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SUR LES APPLICATIONS GEOMETRIQUES

LA FORMULE DE STOKES,

Par M. A. BUHL.

INTRODUCTION.

Le premier objet de ce Mémoire a d’abord été d’évaluer des volumes a l'aide
d’intégrales de ligne. Si I'on considére une cloison 8 jetée sur un contour fermé X et
différents solides ayant S pour facette commune, mais complétement différents par
ailleurs (par exemple des cones ayant tous S pour base gauche, mais dont les sommets
seraient différents), il est aisé de montrer (n° 1) que la connaissance du volume d'un
seul de ces solides entraine la détermination du volume d’'un quelconque des autres
au moyen d’'une simple intégrale de ligne attachée au contour . Cela ne dépend
que d’applications trés simples de la formule de Stokes. A ce propos, je tiens a
signaler tout le parti que j'ai tiré de I'élégant Mémoire de M. G. Keenigs : Sur la déter-
mination générale du volume engendré par un contour fermé gauche ou plan dans un
mouvement quelconque (Journal de Mathématiques pures et appliquées, 188g). Jai
emprunté avec avantage un certain nombre de notions employées par cet excellent
géomeétre, notamment la notion d’axe aréolaire d’un contour fermé.

Mais, outre que les résultats qu’on trouve dans ce qui suit sont différents de ceux
donnés par M. Kcenigs, je crois pouvoir faire remarquer qu’il y a aussi quelque diffé-
rence de principe dans nos recherches respectives. Le Mémoire de M. Kcenigs reléve
a coup str de la Cinématique; le mien ne reléve que de la Géométrie.

Parmi les résultats géométriques obtenus, je puis signaler les élégantes propriétés
de non-transcendance d'une infinité de volumes attachés a la courbe sphérique de
Viviani, les relations entre les aires définies par des contours quelconques sur la
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34 A. BUHL.

sphére ou sur les cylindres circulaires et les volumes attachés & ces portions de sur-
faces, les analogies entre les volumes et les moments d’inertie, analogies fondées sur
un ancien Mémoire et une récente remarque de M. Darboux, etc...

Ces sujets constituent les deux premiéres parties de mon travail.

Dans une troisiéme partie jétudie de curieuses transformations qui engendrent
des volumes équivalents.

Tout au début de I'étude d’un tel sujet j’ai été amené & considérer la formule de
Stokes comme résultant simplement d’un changement de variables dans la formule

de Riemann :
A AN M
MdX NY:f S axdy.
fc‘ +Nd f,\<ax by ) XY

Que l'on pose, en effet,
Pdx 4+ Qdy + Rdz=MdX + NdY,

ce qui conduit & un cas trés particulier du probléme de Pfaff, et 'on définira ainsi
la transformation en question. Il n’y a 14, d’ailleurs, rien de nouveau; la transfor-
mation que je fais remonter & Pfaff remonte de méme & Jacobi et Clebsch, qui remar-
quérent quun tourbillon ne dépendait que de la donnée de deux fonctions (alors
quil en faut trois pour définir un vecteur absolument quelconque) et batirent
précisément sur celte remarque leurs recherches relatives aux mouvements tour-
billonnaires.

Et méme, dans un Mémoire Sur la formule de Stokes dans Uhyperespace que le
présent Recueil publiera apres celui-ci, nous verrons qu’on peut relier, par des chan-
gements de variables, la formule de Stokes et la simple identité

fc Xay= [ [ axay.

Plus simplement encore, et d’'une maniére tout & fait intuitive, imaginons sur
une surface une formule quelconque en x, y, z; A l'aide de coordonnées curvilignes
X, Y, prises sur cette surface, on pourra en faire une formule & deux variables.

Et si la premiére formule est celle de Stokes, que peut étre la seconde, sinon celle
de Riemann? Cette remarque intuitive est remplacée par une démonstration aun®37.

1l y a peut-étre 12 Iexplication d'une contradiction, qui m’a toujours fort étonné,
entre I'importance immense et toujours grandissante de la formule de Stokes en
Physique (1) et le peu d’attrait qu’elle semble offrir aux géomeétres sur le terrain
purement mathématique. Sans doute, les géométres n'y ont pas senti une formule

(1) M. H. Bouasse, dans son Cours de Physique (t. III, p. 26), dit qu’on doit « mettre le
théoréme de Stokes au nombre des notions primordiales de la Physique qui ne se contente pas
de phrases creuses et d’analogies vaines ». Il est & peine utile de dire que je suis entiérement de
I’avis de mon éminent colléegue.
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franchement nouvelle, exprimant quelque chose de plus qu'une formule connue
d’autre part, qui était celle de Riemann ou méme la simple identité de tout 4 I'heure.

Et, & strictement parler, ils ont eu raison.

Mais combien cette raison stricte parait grosse de torts, ne serait-ce qu'au point
de vue pédagogique! Au lieu de démontrer la formule de Stokes en renvoyant ses
applications & plus tard, en hydro ou en électrodynamique, combien il serait facile,
par exemple, de Femployer & passer du volume classique

Uz=ff zdx dy
]

aux volumes analogues U, et U, définis & I'aide de projetantes cylindriques paral-
leles & Ox et & Oy, ce qui donne les formules éminemment simples

Ul_—Uy:/xydz, Uy—Uz:/yzdac, UZ——szfzacdy,
P 2 2

applicables elles-mémes, de la maniére la plus élégante et avec des calculs insi-
gnifiants, & de certaines courbes telles que la fenétre sphérique de Viviani.

Pour ma part, je n’ai pas hésité & introduire de telles choses dans le Cours de
Mathématiques générales que je professe a la Faculté des Sciences de Toulouse.

Toulouse, 31 mars 1g11.

CHAPITRE PREMIER.

Volumes cylindriques.

[1] 11 est aisé de montrer intuitivement comment un certain volume, exprimé
par une intégrale double, peut ne dépendre que d’un certain contour et, dans ces
conditions, devenir exprimable a I'aide d’une intégrale simple.

Soit un certain contour fermé X sur lequel nous jetterons une cloison S défor-
mable, mais toujours nettement limitée par =. Soient maintenant deux solides
limités tous deux par la méme cloison S et par ailleurs de maniéres différentes et
absolument quelconques. La différence entre les volumes de ces solides est un volume
qui ne dépend que du contour X et nullement de la forme de la cloison S. En effet,
déformer S c’est ajouter un certain onglet & chacun des volumes en question et,
comme cet onglet est le méme pour les deux volumes, il n’influe en rien sur leur
différence.
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La formule de Stokes servira d’abord & présenter avec plus de rigueur analytique
ce raisonnement intuitif. De plus, elle conduira, dans les cas que nous allons exa-
miner, & des formules et & des résultats d’une grande élégance.

Expliquons-nous d’abord une fois pour toutes sur les notations les plus couram-
ment employées dans la suite.

La cloison S est une surface a laquelle nous supposerons, de préférence, I'équation
explicite

() z=f(x, )

Au point M(z, ¥, z) de cette surface I'é1ément d’aire est ds. Par définition, on doit
se représenter cet élément comme un quadrilatére curviligne se projetant sur le
plan Oxy suivant le rectangle dxdy. Ceci conduit & prendre, pour cosinus directeurs
de la normale en M, les expressions

—» s —4 +1

Y

=——, e, =
Vitp+g Vitp+q Vi+p+g

et & éerire yds = dxdy. D'ailleurs, en projetant ds sur les autres plans coordonnés,
on a plus symétriquement les trois relations

&

(2) ado = — pdxdy, fds = —qdxdy, yds =dxdy,

en posant suivant 'usage :

2z _
P=3 ‘ ‘I——8,~

La formule de Stokes est commode & retenir sous la forme symbolique

o B ¥
Y 20

(3) f;de+Qdy+Rdz=ffS w3y e
P Q R

le second membre n’étant, bien entendu, qu'une maniére d’aider la mémoire pour

écrire
R0 3P AR QP ]
:ffs[a<3§—$>+@<gﬁﬁ>+{<bw by) da.

Si I'on fait usage des relations (2), ce second membre se transforme en

O L[ (R0 () 1 (2
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Cette derniére forme du second membre sera souvent employée dans ce Mémoire ;
je rappelle enfin qu'une expression

ffs (aF + 8G + YH)dsszS (—pF — G + H)dxdy

ou F, G, H sont des fonctions données de x, y, z peut se mettre sous la forme (4)
en posant :

R Q
e
2P R
®) % 350
d
QP
Lo dy

si F, G, H satisfont 4 la relation

(6) =

F G ?H
dx - dy oz

D’ailleurs, bien qu’il ne s’agisse ici que de géométrie, nous abrégerons bien
souvent en employant les termes physiques. C’est ainsi que les fonctions P, Q, R
peuvent étre considérées comme définissant un vecteur issu de M(x, y, 2) et les
fonctions F, G, H comme définissant un autre vecteur qui est le tourbillon du
premier.

Lorsqu’on donne F, G, H, le calcul des fonctions P, Q, R satisfaisant aux rela-
tions (5) est un probléme classique résolu, par exemple, dans le Traité de Mécanique
de M. P. Appell (t. III, chap. xxviu) et dans le Traité d’Analyse de M. E. Picard
(t. I, chap. ).

Enfin, quant au sens positif dans lequel il faut parcourir le contour ¥, pour
évaluer I'intégrale simple qui figure dans (3), c’est le sens habituel dans lequel un
observateur placé debout en O verrait circuler un point pris sur la partie positive
de Oz, si I'on faisait tourner cette partie d'un angle droit pour la rabattre sur la
partie positive de Oy. Sur la figure 1, c’est le sens ABCA. Tout ceci est encore d’ac-
cord avec les indications du Traite¢ de M. Appell (loc. cit., p. g).

[2] Volumes cylindrigues principaux (1). — Soit le contour ¥ par lequel passe la
surface S d’équation (1). De tous les points de X et de la portion de surface S contenue
dans ce contour nous pouvons abaisser des perpendiculaires sur Oxy. Nous formerons
ainsi le volume cylindrique classique limité latéralement par le cylindre qui a ¥ pour

(1) Comples rendus (20 février 1911).
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directrice et dont toutes les génératrices sont paralléles & Oz. La base de ce cylindre,
dans le plan Oxy, est limitée par un contour C projection de .

Le volume cylindrique que nous venons de définir sera désigné par U,.

Si 'on avait projeté les points de S et de = non pas dans la direction de Oz, mais
dans les directions Ox ou Oy, on aurait obtenu des volumes de méme nature qui
seront désignés respectivement par U, et U,

On a manifestement :

_ Ux:f“/; acmdc:——b/:/; pxdxdy,
) \m=fﬂww=—£ﬂwmw.
U, :ffs zydo = ./fs zdxdy,

les troisiémes membres de ces égalités étant déduits des seconds au moyen des for-
mules (2). Or, d’apres la remarque fondamentale du début (n° 1), les différences de
ces trois volumes U pris deux & deux doivent étre exprimables par une simple inté-

grale de ligne attachée au contour X. Etudions par exemple :
@® U, —U,=— [ (pz—qy)dwdy.
Cette intégrale double est transformable par la formule de Stokes. Elle est en

effet identique a (4) si I'on pose :

R Q. P R QAP

—_—— — .__y —_—— —

— =ux, = =o.
dy 2z )z . dy

Or, c’est 13 un systéme auquel on satisfait en posant

P=o, Q=o, R=uwy,

Uz—Uy:[mydz.

Par des raisonnements analogues ou, plus simplement, par permutations circu-

ce qui transforme (8) en

laires, on établirait le groupe des trois formules :

(9) UI——U,/:facydz, Uy—Uzzfyzdw, Uz~Ux=fz:L'dy.
3 < ) b

Celles-ci ne sont pas distinctes. Il faudra, en effet, supposer que x, y, z n’ont en
général qu'une seule détermination sur le contour E. Alors 1'addition des trois for-
mules (g) donne Y'identité o = o, I'intégrale obtenue dans I'addition portant sur une
différentielle exacte d(xyz).
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[3] Application & Uhippopéde (*). — Soit 1a courbe sphérique bien connue sous le
nom d’hippopéde ou de fenétre de Viviani. Elle est lintersection d’une sphére de
rayon R et de centre O avec un cylindre circulaire ayant pour diamétre de base le
rayon OA de ladite sphére (fig. 1). Un point M de cette courbe se projetant en P sur
Oxy, et 6 désignant I'angle AOP, on a pour coordonnées de M :

o =R sin 6 cos 6, y =R cos® 9, z = R sin 6.

z

B

Fie. 1.

