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SUR LES ÉQUATIONS DES TIGES DROITES,

PARLONS ROY.

INTRODUCTION.

Les équations du mouvement des tiges droites homogènes et isotropes, de section
circulaire, ont été données autrefois par Poisson. On sait que ce géomètre identifiait
les deux coeflicients de Lamé A et 1J.; mais, si l’on reprend la méthode qu’il a suivie,
en laissant ces deux coefficients distincts, on retrouve les équations obtenues après
lui par Kirchhoff. Sa méthode, toutefois, n’est pas à l’abri de toute critique et laisse
à désirer au point de vue de la clarté. Plus tard, Kirchhoff et Clebsch reprirent la
théorie de la déformation des tiges de forme quelconque, en appliquant à chaque
tronçon de la tige les formules de la flexion et de la torsion des prismes. L’application
de ces formules prête encore à certaines critiques, qui ont été formulées notamment

par E. Mathieu dans sa Théorie de l’élasticité des corps solides, mais la méthode de ,

Kirchhoff paraît, cependant, susceptible de donner des résultats très approchés,
quand la tige est droite et très peu déformée.

Voulant soumettre à l’épreuve les résultats de cette théorie, E. Mathieu (1) a con-
sidéré une tige droite isotrope de section circulaire et a cherché les équations de son
mouvement transversal d’une manière plus analytique, en partant de l’expression du
travail des forces élastiques et en appliquant le principe des travaux virtuels.

Dans cette analyse, E. Mathieu suppose, qu’en chaque point de l’axe, le déplace-
ment longitudinal est constamment nul, ce qui revient à admettre, a priori, l’indé-
pendance mutuelle des mouvements longitudinaux et transversaux. De plus, en
calculant certaines dérivées des déplacements, il commet une faute de calcul, ce qui
le conduit à des équations de mouvement de même forme que celles de Kirchhoff,
mais qui ne coïncident avec elles que dans l’hypothèse ~ = N. La même remarque est
à faire, quand il applique la méthode de Poisson en rendant distincts les deux coeffi-

(1) E. MATHIEU, Théorie de l’élasticité des corps solides, ch. 
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cients de Lamé. Aussi, ne s’étant pas aperçu de son erreur, il n’hésite pas à affirmer

que le désaccord est dû à ce que ses équations sont plus approchées que celles de
Kirchhoff et de Poisson.

Nous nous proposons de reprendre l’analyse de E. Mathieu, mais en lui donnant
une plus grande généralité. Tout d’abord, nous n’annulerons pas, a priori, le dépla-
cement longitudinal sur l’axe ; d’autre part, nous ne supposerons pas que la tempé-
rature de la tige soit uniforme et constante, comme on le fait habituellement dans
la théorie de l’élasticité, et nous tiendrons compte des déformations thermiques. Au
lieu du travail des forces élastiques que considérait E. Qlathieu, nous considérerons
le potentiel thermodynamique interne de la tige, dont nous commencerons par
rechercher l’expression ; nous en déduirons les équations du mouvement par
l’emploi de l’équation fondamentale de l’Energétique, qui généralise le théorème de
d’Alembert.

Cette analyse nous conduira à ce résultat que les équations du mouvement trans-
versal, tant indéfinies qu’aux limites, sont indépendantes de la température. Ces

équations coïncident bien avec celles données, antérieurement, par Kirchhoff. La

température n’intervient que dans les équations du mouvement longitudinal, qu’on
peut, du reste, obtenir par une méthode plus rapide, ainsi que nous l’avons montré
ailleurs (1), sans faire d’hypothèse aussi particulière sur la forme et la contexture de
la tige.

Nous terminerons en formant les équations complémentaires de la température,
déduites de la théorie de la conductibilité. Ces équations, jointes à celles déjà obte-
nues, permettront de traiter, dans toute leur généralité, les deux problèmes insépa-
rables du mouvement et de la distribution de la température.

Formules préliminaires.

Nous considérons une tige de section circulaire, dont les bases sont deux sections
droites de rayon s, et dont l’axe est dirigé suivant l’axe des z. Aucune pression exté-
rieure n’est censée s’exercer sur la surface latérale. Nous ferons usage des coordonnées

rectangulaires x, y, z, en même temps que des coordonnées cylindriques r, ~, z.
Soient v, ~, y les cosinus directeurs de la normale extérieure à la surface de la

tige, N~, N3, T~, T~, les composantes de la pression intérieure en un point;
puisque, sur la surface latérale, la pression est nulle, nous avons, pour r == e :

(1) Journ. de rnath. (6e série), t. VI, fasc. III, I9I0, p. 2fi(.



