, les composantes du champ électrique et du champ
magnétique se réduisent aux composantes des deux champs créés par Pexcitateur; ce
sera suppcser qu'en un point qui s'éloigne a U'infini dans une direction quelconque,

les six quantités

5 om, &L, om, n

tendent vers zéro quel que soit £.

Mais, pour éviter tout manque de rigueur dans nos démonstrations, il vaudra
mieux n’y pas introduire ces suppositions; nous les ferons en supposant que la sur-
face ¥ se trouve toul entiére a distance finie; si on la veut ensuite rejeter a l'infini,

on verra sans peine ce qui en résultera pour les propositions diverses que nous
aurons ¢tablies.

[24] Supposons maintenant que l'état électrique et magnétique de I'excitateur
varie périodiquement, que T en soit la période, et que toutes les quantités qui le
caractérisent varient suivant une loi pendulaire. Les quantilés 2, «,, {, seront alors
de la forme

t- t
=l
[ 2, =7Z, cos 31:,—1, + &, sin a7 T
- o= o 70 sin g t
(177) f‘o———-f‘oCOS2u7f‘+ flo SIN 27 <5
* vl t (2 M t
C‘):“ADCOS 27:—'17—{—“'"5”1 2TCT.

11 en résultera que les quantités 0,, I, m,, n, seront aussi de méme forme; par-
tant, en vertu des égalités (170), on aura

. i 4 . t
[ a, =4, cos 2% + a; sin 2% T
— (! t (5” H i
(178) Bo = Iy cOS 27 - + B sin 2% T
/ r t [/ l
VY, =17, COS 27:T + ¥, SIn 27:T.
De méme, en vertu de 1'égalilé (173), on aura
t

ot . . /A .
(179) Sy = 8, €08 27 5 + s, sin 2% T
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Admettons, en outre, que les quatre quantités g, €, [lb, Tb soient des quantités
pendulaires de période T :

t . t

(180) ¢= o5'cosam T + ¢"sin 2T
/ ( ! t owr o t

[ 4= Ycosan——+ L' sinoax,
1 )
t . t

(181) Ab= A’ cos 2= T + Ab" sin zﬁT,
( YA [ e f

T = 90’ cos 2= T + 90" sin am

Demandons-nous si, dans ces conditions, le champ ¢lectrique induit (%, =, §)
pourra étre un champ pendulaire de période T ou, en d’autres termes, si I'on
pourra avoir '

t 14 M t
cos 27—+ & sin 27

m

/ !

DAY

o
— e
)

"]

o~

N

t .
182 S-r:-r’cosmr———;—~r”sm 27
i | T ]

—

vl t wlf o [
{={ cos 27:—,1,—4— {" sin 21171‘—,

les six quantités 2', +', ¢/, 2", 4, {" étant six fonctions des seules variables x, vy, z.
En vertu des égalilés (171), nous devrons avoir, en tout point, soit du corps 1,
soit du corps 2,

/ moaw'N W 4
| zz(\ dy 2 > +& dac +T‘7§,:a,"'
A % 4w
(183) f( Y ) + & oy + =8
fI,’ am’ A gg 20’ [17[2 ' o
\ o — (\y _D;— T 5 { o)

I, m', n', 0 étant liés & 2, 4/, ¢’ par des égalités analogues aux égalités (8) et (10).
En vertu de I'égalité (174), on devra avoir, en chaque point de la surface 8,,,
D',[% cos (n,, &) + ' cos (n,,y) + ¢ cos(n,, 2)]

+ D',[% cos (n,, &) + 7 cos (n,.y) + (' cos (n, 2)] = ¢',.

(184)

" Enfin, en verlu des égalités (175) et (176), on devra avoir, en tout point de la
surface X,

(185) £"cos (N, x) + 7' cos (N, y) + ¢ cos (N, 2) =¢,
.(186) =Y, m' =1V, n =90
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Les trois quanlités 2", 4", ¢ doivent vérifier des égalités analogues aux éga-
lités (183) & (186).

N

§ 2. — Vibrations pendulaires propres du sysléme.

[22] Les données suffisent-clles & déterminer sans ambiguité le champ électrique
pendulaire induit sur le systtme?

Appelons (183 bis), (184 bis), (185 bis) et (186 bis) ce que deviennent les équa-
tions (183) & (186) quand on y remplace les seconds membres par zéro.

Nous obtiendrons sans peine la proposition suivante :

Si des données identiques pouvaient correspondre & deux champs pendulaires
distincls de méme période T, ces deux champs différeraient I'un de l'autre par un
troisitme champ pendulaire de méme période T, que donneraient, par conséquent,
des égalités de la forme (182), ou (2, ¢/, {') serait une solution des équations (183 bis)
A (186 bis), et ou (2, ", ") scrait une autre solution des mémes équations.

Un tel champ constituerait une vibration électrique pendulaire propre au systéme.

[23] Par extension de ce qui a été démontré, au § 4 du Chapitre précédent, pour
un diélectrique unique, Novs ADMETTRONS que, dans les conditions indiquées, un sys-
(éme formé de plusieurs diélectriques ne saurait admellre aucune vibration pendulaire
propre qui ne soit conslituée par un champ longitudinal (*).

Si donc les formules (182) représentent une vibration pendulaire propre, il devra
exister deux fonctions ®' et ®" des seules variables (x, y, z) telles qu’on ait

") D' , ) P! , AP’
gw——‘\wr = Dy’ {=— 32
(187)
" " [
? R M S
® 2’ . dy ’ 0z

La quantité @' doit vérifier I'équation de la dilatalion relative aux équa-
tions (183 bis), c'est-d-dire qu’en chaque point du diélectrique 1, on doit avoir

(] 88) gj Ad' + % [ — o,

el qu'en toul point du dic¢leclrique 2, on doit avoir

L=
4 - ¢d'—o.

v

(188 bis) €2 A0 4

() Dans un travail ultéricur, nous montrerons que celte supposition, parfaitement
admissible tant qu'on porte exclusivement son atlention sur les équations du champ total,
cesse de I'étre quand on considére les deux champs, électrostatique et électrodynamique,
capables de 'engendrer. La théorie exposée au présent chapitre, inadmissible au point de
vue de da Physique, ne garde qu’un intérét purement mathématique.
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En tout point de la surface S,,, I'égalité (184 bis) devient, en vertu des ¢galités (187),

127

‘ L
(189) D‘W“F ,-D—n’—

ALY
—=o.

En tout point deé !a surface ¥ qui limite le sysléme, 1'égalité (185 bis) devient

{190) ~ —°"
(4%
Quant aux égalités
(186 bis) I'=0, m'=o0, n'=o,

elles sont vérifices d’elles-mémes en lout point du systéme et, partant, en lout point
de la surface X.

La fonction ®" doit vérifier les mémes égalités (188), (188 bis), (189) et (19o) que
la fonction ®’.

§ 3. — Périodes longitudinales propres au sysléme.

[24] Silon se donne arbitrairement la valeur de T, on ne pourra pas, en général,
trouver de fonctions @', ®" qui vérifient les précédentes conditions. Pour que de
telles fonctions existent, il faudra donner & T une valeur prise dans un ensemble
particulier; aux valeurs qui constituent cet ensemble, nous donnerons le nom de
périodes longitudinales propres au systéme.

En d’autres termes, T sera une période longitudinale propre au systéme si 1'on
peut trouver une fonction F(x, y, z) qui vérifie les conditions suivantes :

1° En chaque point soit du diélectrique (1), soit du diélectrique (2), F doit vérifier
I'une ou l'autre des équations

(191) 2 AF + Z‘;‘ F=o,  AF + l'l“ F=o,
que l'égalité (4) permet d’écrire
(192)  DAF + —“ll axa’k K F = o, DIAF + 3% 0nah K F =o.

I doit vérifier 1'égalilé

127

2° En tout point de la surface S

e
(193) p 2 oy

ton, on,

= 0.

3° En tout point de la surface X, F doit vérifier I'égalité

D{
(194) a—;=0-
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L'existence d’une telle période longitudinale peut s’élablir & I'aide d’un raisonne-
ment analogue i celui que nous avons développé au n° [18].
Considérons toutes les fonctlons F, continues dans ’ensemble du volume G, +03,,

et qui vérifient les deux conditions

(195) ara’lk <K'/l do —I—I\'fF'dCS): s
(199) Kl'fl"ddl—}—l(;f-Fdeg =o.

Considérons ensuite la valeur que chacune de ces fonctions fait prendre A la

v L)+ () + (5) e
+D’f[(§§ # () + () Joe-

Cette valeur ne peut étre négative ; elle ne peut non plus étre nulle; pour qu’elle
fat nulle, en effet, il faudrait qu’on eit, dans tout le volume @3, 4- 5,

quantité

(197)

oK oF oF

ou que la fonction F, qui est continue dans tout ce volume, y etit partout la méme
valeur; mais alors la condition (196) exigerait que ce fut la valeur zéro, ce qui est

incompatible avec la condition (1g5).

ADMETTONS : 1° Que la limile inférieure J, de J, qui ne peul élre néjative, soit un

nombre positif;
2° Quil existe une délerminalion ¥, de ¥ qui fasse prendre & J la valeus J..
Selon I'expression (203) de J,, nous devrons avoir

TR BF K, aBFF, BF
D:'/ df + dE, L_ —l— [SE AP >do’
o M dy dy 3z Az

O0F, BF  OF, 2F | 2F, BF
+D;/< P, 28 3k, 2F O, ol>d5$20

e dy dy 0z oz

ou bien

F JF
fD’ C3F l“-]—/(D’ LTI F*)alrds,,
s,
+/1);¢F,ax<‘dc:>, +/1);ur,aluzo, —o.

(198)
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Cette égalilé ne doit pas avoir lieu quelle que soit la fonclion continue 3F; a
cause des conditions (195) et (196), elle doit avoir lieu seulement pour les fonc-
tions 3F qui vérifient les deux conditions

(199) /r 3 4o, +K’fl SFdG, = o,
(200) K;/achs,+ K;f’al«“dcj,:o.

11 doit donc éxisler deux constantes C.et D telles qu’en muldipliant I'égalilé (199)
par C et I'égalité (200) par D, les égalités résultantes, ajoutées membre & membre a
I'égalité (198), fournissent une égalité vérifiée quelle que soit I'expression continue

de oF. Cette égalité, c’est la suivante :

'ade+f< p, ¥, ;‘—l~~>81< ds,,

(301) +/(D;A1« + CK'F, + DK!)3F, do,

+ f (D, AF, + CKJF, + DK)3F dos, —o.

Par des raisonnements de forme connue, on en conclut qu’on doit avoir :

- 1° En tout point du volume @, ,

(202) D' AF, + CK',F, + DK', = o;
2° En tout point du volume ©,,

(203) : D',AF, + CK',F, + DK', =

3> En tout point de la surface S,,,

F oF
204 D , —~=—o0;
( ) 1 n 2y . )
4° En tout point de la surface ¥,
AL
(205) “t—o.

Multiplions respectivement I'égalité (202) par dG, et intégrons pour le volume @, ;
nous trouvons

D;/AF,dcs, +CK;fF,dc5,+DK;c5,=o,

Fac. de T., 3¢ S., VI. . 3o
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ou bien, en observant que I'égalilé (205) est vérifiée en tout point de la partie de la
surface ¥ a laquelle confine le volume ©,,

——D1f‘l‘d5 +(‘K’/Fldm,+DK’4C$‘=o.

L’égalité (203) nous donne de méme
' oF '
—sz Las, +Cl\fI‘d(:5+DKCS—o

Ajoutons membre & membre ces deux égalités, en tenant compte de la condi-

tion (204) et en observant que F, est assujetti & vérifier la condition (196); nous
{rouvons

D(K,G, + K,B) =0

ou
(206) D=o.

Multiplions maintenant 1'égalité (202) par F,dd,; intégrons le résultat pour lout
le volume @, ; & I'aide d’une intégration par parties, transformons le premier terme

en tenant compte de la condition (205); tenons également compte de 'égalité (206);
nous trouvons

F, : AN
D/ 2R, as, +D'f[< ) < y‘>+< \;)]dcs,—CKQfF:dcs,:o.
(&4

L’égalité (203) nous donne de méme

)F , IF,\? A, \2 F,\? ,
D;fﬁ’ ¥ dSa+D.,f[( >+< >+( > dO.—CKngidO =o.
om, 2 0 dy oz !

Ajoutons membre & membre ces deux égalités, en observant :

1° Que I'égalité (204) est vérifiée en tout point de la surface S,

2° Que la fonction I, vérifie la condition (1g5).

Si nous désignons par J, ce que devient la quantilé J, définie par I'égalité (197),
lorsqu’on y remplace I par F,, nous trouvons

(207) b= ana’k), .

La quantité J, est essentiellement positive; posons -

(208) 5, =4

I



SUR LES OSGILLATIONS ELECTRIQUES. 231
Alors, en vertu des égalités (206), (207), (208), les égalités (202) et (203) deviendront

h=® ) h=*

(209) D! aF, + X ana’k K\ F, = o, D, AR, + :

EY 1

ana@’kK,F, —=o.

Si I'on compare les égalités (209), (204) et (205) aux égalités (192), (193) et (194),
on voit que T =12, est une période longitudinale du sysléme.

Pour en trouver une seconde, nous chercherions le minimum de la quantité J,
définie par I'égalité (197), en assujettissant I non seculement aux conditions (195)
et (196), mais encorce & la condition

(210) K;/F.l«‘dcs,+K;/F,Fdo?:o.

En continuant de la sorte, nous serions conduits aux propositions suivantes, poxt

LA DEMONSTRATION RIGOUREUSE RESTERAIT A TROUVER :

Il existe, pour le systéme considéré, une infinité de périodes longitudinales n, h,, ... .
Lorsque T est égal & une de ces périodes, les équations (192), (193) el (194) peuvent
élre vérifiées par une fonclion F qui ne soit pas identiquement nulle. Pour une méme
période longitudinale, ces équations ne peuvent étre vérifiées par deux fonctions F dis-
tinctes Lune de Uaulre, a moins que l'une d'elles ne soil le produil de l'aulre par une
constante.

§ 4. — Forme des vibrations longitudinales propres au sysiéme.

[25] Supposons maintenant que T soit égal & une des périodes longitudinales
propres au systéme. Soit I(x, y, z) une quelconque des fonctions qui vérifient les
conditions (191) a (194). Si nous désignons par K'et K" deux constantes, nous aurons
assurément

(211) . OP'=K'F, P"=K"F.

Les égalités (182) et (187) nous donneront alors

F t
[E=— ‘ <K' Cos 27 T + K'"sin Q:th,>,
Y /., ¢ _ t
(ar2) = y <K cos 2w,—r+K”SIn 27:7),
4
F / t !
\ C:——%—;(K cos 27 - + K" sin 27:T>.

Telle sera la forme générale d'une yibration ¢électrique propre au systéme étudié.
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Au lieu des deux constantes K’ et K", introduisons-deux nouvelles constantes,
A et 5, définies par les égalilés

(213) K'=Acos 2rno, K'=Asinaxs.

Les égalités (212) pourront s’écrire

[ ADF
FE T AT ('—l‘—"o>’
F t
(214) 'f‘:'—A—D}—COSQ‘K<T—CP>,
F t
CZ_A—D?COS 27‘!(—,1—“-—'?> .

D’ou la conclusion suivante :

Si T est une période longitudinale propre au sysiéme, une vibration électrique pen-
dulaire de période T n’est pas entiérement déterminée par les conditions énumérées
au § 1. On peut toujours, a cetle vibration, adjoindre une vibration propre, longitudi-
nale, rectiligne, ayant méme phase en tout point du systéme. La valeur ¢ de cette phase
peut élre choisie arbitrairement, et amplitude de la vibration propre peut étre multi-
pliée par une constante arbitraire A. )

§ 5. — Développement en série de fonctions fondamenlales qui représente une vibralion
électrique longitudinale sur le systéeme étudié. Résonnance électrique.

[26] Si T n’cst pas une des périodes longitudinales propres au systéme, les con
ditions indiquées au n° [24] déterminent sans ambiguité la vibration électrique
pendulaire que I'excitateur détermine sur le systéme.

Supposons, en particulier, que le champ électrique de I'excitateur soit, en chaque
point du systéme, un champ longitudinal; en d’autres termes, supposons qu’il
existe deux fonctions @, ®; des seules variables x, y, z, telles qu’on ait

' ’ '
R 2 " 20
_— _— - -
S"’ da o dy 0 2z
(2[5) A" N AP
e __ % o %o :II:__( v
T a 0 T 2z

Supposons, en outre, que les trois quantités &, b, 90 soient égales & zéro.

NoUS ADMETTRONS que, dans ce cas, la vibration pendulaire excilée sur le systéme
est longitudinale (*), c'est-d-dire qu’elle est représentée par I'ensemble des égalités (182)
et (187).

M1 convient de répéter ici ce qui a été dit dans la note du n° [23].
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Chacune des deux quantités (B, + @'), (P) 4 ®") doit vérifier I'équation de la
dilatation relative aux égalités (183 bis). Si donc nous posons

/.! ) , ° , ,
i“b'z—[);, g;Aq)o_’_éz_(bo:—p

(216) z: A(b:) + T:‘ 0 1 2

la fonction @' doit, en chaque point soit du corps 1, soit du corps 2, vérifier I'une ou
l'autre des deux équalions

»'=p,,- ;40" 4 [m ' =p,.

