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SUR LA

FORMULE DE STOKES DANS L'HYPERESPACE,

Par M. A. BUHL.

[4] Ayant précédemment écrit un Mémoire Sur les applications géométriques de
la formule de Stokes, il m’a semblé bon de ne pas confondre avec lui des résultats
qui proviennent des mémes recherches, mais qui appartiennent plus & I’Analyse
qu’'a la Géométrie.

La formule de Stokes, étendue dans I'espace & n dimensions, relie les intégrales
doubles attachées 4 des portions de variété ayant deux dimensions aux intégrales
simples attachées 4 des variétés a une dimension qui servent de contour aux portions
précédentes.

Les premiéres préoccupations de ce genre remontent aux paragraphes a2 et 3 du
Mémoire de M. H. Poincaré Sur les résidus des intégrales doubles (Acta Mathematica,
t. IX) et aux travaux de M. E. Picard cités plus loin.

Je donne la formule de Stokes, dans l'espace & n dimensions, sous une forme
symbolique, trés symétrique, qui me semblé nouvelle et qui donne immédiatement,
pour n=3, la formule de Stokes ordinaire et, pour n =12, la formule de Riemann
(dite aussi de Green).

Pour n=14, j’ai appliqué la formule & la démonstration de I'extension du théo-
réme de Cauchy aux fonctions analytiques de deux variables. Ce procédé permet de
conclure que ladite extension revient a la formule de Riemann étendue, sans chan-
gement d’aspect, au cas ou ses deux variables deviennent complexes.

[2] Soit, dans un plan YOX, un contour C enfermant une aire A. On a

(1) ‘/CXdY:ffAdXdY,

I'un des membres de cette égalité n’étant autre chose que'l'expression de l'aire A.
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Imaginons maintenant un changement de variables tel que le suivant :

(2) X=flz 1y, Y=/(= ).
L’égalité (1) devient
X X
Y el ey |
(3); : f X(Dwdx-‘_ dy y> /js Y Y dedy.
e dy

¥ désignant le contour transformé de C par (2) et S étant l'aire contenue dans X.
On peut ajouter, pour plus de clarté, que la transformation (2) est supposée telle
que le contour X soit parcouru dans le sens direct quand il en est ainsi pour C. Des
remarques analogues peuvent étre sous-entendues plus loin.
Posons maintenant

et (3) deviendra
P

| )
(3 bis) fpdx+Qdy_ff<__—>dxdy—[f %y | dwdy,
P Q

ce qui est la formule de Riemann. Bien entendu, il n’y a 1a rien que de trés élémen-
taire et de trés banal, la formule de Riemann étant couramment mise en relation
avec (1) par unc foule d’auteurs et dans des buts fort divers; ainsi on retrouvera, a
peu prés, le raisonnement précédent dans la Théorie des fonctions algébriques et de
leurs intégrales de MM. Appell et Goursat (Introduction, p. 1x). Mais, ce qui me
parait beaucoup moins remarqué, c’est qu'on peut établir par la méme voie la for-
mule de Stokes et les extensions de celle-ci dans I'hyperespace.

[8] Etablissons d’abord la formule de Stokes. Je reprends (1) et les formules
X=f(z.y. 2, Y=f(.y,2)

qui définissent un simple changement de variables si le point x, y, z appartient &
une surface

(4) z=[f(x,y)

Alors (1) devient
DX X 2z X | X 2z

DY )Y a bz X _b? 22z dy
dz d =dz ) ff dzdy,
J.x < Hart N R A R

\ac u D—y oz _D_y—

S étant une portion de surface (4) limitée par le contour X.
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Le déterminant qui figure dans I'intégrale double peut s’écrire

hF4 hF4
Tw Ty
X X X
o dy 2z
Y Y Y
2w dy oz
et, si I'on pose,
Y Y Y
) -—YX —_ —_ — X —
®) P=X o Q=X Yy R=X >
la formule précédente devient '
0z oz
—_— —— 1
dx dy
(6) [ Pde + Qdy + Rdz = [f 2 22 |dedy.
< U8 dy 2z
p Q R

C’est bien celle de Stokes. Elle n’a peut-étre pas encore toute sa généralité, parce
que les égalités (5) font de P, Q, R les composantes d’un vecteur doublement et non
triplement scalaire, mais il est bien aisé d’obtenir la généralité absolue. Il n’y a qu’a
récrire la formule obtenue avec d’autres fonctions P, Q, R et ajouter les deux ; dans
le résultat on a un troisiéme groupe de fonctions P, Q, R tout 4 fait quelconques.

