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SUR LES EQUATIONS DES TIGES DROITES,

Par Louis ROY.

INTRODUCTION.

Les équations du mouvement des tiges droites homogénes et isotropes, de section
circulaire, ont été données autrefois par Poisson. On sait que ce géométre identifiait
les deux coefficients de Lamé 7 et u.; mais, si I'on reprend la méthode qu’il a suivie,
en laissant ces deux coefficients distincts, on retrouve les équations obtenues apreés
lui par Kirchhoff. Sa méthode, toutefois, n’est pas 4 I'abri de toute critique et laisse
4 désirer au point de vue de la clarté. Plus tard, Kirchhoff et Clebsch reprirent la
théorie de la déformation des tiges de forme quelconque, en appliquant a chaque
trongon de la tige les formules de la flexion et de la torsion des prismes. L’application
de ces formules préte encore & certaines critiques, qui ont été formulées notamment
par E. Mathieu dans sa Théorie de Uélasticité des corps solides, mais la méthode de
Kirchhoff parait, cependant, susceptible de donner des résultats trés approchés,
quand la tige est droite et trés peu déformée.

Voulant soumettre & I'épreuve les résultats de cette théorie, E. Mathieu (*) a con-
sidéré une tige droite isotrope de section circulaire et a cherché les équations de son
mouvement transversal d’'une maniére plus analytique, en partant de I'expression du
travail des forces élastiques et en appliquant le principe des travaux virtuels.

Dans cette analyse, E. Mathieu suppose, qu’en chaque point de I'axe, le déplace-
ment longitudinal est-.constamment nul, ce qui revient & admettre, a priori, I'indé-
pendance mutuelle des mouvements longitudinaux et transversaux. De plus, en
calculant certaines dérivées des déplacements, il commet une faute de calcul, ce qui
le conduit & des équations de mouvement de méme forme que celles de Kirchhoff,
mais qui ne coincident avec elles que dans I'hypothése A = p.. La méme remarque est
a faire, quand il applique la méthode de Poisson en rendant distincts les deux coeffi-

(1) E. Marnieu, Théorie de 'élasticité des corps solides, ch. vii.
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cients de Lamé. Aussi. ne s’étant pas apergu de son erreur, il n’hésite pas & affirmer
que le désaccord est dit & ce que ses équations sont plus approchées que celles de
Kirchhoff et de Poisson.

Nous nous proposons de reprendre 'analyse de K. Mathieu, mais en lui donnant
une plus grande généralité. Tout d’abord, nous n’annulerons pas, a priori, le dépla-
“cement longitudinal sur I'axe; d’autre part, nous ne supposerons pas que la tempé-
rature de la tige soit uniforme et constante, comme on le fait habituellement dans
la théorie de I'élasticité. et nous tiendrons compte des déformations thermiques. Au
lieu du travail des forces élastiques que considérait E. Mathieu, nous considérerons
le potentiel thermodynamique interne de la tige, dont nous commencerons par
rechercher l'expression: nous en déduirons les équations du mouvement par
Iemploi de I'équation fondamentale de 1I'Energétique, qui généralise le théoréme de
d’Alembert.

Cette analyse nous conduira & ce résultat que les équations du mouvement trans-
versal, tant indéfinies qu’aux limites, sont indépendantes de la température. Ces
équations coincident bien avec celles données, antérieurement, par Kirchhoff. La
température n’intervient que dans les équations du mouvement longitudinal, qu’on
peut, du reste, obtenir par une méthode plus rapide, ainsi que nous 'avons montré
ailleurs (1), sans faire d’hypothése aussi particuliére sur la forme et la contexture de
la tige.

Nous terminerons en formant les équations complémentaires de la température,
déduites de la théorie de la conductibilité. Ces équations, jointes & celles déja obte-
nues, permetiront de traiter, dans toute leur généralité, les deux problémes insépa-
rables du mouvement et de la distribution de la température.

Formules préliminaires.

Nous considérons une tige de section circulaire, dont les bases sont deux sections
droites de rayon ¢, et dont 'axe est dirigé suivant 'axe des z. Aucune pression exté-
rieure n’est censée s'exercer sur la surface latérale. Nous ferons usage des coordonnées
rectangulaires x, v, z, en méme temps que des coordonnées cylindriques r, o, z.