4=

{217) A" + T

Les égalités (173), (179) et (215) donnent, en chaque point de la surface S,,,

r 1
(D D(I)o ’ bq)o___ ’
2 - So N
ton an
,(‘)18) 1 2
. n "
Dr D‘1)0 ’ bq)o___ "
*dn, *on, ° :

Les égalités (184) ct (187) exigent qu’on ait, en tout point de la surface S,,,

2 20/

on, * n,

4

=—s,. -

(219) D;

Enfin les égalités (187) et (175) montrent qu'on doit avoir, en tout point de la
surface ¥,
QD'

{220) N g

La fonction ®" doit, de son c6té, vérifier des. conditions analogues aux condi-
tions (217), (219) et (220).

Ainsi sera déterminée la vibration pendulaire longitudinale que, dans les condi-
tions indiquées, 1'excitateur engendre, par hypothése, au sein du systéme.

[27] Nous allons indiquer comment on pourrait représenter la fonction ®' par un
développement en série de fonclions fondamentales.

Supposons qu’on. connaisse la valeur ¥' que la fonction ®' doit prendre en un
certain point bien déterminé M du systéme :

(221) d'(M)=1".

Si le systéme s’étend A l'infini, une telle valeur sera connue, car on doit avoir &
Iinfini ¥' =o.
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Nous opérerons alors de la maniére suivante :

I. — Nous formerons une fonction &', (x, y, z) vérifiant les conditions qui vont
étre énumérées :

Au point M, on a
(222) s’ \(M)=w".

En chaque point du diélectrique 1, on a

I
p 3 A :——1—.
(223) a @

En chaque point du diélectrique 2, on a

(223 bis) ‘ Ad, =22

En chaque point de la surface S,,, on a

da! da!
(330) R LS
on, n,
En chaque point de la surface ¥, on a
dq)
225 =
(225) N :

ne peut exisler plusicurs déterminations distinctes de onction ¢’ assujeltie
1 1 l 1 16t 3 distinctes de la fonct N j

]

& vérifier les conditions (222) a (223).

Supposons, en effet, qu'il en existe deux, ¢’ , t',, et posons
(226) 0 =1 —q .

La fonction &', vérifiera les conditions suivantes :

Au point M, on aura
(227) ¢, (M) = o.
En tout point soit du diéleclrique 1, soit du ditlectrique 2, on aura

(228) ) A6 = o.

0

En tout point de la surface S,,, on aura

N o
“o ' D0

(229) D'

' dn, *on,
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En tout point de la surface X, on aura

NA
N

(230)

=0.

L’égalilé (228) permet d’écrire
{231) fDO' A6y dOS, +/D'0’ A6, d33, = o.
Les conditions (229) et (230) permetlent de remplacer cette égalité (231) par la
Sl @)+ (5)+ (&) ]
ARICHRC IR CONIEE

Les deux pouvoirs inducteurs spécifiques D’,, D', étant positifs, cette égalité (232)

suivante :

(232)

exige qu'on ait, en tout point soit du corps 1, soit du corps 2,

20 2! 20,
—=o, =o, =o0.
R dy oz

6', a donc méme valeur en tout point du systéme. En vertu de I'égalité (227), cetle
valeur ne peut étre autre que zéro. L'égalité (226) nous montre alors que ', ne dif-
fére pas de ¢,
Existe-1-il effectivement une fonction o', qui vérifie les égalités (222) & (225)?
Dans le cas ou le systéme ne renferme que deux diélectriques, 1 et 2, ou le dié-
lectrique 2 est borné par une surface limitée et convexe S, ou le diélectrique 1

’

s’étend & U'infini, enfin ou le rapport ﬁf est compris entre certaines limites, I'exis-

1
tence de la fonction ¢, a été établie par M. Carl Neumann; dans ce cas. d’ailleurs,
la détermination de cette fonction dépend d’une équation fonctionnelle de Fredholm.
Nous ADMETTRONS d'une maniére générale Uexistence de la fonction ',

II. — Nous formerons une fonction ¢, qui sera assujettie aux conditions sui-
vantes :

Au point M, on aura
(233) ¢' (M) =o.

En tout point du diélectrique 1, on aura

(234) Ag' = — 22
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En tout point du diélectrique 2, on aura

. G
(234 bis) Ad', = — EOT .
2
En lout point de la surface S,,, on aura
3 r 3\ r
(235) | AR (i
n, an,

Enfin, en tout point de la surface 2, on aura

(236)

La détermination de la fonction ¢, fait I'objet d'un probléme tout semblable &
celui qui détermine la fonction ¢’,. Cette détermination ne comporte aucune ambi-
guiteé.

III. — Nous considérerons de méme une fonction o', qui se déduira de la fonc-
tion ¢', comme celle-ci se déduit de la fonction ¢’,, et nous poursuivrons indéfiniment
le méme procédé de construction de fonctions fondamentales.

Cela fait. ApMETTONS que la série

(237) P = + <2]j> ¢, + (2—;—{> A

soil absolument el uniformément convergenle, ainsi que les séries oblenues en prenant
une ou deux fois, par rapport & x, y ou z, les dérivées de ses termes. 11 est aisé de
voir que la fonclion @', représentée par le développement (237) vérifiera les condi-
tions (217), (219), (220) et (221).

La fonction " sera donnée par un développement semblable.

(237 l)lS) [ — GZ -+ <%—F> 6';’ + (—2;1—7‘1:> GZ 4+ ...

Par analogie avec ce qui a été démontré dans les circonstances ol les développe-
ments en séries de fonctions fondamentales ont éLé rigoureusement justifiés, nous

ADMETTRONS la proposition suivante :

Lorsque T tend vers une période longiludinale du systéme, les fonctions @', d",
données par les développemenls (237). (237 bis), croissent, en général, au dela de toute

limite.
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11 suffira alors de reprendre les considérations qui constituent, en Acoustique, la
théarie de la résonnance, pour parvenir a cette conséquence :

8i, sur un systéme formé d’un nombre quelconque de corps privés de conductibilité,
un excilateur exerce une action périodique simple, il engendrera, en général, dans le
sysiéme, des vibrations électriques simples de méme période que celle action; dans le
cas particulier ot celte période coincidera avec une des périodes longitudinales du sys-
téme, et dans ce cas seulement, il y aura résonnance éleclrique.

Fac. de T., 3¢ S., VL. 31



SECONDE PARTIE

Les corps doués de conductibilité.

CHAPITRE PREMIER

Le systéme est formé dun corps conducteur unique.

§ 1. — Equations vérifiées par les composantes du champ électrique total.

[28] Apres avoir étudié les propriétés des oscillations électriques sur un corps
ou sur un systéme de corps dénués de toute conductibilité, nous allons aborder
I'étude plus compliquée d'un corps ou d’un systéme de corps doués de conductibilité.

Lorsque nous aurons affaire & un corps conducteur, nous en désignerons par ¢ la
résistance spécifique que les électriciens appellent aujourd’hui résistivité. En général,
en méme temps que le corps sera supposé conducteur, on le regardera comme
capable de polarisation diélectrique; pour représenter les diverses grandeurs rela-
tives & cette polarisation, nous garderons les notations qui ont été fixées au n° [1].

Au présent chapitre, nous supposerons que le systéme se réduise & un corps
homogeéne unique.

Nous avons donné autrefois (') les équations vérifies, dans ce cas, en tout point
du corps considéré, par les lrois composantes du champ électrique total; avec les
notations dont nous faisons maintenant usage, la premiére de ces équations se peut

écrire
J uD'—Fk % hmuzs’ 0 2anua’ 02 »z
238 — A% 4+ 9mua’K'— —o.
(238) a v + ko et ke e o ' aH

Mais en vertu des égalilés (8) et (10), nous avons identiquement

(") P. Dungw, Sur la propagalion des aclions électrodynamiques, équations (155) (Annales *

de la Faculté des Sciences de Toulouse, t. X, B, 1896).
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Si donc nous posons

E % 7 A L P«
= = , —_ K' — , = — K = ,
(239) X - +K ) 9 . + N 3 3 TR
X 3
4 — 4
(340) © da dy RER
I'égalité (238) deviendra la premiére des égalilés
o %0 J <Dm an > hze'n 30 , 0%
— —— — — 27AY —— == O,
kdxdt ot \ oz dy Ik dx e
w0 Al <Dn N > hme'n 00 , O .
(241) ko M\ oz oy TR T
w2 o ( Al bm) bme'n DO " >3 Y
kzat, wM\Yy & F e TRE T

Les deux autres s’établissent d’'une maniére analogue.

§ 2. — Deux cas ot le mouvement électrique est délerminé sans ambiguité.

[29] De ces trois équations, nous allons tirer une égalité qui nous permetira
d’établir certaines propositions.

°3

Y de;

- . . . X N ,
Multiplions respectivement les équations (241) par —‘l—d(fi, ——%—d(b,
(S Y

ajoutons membre & membre les résultats obtenus; intégrons pour le volume enlier
du systéme en transformant certains termes a I'aide d’une intégration par parties;

“nous obtenons 1’égalité suivante :

' i =) X N
f% +l 3 ac)——%cos(\l 2) o
)X 39 clén
+ [?t—- COS (N, y) —YCOS(N,Q?)] Ef. g ds

/[——— cos (N, x) + —?-cos Noy) + - Dx cos (N, z)] <_3ti + lme'@> as

N YU 2 g w\m D (2% 2\
+/[at<az‘ dy bt+bt<bw AT (7\7_35>Y]d6

W A0 20
+_/€_ (‘T“'{—lmf@) Y do
+

X O¥E WYY 03 03
+°m“./<‘ NN T az*)do:o'
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Supposons qu’'en tout point de la surface ¥ et & tout inslant, on donne :

ou bien (cas A) les trois composantes &, 4, { du champ électrique;
ou bien (cas B) la composante normale

Zcos (N, x) + 7 cos (N,y) + {cos(N, z

du champ ¢lectrique et les trois composantes L, M, N du champ magnétique, ce qui,
en vertu des égalités (g), revient a se donner les trois quantités I, m, n.

Imaginons qu'd ces mémes données puissent correspondre deux mouvements
électriques distincts correspondant I'un au champ (%', «/, {'), l'autre au champ
&, ", 4"). Posons

" !

(243)

ey
BN

Y o P ’
) = = (=0t

NS

Ces quantités %, v, { vérifient encore les équations (241) et, partant, I'égalité (242).
Mais, en tout point de la surface £ et & tout instant, on a :

Dans le cas A,

et, par conséquent, en vertu des égalités (239),

X W 3
(244) Y YRR ]

“Dans le cas B,
l—o, m=—o, n=o,
Zcos (N, x) + 7 cos (N,y)+ ¢ cos (N,2) =o

ou bien

-~

l om on
l ‘ o o

X 29 . 23 _
E—cos(N,x) +Fcos N, y) +—BTCOS(N’ z)=o.

~

(245)

Or, si l'on a, en tout point de la surface ¥ et & tout instant, soit les égalités (244),
soit les égalités (245), les intégrales relatives & cette surface disparaissent de I'éga-
1ité (242); en tenant comple des égalités (239) et (240), on raméne alors celte éga-

lité (241) & la suivante
PN, [\ /N
—— do
>+<w>+<u>+<w>] ’

ot [T

AL
o
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J désignant la quantité suivante :
_ vK IWEAS Dm>2 (_\_n_>:|
J“E/ Im(t>+k|:<3t>+<3t EAY;
R Ma EANIALAY (M%)Z EO
+ 6 [(at>+<at>+ N _d'

Imaginons maintenant qu'a linstant initial, les trois composantes du champ

(247)

électrique total aient 6té données, ainsi que leurs dérivées du premier et du second
ordre par rapport 4 £; imaginons, en outre, que ces données soient les mémes pour
les deux mouvements considérés; on a alors, & I'instant initial,

{ ’f;‘:o, 'n:O, 'Q:
% =o0 bl =o0 ——C =0
(248) N ’ N ’ 2 ’
2z Y Ay Y 2% Y
w N a2

en sorte que la valeur initiale de J est nulle.
D’aprés son expression (247), J ne peut jamais étre négatif; d’autre part, d’apres
I'égalité (246), J ne peut jamais étre fonction croissante de t. J restera donc cons-

tamment égal & zéro et il en sera de méme de sa dérivée par rapport 4 t,"donnée par
I’égalité (246). On aura donc, quel que soit ¢,

(249) f[lc ( Y, ) <%>+ (NTT%L ( :;l >2]do =o.

En d’autres termes, on aura, en tout point du systéme et & tout instant,

]
:O’
(5) Jl
{200
) om an
=4} =0 =0.
o ’ o ’ Q

Mais, dans le cas A aussi bien que dans le cas B, on a, en tout point de la sur-
face X et & tout instant,

oY

{(251)

wi ~

P
cos (N, w)+——cos(\ v)+\—§cos (N, z)=o.

Dés lors, par une démonstration semblable & celle qui a été donnée au début du
n° [5], nous prouverons qu’on a, en tout point du systéme et a tout instant,

W_ o wm_ X
w0 T
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Comme d’ailleurs, a I'instant initial, les trois premiéres égalités (248) sont véri--
fiées en tout point du systéme, nous aurons, en tout point du systéme et a tout.

instant,

(252) - E=—o, n=o0, {=o
ou bien, en vertu des égalités (243),

(253) %’:E” 7‘,:7‘”, Cl:{.”-

Dans le cas A aussi bien que dans le cas B, le mouvement éleclrique est délerminé
sans ambiguilé par les équations (241), pourvu quon se donne, & Uinstant inilial et en
chaque point du systéme, les irois composantes du champ électrique total et leurs déri-
vées premiéres et secondes par rapport au lemps:

§ 3. — Stabilité élecirodynamique du mouvemement électrique sur un corps conducleur.

[30] Le mouvement posséde-t-il, au moins dans le cas A, la stabililé électrody-
namique de premiére espéce? C’est une question & laquelle nous n’avons pu trouver
de réponse enticrement générale. Nous n’y pourrons répondre qu'en admettant
I'Hyporuise bE FArRapAY ET DE Mossortr; cette hypothése consiste en ceci : La con-
stante ¢' des aclions électrodynamiques est un si grand nombre quon peut, pour tout
dié’leclrique, remplacer le pouvoir inducteur spécifique D'=1 + 4=<'K' par le produit
4rs' K.

Le théoréme de Clebsch, convenablement généralisé (*), permet, a toute inté-
grale (2, 7, {) du systéme (238), de donner, et d’une infinit¢ de maniéres, la forme

suivante :

AP’ Al P!
2D = + ! o = — ' N r
( Zl) < Y P i ‘\y q, S 2z )
(253) . Q' . 2R’ o — R’ _ P! o A . Q'
e P==z dy =% 2z’ dy 2z

@' est une intégrale de 'équation des dilalations qui correspond au systéme (238);
c’est-a-dire que &’ vérifie I'équation
hme! ana’l 3*P' A

J
256 T AD - —— A — ond’k K —— =o0.
(256) D 30 Ad' 4 3 - 3 27 7

(*) Pierre DungyM, Sur la généralisation d’un théoréme de Clebsch (Journal de Mathéma-
tiques, 5° série, t. VI, 1900, pp. 215 sqq.).
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3

P, Q', R sont trois intégrales de V'équation des rolations relatives au méme sys-
téme; c’est-a-dire qu'on a

D a% \spl V \sP!
\—t. AP — il ‘\l2 —_— QKQ,HK' (\tl = o0,
4 p d ¢
2 ematn Q) , Q!

(257) . 3 AQ'— TS —ana’p K —- =0
\ 9 a! \BRI \3RI
:—[ AR — 2F2E ‘\t* — ana’u K’ LV“ =o.
¢ p A ¢

On a: en outre,
P’ Q' R’
(258 — =0
(258) ox + dy + 0z

Parmi les déterminations en nombre infini dont est susceptible I’ensemble des
quatre fonctions @', P, Q', R/, supposons qu’on en ait choisie une.
Les égalités (257) équivalent aux égalités

2 )P’ !PI
Ap — 2EAE YEl ara’uw K’ ‘Mg =f,
9 ¢
2 A Dz 4
{259) AQ’*—zﬂ—a&‘—S———z a’uK' \'? =g,
¢ A d
2 \R' NIRI
AR'— gﬂ: & ‘Dt — ana’nK' N =h,

f> g, h étant trois quantités indépendantes de ¢. D’ailleurs, les égalités (258) et (259)
nous apprennent qu'on a
of g dh

(260) o + Sy +b—z:O

Si W désigne la fonction potentielle électrostatique totale et &, (§ ., J6 les fonc-
iions de Helmholtz, on a

AW a5 W oa % AW a3

—_—= = € —_— = = E —(———=-——""
VA ' DRV : VAR

en sorte que les quantités I/, m, n, définies par les égalités (8), ont pour expressions

l—_i3<3g D%) m—=—
- \/;Dt z dy /) -

E=—¢

a <Nf(} \“’F)
60 \/2 o oz

o/

ne—_ @ d [ F J)
T \/;Bt<by 2

8
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A
D’autre part, on a(*)

ag TV 3\/27as'p dW | a(uD’ — k) 3'W
N S — — — 2T — —_ __
(262) Y Y2 Y Va

. et deux équations analogues.

