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SUR LES

EQUATIONS DE LA GEOMETRIE

ET LA

THEORIE DES SUBSTITUTIONS ENTRE » LETTRES,

Par M. Epmono MAILLET.

INTRODUCTION.

M. Jordan a montré, dans son 7raité des Substitutions (Livre 111, Chap. IIT),
que l'on pouvait former pour un grand nombre d’équations, qui interviennent
dans la détermination de points, courbes ou surfaces remarquables en Géométrie,
un groupe I' de substitutions contenant le groupe G de ces équations.

I. D’autre part nous avons fait voir (Assoc. frang. pour ’avancement des
Sciences, Mémoires du Congrés de Saint-Etienne, 1897, p. 190) que, si une équa-
tion a coefficients réels posséde 2k racines imaginaires exactement, son groupe
contient une substitution d’ordre 2 a & cycles permutant deux a deux les racines
imaginaires conjuguées; nous avons indiqué (') plusieurs applications de ce théo-
réme.

Le présent Mémoire a pour objet : 1° des perfectionnements ou des complé-
ments & apporter aux théories de M. Jordan sur les équations de la Géométrie;
2° I'application de notre théoréme ci-dessus, principalement a ces équations.

En particulier, nous obtenons les résultats suivants :

II. Soient les congruences

X+ Zp+. ..+ xg?=0 (modr)

(1) Association francaise, loc. cit.; Comptes rendus, décembre 1898, et Journal de
Mathématiques, 1899, p. 205-216.
Fac.deT., 2*S.. V1. 36 bis
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(p=1,2,...,q, 1, donnés, r,>2), et r7 leltres caractérisées par les ¢ in-
dices zy, 3, ..., 2, (mod r). Soit C un systéme quelconque de 7, de ces lettres,
distinctes ou non, dont les indices forment une solution de ces congruences :

Quand r est une puissance exacte d’un nombre premier, ’ensemble des
substitutions entre les 11 lettres qui permutent entre elles toutes ces combi-
naisons est le groupe T dérivé du groupe G" des substitutions linéaires homo-
génes

[Z1y oo Zgs @iy +. o= al2g, ooy @y .+ alay) (mod r)
et du groupe G' des substitutions
[y, ooy Xgs 2y 0ty ooy g oty | (mod r),

. . . r
ol dyy ..., 04 prennent (modr) toutes les valeurs possibles multiples de 5

6 étant le plus grand commun diviseur de r et r,.

Ce théoréme comprend, comme cas particuliers, plusieurs théorémes de
M. Jordan ('). 1l est encore exact quand r,=3, ¢ =2, rr =6.

IlII. Notre propriété I pose la question de la détermination de la classe des
substitutions d’ordre 2, ou méme de la classe d’'un groupe quelconque, en vue
des applications & la théorie des équations et a la Géomélrie. Aux résultats déja
connus nous en ajoutons quelques-uns relatifs a la classe des substitutions des
groupes linéaires, abéliens, etc. Ainsi, le groupe linéaire général de degré pw»
a n indices (mod p*) (p premier quelconque) est de classe p#n — pvn—1,

Nous indiquons une méthode générale pour la détermination de la classe des
substitutions d’un groupe et de la classe de ce groupe; nous en faisons applica-
tion au groupe de ’équation aux 27 droites des surfaces du troisi¢me degré, dont
les substitutions d’ordre 2 déplacent 24, 20 ou 12 lettres; au groupe de ’équation
aux 28 tangentes doubles des quartiques générales; au groupe de I’équation aux
27 points, aulres que les points d’inflexion, ot une cubique générale a, avec une
conique, un contact du cinqui¢me ordre : les substitutions de ce groupe déplacent
27, 26, 24 ou 18 lettres.

IV. Ce qui précéde, joint a I, nous donne un certain nombre d’applications
géométriques immédiates aux points d’inflexion des cubiques, aux cubiques
ayanl un contact du troisiéme ordre en 3 points avec une quartique générale, aux

(1) Traité des Substitutions, Livre III, Chap. TII.
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63 coniques (') tangentes en 4 points (dont un réel choisi arbitrairement) a une
quartique générale réelle, aux 16 plans stationnaires d’'une courbe gauche du
quatriéme ordre, aux plans tangents et aux points singuliers de la surface de
Kummer, aux 27 droites des surfaces du troisi¢éme degré, aux 28 tangentes
doubles d'une quartique, etc.

Nous disons quelques mots des applications de la théorie des groupes de substi-
tutions aux constructions par la régle ou la régle et le compas.

V. Nous sommes conduit incidemment & revenir sur les substitutions opérées
par les substitutions d’un groupe G de degré d entre les combinaisons v 4 v de
ses lettres :

1° Si d=+v'h — 1 (h entier > 0), et si G est transitif entre les combinai-

sons v & v de ses d lettres (v§ — )5 1l est transitif entre les combinaisons v/ & v/
2

de ses d lettres quand v'< v; il en est de méme pour d quelconque quand v/=1,
ouv<3.
2° Soient (3, de degré d quelconque, transitif entre les combinaisons v a v de ses

d c e X d
d leltres (2 <y< ;>, p le plus grand nombre premier inférieur a d -— 2 et > N

on a forcément vSd —p. Quand d2 40, v g; quand d << 4o, v<8; quand

11 <<d<<g.10% v=4(logd)? (?).
3° S1 G, de degré d quelconque, est transitif entre les combinaisons v & v de

ses lettres (2 <v< ;>, il est primitif.

Il existe des groupes Lransitifs entre les combinaisons v & v (v =2 ou 3) de

leurs lettres et qui ne sont pas v fois transitifs.

VI. En terminant, nous indiquons un certain nombre de sujets a traiter,
comme suite de notre Mémoire (3).

(1) Parmi ces coniques, s'il y en a une d’imaginaire, il y en a 32, 48 ou 56.

(%) Cette formule a été obtenue a I'aide des Tables de nombres premiers. Le logarithme
est un logarithme ordinaire.