Soient «, 8, vy les cosinus directeurs de la normale extérieure & la surface de la
tige, N,, N,, N,, T,. T,, T, les composantes de la pression intérieure en un point;

puisque, sur la surface latérale, la pression est nulle, nous avons, pour r=¢:
S N+ Tp=o,

(1) . { T, +N,8=o0,
E T,» +Tg=o.

(1) Journ. de math. (6e série), t. VI, fasc. ur, 1910, p. 244.
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En général, @ étant une fonction quelconque de x, y, z, ¢, nous poserons, pour
abréger :
da+3p dxtByy
d(o,0,2, ) =0, [ —— _——
( )=¢ <Dac'zby? >,,=0 Q= dyd
D’aprés cela, en développant N, et T, suivant les puissances croissantes de x et
de y, et en remplacant chaque fois x et y, respectivement, par re et r8, la premiére
équation (1) donne :
n omn
no <:a + B)
o dy

x4+

™

1/, , on, ’n
—(z=a*+2-—LaB —'B’)e’a
2 <bac2 + drdy ! + iyt +

+t8+<bt’ L 3>e+’<‘ws e, a+w=*e’> “ .
— o - g -\ — 2 g oo ==0.
o " oy )T\ 2 dy % ay*! '

Nous aurions deux égalités analogues pour les deux autres équations (r).
En se limitant, dans ces développements, aux termes en ¢*, en Y remplacant «® par
«(1— %), 8 par £z

2’8, on obtient un certain nombre de relations, dont nous retiendrons seulement les

o*), et en égalant A zéro les coefficients de «, 8, o, of, 8%, «fp?,

suivantes :
2 2 2 2
¢ O'n, g %
n - —=o, t, ——2=po,
ot 2 o’ . T 2 0y* ©
:2 '\Qt .Win
iy bl T
(2) L+ 2 0t .+ 2 Dy’—o’
L+ S e %,
——i=o, - =o;
P2t Y2y
on, o,
— =0, —=o,
o dy
o mn
(3) —=o, —=o,
hEA dy
i, A,
=o0, —=—o;
\ J Dy
o, At VAR A
%) Ty, e e ST
dy y @ dy

Nous supposerons que la tige se refroidit par rayonnement dans I'espace ambiant,
dont la température absolue T, sera prise pour origine thermométrique. Soit, alors,
% la température en un point, K et J les coefficients de conductibilité intérieure et
‘extérieure ; nous avons, pour r — g,

ds
K%-{—kJ—O,
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. - k T
n désignant la normale extérieure. En posant h = ¥ hous pourrons écrire I'égalité
précédente

Q5 25 N

«— +B—+ hy=o.
dr dy
Développons le premier membre de cette équation, comme nous avons développé

les équations (1). En nous limitant également aux termes en <*, nous arriverons a des

relations dont nous utiliserons seulement les suivantes :

ALi] &% 20 e® 0%
( 5-5(1 —{-—h;)-Jr-;S?—O, ﬁ(l—‘_h) —2-‘\—}-,-;—-—-0,
(®)
( he S) h t26 . ho 3329 hs
;D (2+ )—0, N Dy—-O, +;D—y_,( 2 + )—0

Cela posé, considérons le développement de la fonction 3 :

20 /20 % 20N\,
=0+ —1+—— > r+-{—%-+2 a4+ =)+
2\ dedy 0 dy

d’aprés les égalités (5), on voit aisément que ce développement peut s’écrire

(6) Sz[l—g(—g—%;r%]ﬂ—i—...,

les termes non écrits étant, au moins, du troisiéme ordre de petitesse.

Désignons par U, V, W les trois composantes du déplacement et par D,, D,, D,,
G,, G,, G, les six déformations en un point quelconque de la tige. Nous nous propo-
sons de calculer les quantités

au moyen des fonctions u. v, w et 6. Les relations entre les pressions intérieures, les
déformations et la température, prises sur I'axe de la tige, nous donnent tout d’abord

n,=(\ + ap)d, + A(d, + d,) — 9,
n,—=(» + 2p)d, + Md, 4 d,) — 8,

n dw L <\w n Du> ; <Du I Du)
— — Y b=l = =
z /) Mae Tz Ty /]

g n,=( + ap)d, +1(d, + d,) —9,

(7)

| ¢

(t.=p<

~J
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v étant un troisiéme coeflicient d’élasticité, qu’il faut considérer en plus des deux
coefficients de Lamé & et p, quand on veut tenir compte des effets de la température.
La premiére et la quatriéme des égalités (2) s’écrivent, en tenant compte des deux

premiéres égalités (7) :