Des équations (261) et (262), nous tirons les équations

and’u DY)
Al — 208 ——:l — ana’w K’ ;t” =o,
[ d d
. ana’y. dm ’m
(263) Am— Z2E (\t —2na’p K’ T
4 4 4
ama’y. n L, on
An — T R)%t——QﬁCL:“I\’—\lT:O
4 ¢ ¢
Mais les égalités (8) et (254) donnent
26 | — o' o m— ar! o — p'! ¥ .
( -') ’ ’ .
hF4 dy dr 0z dy dx
Les égalités (263) peuvent donc s’écrire
) [T ana’u dq' ., g
—| A¢ —— — — 2za’u.K’
2w L T T TN g ]
(265) . d anatu dr' M
— % At = 2T0F t\l — ana’w K’ ‘\l" :l =o,
[ P d ¢
ou bien
,_oma’p 2 TR
ap o R e =g
ana’y g’ ’q¢ de
266 A¢ ——= 2 —aza’uK’ !
(266) q P bR =5
ana’y o' ’r de
Ar' — — 27a’u K =
o MR T

¢ étant une certaine fonction de x, y, z, L.

En vertu de leur définition, donnée par les égalités (255), les fonctions p’, q,r
vérifient 1'égalité

(267)

(") Le probléme général de UEleclrodynamique pour un systéme de corps immobiles, équa-
tions (75) et (76) (Journal de Mathématiques, 6° séric, t. X, 1914, p. 383).
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en sorte que les égalités (266) nous donnent
(268) Ag =o0.

Mais les égalités (255) et (257) nous donnent aisément trois équations dont la pre-
miére est

Comparée A la premiére équation (266), cette équation nous donne la premiére
des égalités
¥ Py %

:0, - -

o
dx dydt ’ 2zt

—=O0.

Les deux autres sétablissent d’'une maniére analogue. Ces égalités, a leur tour,
donnent 4 ¢ la forme suivante :

(269) - 9@, y. 2, ) =4, ¥, 2) + 700
En vertu de cette égalité (269), 1'égalité (268) devient
(270) Ay =o,

tandis que les équations (266) deviennent

ana’y. p' Xp ¥
Ap' — 2% EPHYLY Gl —
P o TR T
ama’un dq »q
271 A ——— — ana’p. K/ =
( 7 ) q 0 Y; Ta . \tz ay 4
2 D ! \2 ! \"
Ar TR T etk S : =
e d ' o oz

ana’w Op ?p' g h

Ap' —amatu K S =

o ot TR T T Yy

ana’p dq' 7 of

279 A I — 2 K! —_— Y
(272) T 2 7N T e T e

axa’y ' *r! of g
Ar' — — ama’p K’ = _—.

o TUEMRNE Ty T

Fac. de T., 3¢ S., VL. 32
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La comparaison des-égalités (271) et (272) donne

R g b
e 2z oy
MW M d
(273) S
dy ox hF4
Yy
v <o T ., —0
oz dy dx

Enfin, les égalités (255) et (g) donnent sans peine

AP =—1, AQ =—m, Ar'——n.
Les égalités (263) peuvent donc s’écrire
DP, be r
A(AP’ 2ATA s a!‘u.K' I:):O,
p o o
ama’p Q' B’Q’)
Al AQ' — ana’u. K’ =o,
( Q o o T )7 °
, _ama’w ORT PR
A<AR— Y ana’pn K Y
ou bien, en vertu des égalités (259),
(274) Af=o0, Ag=o, Ah=o.

Cela posé, considérons les fonctions

) 0
‘/ - — —
i (I) (I) 27ra2y.!‘l/(t to)’
P .
P="r o St —1t),
(279) .
Q =(\) - 27!(1,‘.}, g(t—lo)7
R=R ——"_h(t—1).
2TA

En vertu des équations (254), (255) et (273), nous aurons

D P AL
(276) EZ_B,]; +p, 'r‘:—a—y-—i—q, {=— oy +r,
0 R R k0
(277) pP= 2y’ =% 2 l_by_Dw'

En vertu des équations (256) et (270), nous aurons

d hme' ana’k 3P AN
- "— \D Ad — —ana’kK' ——=—o.
(278) D ot AP+ ¢ o . hlA
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En vertu des équations (259) et (274), nous aurons

ana’u P . i .
AP — Y — ama’w K 0
2 D 32
(279) AQ —E—Ti;l—‘u D? — ana’wK' M? =o,
ana’ AR . o YR
AR Y ana’pK =0

Enfin, en vertu des égalités (258) et (260), nous aurons

3P Q2R

(380) w Ty Te

247

[31] Imaginons qu'un champ quelconque ait été mis sous la forme que défi-

nissent les égalités (276) & (280); pour ce champ, une égalité sera vérifiée, que nous

allons établir.

I. — Multiplions I'égalité (278) par

hze' VD
! (o)X
<D T \ﬁ)d

intégrons pour le volume entier du systéme; transformons certains termes a 'aide

d’une intégration par parties, en nous souvenant, d’ailleurs, que D'=1 + 4=<'K'".

Nous obtenons 1’égalité suivante :

hwe' Dq) pRY
/I:( \acb_t> cos (N, x)

+ ma L’lt

Z(D 2 , Dﬂ(b 2
[4 e’ (——+ w) +K <w> ]da
arna’k D’
+ 7 ./(az*) 4G

e’ bfb LAY
( oy bt> cos (N, y)
hme’ Dq) D’(I) hre' XD
+ ( - TV at> cos (N, )] ( N
I hme’ be P hre' dD P \?
8 - o o '
(@81) 4 +3 [( Mcbt) +< oy TP ayat>

hme’ ,’
+<P 0z t)]dC5

) ax
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II. — Les égalités (277) donnent identiquement

Q 0
& dy oz
On en lire .
brne' [ p g Dr> ( ’p iq ’r )
) 4D —
Tyt ) TP e Ty a e )=

Multiplions cette égalité par

hre' 9D
D’ _ (@}
< A1 + o o ) da,

* intégrons et transformons l'intégrale comme dans le cas précédent; nous trouvons

Iégalité
[ hme  op N
| /l:( ; p+Dv>cos(N,x)
hme Q
+<”f q+D’\—(§> cos (N, y)
[ o 12 b 2
+<l'“€ ’ +D'_’>cos (N, z)](l”“ l.u)'ﬁ_‘ﬂ dx
o ; Y Y
(282) =/ hze' W\ D /hne’ db !
e , op\ T , 0D
+/ < ; P+D bt~>bt< Y Da;;;w)
hre' bq) J (Zm's' hL) , Q3D
! — D
»+<p 1+ )\ Gy T bybt)
P\ 0
)w

<lms' \(I) >:| 4S —o.
e oz 37 I

Multiplions respectivement ces égalités par

4me” QP AP hme' D 3Q ) < 4me' R IR
R Y ~ 2 Ly o D) do.
< PR az*)‘l(‘j’ < o TP )6 TRRS az’)

Ajoutons membre & membre les résultats obtenus, intégrons pour le volume
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entier du systéme, et transformons l'intégrale en tenant compte des égalités (277);
nous trouvons I'égalité

’ "M hS _ hme' M) , P
f;[(__lms e +D’ i ) cos(N, z)— <——4Ta
o dy dy o o 0z bz o

cos (N, y):l

)
y <l;1':s PP >
o o
+ [( 4:5' l\l D \\Z bz) cos(N, ) — (4= M’ ;;’;t) cos (N, z)]
(2203
E e
s ey w (e 23
(5w (e s)
%(azar%+D'bt§t>%<l‘:""r+D' :’tﬂ dcs =o.

IV. — Les égalités (277) donnent

d or o N P
AP:—(—q——’>, AQ:—( ! ——DB- , AR=— <—p-——q->
(¢

hF4 dy oy QX

Les équations (279) peuvent donc s'écrire

VRS S
dy oz o o ol
dp I ama’p 2Q *Q
28 L ITREY  aratuK —0o
(a84) R R T
g dp  2ma’n R . R
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De la premiére de ces équations nous déduisons aisément I'équation suivante :

d /h=e' ,or d /[h=e' , 0g
G v)‘%(?‘” b

awa@’w [fe’ DP ,b’P) , (e’ P PPN
mp (p Tt+DV ana’yu K(p \l’+DF>_O,

' (285)

a laquelle on doit joindre deux autres égalités analogues respectivement tirées des
deux derniéres égalités (284).
Multiplions 1'égalité (285) par

e’ P , P
(T ; +D 37> des.

Membre & membre, ajoutons, a I'égalité obtenue, deux autres égalités analogues,
et intégrons pour le volume entier du systéme; aprés les transformations habi-
tuelles, nous trouverons I’ égalité suivante :

Syt )on]

4me’ AP , ’P)
X(T_DF+D—th

+|:<lm€ +D p>cos(V Z)—-(l%l +D’ :t>cos(\l ac)J

P
4re’ 2Q , 9°Q
X < A _*_D‘Dlz )

(286) < + [<475 +D’ q) cos (N, ) — (Am p+D \t)cos (N, y):l

¢
4=e’ R D’R)
X <T a T A1 gdz

rad hme’ LP> < hme D24 cq\ (l;i D’ d‘) :Ido
+2dt_/I:< + q+ \t/ + r+
he’ J hme' DQ) <Zr:s ,nR)]
* K — = T ! +D do
+ etk dtf[(\ P+ bt>+( QD' ) + (£

2 —2! JF 2 Q d
+2ﬂapf[</_l-_-P+D, :l;) +(4%EQ +D' Q) (ﬁB—I-D’ 3) ]d(ﬁ:o.
o) p [4 ¢

Ajoutons membre & membre les égalités (281), (282), (283) et (286), aprés avoir
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changé le signe des égalités (282) et (283); en tenant compte des égalités (277), nous

trouverons 1'égalité

f[(l”r‘ s DE> cos (N, x)

b D' .
+ <ﬁ-r,+D'i>cos(N,y)
¢

Y
e A \
+<4“‘:+D"*>ms(ﬁ ~)]<l”‘”i’+D' ,)dL

(l p Dl

‘ DV
+f3|:<[’i7‘+Dv )cos(\l z)—(éEzH_Dr \;)cos(N,y):I
4re’ P , P
X (TY D)
N4 )
(287) + I:(Z”TE I+ D= ) cos (N, x) — ([”: 4D — > cos (N, z)]
¢

b 2Q ,b’Q)
X( TR T

)cos(N v)—(l‘ie +D’ n)cos(N w)J

4me' AR , 'R :
X <T 3 +D e >2d2«

ST

n |:<117:E'E D N
p

N

_27ra’lf‘/'<\d:>da

0 o

:map 4re’ DP , P > (lnre bQ Q) <lute' R ,\R>]
./[( w )t p ot )T ¢ w P “

égalité dans laquelle

o ST ) (e ) (e )
IRLINTRL ,
(288) +-rak/|:lme <p . t,>+K<M,>]dC5
- , hre' QP \’P * (4w’ 0Q L QN\? /hwe’ DR , "R\
‘”‘I‘f[( T V’>+<T w tD Dt*>+( o o +D a#)]do'

[32] Sur un méme corps, a la fois conducteur et diélectrique, concevons deux

mouvements électriques successifs; le premier correspond au champ (%', v/, '), le
second au champ (%', ", {"). Ces deux mouvements correspondent & des conditions
initiales différentes; mais en chaque point de la surface ¥, chacune des trois compo-
santes du champ électrique varie suivant la méme loi.
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Soit (&, v, ) le champ, déterminé par ces égalités (243), qu’il faudrait composer
avec le champ (&', +/, {') pour obtenir le champ (£", +", ). En tout point de la
surface ¥ et A tout instant, les trois composantes de ce champ (&, v, {) sont égales
a zéro. ‘

Comme chacun des deux champs (&', 7', ¢), (€', 1", {"), le champ (%, v, {) vérifie
les équations (238), en sorte qu’on lui peut appliquer I'égalité (287); mais comme
chacune des trois quantités &, +, { est constamment nulle en tout point de la sur-

face X, cette égale se simplifie; on y peut effacer les intégrales étendues a la sur-
face X; elle se réduit a

dJ ana’ k D

4ot (2

27rau bme' M’ D’P 2 fhme' D ,D’Q) 4’ DR ,D’
/[( "t Dt’>+<p AR +<T T )]dm'

Le second membre de cette égalité ne peut étre que négatif ou nul; si donc nous
désignons par J, la valeur initiale de J, nous en concluons '

(289)

J<]

= 0

et a fortiori, en vertu de I'expression (288) de J,

(290) f[(l'mﬁ-g-D' E')-}(l‘mq-yD' ) <Z‘T€§+D"E>:|dc$§ﬁo.

Cette condition n’offre pas, en général, de signification physicjue simple; mais
elle en présente une dans le cas oti 'on admet I'hypothése de Faraday et de Mossotti;
dans ce cas, en effet, on peut, & D', substituer 4=<'K’, en sorte que la condition pré-
cédente devient

o ST e T

Or, en chaque point du corps, la densité du courant de conduction a pour com-
posantes

tandis que la dens!i} du courant de déplacement a pour composantes

E ' o o
14 . I !
=K -, =K A w =K — T
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La condition (291) devient donc

(292) S @ty + @+ )+ 0+ w40 £ g

La stabilité électrodynamique intégrale du systéme en résultera certainement
s’'il est possible, aux données initiales, d’imposer des limites supérieures telles

J,
soit inférieure 4 une quantité positive, quelconque d’ailleurs, donnée
81:2 2 q p q q

d’avance.

que

[83] Pour examiner ce dernier point, cherchons ce que devient 1'expression (288)
de J quand, en vertu de 'hypothése de Faraday et de Mossotti, on y suppose ¢ extré-
mement grand. Nous ne savons rien de la valeur de k; il se pourrait donc que k fit,
comme &', une quantité extrémement grande; nous serons méme amenés sous peu a
faire cette supposition; nous ne devons donc pas supposer a priori que k soit négli-
geable devant ¢'. ‘

Nous devrons donc écrire :

o T B (B ke Y (2 XY
Sﬂ,e,,_f[(—f;JrKW)Jr(p FR (4K ]do

109 AR
f G x5 )

, R L AWAR] ,a"Q>= <1 R a=R>
+amatuk f[(o at \t’>+(5 VR T A VAR e ]da

Mais la premiére égalité (289) donne

13p K,_b_’_li___x_,
p i amd’m

D’autre part, les égalités (g), (276), (277) et (280) donnent
AP _— .

Par la et par deux autres considérations analogues, I'égalité (293) devient

LT K,as>2< R VWATIRIS oy P2
87:55“_ [(?"‘ T‘Z‘ + + >+<‘p“+ 3t>:]

K’ ’ 2 e
(294) + 2‘m,y\/(l‘ +m* 4 n*) do
k 1P , '
+ ame’ <; ot +K P >dCS.

Fac. de T., 3¢ S., VL. 33



254 ~ P. DUHEM.

On peut évidemment, aux valeurs absolues initiales de

g E. ) 7' ’ C y
' = Y e
5 Xoow X
(299) ? VA A T
L m, n,

imposer des limites supérieures telles qu'au second membre de l'égalité (294), les
deux premiers termes soient inférieurs a telles grandeurs positives qu’il aura plu de
choisir. Dés lors, le dernier terme doit seul retenir notre attention.

Les égalités (276) et (277) donnent

d (1 2D ,,m)) 1% aE
¢

ACEY 5

d /1 , 9'Q 2 <I R ,b’R)
+ <— +K‘> pbt+Kbt’

ou bien, en vertu des égalités (279),

d /10D PR 1 0% % d d
— (=~ (! - K — + —AQ — AR.
Dw(p Dt+k Dl’) 93l+ az’+oz Q dy

Mais les égalités (g), (276), (277) et (280) donnent
AQ=—m, AR=—n.

Nous obtenons donc la premiére des égalités

[ (1230 K’ a’q>>_1 2z LK %z <bln Dn)
2z \p ot 0 )T ot o @ /)’
D /1D 3 10, O dn al>
el ! — K’ — —_),
(200) Ay <9 w Tk aﬁ) PETARET: (oac 3z
0 .ibq)_}_K’ re :}_‘\_g+K'EP:_<_D_L_ET.>
0z \p ot on ¢ o dy dx

Les deux autres s’établissent d’'une maniére analogue.

Ces égalités (296) nous montrent qu’aux valeurs absolues initiales des quantités

h3 A oy d*n hld %L
A1 a4 a7 1227 P a7
207
(297) NJ NJ om am an n
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on peut imposer des limites supérieures telles que les valeurs absolues initiales des
trois quantités

i(lb'b K a’q)>,

d \p o '

) /10D FdN -
- LK ,

dy <9 T z-ﬁ)

d /1), b’d))
32<57+1‘F

soient, en tout point du systéme, inférieures & une quantité positive quelconque a
donnée d’avance.

Soit M un point du systéme, arbitrairement choisi; soient ®'(M), ®"(M), les valeurs
2

s 7 s 0D ) . N .
qu’a I'instant initial, %—[, Y prennent au point M; soit & la plus grande distance
Y d

entre le point M et un autre point du systéme. A l'instant initial, nous aurons, en
tout point du systéme, l'inégalité

1 0D X T S e
(298) —% M,—?d)(M)—Kd)(M) < as.
Posons
(299) C = — $'(M) + K"D"(M).

e

Cherchons une fonction y(¢) qui vérifie I'équation

1 dy(D) &'y
3 —_—— 'L —_C.
(300) p dt +K de ¢
L’intégrale générale de cette équation est
— 1
(301) y()=—Ct+Ce ™ 4,

C' et C" étant deux constantes arbitraires.
Considérons la fonction

(302) B, =0 + ().