(3) Sa lecture exige des connaissances assez étendues : Traité des Substitutions de
M. Jordan (joo premiéres pages), Fonctions algébriqgues de MM. Appell et Goursat ou
Fonctions abéliennes de Briot, un Mémoire de Clebsch (J. de Crelle, t. 63, p- 189) ou
les Legons sur la Géométrie de Clebsch et Lindemann, traduction Benoist (passim),
Algebre supérieure de Serret (passim); enfin un coup d’eil au moins sur les Mémoires
de M. Jordan ou de nous, que nous citons.

Un résumé de ce Mémoire a été communiqué a PAcadémie des Sciences de Paris (Comptes
rendus, 11 avril 1904, p. 891 et 1012).
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I.

Nous avons obtenu antérieurement le théoréme suivant (") :

Tutorexe I. — S7 une équation irréductible de degré n a coefficients réels
a exactement 2y racines imaginaires &y, ..., Tyy (Tak_1, Tak conjuguées), son
groupe contient la substitution (zyxs)...(2ay_, Zay).

En effet, soit /() = o une équation algébrique & coefficients rationnels réels,
ces coefficients pouvant dépendre rationnellement d’un certain nombre de para-
métres &y, k,, ... arbitraires. D’aprés un théoréme connu (2), il existe entre
les racines de I'équation un groupe G de substitutions tel que toute fonclion F
rationnelle des racines et des paramétres dont les substitutions de ce groupe
n’altérent pas la valeur numérique (3) soit rationnellement exprimable en fonc-
tion des paramétres; et, réciproquement, que toute fonction rationnelle des ra-
cines et des paramétres, rationnellement exprimable en fonction des paramétres,
ait sa valeur numérique inaltérée par les substitutions de G. Or on sait qu’on
peut toujours former une fonction rationnelle des racines de I'équation prbposée,
dont la valeur numérique soit invariable par les substitutions d’un groupe quel-
conque I' entre les racines, et variable par toute substitution n’appartenant pas
A T. On dit que cette fonction appartient au groupe T. Une fonction apparte-
nant & G est rationnellement exprimable.

Ceci posé, n’attribuons a &y, ks, ... que des valeurs réelles; soil o(xy, 2, ..., 2,)
une fonction rationnelle des racines et des paramétres rationnellement expri-
mable et appartenant a G : la valeur numérique de ¢ est réelle et reste invariable
quand on change ¢{ = y/—1 en — ¢ dans celle des racines ,, 25 ..., 2, qui sont
imaginaires. Soient &,, Za, ..., Zav_1, Lay (v << 0) les 2v racines imaginaires de
J () = o que I'on suppose ne pas avoir toutes ses racines réelles, xsx_, et o4
étant conjuguées. Le changement de i en — ¢ dans o (zy, &3, ..., Zp) revient a y
opérer la substitution

S = (@12;) .. . (Fap-1@ai) - . - (Ty—1 Tav ),

(1) Association francaise pour l’avancement des Sciences, Mémoires du Congrés de
Saint-Etienne, 1897, p. 195. Pour la clarté, nous reproduisons ici la démonstration, sous
une forme toutefois un peu plus générale. Dans cette premiére démonstration, il faut sup-
primer I'avant-derniére ligne de la page 195 : « et le groupe de etc.».

(2) JompaN, Traité des Substitutions, p. 257 et 277.

(3) La valeur numérique de F est la fonction de 4y, ks, ... & coefficients numériques, que
on obtient quand on substitue aux racines leurs expressions en fonction de ky, kg, ...
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en sorte que S laisse la valeur numérique de ¢ invariable, et appartient a G.
C. Q. F. D.

Nous avons fait connaitre (') une série d’applications de ce théoréme a la

théorie des équations algébriques. Nous nous proposons, dans ce qui suit, d’en

indiquer de nouvelles, en nous occupant principalement d’équations que 'on ren-

contre en Géométrie (?).
II.

Rappelons d’abord quel est le principe des applications faites par M. Jordan
de la théorie des substitutions & un certain nombre d’équations de la Géométrie.

Supposons que des points, lignes, surfaces, etc. en nombre fini d soient déter-
minés par une équation X = o de degré d et de racines inégales, a laquelle satis-
feront, par exemple, les coordonnées x des points, ou un des paramétres des
lignes ou surfaces, les autres coordonnées ou paramétres s’exprimant rationnelle-
ment en fonction des racines. L’équation X = o pourra d’ailleurs contenir un cer-
tain nombre d’arbitraires k,, k., ... que nous adjoindrons au domaine de ratio-
nalité en les supposant réelles.

Admettons que les solutions (points, lignes ou surfaces) soient liées entre elles
par certaines rclations géométriques, c’est-a-dire, par exemple, que la connais-
sance de k d’entre elles entraine, grice & une propriété géométrique connue, la
connaissance d’une (£ + 1) au moins. Exemple : si I'on se donne deux points
d’inflexion d’une cubique plane, on sait que la droite qui les joint coupe la ca-
bique en un troisi¢éme point, qui est d'inflexion. Cette propriété se traduit entre
les coordonnées z ou les diverses valeurs d’un paraméire par une ou plusieurs
relations R = o, que nous supposons toujours rationnelles, par suite, si 'on veut,
entiéres. Les fonctions R des racines de X — o et des arbitraires réelles £y, k., ...
ont une valeur numérique rationnelle, puisque cette valeur est o. Le groupe G de
I'équation X = o doit donc laisser numériquement invariable la valeur de R :
autrement dit, le groupe de X = o est contenu dans le faisceau ou ensemble I
commun aux fonctions R, c’est-a-dire ’ensemble des substitutions laissant inva-
riables simultanément les valeurs numériques de ces fonctions.