En général, ï. étant une fonction quelconque de x, y, ~, t, nous poserons, pour
abréger :

D’après cela, en développant 1Ï1 et T3 suivant les puissances croissantes de x et
de y, et en remplaçant chaque fois x et y, respectivement, par ra et na, la première
équation ( 1 ) donne :

Nous aurions deux égalités analogues pour les deux autres équations (i).
En se limitant, dans ces développements, aux termes en ~2, en y remplaçant 03B13 par

a(I - p’), ~3 par p(I - x~), et en égalant à zéro les coeflicients de x, a, oc’, ~’, 
on obtient un certain nombre de relations, dont nous retiendrons seulement les

suivantes :

Nous supposerons que la tige se refroidit par rayonnement dans l’espace ambiant,
dont la température absolue 1’0 sera prise pour origine thermométrique. Soit > alors >
~ la température en un point, K et k les coefficients de conductibilité intérieure et
.extérieure ; nous avons, pour r == g,



n désignant la normale extérieure. En posant h == 2014, nous pourrons écrire l’égalité
précédente

Développons le premier membre de cette équation, comme nous avons développé
les équations (1). En nous limitant également aux termes en ~00FF, nous arriverons à des

relations dont nous utiliserons seulement les suivantes :

Cela posé, considérons le développement de la fonction 3- : 
’

d’après les égalités (5), on voit aisément que ce développement peut s’écrire

les termes non écrits étant, au moins, du troisième ordre de petitesse.

Désignons par U, V, V les trois composantes du déplacement et par Dt’ D2, D3,

Gi, G~, G3 les six déformations en un point quelconque de la tige. Nous nous propo-
sons de calculer les quantités

au moyen des fonctions u. v, w et 6. Les relations entre les pressions intérieures, les

déformations et la température, prises sur l’axe de la tige, nous donnent tout d’abord



v étant un troisième coefficient d’élasticité, qu’il faut considérer en plus des deux
coefficients de Lamé À quand on veut tenir compte des effets de la température.

La première et la quatrième des égalités (2) s’écrivent, en tenant compte des deux

premières égalités (7) :

d’où nous déduisons

La première égalité (3) et la deuxième égalité (4) nous donnent, en tenant compte
de la deuxième égalité (3) et des deux premières égalités (7) :

La première égalité (4) jointe à la troisième égalité (3) et la quatrième égalité (3)
nous donnent de même

D’autre part, les deux dernières égalités (2) s’écrivent, d’après les quatrième et

cinquième des égalités (7) :

Comme elles ont lieu quel que soit z, on en déduit en différentiant



D’après cela, les équations (g) et ( I o) nous donnent, en les résolvant et en remar-

quant q ue, d’a p rès les deux premières égalités (5), les dérivées ~03B8 ~(x,y) 
18 

sont du second

ordre :

Enfin, les deux dernières équations (3) s’écrivent

d’où, en différentiant par rapport à z, ,

et les formules (8) différentiées achèveront de faire connaître ces dérivées.

Potentiel thermodynamique interne de la tige.

Le potentiel thermodynamique interne de la tige a pour expression générale :

dd étant un élément de volume de la tige et une fonction de la température
seule.

Nous allons remplacer, sous le signe les déformations et la température par .

leurs développements, en nous limitant, pour l’expression entre crochets, aux termes
du second ordre de petitesse.

D’après la deuxième égalité (2), g3 est du second ordre et, d’après les deuxième et

troisième des égalités (3), 1~3 et 1~3 sont nuls. Donc, le glissement G, est du secondt)y 2’x
ordre de petitesse et son carré, qui est du quatrième, doit être négligé dans

l’expression (I5).
D’après les deux dernières égalités (2) et (3), nous pouvons écrire



l’ensemble des termes non écrits étant du second ordre. Or, la troisième égalité (4)
peut s’écrire

Supposons, avec E. Mathieu, que, pendant son mouvement, la tige ne subisse pas
de rotation autour de son axe, on aura

On déduit de ces deux dernières égalités .

par suite, dans les développements de G, et de G2 fournis par les égalités (16), les
termes en rx et r~ sont nuls. Les glissements G~ et G2 sont donc aussi du second
ordre et leurs carrés peuvent être négligés dans l’expression (i5).