Les intégrales des formules (9) se forment alors avec une extréme facilité. On
devra remarquer en outre que la partie de ces intégrales qui correspond au quart de

cercle AB est nulle, le contour X étant formé ici par ce quart de cercle et par la portion
de courbe BCA. On a

(S ]

1
Ux—Uy:—Rs'/‘“ sin 6 cos* 6 = — Ra.[ udu P l R®,
0

5
T 1
U —U~:—R3>/2 sin 6 cos® 6 cos 20df — R’/ (uﬂ_gu‘)du:_if{s,
Y : 0 () 15
z 1 4
U, —U,= 2R“/2 sin® 0 cos® 6db = zRQ/ u'—utdu = _5R"_
0 0 I

Conformément & la remarque qui termine le numéro précédent, on vérifie immé-
diatement que la somme de ces trois expressions est nulle.

T 2 3

(1) Le mot d’hippopéde est employé ici & cause de sa briéveté, qui le rend fort commode,
bien qu’on appelle généralement ainsi lintersection d’un cylindre circulaire avec une sphére
tangente quelconque. Mais ici aucune confusion n’est a craindre.

On sait que
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et, dans ces conditions, on a immédiatement :

J — 5_2_2> U= (E B\ g _<f;~_3 ;
U, 5w R, U,=(g 5 R, U= (g 911‘

Retranchons ces volumes du huitiéme de sphére dans lequel ils sont situés et nous
obtenons des différences qui sont respectivement

22 13, 10
W R’ 5 R?, ZE R’

Le dernier de ces résultats, dont la rationalité fut autrefois si remarquée, ne va
pas, on le voit, sans deux autres qui, quoique moins classiques, sont tout aussi inté-
ressants. Pour 'heure actuelle, il n’est guére possible de leur attacher de I'impor-
tance en tant que résultats; mais, si 'on a égard & la méthode qui précéde, on y voit
une application de la formule de Stokes d’une élégance bien remarquable.

[4] Surfaces remarquables. — Reprenons la différence de volumes cylindriques
exprimée par la formule (8). On aura continuellement
U,=1,
si
px — qy=o0.

C’est 14 une équation aux dérivées partielles dont U'intégration est immédiate et
donne

(10) xy = 4(2),

¢ étant une fonction arbitraire. Ces surfaces (10) sont engendrées par une hyperbole
équilatére dont le plan est toujours paralléle & Oxy, cependant que le centre décrit Oz,
les asymptotes de la courbe é¢tant toujours dans les plans Ozx et Oyz, et cette courbe
variant homothétiquement en s’appuyant toujours sur une courbe directrice donnée.
Un contour fermé, simplement connexe, tracé sur de telles surfaces, donne toujours
des volumes U, et U, égaux.
La surface
xyz = const.

qui appartient & la fois aux trois types

xy = 4(2), ¥z = 3(x), 2 = 7(¥)
donne, pour les contours qu'on y trace, des volumes U,, U, , U, qui sont égaux.
Ces résultats sont bien connus et nous n’y insisterons pas davantage, Remarquons
cependant qu’on serait arrivé aux mémes conclusions en étudiant la premiére des

formules (g); l'intégrale simple du second membre est nulle si xy est fonction finie
et bien déterminée de z le long de I. ’
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[5] Volumes cylindriques généraux. — Soit un plan I passant toujours par l'ori-
gine O et que nous dirigerons en considérant le vecteur OP toujours normal audit
plan et ayant 3, ., v pour cosinus directeurs (fig. 2). De tous les points du contour =
et de la cloison S d’équation (1), abaissons des perpendiculaires sur le plan IT; nous
définirons ainsi un certain volume cylindrique U qui variera avec I'orientation du
plan II. Ce sont les variations de U que nous nous proposons d’étudier maintenant.

Fic. 2.

Au point M de la cloison S considérons 1'élément d’aire ds et la normale MN de
cosinus directeurs «, 8, y. L’angle de MN et de OP a pour cosinus

Ae 4 pB 4 vy
I'élément do a pour projection sur IT un élément d’aire
Qo 4 pB + vy)ds
auquel correspond 1'élément du volume U
‘ O 4+ py + v2) o + pB8 + vy)ds.

On modifie cette derniére expression en tenant compte des formules (2) et il vient
finalement :

U =./:/; (A + vy + v2) (— Ap— pq + v)dxdy.
Une différence telle que
(1) U—U,= ([ (0@ +uy +2)(—p—ug + ) —z]dwdy

doit &tre transformable en une intégrale simple pour la formule de Stokes.
Fac. de 7., 3¢ S., IL 6
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Nous avons en effet :
F=10x 4 wy + v2)
G =pOx + py + v2)
H=v(0x 4+ py+vz)—z

et I'on satisfait facilement aux relations (3) en prenant
P= [z()\x + vy) + V;(z’ — y’)] ,

Q=—1> [z(kw + py) + v;(z’—-ac’):l,
R=o.

Alors (11) devient
(12) U—Uzszdw+Qdy.
z

Si I’on remplace P et Q par les valeurs ci-dessus, on a une combinaison linéaire
d’intégrales simples qui ont toutes une signification remarquable. Posons :

Az.—:/ydz:—fzdy.
(13) ,Ayzfzdwz—fwdz,
\A;:focdy—_——fydoc,

'\/Axnx:/—:);_dz=_/yZdy’ Ax'qxz—f%dnyZde,

g
J
Cas

N

f%dx—_——/zwdz, Ay§y=—f%—dz=faczdac,
\ Aztjz:/%dy:——/acydm, Aznzz——/%—dac:fywdy,

toutes ces intégrales étant étendues au contour E. Si ce contour est tel qu'il donne
pour projections sur les plans coordonnés des contours plans simples n’ayant ni
boucles ni points multiples, les notations des tableaux (13) et (14) signifient que = a
pour projection :

sur Oyz un contour d’aire A et de centre de gravité G,(o, 1,, {,),
— Ozz  —  — A — — G,(5,, 0,8),
- O‘Z;y - - A, - - G:. (‘zz’ MNz» 0)'



SUR LES APPLICATIONS GEOMETRIQUES DE LA FORMULE DE STOKES. 43

Et méme si lesdites projections de X avaient des boucles distinctes ou se recou-
vrant partiellement, on pourrait encore conserver le langage précédent & condition
de prendre la notion de centre de gravité un peu moins a I'étroit que dans la statique
pratique. ’

Ainsi A, A, A, sont des aires qui, pour des courbes & boucles, peuvent se com-
poser de parties de signes divers. Il en est de méme des expressions (14) ott I'on peut
toujours parler de centres de gravité si certains éléments d’aires sont traités comme
ayant des masses négatives. Observons aussi que les premiers membres des éga-
lités (14) peuvent parfaitement étre différents de zéro méme pour une aire A nulle;
cela revient & se représenter une ou plusieurs des coordonnées g, 7. §{ comme étant
infinies, mais c’est une conséquence toute naturelle des conventions généralisées qui
précédent (*).

Ces explications, utiles pour éviter des confusions, étant données, revenons i
I'étude de I'égalité (12). Utilisant les formules (g) et (14), le second membre de (12)
s’écrit maintenant

v, 4+ (U, —U) + wA L+ A, + (U, —U) 4+ hpA o, + WAL+ WAL,
et I'on a finalement la formule trés symétrique
(l5) U= >"Ux + y‘zUy + V,Uz + VV(Ay:y + A:.'rlz) + "J‘(Aziz + Axcx) + )‘“(Ax‘qx + Ay Ey)’

On doit pouvoir y arriver en étudiant les différences U—U, ou U—TU, aussi
bien que la différence (11), ce qui a été vérifié; la reproduction de ces vérifications
serait toutefois sans intérét nouveau.

[6] La formule (15) est d’une trés grande importance pour la suite. Pour abréger,
nous appelons termes carrés les trois premiers termes du second membre, lesquels
contiennent »’, u*, v*; les trois derniers termes en pv, vA, Ap. seront appelés termes
rectangles.

Si, le contour I étant toujours rigoureusement invariable, on modifie la cloison S
passant par ce contour, les termes carrés varient, en général, mais les termes rectangles
restent invariables.

En effet, le changement de la cloison S modifie, en général, les volumes u,. Uy, U,,
mais les termes rectangles ne dépendent que d’aires et de coordonnées de centres de
gravité relatives aux projections du contour = sur les plans coordonnés. Ceci est
méme évident & la seule inspection de la formule (15), mais il était utile de bien
mettre en évidence le théoréme souligné & cause des conclusions que nous allons en
tirer.

(1) Cest le cas de vecteurs paralléles se réduisant & un couple; le centre de ces vecteurs est
alors rejeté a Iinfini.
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Si le contour T a des projections sur les plans coordonnés qui sont situées entis-
rement dans les premiers quadrants de ces plans, sans jamais étre coupés par aucun
des axes coordo#nés, les termes rectangles de (15) ont une interprétation géométrique
fort simple. En vertu de 'un des théorémes de Guldin, ces aires tournant autour des
axes coordonnés engendrent des volumes égaux respectivement a

amA{, et 2=Ayq, pour A, et A, tournant autour de Ox,
atAf, etanA L, — A etA, — — Oy,

an A, et amA S A et A, — — Oz.

Yy

[7] Application de la formule (15) au quadrant d’hippopéde. — Le quadrant d’hip-
popéde ABCA (fig. 1) est précisément dans le cas auquel nous venons de faire allusion.
Ses projections sur les plans coordonnés sont des aires qui peuvent étre limitées,
mais non coupées par les axes.

Le contour ABCA se projette sur Ozy suivant une aire A, comprise entre 'arc de
cercle AB et un arc de parabole dont AO est axe et A sommet. A T'aide des for-
mules (14) ou d’un des théorémes de Guldin, on trouve sans peine :

= R’ R’
AI:RZ <—_—3>’ Axlrlx:_‘ A‘xct:_'
15 ; 12

Comme projection sur le plan Oxz, l’hippopéd.e donne une lemniscate de Gerono
et 14 encore on trouve sans peine :

R* __ =R’ R’

v e __ v
v ST v

Enfin, par définition méme, la projection sur Oxy est un demi-cercle pour lequel
ona:
=R* R R’

- " N, — .
< 8’ 2T 12’ 2l 16

La comparaison de ces résultats donne incidemment d’intéressantes propriétés de
T'hippopéde.
Les aires A et A, tournant autour de Oy donnent des volumes égaux.
— Ajetd, — — Oz — —
— AjetA — — Ox — —

Utilisant les valeurs de U,, U,, U, obtenues au n° 3, la formule (15) devient

JJ/m 2\, /% 13\, /= 10y, T® T 2.
vk (G5 + G+ (G-i)7 +aw+ g ipe |

On en tire :

=R?
6

S/22., 13
—U=R (Z—s'l\ +ZE—)

10 T~ I 2
o T —ta—2u).
P LA AT *‘)

vt
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On voit que la différence entre un huitiéme de sphére et le volume U n’est pas
rationnelle en général, c’est-a-dire quelle que soit I'orientation du plan II, mais cette
différence, lorsque I'on a y.=o0 ou v=—o, ne contient pas d’autres irrationnalités
numériques que celles offertes par les cosinus directeurs %, ., v. )

Pour p.==o le plan II tourne autour de Oy, pour v=o il tourne autour de Oz.

[8] Remarque sur les contours £. — Dans I'exemple qui précéde, la cloison S,
jetée sur le contour I, a, en tous ses points, une normale, faisant toujours des angles
au plus égaux 4 un droit avec les axes coordonnés. Il est bien facile de s'affranchir de
cette hypothése. Une cloison S qui ne serait pas dans les conditions indiquées pourrait
toujours &tre divisée en régions telles que dans chaque région les cosinus directeurs
de la normale aient un signe invariable. On établirait ensuite autant de formules (15)
qu’il y a de régions et on les ajouterait pour obtenir le volume U relatif 4 la cloison
considérée. L’addition des termes carrés serait une addition de volumes pouvant
avoir des signes différents, mais ces signes s’établiraient d’apres les conventions géné-
rales auxquelles il n’y a rien & ajouter ici. Quant aux termes rectangles, qui ne
dépendent que du contour X, établis pour certaines portions du contour et ajoutezas, ils
donnent des termes de méme forme relatifs au contour complet, ceci d'aprés les con-
sidérations les plus élémentaires relatives aux centres de gravité.

[9] Application de la formule (15) a la boucle d’hippopéde. — Prenons la boucle
d’hippopéde qui serait formée sur la figure 1 par I'arc BCA et par son symétrique
relativement au plan Oyz.

Nous avons alors :

T 22\ ,, o (m 13\, /T 2\ o,
U=a(fg) e U=aGogg R U=a(Gog)w

On a ensuite :

A,=o, & =o, §y=o,
ce qui suffit & faire disparaitre les deux derniers termes rectangles de (15). On a enfin

AL —A =R

¥y 3 iz 8

et (15) devient :

= 22 = 13 T 2 .
U=aR® ———>P S P <——- row |
? [(6 55 +(6 5)¢+ (5 9) +8‘“J
Si I'on retranche ce volume de celui du quart de sphére, on a une différence quant

i la rationnalité de laquelle on peut faire des remarques analogues A celles qui ter-
minent le n° 7.
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[40] Translation des coordonnées par rapport & un contour. — Supposons que,

dans une figure analogue a la figure 2, le plan I passe par un point fixe O’ de coor-
données a, b, c.