O+ 20)d, +3d, = —d, + 5 — 5 S0,
2 0
3+ O+ ), = —d, + b — =
At W), = 3 TV 2 by,,
d’ott nous déduisons
g — = AV ¢ Ot a )D’n. , 2
® IR 8@(1 + u)[ W Tt Dy’:l’
_ )\ds + v0 |: ; 3n ()
a2+ w) 8u</\+ oL re T

La premiére égalité (3) et la deuxiéme égalité (4) nous donnent, en tenant compte
de la deuxiéme égalité (3) et des deux premiéres égalités (7) :

PRI AP .
© T L r
9 )2 , .M,
Bt tmg=—iegy

La premiére égalité (4) jointe & la troisiéme égalité (3) et la quatriéme égalité (3)
nous donnent de méme

oy g2
(10) "y Ty 2y Ty
10

NN S VSN

y Ty T Ty Ty

D’autre part, les deux derniéres égalités (2) s’écrivent, d’aprés les quatriéme et
cinquiéme des égalités (7) :

Dw £ ) W dw &

! p—
T Rty Ty

Comme elles ont lieu quel que soit z, on en déduit en différentiant

od tu & N

dx 028 2au Xz
(1)

M, v & Vi
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D’aprés cela, les équations (g) et (10) nous donnent, en les résolvant et en remar-

e P R
quant que, d’aprés les deux premiéres égalités (5), les dérivées ——— sont du second

4 A, y)
ordre :
¥, M A du
12 —= des termes en &*,
(12) Qe dx a2k +p) o2 + ¢
xd A Qv
(13) i P + des termes en =

(o

y dy 2()\ R

Enfin, les deux derniéres équations (3) s’écrivent

Yw o Au v dw
T — 0) —F —O0 H
dat T dxdz dydz -yt
d’ou, en différentiant par rapport a z,
(18) 2%, d, d, °d,
I —_— = —, —_— =
da? 2* dy* 2%,

et les formules (8) différenti¢es achéveront de faire connaitre ces dérivées.

Potentiel thermodynamique interne de la tige.

Le potentiel thermodynamique interne de la tige a pour expression générale :

: A . s prpe . G1 TG G
(15) F= [ [ o(a) + 20,4 D, + D (D2 4 D3 4 D2 ¢ HEEZ)

—v(D,+D, + Dz)-ildd»
d@ étant un élément de volume de la tige et ¢(3) une fonction de la température
seule.

Nous allons remplacer, sous le signe f, les déformations et la température par

leurs développements, en nous limitant. pour I'expression entre crochets, aux termes
du second ordre de petitesse.
D’apres la deuxiéme égalite’ (2), ¢, est du second ordre et, d’aprés les deuxiéme et

g

troisiéme des égalités (3), —y et sont nuls. Donc, le glissement G, est du second

ordre de petitesse et son carré, qui est du quatriéme, doit étre négligé dans
Pexpression (15).
D’aprés les deux derniéres égalités (2) et (3), nous pouvons écrire

2, 3/ D
= SR )
6) 2p.0y" \)
I
( lo.— ew£’+3<\w+hu>re+
P anx®  dy\dw 2/ 7 TV
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I'ensemble des termes non écrits étant du second ordre. Or, la troisiéme égalité (4)

peut s’écrire

d (Du Bv) dw
— =4 =]+ 2 =o.
dxXdy

Supposons, avec E. Mathieu, que, pendant son mouvement, la tige ne subisse pas
de rotation autour de son axe, on aura

u
—_—— =0
RE
On déduit de ces deux derniéres égalités
Yu M dw
WAz~ wdz dwwdy’

par suite, dans les développements de G, et de G, fournis par les égalités (16). les
termes en rz et r8 sont nuls. Les glissements G, et G, sont donc aussi du second

ordre et leurs carrés peuvent étre négligés dans 'expression (15).

Nous allons remplacer, dans I'égalité (15), les dilatations et la température par
leurs développements; celui de D, est

d 2 N hk hX
D4:d4+ (t—(i’m-{—%ﬁ)r—{- I< d’a’—l—-g‘ di l@—i—-—d;l\rﬂz)f&—k veey

dx 2 o Xy oy

et ceux de D, et D, ont des formes analogues; celui de 7 est donné par I'égalité (6).
Nous obtenons ainsi, en remplacant « et 8 respectivement par cos g et sin ¢ :

(1 F=[ea0 + [[f] b+ (Beoss+ €sing)r

+§(§D cos’ g + 2 & sin ¢ cos o + {g sin® ¢ +'“H)r* + ...:Irdrdcpdz,

les coefficients A, “i3, B, ..., "M, ... étant des fonctions de z et de ¢ seulement.