Il est clair que les égalités (276) demeurent exactes si I'on y remplace @ par d,;
il en est de méme de 1'égalité (278), car 1'égalité (279) donne

% i) g T _

de dr
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. . y 1 N | SET) L )
Mais au point M et & I'instant initial, (—P— 3 + K’ \ﬁ) prend la valeur

[—:— (M) + K’d)”(M):l :

. T odyl d*(¢
tandis que L—;- (—z;t—) + K’ c;t() y garde la valeur — C; on voit alors, par I'éga-

lité (299), que
1
(303) —;-(D;(M) + K'®{(M) =o.
Nous pouvons donc supposer qu'on reprenne tout ce qui a été dit a partir du
n° [341], mais en substituant la fonction @, i la fonction &; nous pourrons, d’ail-
leurs, effacer ensuite I'indice 1 qui affecte la fonction ®,. C’est dire que nous pour-

rons ¢écrire toutes les égalités et inégalités de (276) & (298), mais en y joignant
Iégalité ‘

(303 bis) -;— P'(M) + K'd"(M) = o,

moyennant laquelle T'inégalité (298), vérifiée a I'instant initial en tout point du sys-
téme, deviendra )

(304)

On en conclura qu’a Uinstant initial, on a 'inégalité

1 )b LN\ aes
(30H) f<? % + K 5?) do < a’3°0,

© étant le volume du systéme. On peut toujours choisir la quantité a assez petite
pour que le second membre soit plus petit que toute quantité positive donnée
d’avance.

En réunissant les résultats que rappellent les deux tableaux (295) et (297), on
arrive au résultat suivant :

Si U'on admet I'nypornise pE FArapaY ET DE MossotT, on peut, dans tout le sys-
téme, aux valeurs absolues iniliales des trois composantes =, v, { du champ élecirique
et de leurs dérivées premiéres el secondes par rapport a t, x, v, z, imposer des limiles
supérieures lelles que

/ [(@+u)+ @+0) + w+w)]do

demeure inférieur & une grandeur positive quelconque donnée d’avance.
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En d’autres termes, moyenn.ant cetle hypothese, si les trois composantes du champ
électrique sont données, & chaque instant, en toul point de la surface qui limite le sys-
téme (cas A), tout mouvement électrique posséde la stabilité électrodynamique intégrale.

§ 4. — De quelles oscillalions électriques propres, quasi-périodiques,
un corps conducteur est-il susceptible?

[34] Imaginons qu'en chaque point de la surface d’'un corps conducteur et &
chaque instant, on se donne :

ou bien (cas A) les trois composantes du champ électrique;

ou bien (cas B) les trois composantes du champ magnétique et la composante
normale du champ électrique.

Imaginons, en second lieu, que ces données soient des fonctions périodiques de ¢,
ayant une méme période T. ‘

Imaginons enfin qu’on soit assuré, au sujet des trois composantes du champ
électrique a lintérieur du corps conducteur, que ce sont, en chaque point, trois
fonctions périodiques de ¢ ayant pour période T.

Ces renseignements suffisent-ils & déterminer sans ambiguité ces trois compo-
santes?

Supposons qu’elles soient susceptibles de dcux déterminations distinctes, (5', 7', ¢)
et (&', ", {"). Soit (%, 1, {) le champ qui composé avec le champ (&', v/, ') donnerait
le champ (5", 4", {") :

!

iy
AN
ST

R N v___ v ’
) =1 —1, (=¢ 0.

Les trois composantes du champ (%, v, {) seraient, en chaque point du conduc-
teur, trois fonctions périodiques de ¢, ayant pour période T. En outre, en chaque
point de la surface T et & chaque instant,

ou bien (cas A) les trois composantes du champ électrique seraient égales 4 zéro;

ou bien (cas B) les trois composantes du champ magnétique et la composante
normale du champ électrique seraient égales & zéro.

Dans ces conditions, le champ (%, v, {) constituerait une oscillation périodique
propre de notre corps conducteur; cette oscillation se rapporterait, d’ailleurs, soit au
cAs A, soit au cas B. :

Une telle oscillation est-elle possible?

Dans le cas A aussi bien que dans le cas B, on lui pourrait appliquer I'éga-
lité (246). D’ailleurs, la quantité J, définie par I'égalilé (247), serait une fonction
périodique de ¢. D’aprés I'égalité (246), cette quantité J ne peut jamais étre fonction
croissante de ¢. Mais une fonclion périodique de ¢ ne peut, pour certaines valeurs
de ¢, étre fonction décroissante de {, & moins d’étre, pour d’autres valeurs de ¢,
fonction croissante de cette variable. J ne pourrait donc jamais étre, 4 I'égard de sa
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variable ¢, ni fonction croissante ni fonction décroissante; cela exigerait que J fht
constant, que sa dérivée par rapport A ¢ fit nulle, Cest-a-dire, en vertu de I'éga-
lité (246), que

(atg) STE )1%)1(3;;)1(;4)*}@:0.

Cette égalité entraine, en tout point du conducteur,

Al
— =0
hlA ’
o Q n
— =0, =0 - =0
) d ’ it

Mais, dans le cas A comme dans le cas B, on a & chaque instant, en tout point.
de la surface qui borne le systéme,

D_Ecos(N ac)—i-a?] cos (N, y) & N, z)=
bY; ) Y] ( ,y +—‘\‘t—COS(.,Z)—O.

La démonstration donnée au début du n° [5] prouve alors qu’on a, en tout point
du systéme et & tout instant,

b&_o Dn_o A
" T =

(306)

Dans le cas A aussi bien que dans le cas B, un corps conducteur ne peut admettre
aucune oscillation propre, rigoureusement périodique, qui ne se réduise & un champ
constant. :

[35] Mais au lieu de rechercher, sur le corps considéré, une oscillation rigoureu-
sement périodique, on pourrait se contenler d’y découvrir une oscillation propre
quasi-périodique. La quantité J ne serait plus assujetlie & demeurer rigoureusement
constante; on l'astreindrait seulement & décroitre avec une extréme lenteur. L’'éga-
lité (249) n’aurait plus besoin d’étre vérifiée exactement, mais seulement d’une ma-

niére approchée.
P ., 00 A dm dn
Pour que cela et lieu sans que les quatre quantités —-, —, —, — fussent,
a AT % i
en général, trés petites, il faudrait, en premier lieu, que la constante & de Helmholtz
elt une trés grande valeur, et, en second licu, qu’on edt, exactement ou approxima-

tivement, en tout point du systéme,

3 bl__ Dm_ Dn_
(07) ——DT—_O’ bt—-o, ——==20.
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En vertu des égalités (8), ces égalités (307) peuvent s’écrire :

Elles exigent que Z, 7, { soient de la forme
W
’

Ry

(308) n=r, —

ou &, 7,, {, sont trois quantités indépendantes de ¢. D’out la proposition suivante :

Ni dans le cas A, ni dans le cas B, un corps conducleur ne saurail présenter une
oscillation électrique propre, quasi-périodique; & moins que la constante It de Helmholtz
n’eiit une trés grande valeur.

Si une telle oscillation propre, quasi-périodique, est possible, elle résulte nécessai-
rement de la superposition d’un champ électrique constant et d’'un champ quasi-pério-
dique purement longitudinal.

§ 5. — Des mouvements électriques longitudinaux dont un corps conducteur est suscep-
tible quand la constante k de Helmhollz a une trés grande valeur.

[36] Voyons s'il se peut produire, sur le corps considéré, un champ électrique
qui vérifie les égalités

~/

l dm T
—= o,
¢ it Y;

3o7)

~J

Pour qu’un tel champ soit possible, il faut évidemment que les égalités (307)
soient vérifiées, a tout instant, en tout point de la surface £ qui borne le systéme;
que les égalités (307) et les égalités '

) ’*m n

(309) - =20, NG —=o0, =0,

soient, & I'instant initial, vérifiées en tout point du systéme.

Nous nous proposons de démontrer que, réciproquement, si les conditions (307)
sont vérifiées, a tout instant, en toul point de la surface £ qui borne le corps; si, &
linstant initial, les conditions (307) et (309) sonl vérifides en tout poinl du corps, les
équations (307) sont, a lout instant, vérifiées en lout point du corps.
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En effet, les équations (238) et les égalités (8) donnent trois équations dont la
premiére est

(\ ; \1 3
310) I omuad® 21 1

2

- ST &l . .
Multiplions cette égalité par SFE dd et intégrons pour le volume entier du corps.
C

Nous trouvons

dj — ¥\? ¥y
3 — = — — ) dO — ——dX
S i . /(at’)‘ N

égalité ou

T L\ A’ N LN WA
3 ] — — ) 2! .
(Br2) 2f|:<3xbt>+<bybt> (Dzbt>+mw K (Dt“’) ]do

Si, en chaque point de la surface %, la premiére égalité (307) est vérifiée quel que
soit ¢, il en est de méme de 1'égalité

en sorte que I'égalité (311) se réduit a

: dj _ ampa a‘-’1>2
@8 a==" ) ()

Cette égalité nous apprend que j ne peut jamais étre fonction croissante de ¢.

D’autre part, en vertu de son expression (312), j ne peut jamais devenir négatif;
comme, a I'instant initial, les égalités (307) et (309) sont vérifiées en tout point du
systéme, la valeur initiale de j est nulle; j ne pourrait changer de valeur qu’en étant,
tout d’abord, fonction croissante de ¢, ce que nous savons n’étre pas possible;
Jj demeure donc constamment égal & zéro.

Pour cela, il faut, en particulier, qu'on ait, en tout point du systéme et a tout
instant,
2 AU 2 >

—_— =0 :0, —_= 0
N ) ’ dy M z M

~J

Comme la premiére égalité (307) est vérifiée, & tout instant, en tout point de la
surface ¥, on voit qu’elle est, & tout instant, vérifiée en tout point du systéme. On
ferait, pour chacune des deux autres égalités (307), une démonstration analogue.

[37] Imaginons donc un champ qui, en lout point du corps et & tout instant,
vérifie les égalités (307) ou, ce qui revient au méme, les équations (308), ou &,, =,, ¢,
sont des quantités indépendantes de ¢. '



SUR LES OSCILLATIONS ELECTRIQUES. 961

Reportons ces valeurs de %, v, ¢ dans I'équation (238); nous trouvons I'équation

d /DAY fhmue aruwa® W sy OW hmpe’
i h A - by _ 2 - 0 =o,
(14) Dx( o TR AT e R e J ©
dans laquelle
ok o i
5 0 — i) L L
(315) Y ¢ dy 0z

Simplifions cette égalité en introduisant I’hypothése que /& est une quanlité extré-
mement grande. ‘
Nous avons
wD' + bre'pK'
I I ko

Pour aucun corps, la perméabilité magnétique 1 n’est trés grande, en sorte que

le terme 7& est assurément trés petit; mais nous n’en pouvons dire autant du

hme'nK'
k
qui a liew dans I'’hypothése de Faraday et de Mossotti que nous enlendons bien ne

N
pas exclure de notre analyse; le terme %—%A‘F est donc le seul que nous ayons,
(8

pour le moment, le droit d’effacer dans I’équation (314); en sorle que si la constante

terme , car il pourrait se faire que ¢'K' fit trés grand; c'est précisément ce

d Helmhollz a une trés grande valeur, V'équation (314) peut étre remplacée par
celle-ci :

AT A ) AN A SR A
316 — —A = aial IO S S N e —o.
(316) M[kA<p+KM> zbf<p+Ku> kp] ©

Cette équation (316) et deux équations analogues, qui s’obtiendraient de la méme
maniére, équivalent i la seule équation

¢ W oW a /v R ¢ 6,
e s (R ) e (PR ) —r o,

¢ > ;

ou f(#) est une certaine fonction de la seule variable ¢.

Soit F(f) une fonction de ¢ ayant f({) pour dérivée seconde :

CON. O rw,

Fac. de T., 3° S., VL. 34
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et soit ¢ (¢) une inlégrale de I'équation

(L ody(t F(t
(319) L;)-FI\' fig)z-—aag).
Posons
(320) ¥ = W+ ().

11 est clair qu’aux égalités (308), on pourra substituer les égalilés

w, W,

’ 712710—

U,
hyA

(3a1) f—%— ,t={—

=0

)

oy

la fonction W, vérifiant, en vertu des égalités (317) a (320), I'équation

¢ L3 AL a /v LG e 0
(323) 7A<_9L+K' bt’>_? v ( . +K'—bf)_7€f:°'
Considérons maintenant une fonction ¢, indépendante du temps, et vérifiant, en
tout point du systéme, I'équation :
(323) Ap=—10,.
Posons
(320) ' O=W, + 5. .

L’équation (322) deviendra

) S T SN IV ST S

Si I'on pose

Pk Y d
=& ‘9 N s _ P
(326) A=Ltb g wEnt g L=LE

2 2 Y
’ C: o T
dy

(327) =g

’ h="N

tandis que les égalités (315), (323) et (326) donneront

, i, N
(328) 0‘ — \" +\_“ —t—0
N oy oz
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D’ot 1a conclusion suivante :

Si la constante Ik de Helmholtz a une trés grande valear, loul champ qui résulle de
la superposition d’'un champ indépendant du temps et d'un champ longitudinal peut
loujours étre oblenu par la superposition des deux champs suivants :

1° Un champ transversal (%,, «,, ¢,) indépendant du temps ;
Al i Al
Q& dy oz

’

2° Un champ longitudinal (— s ) dépendant d’une fonclion &

qui vérifie l'équation (325).

[38] Nous allons maintenant établir cette nouvelle proposition :

Un champ de la forme qui vient d'étre indiquée est délerminé sans ambigu'ile’ silon
se donne : )

1° En tout point du systéme, & Uinstant initial, les valeurs des composantes du
champ électrique et de leurs dérivées premiéres et secondes par rapport & t;

2° En toul point de la surface qui limite le systéme, & toul instant, la valeur de la
composanle normale du champ éleclrique.

Supposons, en effet, que ces conditions n’entrainent pas. pour le champ, une
détermination exempte d’ambiguité; qu’elles soient compatibles avec deux champs
électriques distincts, le champ (%', ', {') et le champ (%", +", ¢"). Soit (%, 4, §) le
champ qui, composé avec le champ (%', «', {'), donnerait le champ (%", 1", {"). Ce
champ (&, 4, {) serait encore de la forme étudiée au n° [37]; mais en outre, en lout

point du corps, on aurait, & 'instant initial,

}é:O’ n=0, CZO’

28 —0 7 0 oL —0

(329) A7 a7 a7
" * A%

w0 YA Y

et de plus, a tout instant, en lout point de la surface ¥ qui borne le corps,
(330) Zcos (N, x) + 7 cos (N, y) + {cos (N, 2)=o.

Les égalités (325) et (328) permettent d’écrire

Y R St W @ ¥ /b 20
331) | S (S S S A(D) — KA ___<_ < —o.
(331) /:[( Ty T |ty g R )=
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Multiplions cette égalité (331) par

® 0
<9+k ot

:{lw

)d&i

et intégrons pour le volume entier du systéme. Nous trouvons

'
€

a¢> PRI

_I?V/'g_i <5.‘“ > ‘\wbtycos(\,x)
+ 19(7. (b> 'f;ft:COS(N,y)
+ %( ) K’ ;:;)t:cos(\ 2) %(;4—1(' ;)
e+ 1] 5( w) K ort s (5 + K 57)
+ %( ) K \;(I:t: - < )
+ %(C ) 'ab;(it:azat< +K’D )g

sG]

Dans l'intégrale étendue a la surface 2, le facteur entre

peut s’écrire, en vertu

des égalités (327),
l[& cos (N, x) 4+ v cos (N, y) 4+ ¢ cos (N, z)]
¢

K’ % \ch)%-MCOSNT )—|—3C—cos(\T 2)
+ [chos(t, i (N, y Y N, ]

Il est égal & zéro. parce qu’en chaque point de la surface =, I'égalité (330) est
sans cesse vérifiée.

Si 'on use également des égalités (327) pour modifier le second terme de 1'éga-
lité (332), celle-ci devient

4 rUaT(E o BN (0 e
A ICEE e S R CRR

(333)
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Comme les égalités (329) sont vérifiées, & I'instant initial, en tout point du sys-
téme, on voit que I'égalité (333) peut s’écrire : ’
)
Grxs) ]
d

¢ g 'raz : K' o
Sl Grw )+ (Ere g+ (24X

B 20 |

. 2 [ t(“ at>]€m

o Y b

=4 /[’ﬁ?“LK M):Ldo.

Iindice zéro désignant une valeur prise a 'instant initial.
A T'instant initial, on a en tout point du systéme, ex vertu des égalités (329),

’DI-‘

(334)

s

2% —o 3z o
A T
c'est-a-dire, en vertu des égalités (327),
J d D
== =0.
dx i ’ Qe A

Ces ¢galités étant vérifiées en tout point du systéme, on en conclut les nouvelles
£galités
@ > e

—_—— =0 —_———— =0
dxt Mt ’ dxt ’

hh (1 2 e
| -= =o.
axt \¢ o N3

En ajoutant cette égalité & deux autres égalités analogues qu’on obtient de méme

ou bien 1'égalité

fagon, on démontre qu’a I'instant initial; on a, en tout point du systéme,

- 120 RN

D’autre part, I'égalité (330) étant & tout instant vérifiée, en tout point de la sur-
face Z, on en conclut aisément qu’en chaque point de cette surface, on a, i tout
instant et donc, en particulier, & 'instant initial,

d /10D PR
6 e e Y —=o0.
(336) DN(p TR bl’) °

Les égalités (335) et (336) nous donnent, d’aprés un théoréme connu,

RIS S ,
(337) \t( xi) | =c,

«C ayant la méme valeur en tout point du systéme.
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Soit 4(t) une intégrale de I'équation

: vdy () A

3 ...L 4 —_— .