La considération de toules les relations R = o connues dans le probléme pourra
nous donner ainst un faisceau T > G et contenant G. Si tous les coefficients de

(1) Association francaise, loc. cit.
(2) Jorban, Traité des Substitutions, Chap.IIl, p. 301. I y a quelques années M. Jordan,
a qui nous avions communiqué le théoréme I, nous avait engagé a en chercher des applica-
tions géométriques.
Fac. de T., 2¢ S., V1. 37
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X = o, ainsi que ky, k., ... sont réels, il suffira que I' (') ne contienne pas le
groupe alterné de degré d pour que notre théoréme 1 puisse donner une propriété
géométrique intéressante ou remarquable des points, lignes ou surfaces au point
de vue de la réalité : si ces points ne sont pas lous réels, il y en aura au moins
n imaginaires, n étant la classe de T' (c'est-a-dire le nombre minimum de lettres
que déplace une substitution de T').

Supposons que I'équation X = o (rencontrée en Géomélrie ou ailleurs) ait

(1) Ou méme le faisceau I'y d’une des équations R = o, qui contient I, par suite G.

Ce faisceau T'y n’est pas forcément un groupe : ainsi, soient trois points d’inflexion en ligne
droite 24, 5, 23 d'une cubique générale R = (x|, xy, x3) = o0, la relation exprimant que
ces points sont en ligne droite; R est invariable par les substitutions du groupe linéaire
(mod 3) a deux indices, et par les substitutions du groupe symétrique entre zy, ..., Zy. Le
groupe dérivé est le groupe symétrique de g éléments entre @y, ..., &g, qui ne laisse pas
invariable la valeur bumérique de R = o, car la substitution (x32,) donne R # o.

Ceci pose ainsi ce probléme général trés intéressant :

Quelles conditions doivent remplir plusieurs fonctions R = o pour que le faisceau
commun T forme un groupe (comp. NETTO-BATTAGLINI, Teoria delle Sostituzioni, 1885,
p- 220, ou NETTO, Substitutionentheorie, Tripelnsysteme).

Nous nous contenterons de quelques indications a ce sujet.

Soient £ relations R = o0, R'= o, ..., formant un systéme E, entre les racines d'une équa-
tion X = o, a racines distinctes, de groupe G, F le faisceau des substitutions entre ces ra-
cines laissant numériquement invariable chaque fonction de E : F contient G.

Soit S une substitution de F : en l'opérant sur E, on obtient un nouveau systéme de
relations qu’on peut représenter par ES; le faisceau @ correspondant & ES n’est autre que
le faisceau S-'F formé du produit de S-1 par les substitutions de F; car S-1F appartient
a @, et, si T est une substitution de ®, ST laisse chaque fonction de E numériquement inva-
riable et appartient 4 F, par suite £ a S-1F; S—1F contient G.

Soient 1, S, §', ... les substitutions de F : I'ensemble des systémes E, ES, ES', ... forme
un nouveau systéme E,, dont chaque fonction est numériquement invariable par les substi-
tutions d'un faisceau Fy; ce faisceau est évidemment formé des substitutions communes a
F, S-1F, §'-1F, ...; F, contient G.

On opérera sur E; et Fy comme on I'a fait sur E et F, et ainsi de suite. Le nombre des
fonctions algébriquement distinctes de E, Ey, ..., E; ne pouvant augmenter indéfiniment
avec J, on finira par obtenir un systéme E; et un faisceau F; de substitutions 1, S;, §';, ...
tel que E;8;,=E;, E;S;=E;, ..., $7'F;=F;, S5 F;=F;, ...; F; est alors évidemment
un groupe dont les substitutions permutent entre elles les valeurs algébriques des fonctions
de E;; F; contient G. E; sera alors ce qu’on peut appeler un systéme complet, c’est-a-dire
un systéme de jfonctions tel que les substitutions du faisceau laissant numériquement
invariable chaque fonction du systéme permutent exclusivement entre elles les valeurs
algébriques de ces fonctions. ‘

Un systéme complet qui ne contient aucun systéme complet plus petit sera dit irréduc-
tible.

Tout systéme de relations conduit, par le procédé ci-dessus, a un systéme complet derive
et a un groupe corrélatif.
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exactement 2y racines imaginaires, Z,, Za, ..., Lay (Lak_1 €t Tzx €lant conju-
guées); G contient (théoréme I)

S= (-2'155"2) co (Xapmy Ta) « o (Bay1 Tay)-

Pour savoir combien X = o peut avoir de racines imaginaires, il suffira de
connaitre la classe [ ¢’est-a-dire le nombre de lettres déplacées (*)] des substitutions
d’ordre 2 de G.

Soient 27, 2),, ..., 2, ces diverses classes; il n’en résultera pas forcément
que X =o peutavoir, suivant la valeur des coefficients, supposés réels, 27, racines
imaginaires ({ =1, 2, ..., «); mais il en résultera forcément que, si X =o a
2j racines imaginaires, j est un des nombres o, Ay, ..., . Autrement dit,
parmi les points, courbes, etc., en question, il y en aura d, d — 2%, ..., ou
d— 2y réels, quelques-uns de ces « +1 cas pouvant d’ailleurs ne pas se présenter.

A défaut de la connaissance du groupe G, on pourra résoudre le méme pro-
bléme pour un faisceau ou un groupe T contenant G.

Enfin, la détermination de la classe de G ou I' donnera une limite inférieure
des 2;.

Les applications algébriques et géoméiriques du théoréme I nous conduisent
ainsi a ces deux vastes problémes dont le second a déja failL I'objet de travaux de
M. Jordan et des notres :

1° Déterminer les classes des substitutions d’ordre 2 d’un groupe G;
2° A défaut, pour avoir une limite infériecure de ces classes, trouver la
classe de G ou une limite inférieure de cette classe.

I1I.

REMARQUES GENERALES SUR LES GROUPEs G.

On peut établir, dans des cas étendus, que le groupe G ou le faisceau I' n’est
ni symétrique ni alterné.