Alors on voit immédiatement comment on doit modifier la formule (15). Le
volume U relatif au plan IT a pour expression :

U= (U, — aA,) + p2(U, — bA,) + (U, — eA) + w[A, (L, — ©) + A(n, — b)]
+ A, — @) + AL — o)) + A (n, — b) + A5, —a)].
Ceci montre immédiatement que, si l'on détermine a, b, ¢ par les équations

Ay(cy - C) + ‘A:.C'}z - b) =0,
(16) Az(&z - (I) + Az(cz - C) =0,
A(0,—b) + A, —a)=0o,

la nouvelle valeur de U n’a plus que des termes carrés. Ces équations donnent :

| | Ty — Ny x_c

Y

(17)

2b=nz+ﬂf—Ay<cx;C?l—qy; Ez);

x

( ac :Cl.*_ Cy_ Az<gy;;2_%—i>.
Yy

T

On voit qu’elles détermineront a, b, ¢ en général. Mais ces formules de résolution
ne s'appliquent plus si I'une des aires A,, A, A, est nulle. La discussion se fait
d’une maniére particuliérement simple et ¢élégante sous la forme géométrique.
Soit @ le point de coordonnées a, b, ¢ défini par les équations (16); sil'on considére
a. b, ¢ comme des coordonnées courantes, ces équations représentent trois plans qui,
en général, n'ont en commun qu'un seul point 3. Si l'aire A, est nulle, les équa-
tions (16) se réduisent a

AL, — ) + Alr, — b)=o,
(18) AL —a) + AL =o,
quz + Ay(‘i.y - a) 0.

Les deux derniers plans deviennent paralltles (paralléles d’ailleurs & celui des
plans coordonnés qui contient I'aire A nulle) et le point @ s’en va & linfini. Ceci
arrive notamment si le contour ¥ est tracé, de maniére a étre simplement connexe,
sur un cylindre de génératrices paralléles & Ox.

Supposons maintenant que 1'on ait

(19) Ay("\x’;x + A:.Ez) = Az(“\x”lx + Ay,::y)'
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Alors les deux plans paralléles précédents sont confondus et nos trois plans ont
une droite commune paralléle au plan coordonné qui contient I'aire A nulle. Ceci
arrive en particulier si le contour cylindrique et simplement connexe dont nous
venons de parler posséde un plan de symétrie paralléle & Oyz. Un tel contour se pro-
jetant en raccourci complet sur Oyz, les intégrales (14) donnent identiquement zéro
pour A, et A n, ; et 'existence du plan de symétrie entraine 3,=3%, dans les deux
derniéres équations (18) qui se réduisent ainsi 4 une seule.

La boucle d’hippopéde est dans ce cas. Les deux derniéres équations (18) se rédui-

sent & a=o et la premiére 4

b+ R.

C —

T
4

=12
[SCTNY

3 .
Cette droite passe par A (fig. 1) et par un point de Oz d’ordonnée —8E R; ce point

est donc situé au-dessus de B et la droite traverse la cloison sphérique. Tous les
points de cette droite sont des points & par ot I'on peut faire passer des plans I, de
cosinus directeurs 1, p., v, tels que les volumes U, attachés a la boucle et & la portion
de surface sphérique qu’elle contient, aient pour expression :

U=2U, + p(U, — bA,) + (U, — cA,)

ou

ﬁ 22 332 T 13 3 2 5. 2 E__z_ s_E s 3

Si nous considérons le point A, pour lequel ¢=o, la différence entre le volume
du quart de sphére et ce volume U ne contient, quelle que soit I'orientation du
plan II, d’autre irrationnalité que les irrationnalités quadratiques contenues dans
X, P, v

[11] Considérons encore le cas ot deux aires A, A, A, par exemple A, et A_,
seraient nulles. Alors les équations (16) se réduisent A

Ay(cy_ C) + A;'ﬂ; =0,
(20) AL + AL, =o,
Ax’rlx + Ay(gy - a) =0.

Des trois plans qu’elles représentent, le second est complétement rejeté & I'infini ;
il en est donc de méme du point . Mais si la seconde des équations (20) a lieu
identiquement, le lieu des points @ est une droite paralléle aux plans coordonnés
qui portent les aires A nulles. Ceci aurait lieu en particulier pour un contour ¥ plan
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et parallele & I'un des plans coordonnés Oxz. Dans ce cas, d’ailleurs, les équations (20)
se réduiraient &

C:Cy, (L:E.y.

Ce sont 1a les équations d’une droite perpendiculaire au plan du contour 2 et
passant par son centre de gravité. Ainsi soit un contour plan ¥ perpendiculaire 4 Oy;

pour plus de simplicité, nous supposerons précisément que son centre de gravité G
soit sur Oy (fig. 3).

Fic. 3.

Enfin, par le contour X, faisons passer une cloison quelconque, ce qui ajoutera
un onglet de volume w au volume du cylindre droit compris entre le plan de X et Oxz.

Considérons maintenant le plan II passant par l'origine et perpendiculaire au
vecteur OP(%, ., v). Le contour X donne sur II une projection X', ce qui, d’aprés
les conventions générales, définit le volume :

U=>"U, + ’U, + v'U,,

le point @ (a, b, ¢), autour duquel II peut tourner en ne donnant dans U que des
termes carrés, étant ici I'origine. Or, dans le cas particulier que nous étudions, on a:

U,=o, Uyzw-l—Ay._(—)E, U,=w, U:w—}—p.’Ay.aa.

11 y a 13 dedans le théoréme d’aprés lequel le volume d’un cylindre & bases planes
non paralléles est égal au produit de I'aire d’'une section droite par la distance des
centres de gravité des bases. Et d’ailleurs la valeur de U se trouve sur la figure 3 par
un raisonnement immédiat. Mais il importait précisément de retrouver un résultat
A vérification directe simple, comme cas particulier des théories générales exposées
dans les paragraphes précédents. V
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[42] Cénes remarquables engendrés par le vecleur OP. — Reprenons la formule (15),
le contour X étant toujours bien déterminé et rigoureusement fixe par rapport aux
‘axes coordonnés. Alors U n’est fonction que de 1, u., v. Il est clair que 'on peut
imposer certaines conditions au volume U et chercher & quelles conditions corres-
pondantes est alors astreint le vecteur OP. Ainsi on pourrait chercher pour quelles
positions de OP, ou du plan ]I, le volume U est maximum, minimum, constant, nul.

Pour obtenir des volumes U nuls, il faut que OP soit génératrice du cone :

o=UX"+ UY + UZ + (Ag, + A )VZ + (AL + AL)ZX + (A0, + A5 )XY.

Par suite, le plan IT enveloppe aussi un céne de sommet O.
Tous les points de 'espace sont des sommets de cones de méme nature.
Le cbne précédent peut étre réel ou imaginaire. Il est imaginaire quand les
volumes U nuls sont impossibles & obtenir, ce qui serait le cas, par exemple, avec le
contour plan ¥ de la figure 3 (n° 11) si I'onglet o était positif.

[43] Quadriques lieux de points P. — Jusqu’ici, le vecteur OP n’a joué de réle que
par sa direction. On peut faire jouer un rdle a sa longueur et, pour la représentation
des volumes U, on a alors une représentation analogue a celle qui, en Mécanique,
donne l'ellipsoide d’inertie. Le vecteur OP correspondant & un volume U, détermi-

nons sa longueur par la condition

Si alors X, Y, Z sont les coordonnées de P, on a :

= —)g n= -Y— , vy = —Z-— ,
opP opP’ . .
et I'équation (15) donne, pour lieu de P, une quadrique dont I'équation se déduit de
celle du céne du paragraphe précédent en y remplacant le membre o par 1. Cette
quadrique (P) a donc I'origine pour centre et le cone précédent pour cdne asymptote.
Ce dernier pouvant étre réel ou imaginaire, la quadrique (P) est plus quelconque
qu'un ellipsoide d’inertie, mais on peut se proposer, & son sujet, des questions & peu
prés analogues.
Ainsi (P) admet I'axe OX pour axe principal si

AE + AL =o. Ax‘qx—i—AyEy:o,

‘[(xg—z’)dyzo,‘ [(y’——ac’)dz:o.

En particulier, ces équations sont satisfaites si

c’est-a-dire si

ot —2=9(y), y—a'=1@),
Fac. de T'., 3¢ S., 1I. 7
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¢ et J étant des fonctions uniformes sur le contour X, n’ayant aucune singularité ni
sur ce contour ni sur 'une des cloisons S: ainsi ¢ et b pourraient étre des polyndmes.

11 est facile de voir que c’est ce qui arrive pour la boucle d’hippopéde. D’aprés les
équations de cette courbe données au n° 3, on a :

r—2"=—R—y)?, R(yY—o)=[R —2*)(R*— 22°).

Ceci est parfaitement d’accord avec 'expression du volume U trouvée au n° g.

[14] Sur laxe aréolaire de M. Keenigs. — Dans son Mémoire du Journal de
Mathématiques pures et appliquées (188g), M. G. Keenigs introduit la notion d’axe
aréolaire d’un contour fermé; il en tire un parti trés intéressant et elle va également
&tre fort utile ici. L’axe aréolaire du contour X est la droite portant le vecteur non
localisé dont les projections sur les axes sont mesurées par les aires planes A, A, A,.

Alors I'expression

M, + pAy 4+ vA,

est l'aire plane contenue dans la projection de T sur le plan [I, cette aire plane pou-

vant étre aussi mesurée par un vecteur projection du vecteur aréolaire sur une nor-
male & II.

Quand on a
YA, + p'Ay +vA,=o,

c’est que le plan II contient un des axes aréolaires de X.
Pour un contour plan toute perpendiculaire au plan du contour est axe aréolaire.
Ceci posé, reprenons l'expression générale du volume U donnée au début du
n° 10; ce volume qui correspond au plan II, passant par le point (a, b, ¢) et dont la
normale a X, p., v pour cosinus directeurs, sera désigné maintenant, pour plus de
précision, par la notation

Xy Py v
a, b, e’

Or, il est facile de vérifier que I'on peut écrire :
(21) Ut — UL b o =— (A, + pA, +94) (0a + pb + vo).

On peut donner & cette formule une signification géométrique évidente, car
la différence des deux volumes du premier membre doit étre le volume d'un cylindre
droit & bases paralléles, la surface d’une des bases de ce cylindre étant I'aire contenue
dans ¥’ (fig. 2) et la hauteur étant la distance des plans paralléles considérés : c’est
précisément ce qu’exprime le second membre. Mais I'aire contenue dans X' s’exprime
aussi bien en projetant le vecteur aréolaire de ¥ sur une normale aux plans consi-
dérés. On peut donc dire que la différence des volumes cylindriques relatifs a deux
plans paralldles est égale au produit de la distance de ces plans par la projection du
vecleur aréolaire sur la distance en question. Encore une fois, ceci peut étre considéré
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comme évident, mais il était nécessaire de formuler nettement cetle proposition qui,
dans la suite, devra étre comparée avec des propositions analogues, mais moins évi-
dentes, relatives & des volumes coniques et conoidaux.

Remarquons que, sile plan II contient un axe aréolaire du contour £, le volume U
est indépendant de I'axe aréolaire choisi, mais il dépend, bien entendu, de I'orien-

tation du plan.

CHAPITRE 1II.

Volumes coniques, cylindro-coniques et conoidaux.

[45] Considérons toujours le contour X, une cloison S jetée sur ce contour et, de
plus, un point A(a, b, ¢) qui sera sommet d’un cone ayant £ pour directrice.
Soit V, le volume conique ainsi enfermé. Ce volume est une intégrale de surface
attachée a S, intégrale facile & former. L’élément ds de la cloison S et le sommet A
déterminent un volume conique élémentaire égal &

I —

APds

w

si AP est la distance de A au plan tangent a S dans ds (fig. 4). Mais
yds =dxdy, E:Y .AN:

z

FiGc. 4.

d’autre part, de I'équation du plan tangent & S

Z—z=pX—2)+q(Y—y)),
on déduit
AN+ c—z=pla—x) +q(b—y),
d’ou
AN

AN=—p@—a)—q(y—b) + (z—0).
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Tout ceci permet de transformer le volume conique élémentaire et d’écrire fina-
lement :

1
) VA=§ffs [—p(z—a) —qly —b) + (z — )] dzdy.
Si le point A vient & I'origine des coordonnées, on a un autre volume conique :

_ I
(2) V=3 [ (—pz—ay + dzdy.
La différence
VO—VA:% ffs (— pa — qb + ¢)dwdy
doit étre une intégrale double transformable par la formule de Stokes, d’aprés les
généralités du n° 1. En fait, on satisfait immédiatement aux équations

R_Q_ % _M_, QP

—— =g, =b, =
3y 2 3z oy ¢

en prenant
P:——Zy—i—bz, Q:gw—az. R=—o,
et, par suite,
3) 3(V, — V)= f (bz — —Cz—y)doc — (az — gw)dy.
Avec les notations du n° 5, il vient finalement :
(%) 3(V,— V,)=aA, + bA, + cA,.