Si nous intégrons par rapport & ¢ de o & ax, puis par rapport & r de o & ¢, nous
aurons

D + ¥ + 2 H
(18) C?f=/<p(3>dcs+m“f(ﬁ@ +——%— s”>dz,

Fac. de T., 3¢ S., 11, 4
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la derniére intégrale étant prise tout le long de T'axe de la tige. On vérifie que les

coefficients restants de I'égalité (18) ont pour expressions

PA 2 2 2 2
(190 o=1(d,+d 4 )+ u(d + & &) —(d, + d, + d),

\”d d

=+

N ¥d N d, A, N
@:;[(d+d+d>< = aw2>+<b_ag+ﬁ+ﬂ>:l

'd,

d °d, o \*
+2M[d1;——é+d‘z\ 2+l +<———i> +<

Sdat dx

, < ¥, +D’d2+ ’d3>
\ya Yot)’

N A2 A
) ()
dX X

, yd, ¥d, ¥d, ad, 2, )\
b = [(d‘+dﬁ+d“)<by“ 5t ayg> - <W+W+W> ]

>d V', dd AN
el aggraiEragi (5) +(

*ay Py dy

. (b’dl 4 U b’alz n %d, )

oyt
ol

e(2 + hs)

(20) M 0(d, 4 d, + d,).

v+ (5]
v Ty

En tenant compte des trois premiéres relations (7), nous obtenons

(21) §D+g:)\[<)d‘+ﬁ+%>g+<‘\_‘1¢+

dxr X dy

2 bd"f *
5ty

() G+ ) (9 el

rd, ¥, rd, ¥d,
+n,< L +n,<——+ >+

dx dy dat Ty

<w d,
y2

11 nous reste & remplacer, dans les expressions (19), (20) et (21), les dilatations

et leurs dérivées par leurs valeurs. Dans le calcul de A, nous devrons, eu égard au

degré d’approximation adopté, nous limiter aux termes en ¢ et, dans celui de &) + (}

I . 4 P ’ \
et de "}, aux termes indépendants de . Nous voyons donc, dés & présent, d’aprés les

premiére et quatriéme des égalités (2), que, dans I'expression de P+ '(j, les termes

. A (o w .
en n, et n, doivent étre négligés. En remplacant d, par <, on obtient pour ﬂg)

d’aprés les formules (8) et en posant

> 3+
o=u
y )‘+P-
‘ w\? u, Dw
(22) L=2¢ <_> e W
b s\ 2z )x-{—p.v z

[
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car on vérifie que les termes en ¢* se détruisent. 11 n’y a pas non plus de termes
en ¢, car toutes les quantités que nous remplagons par leurs valeurs, aussi bien dans
Iexpression (19) que dans les expressions (20) et (21), sont des fonctions linéaires
en <*. Remarquons que .t ne dépend que de w et de 6.

Passons au calcul de <) + q : d’aprés les égalités (11), (12) (13), ot nous devons
négliger les quantités en ¢*, nous voyons que les deux premiéres lignes du second
membre de I'égalité (21) ne dépendent que de u et de v. D’autre part, d’apres les
égalités (14) et (8), la troisiéme ligne, que nous devons réduire i son dernier terme,
d’aprés ce qui a été dit plus haut, ne dépend que de w et de 6, étant donnée la troi-
siéme égalité (7); nous pouvons done, dans l'expression (18), négliger son produit
par ¢ vis-a-vis de b et limiter ¢) + C)/ a ses deux premiéres lignes. Nous obtenons
ainsi, d’aprés les formules (11), (12), (13),

(23) D+G=1 [(3—2“>+ (;{)]

Quant & la quantité ", on voit, d’aprés les formules (8). qu'elle ne dépend que
de w et de 6. Son produit par ¢* peut donc étre aussi négligé vis-a-vis de 4 dans

I'expression de ¥.

L’égalité (18) devient ainsi :

(at) Y= / W(9)de

e S )
2 dz ez h Tt P 4L \dz2? 2z ’

Equations du mouvement.