En effet :

1° Supposons que I'une des relations R =o0 exprime que trois points x,, ., 2,
sont en ligne droite, sans que les d points y soient : on aura une cerlaine relation
S(zy, Z2, x3) = 0. Une substitution S du groupe G ou de I', opérée sur cette
équation, donne la nouvelle relation f(z), x,, ;) = o exprimant que les trois
points z, z,, & sont en ligne droite. Le groupe G ou I' ne pourra contenir
toutes les substitutions circulaires d’ordre 2 ou 3, car il contiendrait (z32;) ou

(1) Nerro, J. fir Math., t. LXXXIII.
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(zswizj) ({1, 2, 3) permettant de faire succéder & z; une autre quelconque
des racines, et tous les points z,, ..., 2, seraient sur une méme ligne droite.
Méme, le sous-groupe de G ou le sous-faisceau de T, qui laisse x, et zy immo-
biles, ne peut étre transitif sans que les d points soient en ligne droite.

Si trois des points déterminés par X = o sont en ligne droite, ces d points
n’étant pas tous en ligne droite, le groupe de X =o n’est pas plus de
deux fois transitif.

Ou encore :

S¢ Uon peut trouver sur une courbe algébriqgue C = o d points dont les
abscisses sont distinctes et sont les racines d’une équation algébrique X =o
de degré d a coefficients rationnels par rapport auz coefficients de C supposés
réels et si trois de ces points sont en ligne droite, sans que les d points y soient,
le groupe de X = o n’est pas plus de deux fois transitif.

Si le groupe de X = o est deux fois transitif, la droite menée par deux quel-

conques des points en question passe par un troisiéme.

2° Supposons que A des points déterminés par X = o doivent étre sur une
X g _ p(p+3) . .
méme courbe de degré p, avec (') = —— < A; &y, Zay ..., Iy, par
exemple, sont liés par une relation f(z,, 2, ..., 23) = 0; G n’est pas plus de

.y fois transitif a moins que les d points soient sur cette courbe.

o
Si h des d points sont sur une méme courbe de degré y.<7~> H(L;—i) = ;‘“)’

sans que (*) les d points y soient, le groupe de X=o n’est pas plus de p., fois
transitif; méme le sous-groupe des substitutions de X = o qui laissent u, de ces

points immobiles ne peut étre transitif entre les autres (*).

Ainsi, quand p.= 2, ;=735 : si six des points sont sur une conique, sans que
les d y soient tous, le groupe de X = o n’est pas plus de cinq fois transitif.

. 3 .. ,
(1) Une courbe algébrique de degré p est déterminée par KJL(—“—Z_L—) conditions. Il n’y

. . +3
aura ici de relation entre les @y, ..., x¢ que si H(P'—z—) < A

(2) Cette restriction est essentielle, car le probléme de l'intersection de deux courbes de
degrés m et n conduit, en général, a une équation de degré mn. Pour n=1, cette équation
peut donner une équation X =o de degré m dont le groupe est symétrique; exemple :
intersection d’'une courbe générale de degré m avec & = o. L’équation est

Agym—+ Ayym=t4 ., .+ Ay =o,

équation générale de degré m.
(¥) Clest-a-dire entre les abscisses des autres.
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Voici des applications a des cas connus :

La droile qui passe par deux points d’inflexion arbitrairement choisis d’une
cubique passe par un troisiéme; le groupe (') de I’équation X = o aux abscisses
de ces points d’inflexion n'est pas plus de deux fois transitif.

Soit une quartique générale C, : on sait (2) qu'il y a 63 systémes distincts de
coniques tangentes en quatre points a la quartique (en laissant de coté les droites
du plan). Un point de contact M, pour ces coniques étant choisi arbitrairement
(abscisse de ce point jouera dans X = o le role d’un paramétre k), les trois
autres points de conlact d’une conique forment 63 systémes distincts; un des
paramétres de la conique dépend d’une équation de degré 63.

Or, pour trois valeurs de &, ces coniques forment trois ensembles de 63 sys-
témes; en prenant une conique au hasard dans les deux premiers ensembles, et
une convenablemeut choisie dans le troisiéme, on obtient douze points de contact
qui sont sur une cubique.

On peut aussi considérer trois valeurs de &, identiques : les trois ensembles de
63 systémes se réduisent & un seul et la cubique a trois points confondus en M,
avec la quartique. Ainsi, soient les 63 coniques distincles qui touchent la quar-
lique en quatre points, dont un M, choisi arbitrairement; on peut prendre au
hasard deux de ces coniques, faire passer par leurs points de contact et par M,
une cubique ayant un contact du deuxi¢me ordre en M, avec la quartique; cette
cubique coupe la quartique en trois autres points qui sont les points de contact
autres que M, d’une autre des 63 coniques.

Soit alors X = o I’équation qui détermine ces 63 coniques (l'inconnue étant,
par exemple, un des paramétres) : la propriété ci-dessus se traduira entre trois ra-
cines a,, a., az de X = o, par une condition ¢(a,, @, az) = o, o @, et @, sont
arbitraires. Donc le groupe de X = o est au plus deuz fois transitif.

Iv.

LE GROUPE LINEAIRE DANS LES EQUATIONS DE LA GEOMETRIE.

Dans un grand nombre de théorémes relatifs a 'application des fonctions ellip-
tiques ou abéliennes a la Géométrie, en particulier dans plusieurs de ceux indi-
qués par Clebsch (3), ’équation algébrique X = o dont dépend le probléme est

(1) JorpaN, Traité des subst., p. 302.

(2).Voir Hessk, Journ. de Crelle, t. 49; CLEBscH, id., t. 63, p. 210; APPELL et GOURSAT,
Théorie des fonctions algébriques et de leurs intégrales, 1895, p. 497.

(3) Journ. de Crelle, t. 63; voir aussi JORDAN, Traité des subst., p. 302 et suiv.
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déterminée par des relations (')

. g Paodmi+ LY+ . L7 .
uf . uf = ! ',,1 — (J=1,2,..,petdzZp).