On voit que le lieu des points A, pour lesquels le volume conique V, est constant,
est un plan perpendiculaire au vecteur aréolaire du contour X. En particulier, si
V, doit étre continuellement égal & V, le point A décrit le plan

aA, + bAy 4+ cA,=o.

Observons encore que les formules ci-dessus peuvent facilement étre mises en
relation avec celles du chapitre précédent. Ainsi (2) s’écrit immédiatement :
(5) 3v,=U,+ U, +1,.

Enfin, on peut donner du second membre de (4) une interprétation qui nous sera
utile plus loin. Soit 6 'angle du segment OA avec I'axe aréolaire du contour £.On a :

aA, + bA, + cA,=cos 0V/a* + 0" + ¢ VAL + A} + AL
Donc

3V, —V,) —O0A X proj. vecteur aréolaire sur OA.
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[18] Volumes cylindro-coniques. — Reprenons le volume cylindrique U, attaché
au contour ¥ et proposons-nous d’étudier la différence '
() U —V,=3 [ (o + gy + 22)dwdy.
]

C’est encore 14 une intégrale double qui doit étre transformable par la formule
de Stokes et, en fait, on trouve sans peine que le vecteur

F=——a:, G::——-y, H=2z

est le tourbillon de .
P=—yz, Q=xz, R=o.
Donc

U,—V,—1 f 2(awdy — yda).
3

Si I'on imagine que z est exprimé en fonction de x et y, cette intégrale est étendue,
plus simplement, au contour C projection de T sur Oxy. On peut donc écrire

I I o
\ Uz—Vozgﬁ.z(mdy—-ydx)zgfzrde.

si r et 6 sont coordonnées polaires pour le point x, y du plan Oxy.

G))

Cette formule peut étre établie par un raisonnement direct qui servira de vérifi-
cation & ce qui précéde.

Soient (fig. 5) A, B/, deux points infiniment voisins du contour ¥ se projetant
en A et B sur C. :

B

F1c. 5.

L’élément de volume OABB'A'O est évidemment celui de U, — V. Or, si AP est
un arc de cercle de centre O, I'infiniment petit que nous venons de considérer peut
étre remplacé par OAPP’'A’O. Ce nouvel élément peut &tre considéré comme une
pyramide dont la base APP'A’ a pour aire AP . AA’ = rdb.z et dont la hauteur est

OA =r.
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. U, e ax .
Le volume de cette pyramide est donc 3 zr'db et, en intégrant cette expression le

long du contour C, on retrouve la formule (7).

[47) Aires sphériques. — Dés que lon connaitra un volume cylindrique, tel
que U, attaché au contour ¥, la formule (6) permetira I'é¢valuation du volume
conique V,, puis, par la formule (4), d’'un volume conique V, , tout ceci n’exigeant
plus que le calcul d’une intégrale simple. Cette remarque permet de relier d'une
maniére remarquable le volume U, attaché & un contour sphérique et l'aire sphé-
rique ¢ y contenue.

Partons d’une sphére de rayon R ayant l'origine pour centre. La formule @)
s’écrit :

R T .
(8) U:—":?U-——'g'/c-yf do.

Connaissant U_, on obtient ¢ par une intégrale simple. Et réciproquement.
Appliquons (8) & I'hippopéde dont les équations sont toujours celles du n° 3.

Avec ces équations, il faut appelerg—— 6 angle 6 de la formule précédente. Cette

formule devient

~ 2 2 2 5 . 2 2 ! R2
<————>R——c:R /%mﬁcos“Od():R/ wdu=—,
2 3 0 0 3

Cette aire retranchée du huitiéme de I'aire sphérique totale donne R* pour diffé-
rence, ce qui est le résultat classique bien connu.

[18] Surfaces remarquables. — Ces surfaces seront celles pour lesquelles on
aura U, =V, quant & tous les contours fermes qu’on y pourra tracer. En partant de
la formule (6) on peut d’abord conclure que ces surfaces ont pour équation aux
dérivées partielles

(9 px + qy + 2z=o0.

L'intégration est immédiate, mais on arrive au méme résultat, d'une maniére qui
permet mieux la discussion, en partant de la formule (7) mise sous la forme

(10) Uz—Vo:lfzx2d<Z>.
3./ x
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Alors, si l’'on a
e plY
(11) zx _f<x> ,

I'intégrale de la formule précédente est nulle sous la seule condition que la fonction
arbitraire f<z> soit finie et sans valeurs multiples sur le contour C ou dans l'aire
x

plane y contenue. On vérifie immédiatement que (11) est I'intégrale générale de (g).
Comme application trés simple, nous pouvons observer que les surfaces (11) con-
tiennent en particulier la surface de révolution

z(x* + y*) = const.

qui enserre asymptotiquement I'axe Oz. Tout contour fermé tracé sur cette surface
et extérieur & Oz donne U, — V, = o; mais, comme l'intégrale du second membre

de (10) est ici 0 — arc tang %, la nullité précédente ne peut plus avoir lieu si le con-

tour fermé considéré est traversé par Oz.

we=r(2)

et, par suite, les surfaces remarquables ici considérées sont en relation simple avec

L’équation (11) peut s’écrire

celles du n° 4. Elles sont engendrées par la courbe plane
xyz == const., ch = const.

En particulier, pour la surface xyz = const., on a :
U,=U,=U =V,
ce qui est d’accord avec ().
[19] On peut présenter le raisonnement précédent sous une autre forme qui, au

fond, ne lui ajoute rien, mais permet de nouveaux apergus géométriques.
Supposons que l'on ait, pour tous les points d'un contour gauche fermé,

(12) xdy —yde =r'do =d . ¢(z)

et que z¢/(z) soit sans singularités le long de ce contour: alors les intégrales de (7)
sont identiquement nulles. Quant aux contours fermés donnant lieu aux égalités (12),
ils peuvent étre définis par les équations

(13) 9@)=14"), r=y()

ou les fonctions ¢ et ¢ satisfont & de certaines conditions de périodicité.
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Au fond, toute courbe (13) peut étre tracée sur une surface (11), mais les résultats
les plus simples ne sont pas les mémes dans les deux méthodes. Soient

o(z2)=kz, L(h)=a’sin20;

nous aurons le contour gauche fermé

(14) kz=a’sin 26, r*=2qa"cos 29.

Ce contour se projette sur Oxy suivant une lemniscate de Bernoulli, mais il n’a,
par lui-méme, aucun point double, car, pour 6 = i;, on a kz —=- a*.
4

Comme on a z¢'(z) = kz, la formule (7) donne bien U, — V,=o0. La forme trés
symétrique du contour considéré permettait de prévojr ce résultat; le volume ici
considéré est nul dans les mémes conditions que l'aire totale de la lemniscate de
Bernoulli quand on attribue un signe convenable & 'aire de chaque boucle.

La surface (11) sur laquelle on peut tracer (14) est

. Ju(—u) y)
kza* =4 ¢ ——~ =2,
2’ =4 a Tk (u o

La variable u n’arrivant jamais au voisinage de Oz qu’avec des valeurs laissant -
finie la précédente fraction rationnelle en u, on est encore bien d’accord avec la
méthode du paragraphe précédent.

[20] Les résultats qui viennent d’'étre obtenus nous montrent la simplicité parti-
culiérement remarquable des contours pour lesquels on a

(15) xdy — ydx = kdz,

ou, en termes finis :

‘ (16) kz=14(), r*=1'(9).

Les courbes générales définies par (15) sont celles dont la tangente appartient &
un complexe linéaire ayant Oz pour axe. Elles ont été étudiées, il y a déja longtemps,
par M. P. Appell (Annales de I Ecole Normale, 1876) et par M. E. Picard (loc. cit., 1877).
On sait aussi qu'on peut les considérer comme lignes asymptotiques de conoides

droits, ce sur quoi j'ai et I'occasion de revenir dans mes notes Sur les surfaces dont les
' lignes asymptotiques se déterminent par quadratures (Nouvelles Annales de Mathéma-
tiques, 1908, 1909, 1910).

L’équation (15) montre immédiatement que, quand ces courbes sont fermées, elles
se projettent toujours sur Oxy suivant des courbes & aire nulle (comme la lemniscate
de Bernoulli du paragraphe précédent). Or, 'intégrale de zdz, prise le long d’un
contour fermé, est aussi bien nulle que celle de dz. Par suite, les courbes de
M. Appell, quand elles sont fermées, sont de celles pour lesquelles on a de la
maniére la plus évidente U, =V,.
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[21] Volumes conoidaux. — Reprenons le contour fermé X et une droite OP pas-
sant toujours par O et ayant X, v, v pour cosinus directeurs (fig. 6). Une cloison
quelconque S est jetée sur X et, de tous les points de ce contour, on abaisse des per-
pendiculaires sur OP. On enferme ainsi un certain volume conoidal W que nous nous
proposons d’étudier. Soit toujours ds I'élément d’aire sur S: I'élément du volume W,
est le volume conoidal qui correspond au contour de ds, de méme que le volume

~ conoidal total correspond au contour X. Si ds est relatif au point M(z, y, ) de S, si
MP est la perpendiculaire abaissée de M sur OP et si MN est la normale en M, 1'é1é-
ment du volume W est

I M. dacosIf\Q::

I
2 2

.MQ . ds, '

QQ étant projection de P sur la normale MN.

z

Fic. 6.

Or, sur la droite OP,

le point P appartient au plan
MX—x)+p(Y—9)+vZ—2)=o0.
Par suite, P a pour coordonnées K, pK, vK si, pour abréger I’écriture, on pose :
K=z + py + vz.

Si, par P, nous menons un plan perpendiculaire & MQ, la distance MQ sera la
distance du point M & ce plan. On trouve ainsi :
MQ = a(@ — IK) + B(y — pK) + 1(z — vK).
Fac. de T., 3¢ S., 1I. 8
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Finalement
GW — [fs [2(z — NK) + By — uK) + v(z —vK)] d.

Le volume cylindrique U, étudié au chapitre précédent et relatif & un vec-
teur OP (fig. 2) confondu avec la droite OP de la figure 6, a pour expression (n° 5) :

U:ffs K(2h + Bp. + ) ds.

Donc

(17) 2W+U:Ifs (uz + By + 2)ds :ffs (z — pr— qy)decdy.

Finalement, en utilisant les formules (7) du chapitre I et (5) du présent chapitre,
il vient

(18) sW +U=U, + U, + U,=3V,.

Il n’y a donc rien d’essentiellement nouveau dans l'étude des volumes W qui
peuvent toujours s'exprimer par des combinaisons de volumes cylindriques ou coni-
ques déja considérés.

D’ailleurs, une comparaison purement géométrique des différents éléments de
volume aurait pu conduire & la méme conclusion.

[22] S'iln’y a rien d’essentiellement nouveau dans I'étude des volumes conoidaux,
leur introduction permet cependant de varier de maniére intéressante des formules
déjd obtenues. '

Soient W,, W, W, les volumes W correspondant 4 une directrice OP successi-
vement confondue avec les axes Ox, Oy, Oz. La formule (18) donnera immédia-
tement :

2W1:Uy+U;, Q‘Vy:UL—{—UI,' Z‘Vz:Ux‘l—Uy,
W, +W, +W,=U,+U, +U=3V,
UJ‘,: Vvu + VVﬁ - Wx’
U=W,+W,—W,
U =W, +W, —W.

Dans ces conditions, la formule (15) du chapitre I devient
aW=020lW_+20*W, 4 "W, — (A7, + Agn) — AL+ AL — (A, +A%).

Par addition de cette formule avec (15) du chapitre I on retrouve bien (18) du
paragraphe précédent.

Dans U et dans aW, les termes rectangles sont les mémes (au signe prés), si bien
que tout point @ pour lequel U n’a que des termes carrés permet une réduction com-
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plétement identique pour W. Si, dans la figure 6, on représente le volume W par un
vecteur issu de O et porté sur OP, conformément & la convention du n° 13, le lieu de
I'extrémité libre de ce vecteur est encore une quadrique, etc.

[28] Remarquons briévement que si I'on voulait obtenir directement aW on
retomberait identiquement sur les calculs du n° 5. Les volumes conoidaux étant aussi
simples que les volumes cylindriques, on aurait pu, 4 I'inverse de ce que nous avons
fait et sans plus de peine, écrire d’abord un chapitre, analogue au chapitre I, sur les
volumes W, pour passer ensuite aux volumes U.

2W‘:ffs (2x + By)ds

et retranchons de cette égalité 'expression de 2W par I'intégrale double du n° 21.

Partons de

On a
a(W, — W)= f fs [2K 4 BuK - y(vK — 2)]do.