Si la surface S est définie par une équation F(x, y, z)=o0, la formule (6) prend
une forme plus symétrique, utile & considérer dés maintenant, car elle se conservera

dans I'hyperespace. On a d’abord :

OF ¥z O i
e 0z @ dy |z W—_O
. L0z dz .
Tirant de 1a — et —, on écrit (6) sous la forme
e dy
F dF dF
. dy 2z da dy
(6 bis) f Pdx + Qdy + Rdz :f Y 2 2 | ToF
b S -~
o dy 2z 4
P Q R
Enfin si, sur la surface (4), I'élément d’aire est ds, on a
ds=—Lazdy, 8ds=—"2dud ds =duxd
&G——ﬂ‘ xray, ! 3’——w xday, Yyas—axay,

%, 8, vy étant les cosinus directeurs de la normale 4 la surface, menée dans I'élément ds.

Fac. de T., 3¢ S., IIl. 9
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Et alors (6) peut s'¢erire

T

12 2 2
/;de+Qdy+Mz:ffs v |

P Q R

X

ce qui, en développan‘t le pseudo-déterminant, coincide avec la forme la plus habi-
tuellement adoptée, par exemple celle du Traité de Mécanique de M. P. Appell
(t. I, chap. xxvm).

(4] Il est bien clair qu’au lieu de déduire les formules de Riemann et de Stokes
de la formule (1), on pourrait déduire celle de Stokes de celle de Riemann, ce que
J’ai montré dans mon Mémoire Sur les applications géométriques de la formule de
Stokes, publié¢ ici méme (n° 37). D'ailleurs, I'une des opinions que je donnais dans ce
précédent Mémoire se trouve encore renforcée par ce qui précéde. Les formules de
Riemann et de Stokes ont surtout une valeur externe; je veux dire qu’en elles-mémes
elles ne contiennent rien qui ne soit déjA contenu dans (1), assertion évidente
puisqu’on peut les déduire de (1) par des changements de variables. Cependant elles
ont des applications d’'une extréme importance et d’ailleurs fort nombreuses: jai
encore augmenté le nombre de ces derniéres dans mon Mémoire précité. Pour les
fonctions analytiques, la formule de Riemann conduit de la maniére la plus naturelle
au théoréme de Cauchy; en Physique, la formule de Stokes est un admirable instru-
ment de synthese. On ne pourrait se passer d’elles, le plus souvent, qu’au prix de
grands détours, mais il est analytiquement remarquable qu’au fond des choses on
puisse toujours se ramener & un emploi unique ou 4 des emplois répétés de I'éga-
lité (1) qu’on peut méme considérer comme une identité.

[8] Voyons maintenant, dans I'hyperespace, les généralisations des formules de
Riemann et Stokes. Je traiterai simplement le cas de I'espace & quatre dimensions ot
les coordonnées d’un poinl quelconque seront désignées par x,, x,, x,, x,. Dans ces
conditions, la seule symétrie des notations permettra de voir ce que serait la formule
générale relalive au cas de n dimensions.

Partons toujours de (1) et posons

X‘—fq(‘ra"re’w:x’xb)‘ Y:J;('xi’we’a“a’xa)'

ce qui définit un simple changement de variables si le point @, x,, x,, , appartient
toujours & la variété & deux dimensions :

(7) .1'1:%‘, xg:x ’ 'L.azq:'(xa‘xe)’ xs:"'f<xl’xl>'