Pour obtenir les équations du mouvement de la tige, nous devons écrire, d’aprés
les principes de I'Energétique, qu’on a, dans toute modification virtuelle isothermique
compatible avec les liaisons,

(25) a@e—aa@+aj=o,

86 désignant le travail élémentaire des forces extérieures. 57 celui des forces
d’inertie et 2% la variation isothermique du potentiel thermody namique interne.
Soient X, Y, Z les composantes par unité de masse de la force extérieure appliquée
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a chaque élément de volume, ¢ la densité, P,, P, P, les composantes de la pression
extérieure qui s’exerce sur les bases de la tige, on a

o

3C,=( ffp(X3U Y3V + ZW)rdrdydz
+ [f(anU + PRV + PAW)rdrds,

3U, 3V, W désignant les variations des déplacements dans la modification virtuelle
considérée, et I'intégrale double s’étendant aux deux bases de la tige.
En développant, comme nous I'avons déja fait, les déplacements virtuels et les

composantes des forces extérieures et en intégrant deux fois, on obtient, en négligeant
les termes en ¢*:

(26) 36, == /p(Xau + Y3v + Z3w)dz 4 =*(P2u + P 3v + Paw),
X, Y, ..., P, désignant maintenant les composantes des actions extérieures pour
r = o. Nous aurions de méme
o du . Yw
(27) c =t /p <bt’ \t% .v—i— Ve cw>dz.

On a, d’autre part :

dw dsw . Bw /A dBu . A
( ) ﬁiz _——— 6 -\ ™™ —— dz.
08 3,7 /[8 ISR l;(bz" 7 T Bz’>:|

Soient z = (o, I) les équations des deux bases de la tige. En intégrant par parties,
nous obtenons successivement

dw v 2w < ) :I f< \w DO)
—— dz= 6 ) 3w — ) dwdz.
/(gbz >\+M“e> 3 [Ea )\—}—[)V y."az
du ddu udu du du
S = (SN +f—°“dz
P v RPv v D PRI
JEaete= (3?3;—3733”>0 + f sawe
D’aprés cela, I'égalité (28) devient

et Bu Yo o\
(20) ae%ﬁz—_( gl ’f,Eu+—”—°i——z”3v>

4 A2z 2z Pz 2P

1
L(C oo e) Ew]
2z A + 0
M o W " 6
f‘: ( —{—-3781))—({9—0? )\-I—M z)O‘LU]dZ

‘l
o

U
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Supposons les trois quantités, qui figurent dans 1'équation (25), remplacées par
leurs valeurs d’aprés les égalités (26), (27) et (29). En égalant & zéro successivement
la somme des coefficients du 3u, 8v et 3w qui figurent sous les signes / nous

[

obtenons les équations indéfinies du mouvement :

£ o d'u du
2 o2

4 G
(30) 2 \lv wﬁv
[SERVARE Y d
— 6 — — Y —— )=o,
4 & o f ( af’)
o \’w v hL) b’w
3 6‘————_—— — (Z———-—):o,
31 e A w) T °
Bu v
En annulant, de méme, les coefficients de — , — et la somme des coefficients de

[V 4
du, 3v, 3w qui figurent dans la partie tout intégrée, nous obtenons les conditions aux
bases de la tige :

du Yv
( PP T
(32) . sy
g o du [ o v
(izg—bza—l—l’xzoy + 635+ P=o0,
33 E¥x Py _p =0
(33) T e T T

dans lesquelles le signe supérieur se rapporte a la base z = [ et le signe inférieur &
la base z =o.

Nous voyons que les équations (30) et (32) du mouvement transversal sont indé-
pendantes de la température; elles coincident avec celles qui ‘ont ét¢ données par
Kirchhoff et avec celles qui ont été données par Poisson, quand on y fait A —=p.

Equations de la température.

Considérons un trongon de la tige limité par deux sections droites; nous allons
calculer la quantité de chaleur 2Q qu’il dégage, quand on lui impose une modification
virtuelle.

Soit f le potentiel thermodynamique interne par unité de volume, représenté par
la quantité entre crochets de I'expression (15); la thermodynamique nous enseigne

qu’on a
N
3Q = /—o Y a,
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E désignant 1'équivalent mécanique de la chaleur, T la température absolue au point
ou se trouve I'élément de et 'intégration s’étendant & tout le volume occupé par le
trongon. Si nous posons

r

vbzf
C=— T

=il =

C désignant la capacité calorifique par unité de volume, nous reconnaitrons, d’aprés
I'égalité (15), que I'expression de 2Q peut s'écrire

Q= — /[}%@(Dl 4+ D,4+D)+ ca.a—ldc.;.