Cette nouvelle intégrale double doit étre transformable par la formule de Stokes
et, en fait, le vecteur

F=)J)K, G=uK. H=vK —z2,

qui est le méme que celui du n° 5, est le tourbillon d’un vecteur P, Q, R également
connu. Alors 2(W, — W) est égal a I'intégrale simple de la formule (12) du chapitre I.
Si I'on s’appuie, d'une part, sur les formules

2(\Vx—Wy)=Uy—Ux:—fxydz,
z
AW, — W)=U, ~U,=— [ yzde,

2(W,— W )=U,—U,=— /zwdy,
p3
d’autre part sur les formules (14) du chapitre I, on a facilement

2(W, —W)=ulA &, + 20°(W,— W) + v (A8, + A,n,) 4+ 25(W, — W)
+ >‘L"Ax7]x + AV(Axgx + Azgz)’

d’ou I'expression précédemment trouvée pour 2 W.

[24] Reprenons cette expression générale et cherchons 4 exprimer le volume

conoidal

L T
a, b, ¢

défini comme W, mais par rapport & une droite passant par un point (a, b, c).
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Si I'on tient compte des formules
2W,=U, +U, oW, =U+U, 22W,=U,+0,
I’expression de 2W se transforme aisément en

AW B2 32 W, — bA, — ) + (oW, — eA, — a)) +vi(aW, —al, — bA,)
—uy [Ay(:y - C) + Az(nz - b)] - V)‘[“X;(E; - Cl,) + Ax(:x - C)]
- )\p‘[‘r\x(.ﬁx - b) + Ay(’::y - a)] *

Or, si nous posons :
L=bv—cp, M=ch—av, N=au—0b),

cette formule assez encombrante prend la forme trés simple

X

CJA A A
(19) W‘A, Bov Wzi l'().Lz (; - ; L M N

a, b, ¢

Aoy

Elle est ainsi I’analogue de la formule (21) du chapitre I, mais ne semble pas
avoir le méme degré d’évidence. Remarquons que la formule (19) donne

0, 0, 1 0, 0,1\
AWe o o —Wool=d\,,

ce qui montre gue la différence des doubles des volumes conoidaux relatifs a deux
droites paralléles est égale ¢ la distance de ces droites multiplie par Uaire contenue
dans la projection du conlour  sur un plan normal & ladite distance, ou bien encore
& la distance de ces droites multipliée par la projection du vecteur aréolaire de X sur
ladite distance.

On pourrait établir directement ce théoréme en considérant deux droites D, et D,
et des plans P,, P, passant par elles perpendiculairement au plan D,D,. Alors le
double du volume ¢onoidal relatif & D, est la somme des volumes cylindriques relatifs
aux plans P, et D,D,; le double du volume conoidal relatif & D, est la somme des
volumes cylindriques relatifs aux plans P, et DD ; la différence de ces volumes est
alors un tronc cylindrique droit dont les bases sont les projections de T sur P et P,,
dont la hauteur est la distance des deux mémes plans.

[25] Complexe des droites correspondant & un volume conoidal constanl. — Le
contour X et la cloison S étant invariables, le volume W;’ b est déterminé deés que
I'on connait la droite qui sert de directrice au conoide. Suivant une expression que
nous empruntons encore & M. G. Keenigs, ce volume est une fonction de droite. La
formule (19) 'exprime en fonction de

Xop,v, LM, N,

c’est-a-dire en fonction des coordonnées pluckériennes de la droite mobile.
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L’ensemble de ces droites pour lesquelles le volume en litige est conslant est un
compiexe du second ordre et I'équation pluckérienne de ce complexe s’obtient immé-
diatement en remplacant le premier terme du premier membre de (1g) par une
constante (que 'on peut d’ailleurs multiplier, si I'on veut assurer I'homogénéité,
par 1 =2" 4+ u® + v%).

Les volumes cylindriques sont des fonctions de plan.

Quant aux volumes coniques attachés au contour = et & la cloison S, ils sont
déterminés dés que I'on se donne le sommet du cdne; ce sont des fonctions de point
donnant lieu aux considérations les plus élémentaires.

Relativement 4 ces trois sortes de volumes, les formules (21) du chapitre I et (4)
et (19) du présent chapitre sont & rapprocher.

[26] 11 est intéressant de considérer les cas dans lesquels la formule (19) donne

Aoy v Ay owy v
Whir Wt

a, b, c

Ceci se produit d’abord quand on a

égalités qui équivalent aux deux suivantes :
aA, + bAy +cA,=o0, A, + p.Ay + vA,=o.

Celles-ci expriment que la directrice du conoide est astreinte a se mouvoir dans
‘un plan normal & 'axe aréolaire de X. Ceci prend une signification évidente si le
contour X devient plan; tout plan paralléle au sien peut contenir la droite mobile.
En second lieu, le second membre de (19) est encore nul si 'on a

A, A, A

¥ —
- - ’
) v

c’est-d-dire si la directrice du conoide se meut parallélement & 1'axe aréolaire de X.
Ce cas est 'analogue de celui traité & la fin du n° 14 pour les volumes cylindriques.
On peut, en effet, par la directrice du conoide, mener deux plans rectangulaires
ayant toujours méme orientation ; le volume conoidal est la demi-somme des volumes
cylindriques relatifs & ces plans, lesquels volumes sont invariants dans la translation
desdits plans, puisque ces derniers contiennent toujours des axes aréolaires de X.

Enfin, le second membre de (19) sera encore nul si I'on a
L .
——:—_—M:E ou L=M=N=o.

A u v

Dans ce cas, la droite qui doit passer par (a, b, ¢) doit également passer par
I'origine; c’est évidemment comme si elle n’avait jamais cessé de contenir ce dernier
point.
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[27] Invariants. — La formule (18) montre que, le contour X et I'origine O étant
fixes, les volumes cylindriques U relatifs & trois plans rectangulaires quelconques
passant par O ont une somme invariante 3V,. Il en est de méme pour la somme du
volume U relatif au plan IT (fig. 2) et du double du volume conoidal W relatif a la
droite OP prise comme directrice du conoide.

V, est le volume du céne défini par le contour X et le sommet O.

Or, il existe, pour l'invariant 3V,, une autre interprétation tout aussi simple ot
intervient le segment OT (fig. 6), T étant le point ou le plan tangent en M 4 la
cloison S rencontre Oz. Ce segment OT jouera d’ailleurs dans la suite du Mémoire un
role beaucoup plus important qu’a présent. On a

E)—'f‘:z—px—qy.
Donc

(20) SV‘,:‘/I OT . ddy.
s

Imaginons que, par le point M (fig. 6), on méne une ordonnée O'T" telle que le
quadrilatétre TOO'T" soit un rectangle. Le lien du point T’ sera une surface (T').
Alors 3V, est le volume cylindrique compris entre (T'), le plan Oxy et le cylindre, de
génératrices paralléles a Oz, dont X est directrice. Dans ce méme cylindre, d’aprés (18),
le volume compris entre S et (T') est égal & 2W .

L’invariant 3V, est nul pour les surfaces définies par l'équation aux dérivées
partielles

Z—pxr—qy=—o,

c’est-a-dire pour les cones de sommet O.

[28] Surfaces de M. V. Jamet. — Ces surfaces sont celles pour lesquelles le seg-
ment OT est une fonction donnée de z. Leur auteur les a considérées comme types
remarquables de surfaces dont les lignes asymptotiques se déterminent par quadra-
tures (E. Picard, Traité d Analyse, t. 1, 2° édit., p. 433).

Celles de ces surfaces pour lesquelles on a simplement

OT=mz ou px+qgy=(1—m)z, (m=const.)

peuvent jouer ici un réle intéressant. Leur équation finie est
m— Y
21 zy" Tt =f{=).
(a1) = =s(%)

La formule (20) donne alors

(22) 3V,=mU,.

0
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Si m = 3, on retrouve la surface (11). Pour que la propriété (22) ait lieu stirement,
pour la portion d’une surface (21) comprise dans un certain contour fermé ¥ tracé
sur cette surface, il faut que, pour M dans cette portion, T n’aille jamais & l'infini.
Autrement il ne serait pas certain, en général, que l'intégrale double de (20) con-
servit un sens.

(28 bis] Aires cylindriques. — On a vu, au n° 17, qu'une aire sphérique et le
volume U, correspondant pouvaient se rattacher par 'intermédiaire d’une intégrale
de ligne. En s’appuyant sur la théorie des volumes conoidaux, il est aisé de donner
un résultat analogue pour les aires cylindriques enfermées dans un contour £ quand
ce dernier est tracé sur un cylindre circulaire. Soient Ox 'axe du cylindre, R son
rayon et ¢ l'aire enfermée dans X. Si on projette tous les points de ¢ sur Ox, toutes
ces projetantes sont enfermées dans un volume conoidal dont le double est Rs. Donc

Re=U, + U..

D’autre part, on sait que [n°® 2. formules (g)]

Uy:Uz -}—.[yzdac.

Rs=2U, + /yzdac.

Telle est la relation générale que nous voulions établir entre l'aire ¢ et le volume

Donc

correspondant U,. Elle est comparable & la formule (8) du n° 17.
Faisons une application. Coupons le cylindre précédent par un cylindre identique
dont V'axe serait Oz. La courbe intersection est une ellipse d’équations

x=Rcosb, y=Rsinh, z=RcosH.

Considérons uniquement le premier triédre des axes coordonnés. Alors les
plans Ozx, Oyz et le second cylindre déterminent sur le premier une sorte de triangle
pour lequel, en s’appuyant sur la développabilité du cylindre, on trouve immédiate-

“ment l'aire ¢ = R".

D’autre part, I'intégrale de yzdx est nulle sur les cotés du triangle qui sont dans

les plans z=o0, x =o. 1l vient donc simplement

; =
fyzdx:—R”/“sin’Ocqsedez—R’/ u’duz___R_,
s 0 0 3

La relation générale entre ¢ et U, donne alors

2 3
U=k,

ce qui est un résultat classique bien connu, mais obtenu d’ordinaire par un calcul
d’intégrale double qu'on trouvera, par exemple, dans le Recueil d’Exercices de
F. Frenet (5° édit., probl. bor).
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[29] Application d’une méthode générale de M. Darboux aux volumes considérés
comme paraméires de points, de droiles et de plans. — Dans la Note XXII qui termine
le tome II du Cours de Mécanique de Despeyrous, M. G. Darboux relie d'une maniére
extrémement ingénieuse et intéressante la théorie des moments d’inertie et celle des
quadriques homofocales centrées. L'idée fondamentale consiste & considérer, comme
paramétre d’un point, d'une droite ou d’un plan, le moment d’inertie de ce point, de
cette droite ou de ce plan par rapport & un solide fixe, puis & étudier les ensembles
de points, de droites et de plans ayant mémes parameétres.

Or, les résultats déja établis dans le présent Mémoire peuvent conduire & des
résultats analogues & ceux de M. Darboux, mais relatifs & des quadriques du type
parabolique.

Au fond, ceci résulte du fait que des volumes peuvent toujours étre considérés
comme moments d’inertie de couches superficielles convenablement constituées
(n° 34 bis), mais comme les volumes sont des étres géométriques simples, que Ion
définit généralement pour eux-mémes, sans passer d’abord par la définition des
moments d’inertie, il reste peut-&tre encore un léger intérét dans le fait d'attacher
uniquement des volumes comme paramétres a de certains ensembles de points, de
droites ou de plans.

Soit = un contour fermé et S une cloison fixe jetée sur ce contour; le paramétre
d’un point sera le triple du volume du cone ayant ce point pour sommet et S pour base
gauche; le paramétre d'une droite sera le double du volume conoidal défini par S et par
cette droite; le paramétre d'un plan sera le volume cylindrique défini par S et par
ce plan.

Alors, des comparaisons déja effectuées entre ces différents volumes, on déduit les
théorémes suivants :

Le paramétre d’'un point quelconque est égal & la somme des paramétres de trois

_ plans rectangulaires quelconques se coupant en ce point.

Le paramétre d’une droile quelconque est égal & la somme des paramélres de deux
plans rectangulaires quelconques se coupant suivant celle droile.

Le paramétre du point d’intersection d’un plan et d’une droile perpendiculaire est
égal & la somme des paramélres de la droite et du plan.

Ces théorémes sont exactement semblables & ceux de la théorie des moments
d’inertie.

Demandons-nous maintenant comment varient nos paramétres lorsqu’on passe
d’un point & un autre, d'une droite & une droite paralléle ou d’un plan & un plan
paralléle. A cet égard, il suffit de rapprocher les théorémes des n** 15, 24, 14, lesquels
se réunissent en 'unique énoncé suivant :

La différence des paramélres de deux points (ou de deux droites paralléles, ou de
deux plans paralléles) est égale & leur distance multipliée par la projection du vecteur
aréolaire de ¥ sur la distance en question.
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Les théorémes analogues que 'on obtient pour les moments d’inertie reposent sur
la considération du centre de gravité; I'élément qui joue ici un rdle simplificateur
analogue est un vecteur non localisé. Et remarquons encore une fois que ce vecteur
est relatif au contour £ et nullement & la cloison S. Nous verrons, au para-
graphe 34 bis, comment ceci peut s’expliquer par la considération d'un centre de

gravité rejeté a l'infini.