(300) o TR =—c
Posons

(338) b= + ().

Les équations (325) et (327) demeureront vérifiées si nous remplacons la fone-
tion ¢ par la fonction ®,, en sorte que nous pourrons encore écrire I'égalité (334),
en y remplacant & par d,. Mais les égalités (338), (337) et (300) nous donneront

- d ¢ ALY
33 —_ — 1t —
(339) [_M(P . )] o,

en sorte que I'égalité (334) deviendra

S [Gae By (2 Y (S RY
f(/c 9+Kaz + p'Kat +<9+Kaz

(340)

= )=
- A}
— + K’ =o0
o + 3 )
U ) o1
— — =0
3 + ) )
¢ 0
— + K’ =o,
e i
ou bien
¢ t ¢
v N Y Yy
(341) E=ge *, n=mu,e °, {=¢Ce .

& Mo {, étant les valeurs initiales de %, 7, {. En vertu des égalités (329), ces éga-
lités (341) exigent qu’on ait, en tout point du systéme et a tout instant,

E=o, n=o0, {=o,
ce qui démontre le théoréme énoncé.

[39] Réunissons maintenant tout ce qui a été élabli aux n* [36], [37] et [38]
nous obtenons la proposition suivante :

K

1° A lout instant, en lout point de la surface qui borne le systéme, on connait la
composante normale du champ électrique; on sail, en oulre, qwen ce point, les quan~
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tités I, m, n ont des valeurs indépendantes du temps, qu'on n’a pas.besoin de connailre;
celte derniére condition sera vérifiée, en particulier, si, en chaque point de cette sur-
Jace, le champ magnétique demeure invariable en grandeur et en direction; dans ce
cas, en effet, en un tel point, I, m, n seront sans cesse égaux & zéro.

a° A Uinstant initial, en tout point du systéme. on se donne les valeurs des neuf

quantités
st P o, NI %z My "
R P Y A Y A R VA
les six derniéres élant, d’ailleurs, de la forme suivante :
3 dp &n 39 X _
AT w a T Ly a2
M M M N
T dw’ ww T Tz

SI LA CONSTANTE k DE HELMHOLTZ A UNE TRES GRANDE VALEUR, le champ électrique
est déterminé sans aucune ambiguité en tout point du systéme et & tout instant. Il
résulte de la superposition d’un champ lransversal indépendant du lemps, et d'un

champ longitudinal
i hYi ) AP

de oy’ 2z

dont la fonction ® vérifie 'équation

’
€

ke

] PG

e I

(335) A <% +K

oD\ o d
, o a <‘I> K’ (I)):o.
§ 6. — Relation entre U'hypolhése faite sur la constante de Helmhollz el [ hypothése de
Faraday et de Mossotli. Vitesse de quasi-propagation d’un champ longitudinal dans

un corps conducteur. Comparaison entre celle vitesse et la vitesse de propagation
d’'un champ longitudinal dans un diélectrique.

[40] Les résultats qui viennent d’étre énoncés n’impliquent aucune hypothése
sur la valeur de la constante ¢’ des actions électrostatiques.

Supposons, d’abord, que le rapport de cette constante ¢’ & la constante 2 des
2

actions électrostatiques n’ait pas, comme la constante & de Helmholtz, une trés

!

2¢ . >y YD ’ . .
grande valeur; le rapport % Sera alors trés petit; I'égalité (325) se réduira sensi-

blement &

(342) —D—<i’l+ K’ M’>=o.

o 0 o
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Cette équation s’intégre comme 'équation (300); elle donne

. t
(343) db=we * Lyiri oy,

¥, ¥, W’ étant trois fonctions de x, y, z qui ne dépendent pas de ¢. Les égalités (327)
nous donnent alors

b4 bl \\lr” D"P., \\F - W
(344) e ———t ——e ¢
Do dx N

Un champ dont les composantes sont de cette forme ne saurait varier avec le
temps suivant une loi périodique.

Mais, d’autre part, un champ périodique propre au systéme vérifierait nécessai=
rement, nous l'avons vu, les équations (323) et (327).

Nous pouvons donc énoncer la proposition suivante :

Pour qu'un corps conducteur puisse élre le siége d’'une oscillation quasi-périodique

propre, il ne suffit pas que la constante k de Helmholtz ail une lrés grande valeur; il
' . . \ a

Jaut encore que le rapport de la constante <' des actions électrostatiques a la constante —
2

des actions électrodynamiques ait une trés grande valeur, ce qui constitue 'HYPOTHESE
DE FARADAY ET DE MoOSsoTTI.

Or les phénomeénes de résonnance-électrique nous donneront la preuve qu'un sys-
téme de plusieurs corps, dont certains sont doués de conductibilité, est capable
d’oscillations propres, périodiques ou quasi-périodiques; la possibilité de ces oscilla-
tions propres sera subordonnée aux mémes conditions que la possibilité d’oscilla-
tions propres sur un conducteur unique; nous serons donc contraints d’admettre a
1a fois ces deux suppositions :

La constante k de Helmholtz est un nombre trés grand.

2
. , . a
Le rapport de la constanle ' des actions électrostatiques & la conslante — des
2
actions électrodynamiques est un nombre trés grand.

Suivons les conséquences de ces deux suppositions.
Posons

(345) =

€ sera une constanle dont la valeur sera la méme pour tous les corps doués de conduc-
tibilité.
Posons

(346) Q=
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L’équation (325) prendra la forme bien connue qu’'on nomme équation du son :

. 30
347) 220 — _\tgz 0.

Si la fonction Q présente une onde, celte onde se propagera dans le milien conduc-

teur avec la vitesse . .
A cette proposition, on peut donner une forme dont le sens physique soit plus

évident.
Le conducteur considéré est le siége d'un courant de conduction et d'un courant
de déplacement.
La densité du courant de conduction a pour composantes

4

5 vV—= s w =

) Id

~.
)
La densilé du courant de déplacement a pour composantes
u =K'z, v'=K', w' =K',.

La densité du courant total a pour composantes (u + u'), (v +v'), (w 4 w').

Si I'on tient compte alors des égalités (327) et (346), on arrive au résultat
suivant :

Dans les conditions énoncées au n° [39)], le milieu conducteur est le siége d'un cou-
rant total qui se compose :

1° D’'un courant de conduction transversal, indépendant du temps, dont la densité

a pour composantes

(348) u=-*, v, =—, w, =-*.

2° D’un courant de conduction et de déplacement longitudinal, variable en général
avec le temps, dont la densité a pour composantes

-

0Q
’ V=— )
dx Q oz

I
IS
=
I
|

<

Si ce dernier courant présente une onde, cetle onde se propage avec une vilesse &,
la méme pour tous les milieux conducteurs. .

I1 faut bien observer que cette proposition est un théoréme approché, qu’on
!

b

. . \ 2e
obtient seulement en attribuant de trés grandes valeurs aux constantes —- et k; en
a

Fac. de T., 3¢ S., VI. 35
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toute rigueur, les composantes du champ électrique dépendent des équations (238);
ces équations ont méme forme que celles dont dépendent les petils mouvements
d’un milieu isotrope affecté de viscosité; or ces équations sont de celles qui n’ad-
mettent aucune onde persistanle, si ce n’est une onde qui sépare sans cesse les
mémes parties du milieu (*); la vitesse de propagation de cette onde est nulle, et il
n’y a pas a considérer, dans le milieu, de vitesse de propagation. autre que celle-13.

Pour cetle raison, nous dirons que £ est la vilesse de quasi-propagation des cou-
ranls longitudinaux dans un milieu conducteur.

Dans un milieu diélectrique dénué de conductibilité, il y a vraiment propagation
des courants longitudinaux. La vitesse de propagation & est donnée par la formule

D/
/ R
() £ ara’lk K’

D' est égal & (1 + 4=<'K'). Si l'on admet Uhypothése de Faraday et de Mossotli, D' se
réduit sensiblement & 47e'K', et I'égalité précédente devient identique & I'égalité (345),
en sorte que la vilesse de propagation véritable des courants longitudinaux devient sen-
siblement la méme dans tous les milieux diélectriques dénués de conductibilité; elle est
sensiblement égale & la vilesse de quasi-propagation des courants longitudinaux dans
les milieux conducteurs.

§ 7. — Des vibrations électrigues simples qui sont propres
a un corps conducleur.

[41] Les conséquences auxquelles nous sommes parvenu en étudiant, d’une
maniére générale, les oscillations quasi-périodiques qu'un corps conducteur peut
posséder en propre, nous les allons retrouver en étudiant, sur un tel corps, les
vibrations électriques simples.

Supposons que les trois composantes du champ électrique aient la forme suivante :

E="E cos ax T + 2" sin 2%
' l [ ¢

(350) =008 2m o + 7" sin an T
14

+ {" sin 27—

{ =1 cos 27:71‘—

-

(*) Pierre Dunem, Recherches sur UElaslicité, seconde partie, chap. i (Annales de I’Ecole
Normale supérieure, 3¢ série, t. XXI, 1904).
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Posons
2z N hlg
b=+ — +——.
‘ ox dy N4
\ , ¢ , N Nl , o
l'—= _ = J— , n = — ,
oz dy o oz dy o
(351) < i n vl
O” (\; D'{l )5
Ty ez
l"— (\‘q” . ‘\c” . ));II . ‘DE_" ": b’::" - 37‘
\ oz dy N oz dy dx

Reportons les expressions (350) de %, 7, { dans l'équation (238) qui doit étre

vérifice quel que soit ¢; égalons séparement & zéro le coeflicient de cos az— et le

. . l , .
coefficient de sin 27 73 MOUS trouvons les deux équations

/ e’ (x W 2w W + am o 0" am <\m n")
k- \gd ' T Dac) Tk T d
(7) (G+7xe)=
+ ampa’ + —K'% o,
T/ ¢ T
(352)
hmpe’ (1 A" am K’ DO"\ am p 0 am /am/ an' )
Ik o M T e/ T ke W T\ Dy
| + /2‘> < K’z /
amua’ =z =o.
\ (7) (57 K)

A ces deux équations, il en faut, bien entendu, joindre quatre autres qui s'en dé-
duisent par des permutations convenables.
De ces équations (352), multiplions la premiére par

=

27

° 23
T_—_T K%,
la seconde par
!
E 2T
______‘_k";"
N

el ajoutons membre & membre les résultats obtenus: nous trouvons l'égalité

rr- 144 — ! 144 "
1'“/.;*._5 [(:. — K -> \Dw (0_ 313 K' o"> — (‘_ + T K’ 5") \_(e 91“ K’z
0 e\ p ¢ 2\ p _
4" pK' 7 000 00 + 4= K’ am" "N, samt N,
™ F\®" @ " T 2z dy /7 2z dy /7
42T <:, o' Y AN emaTom on' 2 L Y
Th: \* @ " * T\ = )¢ w o )T
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Ajoutons membre & membre cetle égalité avec deux égalités analogues qu’on en
déduit par permutation, multiplions par dd, et intégrons pour le volume entier du
corps en transformant certains termes a l'aide d’intégrations

par parties. Nous par-
venons au résultat que voici :

[

/ hrwme’ " ar M 2% 0 ax " ax
! v — — K 2K N L2 g RN A TR

: f[(p . )<‘5+Tkn,) (P+T1&o>(p TK%)]dz
+ %#/(6”(}1,' —0 %”) dx

e _/ U 4 09 ds
1 /cp

(353) ,
* - \
+ "'ll: KV /L(i,‘rl” —£R”1'> + (((J‘Vm” —_— ifllrn!> + <G’Il” —_ ((“;N nl):l dE
27 1 . .
— —,ltg/(iﬂ,'l' + RV m 4+ $"m" + T'n + ‘G"n”) dx
‘l\ _Z%T%/I:% (072 + 6"2) JF l/e + lrlz + ’nl2 + ,nns + nlz + n!r!] dC) :0,
\ v

égalité dans laquelle on a posé

[ To'=%"cos (N, x) 4 %' cos (N, y) + ¢ cos (N, 2),

(354) {R": 7' cos (N, z) — ' cos (N, y),
9= cos(N, x) — %' cos (N, 2),
X 0'=% cos (N, y) — v cos (N, x),

et dans laquelie 10, R", §”, T" ont des significations analogues.
(42] Imaginons maintenant qu’en chaque point de la surface £, on connaisse :
ou bien (cas A), les six quantités

i ! ! " " wn,
s L3 G Ev T L)

)

ou bien (cas B), les huit quantités

', e,

U, m', n, U, m", n'.

‘Demandons-nous si, dans ces conditions, la vibration ¢leclrique est entiérement
déterminée sur le corps conducteur.

Supposons que celte délermination ne soit pas exempte d’ambiguité et que deux
vibrations simples, de méme période T, soient également compatibles avec les con-
ditions données; la seconde s’obliendra en composant avec la premiére une troisiéme
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vibration simple, de méme période T, dont les composantes seront données par des
égalités telles que (350); mais, pour cette troisiéme vibration, on aura, en tout point

de la surface X,

ou bien (cas A)

(335  ¥=o, 7'=o0, U=o, ¥=o, i'=o, =o0;
ou bien (cas B)

(356) 9N =o, " =o,

(357) I'=0, m'=o0, n'=o, I'"'=—=0, m'"=o, n"=o.

Pour le systéme, cette derniére vibration sera une vibration électrique propre rela-
tive soit au cas A, soit au cas B. Il s’agit d’examiner si une telle vibration peut
exister, qui ne soit pas identiquement nulle.

Pour une telle vibration propre, I'égalité (353) serait encore exacte; mais au pre-
mier membre de cette égalité, toutes les intégrales étendues a la surface ¥ disparai-
traient, soit en vertu des conditions (356) et (357). Cette ¢égalité (353) se réduirait

donc a la suivante :
(338) f [% (0% 4 0%) + I* + 1" £ m* + m™ + 0" + n”’:l 46 =o.

Elle exigerait qu'on eiit, en tout point du systéme, les égalités

350) =0, 0" =o,
(859 '=o, m'=o, n'—=o, I'—=0, m'=—o, n"=o.
Mais, dans le cas A aussi bien que dans le cas B, les égalilés (356) sont verifiées
en tout point de la surface X, car elles résultent des égalités (355); dés lors, en vertu
du raisonnement exposé au début du n° [5], les égalités (359) entrainent celles-ci :

(360) E':o, 1, =o, J=o, E":O, 'n”:O, {"=o.

Ni dans le cas A, ni dans le cas B, un corps conducteur ne saurait éire le siége
d’une vibration électrique simple qui lui soit propre; dans chacun de ces deux: cas, les
données relatives & la surface du corps délerminent sans ambiguité la vibration élec-
trigue & Uintérieur de ce corps.

[43] L'égalité (358) n’est pas susceptible d’une vérification rigourcuse différente
de celle que nous venons d’indiquer, mais elle est susceptible d’étre vérifiée d'une
maniére approchée par une vibration qui ne serail pas identiquement nulle; il faut
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pour cela, en premier lieu, que k soit extrémement grand; en second lieu, qu’on ait,
en tout point du systéme,

361 l!=0, m'=o0, n=o, I"—o m'=o n"=o.
7 b

Ces conditions équivalent a la suivante : Il existe deux fonctions ', ”; telles que

’ 1] ’
P R VA ¥
(362) i dx : dy 2z
2
" " "
o A o M o _ o
T = - =
R dy 2z

Ainsi donc pour qu’un corps conducteur placé soit dans le cas A.soi! dans le cas B
puisse étre le siege d’un mouvement électrique peu différent d’une vibration électrique
propre, il faut, en premier lien, que la constanle k de Helmholtz ait une trés grande
valeur et, en second lieu, que la vibration électrique soit longitudinale.

Ces deux suppositions simplifient grandement les égalités (352) qui se réduisent &

d ¢ I 27 am\* @ /1 27
— | =AYV +=K' =) — (=Y +=KV) |=

gml:]f <P¥+T >+(l> 2(9‘ +'l‘ ¥>:I o,

363 |- . ‘

d [« 1 an am\* a* /1 an
. — ___"fl____ *I"/ . I __'”___ !'I —_— .

eaw[/ﬁ(ﬁ Tk{>+<'l‘> 2(?4' TK%)] ?

\
Ces deux égalités et les quatre ¢galités qu'on en déduit en remplagant i par

p
Yy ou par%équivalenté
¢ I T an\* a* /1 27 am\* a*
= ! e ' o Rl ZERr Y — (28 -———'t,
T v+ Fre)+ () S Gy +Frv)=(F) Sro
(364)

¢ I Py 27m\* @* /1 am an\? @’
h N 'SR Y S DK Y =22 2oy
(72 Gr=Fxv)+ (F) SCv=Frv)=(5) Sro

Déterminons deux nouvelles fonctions de ¢, 4'(), #'(t), par les équations

70+ KO =—S"(1),
(365) ¢

T

=70 — 5 K () =—1"0),

ou

! 2- ' TR T
S+ (F)w o= Frro—iro.

(366) < l: .
? |+ () & |ro=—Fxro—ro.
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Posons ensuite
(367) W=y 70, =4+ 0.