Le probléme de I'inversion de Jacobi détermine p des points, courbes, etc. en
fonction des & — p autres choisis arbitrairement, par une équation de degré r2»,
irréductible ou non. On en conclut, si I'on représente par (2) (i, ..., z,,)
(mod r) les racines, que le groupe G de X = o laisse invariable I'ensemble des
solutions des congruences

Zp+ Xy +xp'=0 (modr) (p=1,2,...,2p),

olt les |’ peuvent éire tous identiques aux zy" (j 5% ;') quel que soit g.

Pour plus de généralité, nous supposerons p =1, 2, ..., ¢, oli ¢ est pair ou
impair, et nous déterminerons le groupe T' des substitutions laissant invariable
I'ensemble des solutions du systéme de congruences

(1) ay+...+ag?=o0 (modr) (p=1,2,...,9);

quand ¢ = 2p, T contient G.

. ’ !
Soit (', ...,z

tanément & z', ..., 2y un méme nombre «;, a &, ..., 2" un méme nombre

)s e ooy (27 .o, 27") une solution : si nous ajoutons simul-

o, €Lc., soit ' o
x(p])+ ap:]rpl,;
on a encore
Yot +ygl=o0 (modr)

dés que ry e, = o (mod r), en particulier, quel que soit a,, si 7y =0 (mod r).

T contient alors toutes les substitulions
| &y, ver Xy Xy oy, e, g+ g (modr),

. . ros,
telles que oy, ..., @, soient des multiples de 5 o étant le plus grand commun

diviseur de r et de r,. Ces substitutions forment un groupe G’, d’ordre &7.
Considérons, de méme, la substitution linéaire homogene

z, alx,+adlx,+...+alz,
(2) e e i (modr),

2
z, alx,+ ailx,+...+alz, |

(1) Pour les notations, voir le Mémoire de Clebsch ou la Théorie des fonctions algé-
brigues de MM. Appell et Goursat, p. 497, par exemple.
(2) xry = )\1, cey Xp= )\1’7 T p+1 = l], ooy Tap = l,).
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et opérons-la dans le premier membre de la congruence (1), on obtient

(af )+ aizy+. ..+ alxy) +... .+ (af2{+. .. 5 afxy)),
ou
al(zy+...+2]) + a(xy+. ..+ 2h) .+ al(xg~+...+2y"),

qui, d’aprés (1), est = o (modr) quel que soit p. Le groupe T contient donc
toutes les substitutions du groupe linéaire (mods) a ¢ indices non homogéne
quand ry=o0 (modr), et, quand r=£0 (modr), toutes les substitutions du groupe
linéaire homogeéne G’, qui ne déplacent pas la racine dont tous les indices sont
7éro. .

Désignons par {3y, B2, ..., B, les lettres (1,0,...,0), (0,1,0,..., 0)y «ny
(0, +..,0,1) (pour B, z;=1, zj=o0 quand j£1), et supposons r =pY (p, premier),

ry>o.

Les transformations (2) qui laissent 3y, 8, ..., 3; immobiles sont de la forme

i+1
x, z+a x4+, . +alx,
i+1
. Z; xzi+atxi +.. .+ alx,
(3) . (modr).
L i Qi Ljpg+ .. .+ a;’+lx,,
+1 q
x4 ag ' xip ..+ alx,

On le voit en remarquant que cette forme est vraie pour { = o, et que, si on la
regarde comme exacte sans spécifier la valeur de 7, les substitutions qui laissent
845 ++ -y Biys immobiles sont comprises parmi les substitutions (3), et, pour elles

évidemment,

i+ 1 i+ — il i+
afll=..=aqf'=al}j=...=a/' =0, all=1 (modr).

f

Soit S une substitution de T’ qui laisse immobile (0,0, ..., 0)=@,. Le groupe
des substitutions (2) contient la substitution

Ty T+ .o ey
(4) e e (modr),

ol &, ..., a, sont arbitraires, pourvu que I'un d’eux soit premier & r; car si, par
exemple, «; est premier & r, il suffit de considérer la substitution qui laisse inva-
riable zy, ..., @iy, @iy, ..., 24, et qui remplace z; par x,. C'est une substitu-
tion, car le déterminant est égal & == a; premier a 7.
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Je dis, d’autre part, que S doit substituer a 'une des lettres B, = (1,0, ..., 0),
B2, ... ou B, une lettre A dont un indice est premier a r (c’est-a-dire a p,).

En effet, ceci est évident si 7 est premier, puisque 3, est la seule racine dont
tous les indices sont = o (mod 7). Supposons 7 non premier.

Considérons les congruences (1) : ces congruences admeltent, en particulier,
des solutions telles que

(5) xi+x =o, ciy ZTy+Ty=o0 (modr),

tous les x;f’(i> 2) étant nuls (modr). S laissant {8, invariable permutera entre
elles les solutions de ces congruences (5); supposons que S substitue a 3, une
lettre dont les indices sont tous non premiers a 7 : (1,0, ...,0) et (r—1, 0, ..., 0)
étant solutions simultanées de (5) (ici r24), (r—1,0,...,0)=(—1,0,...,0)
est aussi remplacée par une lettre jouissant de la méme propriété : si S remplace
(1,0, ..p0)par (&, ..y £,), elle remplace (—1,0,...,0) par (—&, ..., —&;).

Nous supposons ry23.' Les congruences (1) admettent encore des solutions

telles que
(6) xp+xy +xp=o0  (modr) avec  zf’=o (i>3),
ces congruences sont satisfaites pour

r=x\=1, zi=—o2, rp=ap,=xp=0 - (modr) (p>1).