[30] Reprenons l'ellipsoide des volumes cylindriques
U X+ U Y + U2+ A+ Am)YZ 4+ AL +HALDZX + A, +A85)XY=1.

Nous savons que, si Uon y considére un rayon vecteur OP, I'expression op—
représente le volume cylindrique U défini par projection de tous les points de S sur
un plan II passant par O normalement & OP.

Par un changement convenable dans 'orientation des axes nous pouvons ramener

Péquation précédente a la forme

S X+ SY +8,2=1.

Alors le vecteur aréolaire de T, qui avait, sur les anciens axes, des projec-
tions A, Ay, A,, a maintenant, sur les nouveaux axes, des projections que nous
appellerons a,, a,, a,.

Le volume cylindrique, relatif au plan passant par O,

ur 4+ vy + wz=o,

est

S,u* + S,0* + S,w’
w4+ v 4wt

Ecrivant que ce paramétre, relatif au plan précédent, a une valeur constanie p,
il vient

(S, —p)u’ 4 (8, —p)v* + (8, —p)w*=o.

C’est 1a I'équation tangentielle des cOnes enveloppés par le plan considéré;
quand p varie on a une famille de cones homofocaux.

Quant & la droite OP constamment normale 4 'un des plans précédents, elle doit
avoir aussi un paramétre constant, d’aprés le troisiéme théoréme du n° 29. Cette
droite engendre un cone et tous ces cones sont homocycliques quand p varie. 11 est
inutile de développer davantage ces assertions, car il faudrait pour cela refaire exac-
tement les raisonnements de M. Darboux.

Fac. de T., 3¢ S., II. 9
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[34] Soit maintenant le plan quelconque
ur 4+ vy +wz + 1 =o.
Sa distance a l'origine est

I .
\/uz + ve _|_ wa
la projection du vecteur aréolaire (a,, a,, a,) sur cette distance est
a,u+ ay + aw
\/ ut 4 0* + wt
et, par suite, le paramétre du plan précédent est

Su*+ 80"+ Sw aqu+tay+aw
u‘l + 1)2 + w2 u% + v‘.’. + w‘-’

Ecrivons que ce paramétre est constant et nous aurons
S, —p)w + S, —p)v* + S, —pw’ —(a,u + q,v + a,w)=o,

ce qui, lorsque p varie, est 'équation tangentielle d'une famille triplement orthogo-
nale de paraboloides homofocaux. L’axe commun a tous ces paraboloides est axe
aréolaire du contour X.

[32] Considérons trois des paraboloides homofocaux précédents respectivement
relatifs aux paramétres p,, p,, p, et un point M quelconque. Tous les plans passant
par M et de paramétres p,, p,. p, sont respectivement tangents & ces paraboloides.
Or, nous savons que de tels plans enveloppent des cones homofocaux. Donc les cones
de méme sommet circonscrits & des paraboloides homofocaux sont homofocaux;
c’est évidemment 12 un cas particulier d’un théoréme bien connu relatif & des qua-
driques homofocales quelconques.

Parmi ces cdnes, ceux qui sont relatifs aux paraboloides homofocaux passant
par M se réduisent évidemment a des plans qui forment le triédre principal pour un
point M quelconque; c’est dire que si I'on étudie les volumes cylindriques définis par
la cloison S et un plan II, passant par M avec les cosinus directeurs %, u.. v par rapport
audit triédre, ces volumes sont des formes quadratiques en 2, u, v ne contenant que
des termes en »*, p’, v*.

[83] Considérons maintenant I'’ensemble des points de méme parameétre.
Soit d’abord un triédre trirectangle tangent par ses faces & trois paraboloides
homofocaux correspondant respectivement aux parametres p,, p,, p,-

Son sommet a un paramétre constanl p, + p, + p, et, d’aprés ce que nous avons
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vu au n° 15, ce sommet décrit un plan. On retrouve ainsi un théoréme de Chasles
rétabli par M. Darboux pour les quadriques homofocales centrées.

Si les trois faces du triédre trirectangle sont tangentes & un méme paraboloide, le
lieu du sommet est simplement le plan de Monge que I'on sait étre perpendiculaire
a I'axe du paraboloide. Ceci est encore bien d’accord avec le résultat du n° 15, d’aprés
lequel le plan. lieu des points de paramétre constant, est perpendiculaire au vecteur
aréolaire de X. ‘

[34] Enfin, toujours en suivant M. Darboux, on peut attribuer d’élégantes pro-
priétés au complexe formé par les droites de paramétre constant. L’équation générale
de ce complexe a été donnée au n° 24; nous savons aussi qu'en un méme point de
I'espace, mais pour des valeurs différentes du paramétre 4 attribuer aux droites pas-
sant par ce point, les cones du complexe sont homocycliques.

Considérons un diédre rectangle tangent par ses faces aux paraboloides de para-
métres p, et p,. L’aréte de ce diédre a un parameétre constant ¢ = p, + p,. Toutes les
droites du complexe sont susceptibles d’étre considérées comme de telles arétes. Il
reste & vérifier que celles de ces droites qui sont dans un plan quelconque P de
paramétre p y enveloppent une conique C. Or, par I'une de ces droites de paramétre
constant ¢, menons un plan normal & P; il est toujours tangent au paraboloide de
parameétre ¢ — p; par suite, il enveloppe un cylindre parabolique et C est une

parabole.

[34 bis] Remarque de M. Darboux. — Les résultats contenus dans les paragraphes
précédents (29 & 34) ont été brievement résumés dans une Note des Comptes rendus
(10 avril 1911) & laquelle M. Darboux a ajouté une Remarque identifiant compléte-
ment la notion de volume avec celle de moment d’inertie d’'une double couche ana-
logue aux couches magnétiques. Soit x, v, z le point de la cloison S ol se trouve
I'élément ds avec une densité superficielle — ¢; sur la normale, considérons le point
infiniment voisin

T+ oz, y+Bs, oz ye,

ou I'on superposera a ds un élément que 'on peut considérer comme égal, mais de
densité superficielle + ¢. Par rapport aux plans coordonnés, ’ensemble de ces deux
éléments aura pour moment ordinaire

epads,  epBds,  egyds
et pour moment d’inertie

azpxads,  2:pyBds, 2gpzyds.
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Si I'on fait le méme raisonnement pour tous les points de S, on définit une double
couche dont le centre de gravité a pour coordonnées homogenes

vds, ffﬁBd, e[‘fsvdc
e'/vfspxc 5 S 3 JJ ¥

et zéro; quant aux moments d’inertie par rapport aux plans coordonnés ils sont :

2 xads, s/f 8ds, :ff szvds .

Si ¢ est une constante, que I'on peut d’ailleurs supposer telle que 2¢p =1, ces trois
derniéres intégrales doubles ne sont autre chose que

u,, U, U

X Y z*

D’une maniére générale, le volume cylindrique attaché a S et ¢ un plan quelconque
est le moment d’inertie, par rapport & ce plan, d’une double couche de densité constante
étendue sur S. On établirait sans peine des théorémes analogues pour les volumes
conoidaux et coniques.

Si la densité ¢, au lieu d’étre constante, devient variable, on obtient une généra-
lisation curieuse de la notion de volume.

Mais il reste quelque chose de particulier au cas du volume proprement dit. Dans
le cas de la densité ¢ constante, les coordonnées homogénes du centre de gravité de
la double couche sont

A, A, A, o.

z y 2

Dans les trois premiéres on reconnait les composantes du vecteur aréolaire de
M. Keenigs; ce cenire de gravité ne dépend pas de la cloison S, mais seulement de son
contour 2. 11 en serait autrement, en général, avec une densité ¢ variable; bien
entendu, le centre de gravité serait toujours rejeté a I'infini, mais il se déplacerait,
dans le plan de l'infini, quand on déformerait S.

CHAPITRE IIIL

Transformations génératrices de volumes équivalents.

(8B] Premier type de transformations. — Les transformations de ce premier type
vont nous conduire 4 des résultats géométriques évidents, mais quin’en jettcront pas
moins quelques clartés intéressantes sur la formule de Stokes.

Soit la transformation

(I) X:X(.’E, Ys Z), Y:XT('I:’ Y Z), Z:‘Z(l', Vs Z)'
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Considérons le contour X toujours situé sur la surface S d’équation z = f(x, y).

La transformation précédente change, en général, S en une autre surface S' sur
laquelle est tracé le contour X' transformé de X.

Soit le volume cylindrique

(2) [ | ZdXay.

Il nous est loisible de le calculer avec les anciennes variables x et y, ce qui rem-
place l'intégrale double par la suivante, étendue a la surface S,

ff L,y 2 L(X 1)) wdy,

ou, en développant le déterminant fonctionnel et en considérant que, sur S, z est

évidemment fonction de x et y :

XX V) ALY UKL Y)
® [ 2@ 0] = o ew T y)]d wdy.

Ceci posé, proposons-nous de chercher s'il existe des transformations (1) suscep-
tibles de transformer la surface S passant par X en une surface S' donnant des
volumes (2) indépendants de S et dépendant seulement du contour X.

L’intégrale (3) est transformable par la formule de Stokes en une intégrale simple
ne dépendant que du contour £, sil'on a

w2 sl es wles] -

Or, en vertu de l'identité

DALY L 2K, V) 2K, Y)
e Ay, 2)  dy Az, x)  dz Ax,y)

la relation précédente s’écrit simplement

AX, Y, Z)
Aw,y,2)

ce qui exprime que la transformation (1) jouit de la propriété cherchée si les fonc-
tions X, Y, Z sont liées par une relation

%) o(X,Y,Z)=o0.

Au point de vue géométrique, ceci est évident, car le point (X, Y, Z) transformé
de (z, y, 2) devant toujours se trouver sur la surface (4) qui est invariable, le
volume (2) ne dépendra que du cylindre qui le limite latéralement; et ce cylindre ne
dépend que du contour ¥’ transformé de
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Poursuivons cependant le raisonnement. L'intégrale (3) doit maintenant prendre
la forme

(5) [ Pdx + Qdy + Rdz,

les fonctions P, Q, R étant définies par les équations

AR D AX, Y d AX, QD 20
) R Q__ XY P R AXLY) Q2P XX Y)

oy iz Ay, 2’ k2w @) dx Ay
Or, si I'on pose
N M
Z(w,y,z)zﬁ—ﬁ,

M et N étant des fonctions des deux quantités X(zx, y, z) et Y(x, y, 2), les équations
précédentes sont satisfaites par
Y X DY

Sy R=MT NG

X Y X
—M Vi — M2 N
(7) P=MI+ N Q=M +N

et I'égalité des expressions (5) et (3) prend la forme

®) /f (% — %1() axdY = [MdX + Nay.

L’intégrale simple est étendue au contour plan projection de £’ sur OXY; l'inté-
grale double est étendue & l'aire plane contenue dans le méme contour.

La formule (8) n’est autre chose que celle de Riemann. Donc, le probléme que
nous venons d’examiner nous a montré comment un simple changement de variables
permet de relier la formule de Stokes et celle de Riemann.

[36] 11 nous a semblé utile d’étudier d’abord la transformation précédente
comme prélude de transformations plus complexes; de plus, nous avons retrouvé,
chemin faisant, des formules telles que (6) qui seront utiles plus loin. Quant au
résultat qui consiste 4 identifier les formules de Stokes et de Riemann, il est en
relation avec beaucoup d’autres travaux; il revient notamment & remarquer que le
tourbillon d’un vecteur quelconque P, Q, R ne dépend, en vertu d’équations telles
que (6), que de deux fonctions qui sont ici X et Y. Or, cette remarque est due a
Clebsch qui, dans deux Mémoires publiés au Journal de Crelle en 1856 et 1858, en
tire les points les plus essentiels de la théorie des tourbillons. Dans son Trailé de
Mécanique (t. 111, 2° édit., p, 452), M. Appell donne un résumé du procédé de Clebsch
et renvoie aussi & la Teorica delle Forze Newloniane d’Enrico Betti (Pise, 1879), ot
I'on trouve, en effet (pp. 304-313), des formules analogues & quelques-unes des pré-
cédentes. Au fond, tout revient & poser

Pdx + Qdy + Rdz=MdX + NdY.
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C’est 1a un cas particulier du probléme de Pfaff grandement perfectionné par
M. G. Darboux (Bullelin des Sciences mathématiques, 1882) qui, tout récemment,
dans le cas ‘de trois variables, semble avoir ramené la question & son maximum de
simplicité (Comptes rendus, 15 et 22 novembre 190g).