Les égalités (362) pourront aussi bien s’écrire

! ! )‘I
oW L LN
P R : dy 2z’
368
( ) E" D\pu . Dl]‘"" zn . Dq-n
— T Ty -

tandis qu'eﬁ vertu des égalités (365) et (367), les égalités (364) deviendront

[__ qml <2‘T> i 1};'!:| + I\ I:_ AW + (21> ]—O,
! ( AV 4 <ﬁ> w”] —i‘—‘l [ AV 4 (2—”> < ‘P"]:o
el I 2

' 27 zae
-—A‘lf" — ) —¥' =
k +<T> 2 °

1 2 2
j— AW 4 (—?) L yr—o,
T 2

ou bien

(369)

Jusqu'ici, dans ce paragraphe, aucune hypothése n’a été faite sur la valeur de la
!

28 . ’r . \ 1
constante — . Si cette valeur n’était pas trés grande, alors que k& est un trés grand
a

nombre, les égalités (369) se réduiraient &
Il;d:o, 11)0”:_0,

en sorte-que le systeme ne saurait étre le siége d’une vibration sensiblement propre.
D’oti cette conclusion :

Pour quun corps conducleur puisse élre le siége d'une vibration éleclrique sensi-
blement propre correspondant soit au cas A, soit au cas B, il faut qu'on altribue une
trés grande valeur non seulement & la constante I (le Helmholtz, mais encore au

a
rapport de la constante ' des actions électrostatiques & la constante — des aclions

2
électrodynamiques, ce qui conslifue 'uypoTHESE DE FARADAY ET DE MOSSOTTL.

Reprenons maintenant, pour définir £*, 1'égaliié (345), et nous donnerons aux
égalités (369) la forme

2 2
.(370) 22 III'I <2'T-{t> ‘l’m':‘O, zaA.q;'ll + (%‘ij) 11‘-!/: o

»
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La vibration sensiblement propre étant longitudinale, les équations (361) sont
vérifiées en tout point du systéme; les égalités (357) le sont donc en tout point de la
surface X. D’ailleurs, les égalités (356) sont vraies aussi bien dans le cas A que dans
le cas B. Si donc les vibrations sensiblement propres fue le systéme peut présenter
appartenaient au cas A, il faudrait qu'elles appartinssent en méme temps au cas B.
Ainsi les vibralions sensiblement propres que nous considérons en ce moment sont cer-
tainement relatives au cas B.

En vertu des égalités (368), les égalités (356) peuvent s’écrire

QU AL

— =0, —_——
oN

e O.
N

371

S’il exisle deux fonctions W', W', non identiquement nulles, qui vérifienl les équa-
tions (370) en toul point inlérieur ¢ un corps conducleur, et les équations (371) en lout
point de la surface qui borne ce conducteur, les égalités (350) et (368) définissent une
vibration électrique simple sensiblement propre & ce corps conducteur.

La détermination de ces vibrations simples est ainsi ramenée a I'un des problémes
les plus célebres et les plus étudiés de 1'’Analyse.

Nous savons donc qu’il existe un nombre illimité de périodes pour lesquelles un
corps conducteur est susceptible de vibrations électriques sensiblement propres.

Au n° [40], nous avons observé que 1'hypothése de Faraday et de Mossotti, que
nous sommes tenus d’admettre, rendait sensiblement égales entre elles la vitesse de
propagation des courants longitudinaux dans un diélectrique privé de conductibilité
et la vitesse de quasi-propagation des courants longitudinaux dans un corps conduc-
teur. Dés lors, si nous nous reportons aux définitions données au n° [42], nous
pouvons formuler la proposition suivante :

" Les périodes des vibrations éleclriques sensiblement propres qui se peuvent produire
sur un corps conducteur sont égales aux périodes longitudinales d'un corps diélec-
trique, privé de loule conduclibilité, qui aurait méme forme que ce conducteur.




CHAPITRE I

Le systéme est formé de plusieurs corps doués de conductibilité.

§ 1. — Condilion vérifiée a la surface de conlact de deux corps conducleurs dislincls.

[42] Nous allons maintenant, en partie par voie d’hypothese, traiter de la réson-
nance électrique dans un systéme formé de plusieurs corps distincts, parmi lesquels
se trouvent des conducteurs.

Pour ne pas compliquer inutilement les formules, nous supposerons, comme au
n° [20], que le systéme soit formé seulement de deux corps 1 et 2, dont T, et T,
seront les volumes et S, la surface de contact. = désignera encore la surface qui
contient tout le systéme.

Soient, en un point de la surface S, n , n, les deux directions de la demi-normale,

12’
I'une vers lintérienr du corps 1, l'autre vers U'intérieur du corps 2; au méme point,
désignons par E la densité superficielle véritable de 1'électricité; si Y désigne la fonc-
tion potentielle électrostatique des charges vraiment répandues sur le systéme, nous
devons avoir, en tout point de la surface S,,,

Y Y

372 = — 4=F.
(372) n, o, '

D’autre part, si u, v, w sont, en un poinl du systéme, les composantes de la den-
sité du courant de déplacement, on a

g ‘u,cos(n,,x)+v,cos(n,,y)+ w,cos(n,, z)
373) E

8 + u,cos(n,, x) + v, cos (n,, y) + w, cos (n,, z):—_\_t'

Si A’, B/, C désignent, en un point du systéme, les composantes de la polarisation
diélectrique, et si V' est la fonction potentielle électrostatique de cette polarisation,
on doit avoir, en tout point de la surface S,,,

VTV
) S == [N, cos(n,, x) + B, cos(n,, y) + C', cos (n,, z)

(374 on, n,

( + A',cos (n, x) + B, cos (n,, y) + C', cos (n,, 2)].
Désignons par W la fonction potentielle électrostatique totale :

(375) W=Y4+ V.
Fac. de T., 3° S., VI. ' 36
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Les égalités (372) & (375) nous montreront qu'on doit avoir, en tout point de la
surface S, et a tout instant :

) W ) W

on, A on,
- QA! 0B’ ¢
(376) == (ul + Y 4) cos(n,, x) + <v, + Y ‘) cos (n,, y) + (w,+ \t‘ > cos (n,, 2)
A B’ 2C
+ <uz + ") cos (n,, x) + <v2 2 > cos (n,,y) + (wz-l— Q) cos (n,, z):l .
ot ot ot

Cette condition (376) peul encore s’écrire autrement.
Observons, en effet,

1° Qu’en tout point du systéme, les trois composantes %, », { du champ électrique
lotal sont données par les égalités

; o
W a5 AW a %

_—— n=
S,

2° Que les fonctions &, (§, #6 ne subissent aucune discontinuité en traversant la
[

’ W a I
dy \/; o’ Az \/_? N]

surface S,,, et qu’il en est de méme de leurs dérivées de tous ordres par rapport
A t, et nous trouverons sans peine que les égalités (376) et (377) nous donnent
celle-ci :

[ 22 , QA NS , , A
( L+ hwe'u, +hwe ‘>cos(n,,w) -+ ( = - e’ u,4-4ne ’> cos (n,, )

o o oM i
: A B’ " B
378) + ( iy h=e'v, +4ne' —+ ) cos (n,, y) + To 4 hme'v, +4m’¥> cos (n,. y)
ot o o ol
[, . L2, 22, . , 2C, .
+ " + bre'w, 4 4me Y (n,2) + Y + hze'w, +4we ) €08 (n,,z) =o.

Mais on a, en tout point du systéme et & tout instant,

w

(379) pu=32, pv="1, pw=1{,

(380) A'=K’, B’ =K, C¢'=KY.
Si 'on continue & désigner par

(381) D'=1 + 4='K’

le pouvoir inducleur spécifique,
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on aura, en vertu de ces égalilés (378) a (381),

z N2

[17:5', Nt b;, hme' ' a2
( ‘_‘+D,T>cos(ni,w)+< z, + D, M)

¢ f
(382) + (l'm + D, & > cos (n,,y) + (lﬂe 7+ D, nt, >
X, c ¢
-{—(lme + D', = >cos(n,. z)+<l”r L+ D, \’)::0.
\ £y Pe o

Supposons, en particulier, que le champ électrique soit longitudinal; on a alors,
en tout point du systéme,
Ry P o

(383) E:———, n=— , t—_——_ DZ’

& étant une fonction continue dans tout le systéme, et I'égalité (382) devient

(384) ’ fe' dD
N e, ‘an, o g, an, *Jm, o

1

Y R 1| S B

!

Supposons, en outre, que le champ soit non seulement longitudinal, mais pen-
dulaire. On aura alors

(385) b=

+ d" sin 2% s
@' et " étant des fonctions des seules variables x, y, z

Le premier membre de 1'égalité (384) devient alors une forme linéaire en

t l ’’ e . r_ . ’ . . .
€OS 27 = et sin 27 — T ; pour que l'égalité soit vérifiée quel que soit ¢, il faut et il
suffit que le coefficient du cosinus et le coefficient du sinus soient égaux a zéro; on

doit donc avoir, en tout point de la surface S,,, les deux conditions

127

b ! ) ! " "
bwe' <L ® +——[— b > KD'. \LI) + D', \(I) >:O»

an ¢, on,
(386) Pl 1 Ve 2
LN 1PN am hli L , ob"
hze' <————+— ‘<D'l‘ + D, = >:O.
g, on, ¢, N, 1 n, ®on,
§ 2. — Oscillations électriques périodiques propres ¢ un systéme qui conlient

des corps conducleurs.

[43] Nous généraliserons par voie d’hypothése ce qui a ¢té établi au Chapitre 17
pour un systéme formé d’un corps conducteur unique, et ~ous ADMETTRONS ['exacli-
tude des propositions suivantes :

Un systéme formé de plusicurs corps homogénes parmi lesquels se renconlrent
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des corps conducteurs n’admet jamais d'oscillation électrique périodique qui lui soit
propre.

Pour qu'il admetle sppPROXIMATIVEMENT une telle oscillation, il faul :

1° Qu’elle consiste en un champ purement longiludinal (*); '

2° Que la constante k de Helmholtz soit un nombre extrémement grand.

Admettons, tout d’abord, que le champ soit purement longitudinal, c’est-a-dire
qu’on ait

. 2D QD Mb
(383) =2 (=

dy’ . oz

A

En tout point de chacun des corps homogtnes qui appartiennent au systéme, la
fonction ® doit vérifier 1'équation de la dilalation relative aux équations (238); celte
équation est la suivante :

Q hwe’ ana’lk *P A1 )
38 D' — AD AP — — @’k K =o0.
(387) ut Tt o o TUEM T

En tout point de la surface S,,, ® véritie la condition (384).

Enfin, comme il s’agit d'une oscillation propre, la composanie normale du
champ électrique doit étre nulle en tout point de la surface ¥ qui borne le systéme,
en sorte qu'on doit avoir, en tout point de cetle surface et & tout instant,

. LN
(388) =0

[44] Ces équations vont nous permettre de démontrer certaines propositions

incluses dans 'hypothése que nous venons de formuler.
" Soit dans le cas ot le systéme est formé d'un corps homogéne unique, & la fois con-

ducteur et diélectrique,

Soit dans le cas ot les corps homogénes dont U'ensemble forme le systéme sont lous
dénués de pouvoir diéleclrique,

Nous allons démontrer qu’aucune oscillation électrigue purement longiludinale ne
saurail étre propre a ce sysléme.

(*) Depuis la rédaclion du présent Mémoire, nous avons démontré () que le champ ne
pouvait, en général, étre purement longitudinal si le systéme était formé de plusicurs
conducleurs dénués de pouvoir diélectrique, et M. Louis Roy a étendu (2) cette démons-
tration au cas ol ces conducleurs onl un pouvoir diélectrique. Ce qui va suivre ne peut
donc plus étre regardé que comme un exercice de mathématiques sans portée physique
direcle; nous l'avons gardé, cependant, parce que les méthodes ici employées se peuvent
généraliser et devenir applicables au probléme véritable des oscillations électriques.

(a) P. Deney, Sur UElectrodynamique des miliewr conducteurs (Comptes rendus, t. CLXII, p. 341).
(b) Louis Roy, Sur UEleelrodynamique des miliewr absorbants (Gomples rendus, t. CLXIT, p. 46g).
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Supposons d’abord que le systéme soil formé l'un seul conducleur homogéne qui
peut étre, en outre, doué de pouwvoir diélectrique.
2 K’ pXI
ot ot
de I'expression (381) de D', nous voyons que le résultat obtenu peut s'écrire

Ld (120 YD\ hme (D \q)) Y S
™ dt<pbt +K bﬁ)‘TA(_{JFK o (mz +K bt’)

1 db 3 K ¥P 2P
Tkt TN kT

Multiplions 1'équation (387) par l%(i ) Si nous nous souvenons
¢

Multiplions cette égalité par d3, intégrons-la pour le volume entier du systéeme,
puis transformons-la par la formule de Green en tenant compte de la condition (388);
nous parviendrons aisément a 1'égalité suivante :

AR AR AR \
_: — 1o
{389) a = T /[(mw) (Dy at>+<wz 23 ]‘ ’
J désignant la quantité que voici :
. 1 \(I) )2
J=na ‘/-(F \tg >
fl:(l btb K AR >°"+<£ 2P K’ D’tl)>2
e Doc dx ot ¢ dy dy ot

(23w D) ao
4 —

)z dz o

(390)

il )} P AR .
2Iu f[(hc\t) (by at> <bz Dt) —ldo

Pour que le systéme pat admettre une oscillation longitudinale périodique
propre, il faudrait que ® pat étre une fonction périodique de ¢. La quantité J serait
alors également une fonction périodique de ¢.

Mais, en vertu de l'égalité (389g), dont le second membre ne peut jamais é&tre
positif, J ne saurait étre, & aucun moment, fonction croissante de ¢; d’autre part, si
une fonction périodique est, parfois, fonction décroissante de ¢, il faut que, parfois
aussi, elle soit fonction croissante; si donc ¢ était une fonction périodique de ¢,
J qui ne saurait étre ni fonction croissante ni fonction décroissante de la seule
variable ¢ dont elle dépende, se devrait réduire & une constante.

: dJ . T . .
Dés lors ar devrail étre nul, en sorte que 'égalité (389g) deviendrait

3 ARG 2P \* ARG AN G
(391) /\.,f[(?%‘\t> <\y\[>+< N):It =o0.




289 P. DUHEM.

Pour que cette égalité (3g1) fut vérifiée. il faudrait qu'on eit, en tout point du
systéme, les trois égalités

b *b ’P

32 —_— _ -
(392) Y A T AR Y2

:O,

égalités en vertu desquelles ® devrait étre de la forme
(393) P=14(x,y,2) + 7.00)-

Dans les équations (383), reportons celte expression (39g3) de &; elles nous
donneront

BTG P ()

M (x, Y, 2)
s : dy '

)z

2%

v
’ b—

La seule oscillation longitudinale périodique qui puisse étre propre au systeme
est conslituée par un champ indépendant du temps; un tel champ doit vérifier les
conditions d’équilibre du systéme; il est clair qu’il faut, pour cela, que ce champ
soit nul.

[45] Supposons, maintenant, que le systéme puisse comprendre plusicurs corps
homogenes, deux par exemple, mais que chacun de ces corps soit privé de pouvoir
diélectrique, en sorte qu’'on ait pour chacun d’eux

(394) K'=o.
En vertu de I'égalité (381), on aura aussi pour chacun d’eux,
(395) D'=1.

En un point de I'un des corps du systéme, du corps 1, par exemple, I'égalité (387)
devient, en vertu des égalités (394) et (395),

' 2 2
AD 4+ A—m—Atb _2ma kod

(396) 3 o, W

~
g_lu

En vertu de I'égalité (395), la condition (384) devient

Lme’ DD d hme' D d b
an, o, A e, on,  dn, A

(397)

O.
[
v

)

- AT . 1 0P - .
Multiplions I'égalité (396) par —/——(—\7 dd3,, intégrons pour le volume entier du
v 8
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corps 1, opérons de méme pour les autres corps du systéme, et ajoutons membre &
membre tous les résultats obtenus; nous obtenons I'égalité

' <t gl S () [ (5) o]
—w[ ST G o [T (e ) o=

Au premier membre de cette égalité (3g8), transformons le second terme par la
formule de Green, en tenant compte des égalités (388) et (397); nous parvenons sans

(398)

peine au résultat suivant :

(399) t:—_ Y /[(\T:f\)t) <D\y(§t> <0z Dt> ] 40

Au second membre de cette égalité (399), I'intégration s’étend au volume entier

du systéme; quant & la quantité J qui figure au premier membre, son expression
est la suivante :

‘___‘7r VAL T D\ /D \? AL AN )
J—;:f%“ (at>+7[(3;,+(37>+(&) ]sd“*
e e LT
—pj 2 ot k dx iy 0z :I§

La démonstration s’achéve alors comme celle du numéro précédent. Pour que P

(4oo)
‘ da, .

2

pit étre fonction périodique de T, il faudrait qu’on efit 1’égalité

(bon) fL \MY (;;f) <\z M) ]d(ﬁ_o

qui redonnerait les égalités (392) et les conséquences qui s’en déduisent.