2
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Alors (1) devient

X X e, X x, X dr, X dx,

+ X
/ (Y DY de — f £l e, dxy o, dx, dx, dx,  dx,dx, dx, dx, s dae
r =, s|Y  dax, Y, Y NN, Yo, | 7
de,  dx, dx,  dx, M, dx,  dx 0w,  0x, o,
S étant la portion de variété (7) limitée par le contour .
Le déterminant qui figure dans l'intégrale double peut s'écrire :
o o
C
s I o
o, dx,
e, oz,
X X X X
o, dxk, dx, dx,
Y Y Y Y
o, de,,  dx,  0x,
Si 'on pose
Y
(4
7 bis P=X—,
(7 bis) ; ¥,
la formule précédente devient
o o,
5 0 1 o
o, M,
ek, dx, o :
(8) [ Pdw, + P,dw, + P,dr, + P,dr,= /'fs o, w, da, da, .
) d IR B
x,  dx, dx, o,
I)I P‘E Pil I)‘

Telle est, dans I'espace a quatre dimensions, la formule qui correspond & celle de
Riemann dans le plan et & celle de Stokes dans I'espace ordinaire. Elle n'a pas
jusqu'ici toute sa généralité parce que les quatre fonctions P définies par (7 bis) ne
dépendent que de deux fonctions arbitraires X et Y, mais on remédie immédiatement
a cet inconvénient en imaginant que I'on écrive deux autres formules avec des fonc-
tions P différentes: 'addition des trois donne encore une formule du méme type ot
les fonctions P sont alors quelconques.

On pourrait évidemment se proposer de revenir de la formule (8) & la formule de
Stokes en remplacant, dans (8), la forme différentielle qui se trouve sous I'intégrale
simple par une forme analogue contenant une différentielle de moins. La qlestion
est ainsi mise en relation avec le probléme de Pfaff, ce que j'ai déja signalé dans mon
premier Mémoire (n° 36).
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[6] La formule (8) prend une forme beaucoup plus symétrique si 'on suppose
que la variété S est définie par deux équations telles que

(9) F,(x,x, x,.x)=0, F,(x,, x,, z,, x,) =o0.

Ces équations définissent implicitement des fonctions x, et x, des variables a,
et a,. Donc

oF, F ax,  F 0x, 0F,  OF, dx, D_Ii, X,

3

e, dxdx,  dxdx, dr,  dx,dx,  dw dx,

oF,  AF, 0w, K, 0x,

1 1 3 1

4
—=o, =
A de,  dx,ox, dx,dx,

oF IF, dx F, dx
— - 0.
h)

dx,  dx,dx,  dx,ox

‘(

Considérons maintenant le déterminant du quatriéme ordre qui figure dans (8).

F
A la premiére ligne multipliée par ;—‘ ajoutons la seconde multipliée par 3—‘ ;
T, JX

’

4

- i IF . .
de méme multiplions la seconde, non encore modifiée, par S * et ajoutons-lui la
oL

3 4
oF
dx

premiére, non encore modifiée, multipliée par

. I1 est facile de voir que ces opé-
3

rations multiplient le déterminant par le jacobien de F,, F, par rapport a «,, x,.
Donc (8) prend la forme

OF, F, 2F, IF,
dx, dr, dx, ox, dr,dx,
AF, 2F, OF, OF, | [3F, oF, |
(10) f P di, + P,dr, + P,dx, + Pdn,= / [, S| | e,
: A B S S U N Y oY o
D_a—i o, b_x: dx, | | ox, B—x‘

Telle est la formule de Stokes dans I'espace & quatre dimensions ; elle a une forme
complétement analogue & la forme (6 bis) établie dans l'espace & trois dimensions.

D’ailleurs, la formule précédente peut redonner (6 bis); s'il s’agit d'une surface
dans l'espace ordinaire, les équations (9) doivent se réduire &

1‘,(.’17‘,.'172, 173,-’1:‘):0, .’I?‘:O,

ce qui permet de vérifier immédiatement I'assertion.

Que I'on rapproche maintenant la formule de Riemann (3 bis), celle de Stokes (6 bis)
et celle que je viens d’établir dans I'espace & quatre dimensions; il n’en faudra point
davantage pbur apercevoir la forme générale de ces égalités dans l'espace & n
dimensions. .
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APPLICATION A LA THEORIE DES FONCTIONS DE DEUX VARIABLES COMPLEXES.