Remplagons les dilatations et la température par leurs développements et inté-

Q7

grons dans toute 1'étendue d’une section droite, comme nous l'avons fait pour arriver
4 I'égalité (18); en négligeant les termes en ¢*, nous aurons

23Q :—:gﬂf‘:%va(dl +d, +d)+ cae]dz,

I'intégration s’étendant & toute la hauteur du trongon et T désignant, maintenant,
la température absolue sur I'axe de la tige. Tenons compte des égalités (8) et posons

. T?
C= C[I + E(x + p.)jl’

s (T v ixa\ 7,
f (F k+p4~,¢(13+c,e>dv.

Comme on a T="T, + 5 et que ¥ est toujours trés petit vis-2-vis de T, C' est
sensiblement constant et différe peu de C.

il viendra

Q=—=

™

Soit dQ la quantité de chaleur dégagée pendant une modification réelle de
durée dt; nous aurons, d’aprés I'égalité précédente :

- 2 T [ DZ’LU ’DO >
(34) dQ =—=¢ dt/(I_‘J_—)\+g"azbt+C-D—l>dw

Mais, la théorie de la propagation de la chaleur nous enseigne qu’on a aussi

(35) dQ=dt <— f F,dS + / zdm’),

F,dS désignant le flux de chaleur qui pénétre dans le troncon de tige par I'élément dS
de sa surface latérale, et y, le débit par unité de volume de la source de chaleur au
point ou se trouve I'élément d¢. La premiére intégrale se compose de deux parties
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qui correspondent, I'une aux bases du trongon, l'autre & sa surface latérale; celle qui

correspond aux bases a pour expression, d’apres 'égalité (6) :

P} N
f Ky = rdrd; —/fl\ ——h—-— r* |rdrdy — [ K—? I ——L— r* |rdrds,
2z oz e(2 + hs) J 2z e(2 + he) S

la premiére intégrale du second membre étant étendue A la base supérieure, la
deuxiéme & la base inférieure du trongon. Si l'on intégre par rapport a ¢ et a r, on
reconnait que le second membre de 1'égalité précédente peut s’écrire

\2
TS/K6

au méme degré d’approximation que précédemment.
D’aprés la condition de refroidissement & la surface

dl-\
K2 4 ky=—o0,

le flux de chaleur qui pénétre par la surface latérale du trongon a pour expression

/:/-Kcﬁsd&d,:—f/lzel: e +h ;e ]sdzd?z—m’fe(—zgh—e)edz,

de sorte qu’en définitive nous avons

e s Y 4k
(36) /k,lds_,.-f[ha—zg—e(whz)e]dz.

Nous verrions également qu’on a

(37) /yﬁld:m”f(—S-l—Le)dz.

S désignant le débit de la source de chaleur sur 'axe de la tige et L son coefficient de
diathermanéité.

Si nous substituons les expressions (36) et (37) dans I'égalité (35), nous en dédui-
rons, par comparaison avec 1'égalité (34), qu’on doit avoir

T w Qw 20
(38) f(ﬁk—}-p Dzbt+cﬁ_h S+£0>dz._o,

en posant, pour abréger,

- 4
b=t v
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L’équation (38) devant avoir lieu quelle que soit la hauteur du trongon suivant
laquelle on intégre, il s’ensuit. d’aprés un raisonnement usuel en physique mathé-
matique, qu’on doit avoir en tout point de 1'axe
v T Yw

3 ¥k s
(39) Y TR L vl by ve

C’est I'équation indéfinie que nous voulions établir, qui devient linéaire par
rapport aux déformations et & la température. si 'on y remplace T par T,, et ceci
constitue une approximation bien suffisante si, dans son état naturel, la tige, qui est
alors a la température de I'espace ambiant, est suffisamment éloignée du zéro absolu.

A I'équation précédente nous devons adjoindre la condition aux limites
(4o) i@ -+ hf=o,

. 2z
dans laquelle le signe supérieur se rapporte a la base z—1 et le signe inférieur a la
base z=o.

Les équations (39) et (40), jointes a celles que nous avons établies dans le précédent
paragraphe, permettent de traiter dans toute sa généralité le probléme du mouvement
de la tige.