Nous allons remplacer, dans l’égalité (15), les dilatations et la température par
leurs développements ; celui de D, est

et ceux de D2 et Da ont des formes analogues; celui de 3 est donné par l’égalité (6).
Nous obtenons ainsi, en remplaçant 03B1 et 03B2 respectivement par cos 03C6 et sin 5 :

les coefficients ’’j~ ~ ‘~ ~ , , , ~ ~~ ~ , , , étant des fonctions de z et de t seulement.

Si nous intégrons par rapport à ~ de o à ~~, puis par rapport à r de o à e, nous

aurons



la dernière intégrale étant prise tout le long de l’axe de la tige. On vérifie que les

coeflicients restants de l’égalité (18) ont pour expressions

En tenant compte des trois premières relations (7), nous obtenons

Il nous reste à remplacer, dans les expressions (19), (20) et (21), les dilatations

et leurs dérivées par leurs valeurs. Dans le calcul de ~t:, nous devrons, eu égard au

degré d’approximation adopté, nous limiter aux termes en ë2 et, dans celui (~
et de ~‘i , aux termes indépendants de e. Nous voyons donc, dès à présent, d’après les

première et quatrième des égalités (2), que, dans l’expression E, les termes

en n et n doivent être négligés. En remplaçant 3 par ~w ~z , on obtient pour A,
d’après les formules (8) et en posant



car on vérifie que les termes en ê2 se détruisent. Il n’y a pas non plus de termes
en s, car toutes les quantités que nous remplaçons par leurs valeurs, aussi bien dans
l’expression (19) que dans les expressions (20) et (21), sont des fonctions linéaires
en S2. Remarquons que t/t) ne dépend que de 2v et de 6.

, 

Passons au calcul de S) ~ ~ : d’après les égalités (1 I), (12) (i3), où nous devons
négliger les quantités en s2, nous voyons que les deux premières lignes du second
membre de l’égalité (21) ne dépendent que de u et de v. D’autre part, d’après les
égalités (i4) et (8), la troisième ligne, que nous devons réduire à son dernier terme,
d’après ce qui a été dit plus haut, ne dépend que de w et de 0, étant donnée la troi-
sième égalité (y); nous pouvons donc, dans l’expression (18), négliger son produit
par E’ vis-à-vis de J6 et limiter 0D + 6 à ses deux premières lignes. Nous obtenons
ainsi, d’après les formules (11), (12), ( I 3),

Quant à la quantité on voit, d’après les formules (8), qu’elle ne dépend que
de w et de 6. Son produit par e’ peut donc être aussi négligé vis-à-vis de u40 dans
l’expression de J~.

L’égalité (18) devient ainsi :

Equations du mouvement.

Pour obtenir les équations du mouvement de la tige, nous devons écrire, d’après
les principes de l’Energétique, qu’on a, dans toute modification virtuelle isothermique
compatible avec les liaisons,

â~e désignant le travail élémentaire des forces extérieures, 8~ celui des forces
d’inertie et la variation isothermique du potentiel thermodynamique interne.

Soient X, Y, Z les composantes par unité de masse de la force extérieure appliquée



à chaque élément de volume, c la densité, P,~, Py, P~ les composantes de la pression
extérieure qui s’exerce sur les bases de la tige, on a

âU, 8V, 8W désignant les variations des déplacements dans la modification virtuelle

considérée, et l’intégrale double s’étendant aux deux bases de la tige.
En développant, comme nous l’avons déjà fait, les déplacements virtuels et les

composantes des forces extérieures et en intégrant deux fois, on obtient, en négligeant
les termes 

X, Y, ..., P~ désignant maintenant les composantes des actions extérieures pour
r = o. Nous aurions de même

On a, d’autre part :

Soient z = (o, 1) les équations des deux bases de la tige. En intégrant par parties,
nous obtenons successivement .