[46] Ni I'égalité (3g1), ni I'égalilé (4o1) ne saurait étre rigoureusement véri-
fiée si les égalités (392) ne T'étaient pas. Mais sans que les égalités (392) fussent
vérifides, I'égalité (391) et 'égalité (401) pourraient étre vérifiées d’une maniére
approchée; il suffirait pour cela que la constante k& de Helmholtz elit une valeur
extrémement grande. L’existence d’oscillations longitudinales quasi-périodiques
propres & un systéme n’apparait plus comme impossible si I'on fait, sur la valeur
de k, cette supposition que nous allons suivre désormais.

La constante £ de Helmholtz est donc, par hypothése, un nombre extrémement



284 : P. DUHEM.

14
grand. Si le rapport i était pas, lui aussi, un nombre extrémement grand, 1'équa-

tion (387) se réduirait sensiblement a I'équation

> /4 ALY
(4o2) — (; + K' ¢ > —o.

M\ p 2

I’intégrale générale de cette équation est

I
—

(403) d=—wl + e R + o,

w, o', " étant trois quantités indépendantes de ¢.

Une telle quantité ne peut étre fonction périodique de ¢ si I'on n’a pas
w=o0, w'=o, d=0".

En d’autres termes, pour qu’elle soit fonction périodique de ¢, il faut qu’elle soit
indépendante de ¢.

Ainsi, pour qu'un systéme contenant des corps conducteurs homogénes puisse

admelltre ApPROXIMATIVEMENT des oscillations électriques propres, il ne suffil pas que la
!

constante kk de Helmhollz ait une trés grande valeur ; il faut encore que le rapport —E; soit
a

trés grand, ce qui est Uhypothése de I'araday el de Mossolli.

1.’égalité (381) nous montre alors que D' pourra étre sensiblement remplacé par
4=e'K’, en sorte que I'équation (387), qui est exacte, se pourra remplacer par I'équa-
tion approchée

2 [ W\ ¥ D
o (Loni)- B ()
(o) @'k (p ) T\ TN )T

ou bien, en se souvenant de I'égalité

2¢
¢ L J—
(345) =T
par l'éciuation approchée
o [ ¢ , L) J)E <(]) ., D
5 —_ _—— — -=0.
(4o5) LSS ) T c TR )=

En méme temps, en tout point de la surface S,, la condition (384), qui est
exacte, pourra étre remplacée par I'équation approchée

@ 20 NIV S
(406) 2 <——+K' ‘ >+ <—+I\a )zo.

om, \eg, vt oan, \g, ot
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Quant 4 la condition (388), elle devra étre conservée sans modification.
Toute oscillation électrique quasi-périodique propre au systéme doit donc vérifier
les égalités (383), (405), (406) ct (388).

§ 3. — Vibralions électriques pendulaires propres a un systéme qui contient
des corps conducteurs.

[47] Reprenons une analyse semblable en supposant d’emblée que le champ
longitudinal soit un champ pendulaire simple de période T la fonction & est alors:
de la forme (385). Si nous substituons cette expression de ® dans '’équation (387),

le premier membre de cette équation devient une forme linéaire en cos 2= T et

—. Pour que cette forme soit égale a zéro quel que soit ¢, il faut que les deux

N

sin axw

coefficients du sinus et du cosinus soient séparément nuls, ce qui nous donne les deux

conditions
2¢’ ax D’ an\* P’ DY AN
A(l)! — A(DII I —_— - !q)”: s
a’kp +T2na’lc +(T> p +-(T>K ©
(ho7) a¢’ ar D' am\?> " amh®
€ T ™ ™
AT A () — — (=) K =o0.
a’kp ’ T 2xna’k + (T > 6 < T ) °

En tout point de la surface S,,, les égalités (386) doivent étre vérifiées.

Enfin, en tout point de la surface £, 1'égalité (388) exige qu'on ait les deux
conditions
(I’I h) "
(408) d D

—_—0 frmet
N ’ N

O.

De I'hypothése que nous avons énoncée au n° [42], il résulte que ces conditions
(394), (386) et (395) ne doivent admettre, en toute rigueur, d’autre solution que

(4o9) &' = const., &" = const.
Nous allons justifier, du moins dans deux cas particuliers, qu’il en est bien ainsi.

(48] Supposons, en premier lieu, comme au Chapitre I, que le systéme soit formé

d’un corps unique, a la fois conducteur el diélectrique.
n

Multiplions la premiére équation (407) par (i—z—?K’fb'), la seconde par
P

ol :
— <T + i;—K’*b”), et ajoutons membre & membre les résultats obtenus en obser-
vant que, selon I'égalité (381), D'=1 + 4ne'K’. Nous obtenons I'égalité

I anK'

= (P'AD + DAY —
aQPVI‘( + ) alTl

2¢’ d" 27 @' an @' an " am
ry '—TK'q)')A(—— —:K"I’”)—(— K'd)”)A(____ rq)r) §= )
+ a [( P f) 0 + T - + T 3 T K 1)

Fac. de T., 3¢ S., VI. 37

(D'AD" — D"AD')
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Multiplions cette égalité par dcS et intégrons pour le volume entier du systéme,
apres application de la formule de Green, et en tenant compte des conditions (408),

nous trouverons F'égalité

Al I f|: b‘b’)g (bq’,>2 (b‘b’)2 /bq)”,>2 (a(b”)z Dq)ll
(h10) et (?x— /) )y +< 2z

Cette égalité exige qu'on ait, en tout point du corps considéré,

hliY 2P’ Qd’
=0 =0 q =o,
dx ’ dy ’ iz
At i
(rr) 2P QP" L o
=0 —=o, —=o0,
dx ’ dy 2z

ce qui équivaut aux égalités (409).

)] d6 =o.

[49] Supposons, en second lieu, que le systéme conlienne un nombre quelconque
de corps homogénes, mais que chacun de ces corps soit privé de pouvoir diéleclrique.

En tout point d’un tel systéme, on a
(394) K' =o.
(395) D'=1.

Moyennant ces égalités, les égalités (407) deviennent

r

2e , 2m 1 am\* ®'
Ad +T—‘T/Aq’”+ ) — =0,
¢ p

' a’ko I 2ma T
(41 2) ! 2 "
' A VLY U <2j> AN
a'ks T axa’k T/ » ’

En méme temps, les conditions (386) deviennent

. ' ( i b(l’! + Dq), > + I <b¢b” + Dq)ll>
— —_ —_— — )=o,
gzs e, on, on, T \ on, on,

I
b
([”3) ’ " ’ !
? ,(1 207 13(1») 1<nd>+acb>_o
%, + 0, on, T\», o,/

V1

Quant aux conditions (408), elles demeurent inchangées.
Multiplions la premiére égalité (412) par ®”, la seconde par — &'
membre & membre les résultats obtenus. Nous trouvons 1'égalité

T ———;,k (P'AD' + P'AD") =o0.
27

;_k (2D’ — P'ad”) +

et ajoutons
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Multiplions cette égalité par dG et intégrons pour le volume entier du systéme;

nous trouvons une égalité qui peut s'écrire :

g f [(——A‘b’ 0 Afb"> b'— (35— AD” —-% m')@'] o,
+f[ <“ i A(b"> cb”-(” AD — — Afb’> @’] 46, =o
T o, ) f

Par la formule de Green, transformons cette égalité (414), en tenant compte des

conditions (408) et (413); nous trouverons I'égalité

bq)! 2 aq)l 2 D(bl 2 b‘b” 2 )(D" 2 bq)" 2
wo) m /G ()G () () Jeo=e

ou l'intégration s'étend au volume entier du systeme.

(414

De cette égalité (415), on déduit encore, comme nous I’avions annoncé, les éga-
lités (411) et (409).

Le premier des deux cas que nous venons de traiter ne nous apporte rien qui ne
se puisse déduire des démonstrations exposées au Chapitre I**; au contraire, le
second cas nous apporte un résultat nouveau, qui justifie en partie I'hypothése for-
mulée au n° [43].

[50] Les égalités (410) et (415) ne peuvent étre vérifiées rigoureusement que si
les égalités (411) sont vérifiées en tout point du systéme; mais, sans que les éga-
lités (411) soient vérifiées, les égalités (410) et (415) seront vérifiées approximati-
vement si la constante k de Helmholtz est un nombre extrémement grand ; c’est donc
seulement dans ce cas que le systéme pourra présenter, dans les deux circonstances
particuliéres que nous venons d’examiner, des vibrations longitudinales pendulaires
qui lui soient sensiblement propres; I'hypothése formulée au n® [43] nous affirme,
d’ailleurs, qu’on en peut dire autant en général.

Introduisons donc, dans les équations (407), Uhypothése que k est un trés grand
!

M ’ M A € !
nombre. Si 'on ne supposait pas. en méme temps, que le rapport — ‘est un tres
a

grand nombre, les équations (407) deviendraient sensiblement

P’ 27K’
_——+—r_\_ _07
4 f)
ﬂ—ﬂ@':o,
4 T

en sorte qu'on aurait
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Le systéme ne comporterait donc aucune vibration longitudinale pendulaire qui

lui soit sensiblement propre; pour qu’il soit susceptible d’une telle vibration, il faut
r

non seulement.-que-k soit un trés grand nombre, mais encore que le rapport —e—,— ait
a

une trés grande valeur.

Moyennant ces deux suppositions et I'égalité (345), les équations (407) devien-
nent, en tout point du corps 1, '

_f;__ <£qu)r + b= fb’) + KI‘ (2&\@” + [}_;; Q”)

r[\z = 07
K, <2’A<l>’ 2 <1>') — L (g’m" +3 fb"> =o.
. 3

Ces conditions équivalent aux suivantes :

(416) [ [,‘l—ifb’:o, B AN l,'—;zetb”:o.
On a de méme, en tout point du corps 2,
(416 bis) LA + l‘; ®=o0, LA+ [‘1“; " =o.

Les conditions (386), vérifiées en tout point de la surface S,,, se réduisent approxi-
mativement aux suivantes :

LA ey, T acb">zo
) o, on, p,n, T\ 'n *n ’
17 :
1 20! 1 0" 27r< , 20’ K’ AL
L = = — =o.
g, on, g, n, T ton * dn,

Quant aux équations (408), elles demeurent inchangées.

Si, pour une certaine valeur de. T, on peut trowver des fonctions P', ®", différentes
de simples constantes, qui vérifient les conditions (416), (416bis), (417) et (ho8), nous
dirons que T est une quasi-période propre au systéme.

Dans le cas ol le systéme se réduit & un seul corps homogéne, le probléeme des
quasi-vibrations simples qui lui sont propres se raméne au probléme, aujourd’hui
fort bien étudié, dont nous avons dit un mot au n° [12].

Lorsque le systéme se compose de plusieurs corps conducteurs, le probléme
auquel nous avons affaire est, & 'égard du probléme simple dont nous venons de
parler, une généralisation inabordée jusqu’ici, et dont I'analyse parait fort difficile.

En ce cas, touchant I'existence des périodes propres. il ne nous parait pas qu'on

.
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puisse exposer des considérations semblables & celles qui ont été indiquées aux
n> [18] et [24].

Nous nous contenterons donc d’ApMETTRE, sans aucun essai de démonstration,
lexistence d'une infinité de périodes quasi-propres au sysiéme étudié.

[54] Considérons une vibration pendulaire quasi-propre au systéme.
En vertu des égalités (383) et (385). les trois composantes de cette vibration sont
représentées par les égalités

z (M), cos L + il in 2 ¢ >

= 2T S il I
: 0 R
hliy 4 hLi t

8 7 =—( ——cosan— + —sin 2 —-),
(418) 7 ( 3y o8 AT R + % T
{= (M)' cos t + 207 sin 2 !

V8= dz T dz ﬂT)'

Pourrait-il arriver qu'une semblable vibration fit rectiligne en tout point du
systéme?
Pour qu’il en fit ainsi, il faudrait qu'on elt, en tout point du systéme,

DX L N L LT LR 4

(419) dx =/ dc =/ dz

dy dy 2z

’ ’

S étant une certaine fonction de x, y, z.
Mais pour que de telles égalités eussent lieu, il faudrait, en vertu d'un théoréme
connu, que

(420) S=F®"),

la fonction F étant contiriue, sauf peut-étre pour certaines valeurs exceptionnelles
de P'.

Supposons que le systéme contienne plus d’un corps homogéne; nous pourrons
alors considérer la surface de séparation S, de deux tels corps.

En un point M de cette surface, nous aurons, en vertu des égalités (419) et (420),

29" N

" hL
=F(®' ‘
=)

[0y Flo'
—F(®d") —
on, on, (®) on,’

(b21)

et la valeur de F(®') sera la méme dans ces deux égalités, A moins que la valeur de b
@’ au point M ne soit une de celles pour lesquelles la fonction F(d') est discontinue,
ce qui ne saurait avoir lieu, sur la surface S, qu’en des points exceptionnels.
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En tout point de la surface S, autre que ces points exceptionnels, les égalités (417)
et (421) donnent les deux égalités

([—+ K'F(q))]-bi"—+ _‘_+ K\ F ”:

(ha2) < .
([TF(Q)——K’] +[€ R — TR, :‘;’ —o.

L U i
i\—n_’ o e doivent pas étre nuls en tout point de la surface S,; il faut donc, en
¢ an
L - . L , W2
general. que le déterminant des équations (422), linéaires et homogeénes en S S
K on on
soit égal & zéro : ' :
an (K', K
(423) — <—-'—--—'> 3 1 + [F@h) =
T\ee o ‘

Cette égalité (423) ne saurait étre vérifiée, & moins qu’on ait

K" !
(434) | K_K.
e, fa

Si donc on excepte les deux cas suivants :
1° Le sysléme se compose d’'un corps homogéne unique,
, , . .
2° Le rapport — a méme valeur pour tous les corps du systéme,
3

Une vibration pendulaire quasi-propre aw systéme ne saurait élre recliligne en tout
point.

[52] Posons, en chaque point,

pLd hli AP’
——=——Acos 2z}, e — . Bcosany, = ——=——Ccosanv,
Dy N dz
(425) :
: N . 20" ) A" )
—\%—-:—Asmgﬂl, Sy = — Bsinany., > = —Csinany,
[ ¢ [§ °

A, B, C, &, p, v étant six fonctions de x, y, z
Les égalités (418) pourront s’écrire

t

E—=Acos m(T—)‘)’
i l

(426) 7= Bcos Qw(T——y.>,
t

\ {=~Ccos 27:(—,1—,—\:).
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Pourrait-il se faire que chacune des trois phases %, u, v fiit indépendante de x, y z?
Pour qu’il en fit ainsi, il serait nécessaire et suffisant, comme les égalités (425)
le montrent sans peine, qu’on et
2" 20 29" 20 S

(437) w o Ty Ty o e

> »

I, m, n étant trois constantes.
Mais la seconde égalité (427), différentiée par rapport 4 z, donne

D!(I)YI Dl(br
- m
2z dy zdy’

tandis que la troisieéme égalité (427). différentiée par rapport & y, donne

R ’’

=n .
dy ¥z dy oz

11 faudrait donc que m fat égal & n. Une démonstration semblable prouverait que
ces deux quantités sont égales a /.

Si I'on désignait alors par f la valeur commune des trois quantités [, m, n, on
retrouverait les égalités (419}, ou f serait maintenant une simple constante.

On peut donc énoncer la proposition suivante :

Sauf dans les deux cas exceplionnels qui ont élé signalés au théoréme précédent, il
n’est pas possible que chacune des trois composanles d’une vibration pendulaire quasi-
propre au sysléeme ait méme phase en tout point de ce systéme. ‘

§ 4. — Vibrations électriques pendulaires qu’'un excitateur engendre sur un systéme
contenant des corps conducteurs.

[53] Aprés avoir étudié les vibrations longitudinales pendulaires qui sont quasi-
propreé au systéme, nous allons étudier celles qu'un excitateur y pourrait engendrer.
D’aussi prés que possible, nous suivrons les notations adoptées au n° [20].

Nous supposerons qu’en chaque point du systeme, le champ (%, v,, {,) de l'exci-
tateur soit un champ longitudinal pendulaire de période T; nous aurons donc .

2D, 2D, 3 20,
(428) E.o—‘-—_‘%;’ fo— — (\y 4 G — T Yz .
avec
t . t
(429) o, =P’ cos 2w — + D sin 2w —.

T T
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En chaque point de la surface ¥ qui borne le systéme, nous supposerons que la
composante normale du champ électrique total a, a chaque instant, une valeur
donnée, et que c’est une grandeur pendulaire de période de T; comme on en peut
déja dire autant de la composante, normale 4 la surface £, du champ électrique de
I'excitateur, il est certain qu’on en peut aussi dire autant du champ électrique (3, 4, {)
excité sur le systéme; nous devrons donc avoir, en tout point de la surface ¥ et &
tout instant,

(430)  Ecos(N,ax) +ncos(N,y) + {cos(N, z) =¢'cos an 'li + ¢"sin 2w T
¢' et o" ayant des valeurs données en chaque point de la surface =.

Enfin, nous supposerons qu'en chaque point de la surface X, les trois compo-
santes du champ magnétique total soient maintenues constamment égales & zéro.
Les trois composantes du champ magnétique de l'excitateur sont déja égales a zéro
en tout point du systéme et & tout instant, parce que le champ électrique de I'exci- -
tateur est purement longitudinal; nous pou\‘on's donc remplacer la supposition pré-
cédente par celle-ci : Le champ magnétique excité sur le systéme est maintenu
constamment égal & zéro en tout point de la surface X.