[7] La formule de Stokes (8) ou (10), relative & I'espace a4 quatre dimensions,
peut servir de maniére remarquable & établir les fondements de la théorie des inté-
grales doubles relatives & une fonction de deux variables complexes. La généralisation
du théoréme de Cauchy pour de telles intégrales dépend alors de (8) ou (10) tout
comme le théoréme de Cauchy relatif aux fonctions d'une seule variable dépend de
la formule de Riemann (3 bis). Bien plus, si I'on pousse le calcul jusqu'au bout,
c’est-d-dire si, non content de montrer qu'une intégrale double étendue & une por-
tion S d'une variété & deux dimensions ne dépend que du contour X de cette portion,
on veut, de plus, obtenir sa valeur par une intégrale de ligne relative 8 £, on retrouve
purement et simplement la formule de Riemann (3 bis) qui se trouve ainsi étendue
au cas ot les variables @« et y sont complexes.

Je vais vérifier ces différentes assertions. Je commence par bien préciser ce dont
il s’agit.

Soit I'intégrale double

(11) [ sy

Elle posséde le sens qui lui a été attribué par M. H. Poincaré, puis par M. E. Picard
(Traité d’Analyse, 2° édit., t. 11, p. 273. Théorie des fonctions algébriques de deux
variables indépendantes, t. I, p. 49). On a

r=ux +ix,, y=x,+ix,,

le point «,, x,, x,, «, décrivant S dans I'espace & quatre dimensions. S est limitée
par un contour ¥ qui, en général, appartient aussi 4 I'espace & quatre dimensions.

Je suppose toujours que, X restant fixe, S peut se déformer sans rencontrer de
singularités pour les fonctions P et Q définies par 1'égalité

f(x’ y): P(J)‘, x,, xa' xA) + iQ(x‘, "172’ x:x’ wb)'

J

Si I'on considére un continuum S, pris parmi les précédents, on devra pouvoir
sur ce continuum déformer le contour © de maniére & le réduire & un point.

[8] Reprenons les raisonnements qui se trouvent dans les ouvrages précités de
M. Picard.
L’intégrale (11) prend d’abord la forme

[ [ (P +iQ)(dz, + idx,) (de, + idx)
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ou
\ [ f P (dz, d, — dic, d,) — Q (dix, dz, + dee, dix,)
N
| +i [[ QUw,de, — de,d) + P (d,do, + dv, da).
¢ S

Prenons uniquement pour variables x, et x,, ce qui revient & supposer que la

variélé S est définie par des équations telles que (7)- Les intégrales (12) prennent la
forme

d dx dx dx
P—24p— - —-3> dx,dx
‘[/'s < dx, o, +Q Qaac2 v

3
(13) aL,
. X, xx, o, dx,
+l‘/:/3(QE+QD_JJ‘_PE:+waz>dw‘dxi

Ces intégrales sont des cas particuliers du second membre de (8).

Dans le déterminant du second membre de (8) considérons les pseudo-mineurs
du second ordre

P, P, AP, AP, P, 3P, P, AP, AP, 2P, 2P, 2P,
o dx, w2, M, ' o, e,

Si I'assertion mise en italique est exacte, on doit pouvoir égaler ces expressions
respectivement a

P, — P, —Q, —Q, o, o,
s'il s’agit de la premiére intégrale (13), et a
Q, —Q, p, P, o, o,
s'il s'agit de la seconde. On a ainsi deux systémes de six équations & quatre fonctions

inconnues, systémes que jappelle (A) et (B). Chacun de ces systémes pris a part doit
étre compatible. On peut se borner & vérifier la compatibilité i I'aide des équations
P 2Q P 20Q P20 P 2Q

14 ST, =0, T+ =0, ———=0
(14) e, T, d,

’ ’

de, o dx,
procédé qui revient & celui indiqué par M. Picard aux endroits précités. Mais on peut
vérifier ladite compatibilité, d’une maniére encore plus tangible, en déterminant
effectivement les fonctions P, P,, P,, P, qui sont solutions du systéme (A) et les
fonctions analogues du systéme (B). On prouvera ainsi non seulement que les inté-
grales (12) ou (13) ne dépendent que du contour C de S, mais on déterminera leur
valeur au moyen d’une intégrale de ligne attachée & C. Et cette seconde méthode est

d’autant moins & dédaigner que la détermination des fonctions P, est trés simple.
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[9] Par des quadratures de différentielles totales a4 deux variables déterminons
d’abord des fonctions