D’après cela, l’égalité (28) devient



Supposons les trois quantités, qui figurent dans l’équation (25), remplacées par
leurs valeurs d’après les égalités (26), (2y) et (29). En égalant à zéro successivement

la somme des coefficients du ou, ov et ow qui figurent sous les signes /, nous
obtenons les équations indéfinies du mouvement :

1~ °
En annulant, de même, les coefficients de ~03B4u, ~03B4v et la somme des coefficients de

lz lz

8~t, ôv, bw qui figurent dans la partie tout intégré.e, nous obtenons les conditions aux
bases de la tige:

dans lesquelles le signe supérieur se rapporte à la base z = l et le signe inférieur à
la base z = o.

Nous voyons que les équations (30) et (32) du mouvement transversal sont indé-

pendantes de la température ; elles coïncident avec celles qui ’ont été données par
Kirchhoff et avec celles qui ont été données par Poisson, quand on y fait À = p.. 

’

Equations de la température. -

Considérons un tronçon de la tige limité par deux sections droites ; nous allons
calculer la quantité de chaleur cQ qu’il dégage, quand on lui impose une modification
virtuelle.

Soit f le potentiel thermodynamique interne par unité de volume, représenté par
la quantité entre crochets de l’expression (15); la thermodynamique nous enseigne
qu’on a



E désignant l’équivalent mécanique de la chaleur, T la température absolue au point
où se trouve l’élément d et l’intégration s’étendant à tout le volume occupé par le

tronçon. Si nous posons

C désignant la capacité calorifique par unité de volume, nous reconnaîtrons, d’après
l’égalité (15), que l’expression de èQ peut s’écrire

Remplaçons les dilatations et la température par leurs développements et inté-

grons dans toute l’étendue d’une section droite, comme nous l’avons fait pour arriver

à l’égalité (18); en négligeant les termes en ~‘, nous aurons

l’intégration s’étendant à toute la hauteur du tronçon et T désignant, maintenant,

la température absolue sur l’axe de la tige. Tenons compte des égalités (8) et posons

il viendra

Comme on a T = To + ,3 et que:; est toujours très petit vis-à-vis de To, C’ est

sensiblement constant et diffère peu de C.

Soit dQ la quantité de chaleur dégagée pendant une modification réelle de

durée dt; nous aurons, d’après l’égalité précédente :

Mais, la théorie de la propagation de la chaleur nous enseigne qu’on a aussi

F dS désignant le flux de chaleur qui pénètre dans le tronçon de tige par l’élément dS

de sa surface latérale, et ,, le débit par unité de volume de la source de chaleur au

point où se trouve l’élément d La première intégrale se compose de deux parties



qui correspondent, l’une aux bases du tronçon, l’autre à sa surface latérale ; celle qui
correspond aux bases a pour expression, d’après l’égalité (6) :

la première intégrale du second membre étant étendue à la base supérieure, la

deuxième à la base inférieure du tronçon. Si l’on intégre par rapport à 03C6 et à r, on
reconnaît que le second membre de l’égalité précédente peut s’écrire

au même degré d’approximation que précédemment.

D’après la condition de refroidissement à la surface

le flux de chaleur qui pénètre par la surface latérale du tronçon a pour expression

de sorte qu’en définitive nous avons

Nous verrions également qu’on a

S désignant le débit de la source de chaleur sur l’axe de la tige et L son coefficient de
diathermanéité.

Si nous substituons les expressions (36) et (3~) dans l’égalité (35), nous en dédui-
rons, par comparaison avec l’égalité (34), qu’on doit avoir

en posant, pour abréger,
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L’équation (38) devant avoir lieu quelle que soit la hauteur du tronçon suivant

laquelle on intégre, il s’ensuit, d’après un raisonnement usuel en physique mathé-

matique, qu’on doit avoir en tout point de l’axe

C’est l’équation indéfinie que nous voulions établir, qui devient linéaire par
rapport aux déformations et à la température. si l’on y remplace T par To’ et ceci
constitue une approximation bien suffisante si, dans son état naturel, la tige, qui est
alors à la température de l’espace ambiant, est suffisamment éloignée du zéro absolu.

A l’équation précédente nous devons adjoindre la condition aux limites .

dans laquelle le signe supérieur se rapporte à la base z = l et le signe inférieur à la
base z = o.

Les équations (39) et (4o), jointes à celles que nous avons établies dans le précédent
paragraphe, permettent de traiter dans toute sa généralité le problème du mouvement
de la tige.