Dans les conditions qui viennent d’étre définies, Nous ADMETTRONS que le champ
électrique excité sur le systéme est un champ purement longitudinal, pendulaire et de
période T . Nous aurons donc ‘

) D A , D
(431) )‘;:_%, 'I“‘“""(\y’ "“—_"Sz—s
avec
' t . t
(432) = &' cos 2% o + @"sin AT

d’', " sont deux fonclions de x, y, z. Nous allons former les conditions auxquelles.

elles sont soumises.
r

Nous supposerons d’emblée que la constante k de Helmhollz el que le rapport Ti’—

alent de trés grandes valeurs.

Dés lors, les égalités (416) devront étre vérifiées en tout point du corps 1 et les
égalités (416 bis) en tout point du corps 2. aprés qu'on y aura remplacé ', " par
les deux sommes (P’ + ®'), (D" + d"). Si donc nous posons, en tout point du-
systéme,

(432) @A, + [‘Tﬂ P, =—§, LA, + é;r—

(i)llo S SII,

§', §" auront des valeurs connues en chaque point du systéme, et @', &" devront, en
tout point-du systéme, vérifier les équations

i G

!: ! Sv " q)ll:SVI.
=8, a4

(433) A +
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En tout point de la surface S, qui sépare le corps 1 du corps 2, les deux condi-
tions (417) devront étre vérifiées aprés qu'on y aura remplacé @', ®” par les sommes
(®', + ), (P, + ). Posons donc

LA, x 2, o (K 20, LK wa)

— —_ — = —u,
436) e, on, 6, on, T on, * on,
1 0P, 1 3 am K’ WLl K’ hL .
DU -y T 1 =+ 2y —_ v.
e, on 6, n T on, on,

1 2

Les deux quantités u, v, auront, en chaque point de la surface S, des valeurs

187

données, et nous devrons avoir, en chacun de ces points,

1 b r D ’ D " b II.
1T N T d +E<K" D K/, b >:u’
’ 6, o, ¢, on, T on, on,
(435)
1 9" 1 dd" “(K’ 2P’ LK Nb’)—*v
o, o o, T tan toan, )

Enfin, en tout point de la surface 3 qui borne le systéme, les égalités (430), (431),
(432) donneront les conditions
o’

(436) W ¢, =—1y".

Les conditions (433), (433 bis), (435) et (436) sont les seules que les deux fonc-
tions @', ®" soient assujetties a vérifier.

[54) Peut-il y avoir ambiguité dans la détermination des fonctions qui vérifient
ces conditions? Imaginons qu’elles puissent étre vérifiées d’une part par les deux
fonctions W’, ¥’, et, d’autre part, par les deux fonctions X', X"; posons :

‘I)’:‘IJ.,—X:, @”:‘F"—X”.

Il est visible que ces deux fonctions &', ®" vérifieront les conditions (416),
(416 bis), (417) et (408), et donc qu'elles définiront une vibration pendulaire propre
au systéme.

11 ne peut donc y avoir ambiguité dans la détermination des deux fonctions &, ®"
qui vérifient les conditions (433), (435) et (436), & moins que T ne soit une période
propre au systéme. .

Si T est une période propre au systéme, et si 'on posséde une premiére détermi-
nation du champ excité sur le systéme, toute autre détermination s’obtient en com-
posant avec la premiére une vibration longitudinale, pendulaire, de période T,
propre au systéme.

Fac.de T., 3¢ S., VL. 38
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§ 5. — Développements en séries de fonctions fondamentales qui permetiraient de
résoudre le probléeme des vibrations électriques sur un systéme de corps con-
ducteurs.

[565] Dans le cas ou T n’est pas une période propre au systéme, les deux fonc-
tions ®', " sont déterminées sans ambiguité par les conditions (433). (433 bis), (435)
et (436); pour obtenir ces fonctions, il semble possible d’employer, avec des modifi-
cations convenables, la méthode des fonctions fondamentales.

Supposons qu’en un certain point M du systéme, on connaisse les valeurs W/, W
respectivement prises par les deux fonctions @', ®" :

437 M=V, PIOM) ="

Il en sera stirement ainsi dans le cas ou le systéme s’étendra & linfini, car, a
Tinfini, ®' et ®” devront s’annuler.

I. — Déterminons deux fonctions W', W’  par les conditions suivantes :

Au point M, on a

(438) W, =W, W =W,

0

Continues dans tout le systéme, ces fonctions vérifient, en tout point, les

N}

équations

Sr sl!
AW = —-, AW = —-.
(139) = =

En tout point de la surface S,, qui sépare I'un de I'autre deux corps du systéme,
elles vérifient les conditions

2 W, amo 2 <W’ am u
[ e A\ 0 KW e
(S FRw) + W) =1,

m, \ g, o, \ e,
(440) . .
Q A\ 2 . d w’ 2w > v
D__ 4 i _ 0__KV‘VV —_—.
‘\ni < P T : “V 0> * ‘\ns < Pe T e 4re!

Enfin, en tout point de la surface X qui borne le systéme, ces deux fonctions
vérifient les conditions
)‘ ‘!/o

. ’ — . L
(441) =, N ¢

On voit aisément que chacune de ces deux fonctions est déterminée sans am-
biguité.
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Imaginons, en effet, que le probléme comporte deux solutions distinctes; retran-
chons chacune des deux fonctions qui composent la premiére solution de la fonction
correspondante contenue dans la seconde solution; désignons maintenant par
W', W’ les différences ainsi obtenues; ces différences vérifient les conditions qu’on
obtient en remplacant les seconds membres par zéro dans les conditions (438), (439),
(439 bis), (440) et (441); sans écrire ces conditions, numérotons-les (438"), (439g’),
(439’ bis), (440") et (441").

Multiplions la premiére des deux équations (494’) par

Tr
0

dG® et intégrons, pour

le volume entier du systéme, le résultat obtenu; nous trouvons, par une transfor-
mation connue, 1'égalité

W, aW' W W
il W“dv fW'<' W X W")ng
N o, oM, !

() (2 .

Multiplions de méme la seconde des équations (439') par K'W' dG, et opérons

(442)

comme dans le cas précédent. Nous trouvons I'égalité

DW" \ " "
f K'W —=2d=+ / w’ (K’ ilv_“_ +K' oW, dsS
, N o\ M o, 2, ) O

N f K (bW'o W', AW, AW, AW, DW"O> .
e dy T Tw '

(443)

Ajoutons membre & membre les deux égalités (442) et (443) aprés avoir multiplié
la seconde par —n}fﬂ; tenons compte des égalités (440') et (441"); nous trouvons I'égalité

suivante :

bW! 2 D‘/V! 2 r
S G e
dx dy
" ng K,(bW'o PALAR + W' dW", 4 W/ W'
dy dy 2. 2z

(444)

°>dC5:0.

Recommencons les mémes opérations, mais en multipliant la premiére équa-

!

. . V
tion (439') par —K'W",dGS et la seconde par v, dG, nous obtiendrons 1'égalité
P

S G () (5) e

f , < W', \W" W' IW, W/ W'
K'{ — +
Ay dy  dy 0z 2

(445)
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En ajoutant membre & membre ces deux égalités (444) et (445), nous trouvons
I'égalité

I IW/NE 7 W/ N 7 W/ N Z WP NE 7 QW N QW N e .
(446) f?[( dx >+\ dy >+< 2z >+< o >+\ dy >+< oz >]do—0'

Cette égalité (446) exige qu’on ait, en tout point du systéme,

W, W, W,
w dy = w0

(447) W W AW
w0 Ty 0 T =

Ces égalités (447) exigent que chacune des deux fonctions W', W’ ait méme
valeur dans tout le systéme; d’aprés les égalités (438'), cette valeur ne peut étre autre
que zéro, ce qui établit la proposition énoncée.

Lorsque le systéme est formé d’un seul corps, 'existence des deux fonctions W',,
W' est assurée par des démonstrations connues. Dans le cas ol le systéme contient
plusieurs corps, rien d’analogue 4 ces démonstrations n’a encore été ébauché. Nous
admettrons cette existence.

II. — Les fonctions W',, W’ étant supposées délerminées, on déterminera deux
nouvelles fonctions W’,, W”, par les conditions suivantes :

Continues dans tout le systéme, elles vérifient, en chaque point de ce systéme,
les équations

4=

p_ 4
(AAS) AW - Tz

1 Ti

W, AW, =— 2w,

En chaque point de la surface S, elles vérifient les conditicns

d V' J ' N
<‘V, +8—?K"W‘”l> + (W. +%‘7EI&’BW'I4>:0,
g

(o) on, . T an, \ g,

9
2 /WL amo N ) (WL amo N
M‘ <T_ T R,W ) — <—a———71,—K,W‘>_o.

En tout point de la surface X, elles vérifieront les conditions

W/ W’
450 —L—o0, =0
(450) ON oN

Enfin, au point M, on aura

(451) W, (M)=o0, W’ (M)=o0.
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Que chacune des deux fonctions W’,, W’ soit déterminée sans aucune ambiguité,
on le démontrera comme on 1'a démontré pour les fonctions W’,, W’ ; que ces deux
fonctions existent, on I'admettra comme on 1'a supposé pour les fonctions W',, W” .

III. — Les fonctions W’,, W', se formeront au moyen des fonctions W',, W'
comme celles-ci ont été formées au moyen des fonctions W',, W" .
On continuera de la sorte indéfiniment, puis on considérera les deux séries

gz 1 gl 2
I
82

S’ =W, +— W W .
(452) 2
( (I)”: W"u +

I
W4+ W' ...
1 + gA 2 +

Suprosoxs que ces deux séries soient absolument et uniformément convergentes, el
qu’il en soit de méme des séries oblenues en différentiant une ou deux fois les termes de
celles-la par rapport & x, y ou z. On voit aisément que les fonclions ®', ®" définies
par ces séries seront solutions des conditions (433), (433 bis), (435) et (436).

[56] Par extension de ce qu’on sait étre vrai dans le cas ou le systéme se compose
d’'un corps unique, Nous ADMETTRONS qu'il existe pour & une infinité de valeurs
critiques

(453) e, £, &, ...

lelles que l'un au moins des développements (452) cesse d’étre convergent; nous admet-
trons que, & lendant vers une de ces valeurs critiques, le développement qui va cesser
d’élre convergent représente une quantité qui croit au deld de toute limite.

La période T serait alors, pour le systéme éludié, une quasi-période propre si la
vilesse de propagation des champs longitudinaux avait lune des valeurs critiques (453).

Cette conclusion semble fort peu intéressante, car la véritable valeur & de la
vitesse de propagation des champs longitudinaux ne coincidera, en général, avec
aucune des valeurs critiques (453). Mais de cette conclusion, nous en pouvons dé-
duire une autre qui ait un sens physique.

Etant donnés un systéme S formés de plusieurs corps conducteurs et une période T
de vibration électrique propre a ce systéme, supposons qu’on ait déterminé les va-
leurs (141) que devrait prendre la vitesse de propagation des champs longitudinaux
pour que T devienne une quasi-période propre & ce systéme. Soit £ une de ces va-
leurs critiques. D’aprés les égalités (416) et (416 bis), il existe deux fonctions @', ®"
qui vérifient, en tout point du systéme, les équations

L=t 4r®

(454) 20" 4 —,I,qu:o, IAP"+ 7],—,—4)":0.
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En chaque point de la surface S,,, ces fonctions vérifient les conditions (417);
elles vérifient les conditions (408) en chaque point de la surface X.

En multipliant par un méme nombre s, toutes les dimensions du systéme S, for-
mons un systeme S, semblable au systéme S. En chaque point du systéme S, attri-
buons aux deux fonctions ', ®” des valeurs égales & celles qu’elles prennent au
point homologue du systéme S; on voit sans peine qu'au premier de ces deux points,
les dérivées partielles du premier ordre de @' et de ®" seront ¢, fois plus petites, et
les dérivées du second ordre o} fois plus petites qu’au second de ces deux points.

De Ia se tirent deux conclusions :

1° Les fonctions &', ®, qui, dans le systtme S, vérifiaient les conditions (417)
et (408), les vérifient encore dans le systéme S,.

2° Lorsqu’on passe d’un point quelconque du systéme S au point homologue du
systéme S,, les valeurs de Ad', AD" sont divisées par ¢;. Si donc on veut que les
équations (454), vérifiées en tout point du systéme S, le soient encore en tout point
du systéme S, il faudra remplacer la valeur de &, par une valeur s, fois plus grande.

Dés lors, on peut construire le systéme S, de telle sorte que la période donnée T,
associée & la véritable valeur & de la vitesse de propagation des champs longitudi-
naux, soit, pour ce systéme S,, quasi-période propre; il suffit de déterminer le
rapport de similitude s, par la condition ¢,¢, =& ou

(455) 6, =—.

D’ou la proposition suivante :

Etant donnée une certaine pé}'iode T et un certain systéme formé de corps conduc-
teurs, il existe une infinité de systémes semblables a celui-ld qui admettent la période T
pour quasi-période de vibrations électriques propres.

Supposons qu’au lieu de donner exactement a ¢, la valeur (455), on donne seu-
lement & ce rapport de similitude une valeur o', trés voisine de celle-1a; au sys-
téme S, et & la période T correspondra alors une vitesse de propagation critique
' =—4¢' &, qui sera trés voisine de . Dés lors, I'une au moins des deux fonctions.
', " données par les développements (452) sera, en général, extrémement grande.
Un excitateur, en exercant sur le systéme S, une action vibratoire longitudinale et
pendulaire de période T, y engendrera un champ électrique longitudinal vibrant sui--
vant la méme loi, et d’amplitude extrémement grande.

D’ot la conclusion suivante :

Quand, sur un systéme de corps conducteurs, on fait agir un excitateur engendrant
un champ électrique vibratoire, purement longitudinal, pendulaire, dont la période est
trés voisine d'une quasi-période propre au systéme, celui-ci devient en général le siége
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d’une vibration élecirique longitudinale, pendulaire, de méme période que le champ en-
gendré par Uexcitateur, et d’amplitude extrémement grande.
Il y a résonnance électrique.

Les propositions invoquées par la précédente théorie de la résonnance électrique
sont bien loin d’étre toutes démontrées; beaucoup d’entre elles ont été seulement
justifiées dans des cas particuliers, puis étendus par voie d’hypothése; le mathéma-
ticien trouvera donc ici 'énoncé d’'un grand nombre de théerémes, probablement
vrais, dont la démonstration aurait un grand intérét pour la Physique.

REMARQUE FINALE

Tandis que s'imprimait le présent Mémoire, nous avons poursuivi des recherches
qui nous ont conduit & rejeter bon nombre des conclusions formulées ici. Ces
conclusions, en effet, reposaient en grande partie sur I'hypothése suivante : Dans un
systéme formé de plusieurs corps, les vibrations éleclriques propres ou quasi-propres
sont des vibrations longitudinales.

Sans étre vérité démontrée, celte hypothése, cependant, était supposition parfai-
tement admissible, du moment qu’on s'en tenait aux points de départ admis dans le
présent Mémoire. Etendant, en effet, & la théorie de Helmholtz la méthode que
H. Hertz avait recommandée dans I'étude de la théorie de Maxwell, nous prenions
uniquement en considération les équations qui régissent les composantes du champ
¢lectrique total et les. composantes du champ magnétique. A supposer, dés lors, que
le champ électrique total est partout longitudinal, il ne semblait pas qu’il y et
impossibilité.

Mais un champ électrique total n’est pas une grandeur quelconque; il est la
résultante d'un champ électrostatique et d'un champ électrodynamique. Une
expression proposée pour le champ électrique total ne doit donc pas simplement
verifier les équations qui régissent les composantes de ce champ; il faut encore
qu’elle puisse résulter d’'une expression acceptable du champ électrostatique et d'une
expression acceptable du champ électrodynamique. Or, c’est ce qui n’aurait pas lieu,
du moins en général, si I'on supposait, au sein d’un systéme formé de plusieurs
corps, que le champ fit longitudinal.

La découverte de celte vérité nous a contraint de rejeter bon nombre des solu-
tions proposées dans le présent Mémoire et de reprendre sur nouveaux frais plusieurs
des problémes qui s’y trouvaient traités.

Nous croyons, cependant, que le travail accompli dans ce Mémoire ne doit pas
é&tre regardé comme peine perdue.
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Tout d’abord, un certain nombre de résultats énoncés, soit pour un diélectrique
unique, soit pour un corps conducteur unique, ne dépendent aucunement de cette
hypothése : Le champ électrique est longitudinal, De tels résultats gardent donc
toute leur valeur. Ainsi en est-il de tous ceux qui sont démontrés au Chapitre I de la
Premicre Partie, et aussi de tous ceux que renferment, au Chapitre I de la Seconde
Partie, les n> [28], (29], [30], [31], [32] et [33]. Les cas de stabilité qui ont été
établis dans ces chapitres ne souffrent aucunement de la modification qu’il nous faut
maintenant apporter a nos recherches.

En secound lieu, nous sommes conduit, au cas ot le systéme comprend plusieurs
corps de natures différentes, & des problémes beaucoup plus compliqués que ceux
dont il est ici question; mais ce que nous pourrons dire de ces nouveaux problémes
s’obtient en étendant les méthodes qui ont été indiquées dans le présent Mémoire.

Ainsi la théorie de la résonnance électrique donnée par ce Mémoire est dénuée
de portée physique; elle n’est qu'un exercice de Mathématiques; mais elle nous
parait mériter ce nom d’exercice, en ce qu’'elle prépare la théorie plus compliquée
des effets qu’observe vraiment le physicien.

N=—=