Enfin, remarquons que les transformations les plus quelconques qui engendrent
des volumes équivalents sont loin d’étre déterminées par ce seul fait. Elles peuvent
satisfaire de plus & des conditions d'une autre nature, comme nous le verrons plus
loin, et étre attachées notamment & de certaines équations différentielles. Alors les
volumes constants sont des invariants intégraux comme on s’en rend compte par la
seule définition intuitive que M. H. Poincaré donne de ces invariants (Nouvelles mé-
thodes de la Mécanique céleste. t. 111, p. 2). Bornons-nous, pour I'instant, i signaler
ce rapprochement possible.

[37] Démonstration de la formule de Stokes par un changement de variables dans
celle de Riemann. — 8Si les considérations précédentes ne sont pas nouvelles, il ne
semble cependant pas sans intérét de remarquer qu’elles offrent, pour la démons-
tration de la formule de Stokes, un procédé extrémement bref qui n’en fait pas une
formule spéciale, ni méme une généralisation de la formule de Riemann, mais une
simple transformation de cette derniére.

On pourrait se borner a dire que pour obtenir la transformation en question il
suffit de remonter le raisonnement du n° 35, mais ceci va étre fait en détail vu I'im-
portance de la chose.

Partons donc de la formule de Riemann (ou M et N sont fonctions des deux
variables X et Y) :

- /AN M - )
) f/A <K—D—Y>dXdY:/G MdX + NdY
et posons
(8 bis) z=f(x,y), X=X(@,y2, Y=Yy, 2).

Ainsi, lorsque le point (x, y, z) décrit un contour ¥ sur la surface S d’équation
z=f(x,y), le point (X, Y) décrit dans le plan OXY un contour C. Bien entendu A est
Iaire enfermée dans C.

Posons alors

X Y X Y X Y
~ P: —_— —_ = —_— — —_— U —_—
@) Mc\w+NDx’ Q M3y+be’ R sz+sz'

Le second membre de (8) prend la forme

f Pdz + Qdy + Rdz.
2z
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et le premier devient, en y exprimant tout avec les variables x, y,
<ﬁ_31_\4> |:_ AX,Y) (X, Y) D(X Y) wdy.
S 65 5w e -

Si, partant de (7), on forme les expressions

M Q P R Q2

dy 2z 2z dx’ dx dy

I'intégrale double qui précéde prend définitivement la forme

1[G o) (2 ) e

et les deux membres de (8) sont ainsi respectivement transformés en-ceux de la for-
mule de Stokes.

Et la transformation que nous venons de faire n’est bien qu'un simple changement
de variables; dans (8) il y a deux variables indépendantes X et Y; il n’y en a pas plus
dans la formule de Stokes, puisque «, y, z sont liées par I'équation de S.

En d’autres termes, les équations (8 bis) expriment, si 'on veut, les coordonnées
@, ¥, 2 d’un point de S & I'aide de deux coordonnées curvilignes X et Y.

Outre sa briéveté, cette démonstration de la formule de Stokes offre encore cer-
tains avantages ; ainsi il est inutile de commencer par raisonner sur une portion de
surface S ou les cosinus directeurs de la normale, ou bien les fonctions P, Q, R,
conservent un signe constant, et de montrer aprés coup, en assemblant de telles
régions, la généralité de la formule.

Cette méthode rend inutile aussi le fait de démontrer la formule de Stokes en la
scindant en trois fragments dont on n’établit que le premier pour conclure les deux
autres par raison de symeétrie et ajouter les trois résultats.

[38] Second type de transformations. — Les transformations de ce type vont étre
intimement liées aux précédentes, mais donner cependant des résultats géométriques
moins évidents.

Les fonctions X, Y, Z étant toujours celles des égalités (1), nous avons :

© ff <———>a§é:j;dxdy:/;Pdac+Qdy+Rdz,

les fonctions P, Q, R ayant la forme (7).

Or, cependant que le point (x, y, z) se déplace sur S, on peut imaginer un point
ayant les mémes coordonnées x, y, mais dont I'ordonnée paralléle & Oz serait

/M N\ XX, Y)
() C*<ﬁ Dy> A, y)
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Ce point décrit une surface 8’ qui variera en général quand S variera; mais, st S ne
cesse de passer par le contour invariable =, on aura, entre S', le plan Oxy et le cylindre
ayant ses génératrices paralléles ¢ Oz et X pour courbe directrice, un volume cylin-
drique qui demeurera constant.

Ce volume est exprimé, d’aprés (g), par le second membre de cette égalité.

[89] L’équation (10) doit évidemment étre développée sous la forme

(M N AX,Y)  A(X.Y)  AX,Y)
“(ﬁﬁ?) [— W2 @ w T Nwmy |

Observons tout de suite que, dans les applications, les fonctions arbitraires X(x, y, z)

(11)

et Y(x, y, z) doivent forcément contenir la variable z. En effet, on voit facilement

que si on les réduisait & ne dépendre que de x et y, les coefficients de p et ¢ seraient

nuls; { ne pourrait pas dépendre de la cloison déformable, les ordonnées z des points

de celle-ci ou les coefficients directeurs de ses plans tangents n’intervenant plus.
Comme exemple simple, soit :

X=zz, Y=yz.

M DON

I
ﬁ——ﬁ_-const..__lz.

Alors, (11) devient

z
C=,-C(Z+pw+qy)~

Prenons maintenant le cylindre circulaire a®+ y*— R*=—o0 et le plan z=a.
L’intersection est une circonférence X par laquelle passent tous les paraboloides

z=a+ Mz’ 4+ y*—R?).

Ce seront 14 les cloisons variables passant par le contour X fixe. A ces cloisons
variables correspondent les surfaces

I
g:% [a+ X(x* 4+ y*— R)][a + % (3x* 4 3y* — R*)]
également variables, mais qui doivent comprendre un volume U constant (c’est-a-dire

indépendant de )) entre elles, le plan Oxy et le cylindre circulaire.

. 2
11 est facile de vérifier qu'il en est bien ainsi. Pour A==o0 on a le volume xR’%

, . . . . . a , .
d’un simple cylindre circulaire droit. Pour lzﬁ on a une surface de révolution

dont le méridien est une parabole du quatridéme degré ayant Oz pour axe; cette sur-

face coupe le cylindre circulaire suivant une circonférence identique & X, mais dont

Yordonnée est trois fois plus grande que la hauteur du cylindre obtenue pour A =o.
Fac. de T., 3¢ S., II. 10
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[40] Troisiéme type de transformations. — Dans les transformations du second
type, un point x, y, z se changeait en un point x, y, {. Cherchons maintenant des
transformations changeant le point x, y, z en un point %, 1, { et telles que, lorsque
le premier de ces points est sur la cloison mobile S jetée sur le contour fixe X, la
surface lieu du second donne des volumes cylindriques

ff&did‘n

constants. Ces volumes sont limités latéralement par un cylindre ayant pour courbe
directrice la transformée du contour =.

Si %, m, { sont uniquement fonctions de x, y, z et non des dérivées partielles p
et ¢, nous avons une transformation du premier type. Mais il est possible d’obtenir
autre chose.

Imaginons d’abord que £ et 4 soient uniquement fonctions de a et y. Alors on
peut se proposer de calculer I'iritégrale double précédente avec les variables a, y; elle

devient ainsi
A3, m)
= dxdy.
ffs%@, Y

Pour abréger 1'écriture, désignons par D le déterminant fonctionnel figurant dans
cette intégrale. Si maintenant nous posons

V_1<DM g)»(};,w
T DX Y/ axw )’

D
la formule de Stokes, prise sous la forme (g), nous montre que l'intégrale double

précédente ne dépendra plus que du contour E. En résumé, les transformations du
troisiéme type sont définies par les égalités

_ AE, ™) _
o, y)

(xa) E,C__I M N ALY) AX, V) AXLY)
'—_B<ﬁ_ﬁ> |:——p Ay, 2) T Azw) | Awmy)

g E=%L(x,y), n=n=7y),

o,

[41] On pourrait présenter autrement les transformations du second et du troi-
sieéme type.
Partons de la formule de Stokes :

ff (—Fp — Gg + H)dedy = f Pd + Qdy + Rdz.
S /3
Si nous posons

(13) i=i@y), n=u@y), (=f(—Fp—Gy+H),
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on apergoit immmédiatement I'existence des transformations (12); mais les fonc-
tions F, G, H ne sont pas alors explicitement connues. Il reste & chercher si I'on peut
les exprimer & I'aide de fonctions arbitraires et, autant que possible, sans quadratures.

Pour cela, il sera naturel de prendre pour ces fonctions les seconds membres des
équations (6), ce qui fera retomber sur le raisonnement précédent.

[42] Transformations spéciales appartenant au troisiéme type. — Si les for-
mules (12) sont completement explicites, on peut cependant leur reprocher de donner
une infinité de transformations définissant, au hasard, des volumes équivalents.
Peut-on s’astreindre, en recherchant de tels volumes, & des conditions géométriques
d’une autre nature qui seraient imposées a I'avance.

Nous traiterons, & cet égard, un probléme qui semble particuliérement inté-
ressant.

Rappelons que le plan tangent en un point M(zx, y, z) de S (fig. 6) coupe Oz en
un point T, tel que.

O0T=z— px—qy.
Ceci posé, soit m(x, y) la projection de M sur Oxy. Le point M', transformé de M,

ayant pour projection m'(%, ) sur Oxy, on devra avoir, par définition, pour les irans-
formations a étudier

(1) Om'=p.0m, {=¢(p)z+ Hp)OT,

O, m, m' éiant en ligne droite, les fonctions ¢ et { étant données et p étant une fonction
de x et y & déterminer.
Analytiquement, on a :

f=pr, a=py, =902+ )z —pr—qyl-
Si I'on pose

J d
XO=og +r5

on a
= ple + X(p)]-
La troisieme des équations (13) montre qu’ici I'on doit prendre
(15) F=ay()D, G=yd(e)D, H=2[3(p) + $(p)ID.
Reste & exprimer que

0F 3G, H
dxr | dy z

ce qui s’écrit facilement

(16) X(4D) + (¢ + 3)D=o0.
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C’est 12 une équation aux dérivées partielles du second ordre i laquelle doit satis-
faire la fonction ¢(x, y). L’intégration de cette équation ne dépend que de celle d’'une
équation différentielle ordinaire, laquelle peut méme étre ramenée au premier ordre ;
mais, avant de traiter ce cas général, il sera plus simple el plus intéressant de traiter
d’abord quelques cas particuliers remarquables.

[43] Transformation Om' = ) .Om ; {=0T. — Dans ce cas, on a ¢==o0, y=1
et 'équation générale (16), qui doit déterminer la fonction ¢(x, y), devient alors

X(D) + 3D =o.

1 Y
D == — — ]
=/ (3)
f désignant une fonction arbitraire. Cette derniére égalité devant s’écrire
0 P p) 1 @
x— —)==fl=),
p<9+ M+y3y m3f<y>

nous avons finalement une équation aux dérivées partielles du premier ordre dont
Iintégration doit introduire une seconde fonction arbitraire.

On en tire d’abord

Nous avons d’abord & intégrer les équations simultanées :
de dy pdp
©oy 1y .
=/ < x) ¢

Une simple équation linéaire donne ¢*, si bien que I'on a sans peine, tous calculs

faits,
=593 -2/ ()
=% \s ' \x/’
g désignant une nouvelle fonction arbitraire.
Les expressions (1) sont ici :
F=«D, G=yD, H=2D.
Elles définissent & elles trois le tourbillon du vecteur

P=yzD, Q=—uxzD, R=o,

jfc&@=[f@—m—wmmw
S/ S

s’exprime par l'intégrale de ligne

(17) [zD(ydw¥wdy)=—f%f<%>d(%)‘

si bien que le volume
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Naturellement, tout ceci suppose que les conditions de validité de la formule de
Stokes soient respectées; il faut que les fonctions F, G, H, le long de toutes les cloi-
sons S possibles, ne cessent ni d’étre finies ni d’avoir des déterminations précises.
C’est ce qui aura lieu ici si D est dans ces conditions; pour cela il suffit d'imaginer
que les cloisons S ne soient pas traversées par I'axe Oz.

Le seul examen de I'intégrale relative au contour X qui figure dans (17) montre
que si la cloison S appartient au cone

25

ladite intégrale est nulle en général. C’est évident géométriquement, puisqu’alors
tous les plans tangents A S passent par O et donnent des ordonnées { =0T (iui sont
nulles. Mais on peut déformer S en laissant simplement son contour X sur le cone
précédent; les plans tangents coupent alors Oz tantdt au-dessus, tantdt au-dessous
de O, d’ou des ordonnées { qui permettent de réaliser des volumes nuls, parce que
les parties qui se trouvent au-dessus du plan Oxy et celles qui se trouvent au-dessous
sont égales et de signes contraires. ‘
En résumé, la transformation

- 35=Vg<%>—%f<%>’ =Ifo(2) -2 (2)

{=0T=z—pz—qy

change la cloison S, lieu du point x,y, z, en une cloison S', lieu du point &, v, {; le
volume cylindrique U, relatif a S’ ne dépend que du contour X de S et est égal a

zZ (Y Y
Lo (@)
Observons aussi que ce volume ne dépend pas du choix de la fonction g.