Donc (— 2, 0, ..., 0) est remplacé par une lettre ayant tous ses facteurs non pre-
miers A 7; par suite aussi (2, 0, ..., 0), d’aprés (5). Sil’on prend

"

=3, Tp=Tp=aF;=0 (modr),

i

xi=1, x,=2, x
on voit qu’il en est de méme de (— 3, 0, ..., 0) et (3,0, ..., 0), etc. Done, ceci
alieu pour (24, 0, ..., 0) quel que soit z,. De plus, d’aprés le méme raisonnement,
les lettres (24, o, ..., 0) sont remplacées par des lettres dont le Jimeindice a avec r
un plus grand commun diviseur, qul est une puissanvce de p;.

Si la méme chose n’avait pas lieu pour (o, 1,0,...,0), c’est-a-dire si
(0,1, 0, ..., 0) = {3, était remplacée dans S par une lettre d’indices non tous divi-
sibles par p,, S substituerait a 3, une lettre dont un indice est premier a 7 : la per-
mutation des indices z, et x, nous permettrait de raisonner comme dans le cas
o S substitue A (p. 289) a By, etc. Finalement, les indices étant convenablement
choisis, si S ne substitue pas a 8, une lettre A, on peut admettre que

(21505« .., 0)y (0, &3, 0,...,0), ..oy (0y ..., 0, 2g)

sont remplacées par des lettres & indices tous non premiers & -
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Considérons alors les congruences

—z,+o +x'{'zo'{ d
; (modr).
0 — X+ Z,=0 5

"

Ceci nous montre que, d’aprés (6), les lettres (27, 23, 0, ..., 0) ou (&1, 2,0, ..., 0)
sont remplacées par des lettres d’indices tous non premiers & r, puisque r = p¥.
p f ) /
Alors, d’aprés (6), et
— 2+ 0 +xj=0 z
—Zy+0 +ay=o0 (modr),

0 —xy+ay=0 ‘

les lettres (x4, 2, 23, 0, ..., 0) jouissent de la méme propriété, etc. Finalement,
toutes les lettres jouiraient de cette propriété et S ne serait pas une substitution,
contrairement & 'hypothése.

On pourra donc, en faisant, au besoin, une permutation d’indices, supposer
que la lettre substituée a B, par S ait un indice premier a r.

i

J .
i en al:

Prenons maintenant la substitution déduite de (4) en changeant a

(4) devient

etsubstitue a (1,0, ...,0) unelettre que I'on peut prendre identique & A, moyennant
un choix convenable des «, ..., 2, : ST~ laisse (1, 0, ..., 0) immobile, et appar-
tient & I'. D’aprés les congruences (3), S, = ST~ laisse (— 1, 0, ..., 0) immobile.
D’aprés les congruences (6), S, laisse (2,0,...,0), (¥, =2, =—1, 2= 2, les
autres indices nuls), puis (— 2, o, ..., o) d’aprés (5), puis, d’aprés (6), (3,0, ..., 0),
() =—1,2,=—2,2]=23), etc., immobiles. Finalement, S, laisse (z,, o, ..., 0)
immobile, comme les substitutions Iy, de la forme (2) qui laissent 3, et 3; immo-
biles [ formule (3) pour i =1]. A
Considérons maintenant 3,—=(o, 1,0, ...,0) : S, remplacera B, par une

lettre Ay ; sil'un des indices &, ..., & de A, est premiera r, il y a une substitu-
tion ¥,, de la (orme

Zy \T1+al.1'~2+...

Xy Oy Lyt .u.

T,= (modr),

. R R R

zq oy ZTgt...

ol x; ({Z2), par exemple, est prcmier & 7, les ¢ — 1 autres o élant arbitraires;
Fac. de T., 2* S., VI. : 38
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car, prenant

al=ai=...=al=a\=1 sauf  al=o  (modr),

les autres coefficients non écrils étant nuls, le déterminant de la substitution est
= o; premier a 7. Celte substitution remplace (0, 1,0, ...,0) par (a, %, ..., %,),
que 'on peut prendre = A,, et S, T ;" laisse (o, 1,0,...,0) immobile.

Admettons pour un moment que sy e, £, sont tous non premiers a 7. S, rem-
placera 3, par une letire ol z,, ..., 2, sont non premiers & r; de méme,
d’aprés (3), pour (0, — 1, 0, ..., 0). D’aprés (6) (14+1—2=0, —1—1-+2=0),
il en sera de méme pour (o, —2,0,...,0), (0,2,0,...,0), etc.; finalement pour
(0,23, 0,...,0), quel que soit z,.

On peut alors admettre encore que cela a lieu pour (o0,0,...,0,2;0,...,0)
(L'> 2), sans quoi, en permutant x; et z,, on pourl‘ait raisonner sur S, el une
cerlaine substitution linéaire T, comme nous 'avons fait ou le ferons tout & I’heure
sur S, et T,. '

D’apres (6), et

— X0 +x,=0

Y (modr),
0O — X3+ X ;=0

on voit que (0, s, Z3,0,...,0) jouit de la méme propriété; finalement aussi
(0, &y, L3y -2y &q), (X2, X3, ...,y non tous nuls).
D’apres (6), et
— 240 +x,=0 )
0—Zy+Xy=0 (

il en est de méme de (2, 22, ..., ;) quand z,, ..., 2, ne sont pas tous nuls :
S, ne serait pas une substitution, ni S non plus, contrairement & 'hypothése.

Dés lors, S, =S, T, appartient a T et laisse v, = (o, 1,0, ..., 0)immobile, par
suite, d'aprés (3) et (6), (0, 2, 0, ..., 0), ..., (0, Z3, 0, ..., 0), et, encore d’aprés (6),
(21, 23,0, ...,0), quels que soient x, et x,.

Nous considérons ensuite B3=(0,0,1,0,...,0) : S, remplace 3; par une
lettre Aj, etc.