U,:/'de, + Pdz,, Uzszdxl—de,,

Uazdeac,—}— Pdz,, U‘szdoca—de‘.
On déduit immédiatement de 14

o0, U, U, U, U, U, U, U,
+ =o, — 3. =9 "t =0 =
dx, dx, dx,  dx, dx,  dx,

’

de, dx,
Dans ces conditions, le systéme (A) peut s’écrire :

D([):A_UQ) (\Pl_O D(l)l + Ul) ‘\Pz_ D(P:;_Uz) DPQ

o, o, o, w, o, w,
AP, +U) AP, 2R, P, AP AU) AP—Uy
o, x, @, o, o,

Il exprime que
P, dx, 4 P,dx, + (P,—U,))dx, + (P, + U))dx,
est une différentielle exacte, soit dV. Donc

P, dx, + P,dx, 4+ P, dx, + P dr,—=dV + U dx, — U, dx,.

Sur la portion de variété S et sur son contour X il ne peut y avoir aucune singu-

larité pour dV. ceci d’aprés les hypothéses faites sur P et Q 4 la fin du paragraphe 7.

Donc, le long de X, I'intégrale de dV est nulle et la premiére intégrale de (12)

ou (13) est. d'apres (8), égale & une intégrale de ligne relative & ¥ et portant unique-
ment sur

U,dx, — U, dx,.

Si maintenant on considére le systéme (B), on trouve, par un raisonnement com-
plétement analogue, que la seconde intégrale de (12) ou de (13) se réduit aussi a une
intégrale de ligne relative & £, mais portant sur

U, dx, 4+ U,dzx, .

Donc les expressions (12) et (13) se raménent & des intégrales simples relatives
a X el portant sur

(U,dx, — U dx,) 4+ i(U,dx, + U, dx)= (U, + iU,) (dx, + idx,),
ce qui est égal a

d(a, + iz [1(Pdz, — Qdw) + i(Pdx, + Qdz,)).
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Cetle derniére expression peut s'écrire enfin

d(z, + ia:‘)f(P +iQ)d(x, + im)=dy [ f(x. y)dz="Ndy.
si I'on pose
N
J@ =5

11 est ainsi établi que
: » ON
[i N(ly_z/:/S D—az‘dacdy.

[10] Au début du paragraphe précédent, j'ai défini U,, U,, U,, U,, mais je ne
me suis servi que des deux premiéres de ces fonctions: il est aisé de voir qu’on
pourrait.refaire le raisonnement en n’utilisant, au contraire, que les deux derniéres.
On arriverail ainsi & une égalité de la forme

Donc
) ! » /AN M
(15) | v/;Mda:-i—Ndy_//;<ﬁ—W>dxdy.

C’est la formule de Riemann étendue au cas ot les variables x et y sont complexes.
Cette extension lui laisse le méme aspect que dans le cas de variables réelles.

[44] 11 importe d’observer que les hypothéses, sur lesquelles on s’est appuyé
pour obtenir la conclusion précédente, jouent un role absolument essentiel. Leur
abandon ne permettrait pas, en général, de maintenir sans changement la for-
mule (15). Ainsi supposons que la fonction

N M
f@y)=——=

dr dy

ait un continuum de singularités rencontrant la variété S. Ceci n’est pas une raison
pour que lintégrale double de (15) perde toute signification, mais, méme si elle
conserve un sens, elle ne s’exprimera plus par I'intégrale de ligne du premier membre.
En effet, le contour T ne peut plus, sur S, se réduire & un point sans rencontrer de
singularité; il n’est donc pas certain que les différentielles telles que dV, considérées
au paragraphe g, donnent un résultat nul par intégration le long de X. Par suite,
I'égalité (15) ne pourrait subsister que par adjonclion, au premier membre, de
certains termes complémentaires.
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