[44] Transformations pour lesquelles ¢ 4 34 =o0. — Ceci est encore un cas parti-
culiérement élémentaire qu’il est intéressant de développer avant de passer aux cas
généraux.

Alors les équations (14) sont :

—O_m—':—:.p._o_m—, C:,}/(p)(_OTI‘-—-g)Z).

sz-—_f(j—D),

f étant une fonction arbitraire. Remplagant D par son expression générale, on a fina-
lement, pour déterminer ¢, I'équation aux dérivées partielles du premier ordre :

(19) 94(9)(p+x§—i+y§§> =f(z>‘

x

L’équation (16) donne
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De 14 les équations simultanées
de__dy  ed(p)de ’
T @)
d’ou

L x p¥(p)de
(20) y=Cz, 1°g5_./f(—C)Tp;$(T)’

C et C' étant deux constantes arbitraires.

On voit qu’on peut encore, par quadrature, déterminer la fonction p(x, y) avec

deux fonctions arbitraires de Z.
x

Les expressions (15) sont ici :

F=x¢D, G=y¢D, H=—2z¢D.
Elles représentent le tourbillon du vecteur

P=zy¢D, Q=—zx¢D, R=o,

si bien que le volume

fL,CdEd'q= - ff ¢ W) (px + qy + 22)Ddrdy

s'exprime par l'intégrale de ligne

Kz¢D(ydw——a:dy):—[zw“f<%>d(%).

En raisonnant comme au n° précédent, on voit que si le contour X est tracé sur

I'une des surfaces
zx'=F <Z) ,
x

déja rencontrées au n° 18, les cloisons S passant par ce contour donnent toutes, par
la transformation ici étudiée, des cloisons S' auxquelles correspondent des vo-
lumes U nuls. Ceci suppose encore que X n’entoure pas I'axe Oz et puisse toujours,
par déformation continue, étre réduit & un point.

[45] Pour faire une application trés simple et d’ailleurs trés particuliére, soit
) =1

Alors les équations (20) donnent facilement

e
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si le second membre de (19) est pris égal & 2. On peut conclure que la transformation

o2 mm(2). [

fait correspondre i la cloison S une cloison §' & laquelle est attaché le volume

ST, cdzan=6U.— V).

les notations étant les mémes qu’au n° 16.
(46] Transformations pour lesquelles ¢ + ay = o. — Ici, a désigne une constante
quelconque; les équations (14) sont :
W:p.w, C:\}(p)(ﬁ—az)
L’équation (16) devient
XWD)+ B —a)dD=0
et donne
a—3 y
VD = EAN
yp =2 (%)
d’ou I'équation

4Ge)ele + X(p)] =" f <%>

qui entraine les équations différentielles ordinaires :
doe __dy _ pdp)dp

(ar) x Yoo e (%) — 924‘(9)‘

On a ici
F=xyD, G=yyD, H:(I——-a)Zt]/D,

ce qui représente le tourbillon du vecteur
P=2zy¢D, Q=—zx¢D, R=o.

Nous sommes donc maintenant en présence d’une transformation conduisant au
volume

ffs {didn =ffs W) [(1 — @)z — pz—qy]Ddz dy,

lequel s’exprime par I'intégrale de ligne

[zq/D(ydx——acdy):—./;zw“_‘f(%>d(%).
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Pour a=o, on retrouve toutes les conclusions du n° 43 et, pour a=3, toutes
celles du n° 44. On aurait pu d’ailleurs traiter ces paragraphes, comme cas parti-
culiers, & la suite de celui-ci. Mais les calculs poussés jusqu’au bout dans ces cas ne
peuvent plus I'étre maintenant. Pour obtenir la fonction ¢ il resterait & intégrer le
le systéme (21) qui donne : ’

. dx Y(p)do
(a2 bis) =0 =T —

L’équation en x et p est linéaire quand {(p) est de la forme ko™, comme dans le
cas déja étudié ou I'on avait k = 1, m = o; elle est & variables séparées pour a = 3 ;
dans le cas ou Y(¢) est quelconque et a différent de 3, la détermination de p cesse
d’étre élémentaire.

Mais il faut bien observer que, méme si la transformation ne peut &tre explicite-
ment construite, le volume constant attaché a la surface transformée n’en est pas
moins connu puisque I'intégrale de ligne qui I'exprime ne dépend pas de la fonction ¢.

[47] Cas général des transformations du type (14). — Abordons maintenant le
cas général de la transformation (14) et, au sujet de I'équation (16), démontrons les
assertions émises & la fin du n° 4a.

Cette équation (16) peut s’écrire

X{ed(p)e + X} + ¢le(e) + 34(0)]1[e + X(p)] =0,
en posant toujours
P) d

On sait qu'un tel opérateur. sil’on y remplace les variables x, y par d’autres u, v,
prend la forme

P p)
X(u) 3% + X(v) ™
p . , .
ou -, si I'on détermine u et v par les équations
X(u)=1, X(w)=o,
qui donnent ici

— Y —qg (¥
(22) u_logw0,<w>, v=>9, <ac>’

si 6, et 0, sont des fonctions arbitraires.

Adoptons I'un de ces derniers changements de variables et I'équation en litige
deviendra :

(23) 5% o (p +§-§->§I+P(°P+3'¥) (P'*‘%):O-
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Cette équation aux dérivées partielles, ne contenant pas explicitement la va-
riable v, peut étre traitée comme une équation différentielle ordinaire. Si on 1'écrit

d dp . ! de\ _
(24) T [944 <9 + @)] + o3 + 39) (9 + du> =o0
et si 'on pose

dp Dy d_dod d
%—t, d’ou a{l—%%—td—P,

elle s’abaisse au premier ordre et devient

t%[pw + 0]+ ple + 30 (e + =0
ou

(25) pw;i: + Y+ D+ eV + 59 + 9t + 6°(s + 39) =o.

En général, cette équation n’est pas intégrable élémentairement, mais, bien ,
entendu, elle doit le devenir dans les cas simples des paragraphes précédents.

Ainsi pour ¢ 4 3y = o, elle est linéaire aprés suppression du facteur ¢.

Pour ¢ =kp™, o =—a)=— akp™, elle devient homogeéne.

A ces cas élémentaires, on peut adjoindre celui ol 'on aurait

p¥(e) + 54(p) + 9(p) =0
alors I'équation (25) est linéaire par rapport & 2.
[48] Que I'équation (25) soit intégrable ou non par les méthodes élémentaires,

ce qui précéde suffit pour apercevoir le degré de généralité que pourra finalement
posséder la fonction ¢(z, y). L’intégrale générale de (25) étant définie par une équation

de la forme
F(, ¢, C,)=o,
il faudra intégrer
dp
F({-£,o —
<du ¢ C‘) ©

pour avoir l'intégrale générale de (24) qui sera de la forme

PG, u.C,, C)=o0.

Si T'on considére maintenant C, et C, comme des fonctions arbitraires de v,
I'équation
®lp, u, C,v), C,0)] =0
Fac. de T., 30 S., 1I. 1
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définit Uintégrale générale de (23). En se rappelant la signification de u et v, on a
finalement, pour déterminer ¢,

(D[F’logxoi’ C4<eg)’ Cg(ea)]ZO‘

{1 est clair qu'il n’y a aucun intérét & prendre la substitution (22) sous sa forme
générale. La forme la plus simple est, au contraire, la plus avantageuse. Prenons

donc
Q(Z\):[, 02<Z>:Z
X X X

et finalement ¢ pourra s’exprimer a l'aide de « et de deux fonctions arbitraires

de s C’est bien ainsi que ¢ a été exprimé dans tous les cas particuliers traités direc-

tement.

[49] Sur les équations aux opérateurs X. — L’équation (16), que I'on peut déve-
lopper si I'on veut comme il est indiqué au début du n° 47, présente beaucoup
d’analogies avec les équations, dites aux opérateurs X, que jai étudiées dans mon
Mémoire Sur les équations linéaires aux dérivées partielles et la théorie des groupes
continus (*) (Journal de Mathématiques pures et appliquées, 19o4). Si l'on s’en tient
au cas de deux variables, de telles équations sont formées avec des opérateurs tels que

d

2 X

(26) Xi():Xu Ba: uby

(i=1, 2)

de méme que les équations aux dérivées partielles, linéaires et & coefficients constants,

. . N D e
sont formées avec les opérateurs STl De telles équations jouissent de propriétés
X dy

particuliérement remarquables quand les opérateurs (26) définissent les transforma-
tions infinitésimales d'un groupe continu. Tout ceci ne s’applique pas exactement &
I'équation (16) qui, en général, n’est pas linéaire par rapport a la fonction inconnue ¢.
Mais il est facile de voir qu’il y a un cas ou la coincidence s’établit d’'une maniére
particuliérement simple.

(1) Ce Mémoire fut présenté d I'’Académie des Sciences pour le Grand Prix des Sciences
mathématiques de 1go2. Il fut écarté par 'Académie qui jugea qu’il s’éloignait trop du sujet
proposé (voir I'analyse publiée dans les Comptes rendus du 22 décembre 1902, p. 1157, mé-
moire n° 3). Le défaut capital de ce Mémoire était d’étudier dans Pabstrait les équations aux
opérateurs X, sans indication de problémes conduisant & de telles équations, hormis peut-étre
quelques-uns qui étaient manifestement construits tout exprés pour cela. Il n’est donc pas sans
intérét de remarquer qu’on rencontre ici, dans un cas fort particulier, mais d’une maniére natu-
relle, une équation de ce type.

Jai donné le premier exemple non construit exprés dans un Mémoire Sur les surfaces dont
un systéme de lignes asymptotiques se projelte suivant une famille de courbes données
(Bulletin de la Société Mathématique, 19o3).
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Comme au n° 46, soit ¢ + a} =o et soit de plus gy =10, b désignant une nou-
velle constante. Alors le systéme (21 bis) devient

dx bds

e (G

et 'on conclut facilement que
. wa—a y 1 y>
(27) P_b(a——z)f<5> Y (ac ’

/ et g désignant des fonctions arbitraires.
D’autre part, si py =25, I'équation (16), développée comme au début du n° 47,

s’écrit

X[p + X(@] +@B—a)[p + X(p)] =0
ou
(28) X'() + (b —a)X(p) + @—a)p=o,

I'exposant 2 dont est affecté X indiquant la réitération de cet opérateur. Nous avons
bien alors une équation aux opérateurs X, linéaire, & coefficients constants et dégé-
nérée d’ailleurs jusqu’'a ne contenir qu'un seul opérateur :

d J

(29) XO=e5 45

Nous n’avons pas & nous proposer de l'intégrer, puisque Tintégrale générale ¢ est
déja connue et donnée par (27). Mais, du fait que p satisfait & une équation de la
forme (28), on peut attribuer de certaines propriétés a cette fonction. Ainsi soit Y un
opérateur permutable avec X, c’est-a-dire tel que X[Y()] = Y[X()]. Si 'on applique Y
aux deux membres de (28) on est ramené & écrire une équation ot p est remplacé
par Y(p). Donc I'opérateur Y change une solution p en une autre.

Ainsi, parmi les opérateurs permutables avec (29), il est facile d’indiquer

d d
(30) (90—}')3—00’ (W—y)b—’

et non moins facile de vérifier que si on les applique & p on trouve des fonctious de
méme nature ot on a simplement varié les formes de fet g.

En d’autres termes, la transformation du n° 46, puisque ’on a maintenant =",
se réduit a

O_m':p.ﬁ, E=-(0T — az).

o>

Si la fonction p est déterminée par une méthode particuliére quelconque, de
maniére & rendre cette transformation susceptible d’engendrer des volumes équi-
valents, on pourra remplacer p par les fonctions en lesquelles les opérateurs (30)
changent .
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[60] On pourrait chercher & remplacer les opérateurs (30) par 'opérateur le plus
général qui soit permutable avec (29). C’est 12 une question classique bien connue
qui se rattache & la théorie des systémes complets d’équations aux dérivées partielles
du premier ordre (E. Goursat, Legons sur Uintégration des équations, etc., p. 60), &
la théorie des groupes (S. Lie und G. ScHerFFErs, Vorlesungen iber Differentialglei-
chungen, S. 313), aux recherches modernes de M. Saltykow (Comptes Rendus, passim)
et & bien d’autres travaux qui nous entraineraient fort loin de 1'objet de ce Mémoire.
Ma propre Theése Sur les équations différentielles simultanées et la forme aux dérivées
partielles adjointe (Gauthier-Villars, 1go1) était consacrée  une exposition élémen-
taire du sujet. Au point de vue pratique, c’est-a-dire pour la formation rapide de
Vopérateur désiré, on trouvera une méthode trés symétrique dans une Note que jai
été amené A insérer dans les Comptes Rendus du g décembre 1907. M. Saltykow, de
son cOté, donna le 16 décembre des résultats analogues aux miens.