Supposons que nous ayons établi que le produit S; de S par une substitution
linéaire convenable (modr) laisse (z, 25 ..., %/, 0, ...,0) immobile, quels que
soient x,, &, ..., ; el considérons B; = (0,0,...,0,1,0,...,0) (on
By === T = .. = Xy=0, Tip =1). On formera la substitution
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linéaire
’ z, Xyt o Ly

Ty it 0Ly
Zivy Qi &ipr~t &

T,

Il

Live QipeZirg~t Ligs (modr),

x,, al]'xl'i1+ .Z‘,]

ol u; premier a 7 (j > {), qui a pour délerminant == a; premier a r, et substitue
a Biy la lettre (o, ..., a,) telle que 'un des indices a;yy, ..., 24 est premier & r.
Si S; sabstitue a B, une lettre dont un des ¢ — ¢ derniers indices est premier
a r, en choisissant convenablement T;, S; , = S;T;" laisse B;,, immobile, ainsi
que(&y, Loy .-y Tiy 0, ..., 0). D'aprés (5), S, laisse (0,...,0, 2, =—1,0,...)
immobile, et, d’aprés (6), (o, ..., 0, 2y =2, 0, ..., 0), etc., par suite,
(0y «ovy 0y @iy, 0, ..., 0) quel que soit z;,. Si, laisse d’aprés (6)
(Zyy X2y -+ +s Tiy Zitay O, ..., 0) immobile, et 'on peut continuer le raisonnement.

Supposons donc que S; substitue 4 B, une lettre (£, ..., &) dont les ¢ — ¢
derniers indices sont non premiers a4 r. D’aprés (3) il en est de méme pour
(0,0, ..., 0, Zfuy=—1,0, ..., 0); daprés (6) il en est de méme pour
(0y..+0,2;y==E2,0,...,0); et ainsi de suite; finalement, il en est de méme
‘pour (0, ..., 0,Ziyy,0,...,0) quel que soit z;,,.

On peut alors admettre que cela a lieu pour (o, ..., 0,2}, 0, ..., 0), avec j quel-
conque > i 1; sinon, en effet, en permutant z; et z;,, on déduit de S; une
substitution analogue a S;, sur laguelle on peut raisonner comme tout a heure.
D’aprés (6) et

— T+ 0 S+ =0

(modr),
"
0 —Ziataxl,=o0

on voit que (0, ..., 0, Zi i, Liya, 0, ..., 0) jouit de la méme propriété, etc. Fina-
lement, il en est de méme de (o, ..., 0, Zip, ..., 2;). D’aprés (6) et

"

—x+0 +x =o0
—x;+0 +af =o

(modr),



2092 E. MAILLET.

il en est de méme de (24, ..., z,) quand z;,,, . .., Z, ne sont pas lous nuls, c’est-
a-dire ‘pour toutes les letires que déplace S : S ne serait pas une substitution.

Finalement, en faisant varier ¢, on voit que, en multipliant S par une substi-
tution linéaire convenable on obtiendra une substitution quiseréduit & 1. Donc S
est linéaire homogene.

Il reste & voirtoutefois queT, qui contient G’ et G” (p. 286-287), est bien dérivé
de ces deux groupes.

Cherchons combien de lettres distinctes T peul substituer & (0,...,0) =7, :
posons dans (1)

Tp=xp=.. .Ex‘p"*‘;

on a les congruences

'y o r
7 < Zj=o0 ~ Ty=o0 mod 5 ),
(7) 5 T1=0s S R < 6)

qui admettent comme solutions (o, ..., 0). T permute alors exclusivement entre elles
les solutions distincles (mod ) des congruences (7), au nombre de 67 (3 plus grand
commun diviseur de r et ). L’ordre de T est au plus égal, par suite, a

1 p gal, )

07 ordre G”;

or,
ordre I' 2 ordre G’ < ordre G”,
et
ordre G'=¢7.
Donec

ordre I' = ordre G' x< ordre G”,

et I' est bien dérivé de G’ et G"; G’ est bien évidemment un sous-groupe inva-
riant de T'.
Il résulte de 1a que, pour 723, I' n’est transitif entre les 77 letires que si

o=r, r=o (modr).

D’aalre part, si 7= p¥ n’est pas premier (. >1), G” permute exclusivement
entre elles les lettres d'indices Lous multiples de p, auatres que By, tout en les dé-

placant, car

| @y ooy @py @y, CZy = Zgy oo oy Ay + Xy | (modr),

ol 2, est premier a p,, est une substitution quels que soient a,, ..., a,, et rem-
place (p1,0,...,0) par (&P, %apyy .y dppy); done G est intransitif entre les
lettres qu’il déplace. Si r=p, est premier (. =1), la méme substitution rem-
place (1,0, ..., 0) par (%, &, ..., %, ) qui est arbitraire (mais £ 3,) : G” est tran-
sitif, mais ne 'est deux fois que si py=2, r =2.
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Nous traiterons tout & I’heure le cas ol 7, = 2.
Nous avons obtenu ainsi le théoréme suivant :

Tntorime 1. — Soient les congruences
(1) x;—i—x;’,—l—...—i—x’é’ﬂso (modr)

(p=1,2,..., ¢; 1 donné > 2) et 17 lettres (z,, z,, .. ., z4) caractérisées par
q indices (modr) ('), r=pl et p, premicr. On peut associer ces lettresr, a ry,
une méme lettre pouvant étre répétée plusieurs fois, de facon que les indices
de méme rang 1,2, ..., q satisfassent aux congruences ci-dessus, et ’on
Jorme ainsi des combinaisons de ry lettres : l'ensemble des substitutions entre
les r? lettres qui permutent entre elles toutes ces combinaisons est le groupe T’
dérivé du groupe G" des substitutions linéaires homogénes

. . 1 1 .
[Z1y ooy @gs @y +. ..+ alz, e QT+ adxy, | (modr),

et du groupe G' des substitutions

[ @y ooy gy @i+ ayy ooy g+ a2y | (modr),
0w ayy ..., a4 prennent (modr) toutes les valeurs possibles multiples de -g,
¢ étant le plus grand commun diviseur de r et r,.

En particulier, st ¢ =r, c’est-c-dire r,=o (modr), T est le groupe linéaire
général (modr) non homogéne & q indices. Dans ce cas, et dans ce cas seule-
ment, T est transitif; mais il n’est pas primitif si r n’est pas premier (2).

La condition nécessaire et suffisante pour que U soit deuz Jols transitif est
ri=o(modr), r=p,. Alors méme, si p,=», T est exactement trois Solis
transitif.

Remarque I. — G’ est formé de substitutions échangeables, et ses facteurs de
composition, puisque & == pb1, #iS i, sont tous égaux A pr (il yena pg).
Donc T' a ¢ facteurs de composition égaux a p,, les autres étant ceux du
groupe linéaire homogéne (modr) a ¢ indices.

Remarque I1. — Nous avons supposé précédemment (p- 288) r,> 2. Soit
maintenant 7y = 2 : les congruences (1) se réduisent aux congruences (J).

(1) G'est-a-dire prenant chacun les valeurs 0,1, ..., 7 —1(modr).

(*) Car G" n’est pas maximum dans T, puisqu’il permute exclusivement entre elles Tes
lettres d’indices multiples de p;, comme les substitutions de G’ pour lesquelles les « sont
tous multiples de p;.
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. . . v on B N .o

’81 r =2, ces congruences sont satisfaites par x,=2,, quel que soit z, :
(5) estillusoire; T est le groupe symétrique de 27 éléments.

Soit 7> 2. Une substitation S de T qui remplace (2, ..., ;) par (&, .., £,
remplace (— 24, ..., — x4) par (— &, ..., — &;).

1° 7= p% (p, impair). Prenons les r¢— 1 lettres autres que 3y = (0,0,...,0)

vy . . . . r{T—1 .
(I' laisse B, immobile), et associons deux & deux les 7'= paires de lettres
2

autres que 3, pour lesquelles, dans chaque paire, les indices correspondants sont
égaux et de signe contraire; ceci est possible, puisque (&, ..., &), (—&, .+, —£&)
sont distinctes. Désignons par @, by; ...; a», by ces 1’ paires.

Nous formerons toutes les 7! substitutions possibles entre a, ..., ar,

Ty Gy cee Ty
puis les substitutions déduites de celles-la en remplacant a par b,
Tiy Tas  -ees Tt
et le groupe g des substitutions

G1Tys G2Tay ey TmTpn

correspondant, d’ordre r'!.

D’autre part, formons encore le groupe g’ dérivé de
(ayby), (ayby), ..., (apby),

d’ordre 2. Le groupe cherché T' est dérivé de ces deux groupes et d’ordre r'! 27

En effet, I' contient les substitutions de ces deux groupes; de plus, toute substi-

tution de I est égale & une substitution qui permute les paires d’une certaine

maniére par une substitation qui les laisse immobiles, c'est-a-dire au produit d’une

substitution de g par une de g’. On voit de suite que T est uné fois, et une fois

seulement, transitif entre les 27 lettres autres que By, car T' n’est pas primitif (*).
2% p == a¥. — Les lettres (§, ..., &) dont les indices satisfont &

2fi=...=2f,=0 (mod 2%*)

sont permutées exclusivement entre elles par I'. On a pour elles §;=o0 ou 2¢7" :

ces lettres sont au nombre de 27. I' contient le groupe symétrique entre ces
29 lettres. '

(1) Ce groupe rentre dans une catégorie de groupes déja considérée par nous (J. de
Math., 1895, p. 9).
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Au contraire on peut raisonner sur les 27”= a¥¢ — 27 autres leLtres comme
toul a I'heure. Le groupe I est d’ordre 7! 29! 27",

Remarque Il — Le Lheoreme IT précédent a ele établi par M. Jordan dans
les cas particuliers suivants :

ri—=r=3, q =2,

ry—=r=—j, qg==6,
et indiqué comme résultant de raisonnements semblables pour les cas ot

ry=r=3, q = 20,
n=r=»4, q= 2,
n=r=3 g¢=8 ()

Le théoréme II précédent a P’avantage de résumer les solutions des cinq cas
ci-dessus envisagés par M. Jordan et, éventuellement, de fournir la solution de
cas analogues. ;

Notre procédé de démonstration différe sur un point de celui employé par
M. Jordan pour ces cas particuliers. Pour montrer nettement la dissemblance,
prenons, par exemple, le groupe de Hesse ou groupe de I'équation aux abscisses
des points d'inflexion des courbes du troisiéme degré. Ce groupe est contenu
dans le groupe I'y formé de I'ensemble des substitulions entre les g lettres (z,, )
(mod 3) qui permutent entre elles les solutions des congruences

(8) i+ o=z, +a,+x)=0 (mod 3)
telles que

(2}, 2y), (2, 2)), (2,25)

soient des letires distinctes. En effet, d’aprés la théorie des fonctions ellip-
liques (*), les points d’inflexion d’une courbe du troisiéme degré sont déterminés

par . .
3uy=P + 22,0, + 22,0, =P + période (zy, x, entiers).

Les congruences (8) expriment précisément que 3 de ces points distincts sont
en ligne droite : le groupe cherché doit, comme I';, permuter entre eux ces sys-
témes de 3 points ou les droites passant par ces 3 points. Mais, si nous prenons les

solutions de (8) pour lesquelles (&', z,), (£, 2 ), (2", z7) ne sont pas distinctes,
. p q Ty 1Ty 19 %y p

(1) Traité des substitutions, p. 302, 306 et 308.
(2) JomrpaN, Cours d’Analyse lithographié de 1’Ecole Polytechmque, 1" division.
APPELL et GoumsaT, Fonctions algébriques, p. 490.
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on remarque que z\,= ', x,= ), entrainent 7, =z, z,=x,. Les 3 points
correspondants de la cubique sont confondus. Le groupe de Hesse permule aussi
enlre eux ces poinls, qui sont les points d’'inflexion, et les tangentes d’inflexion
qui passent par ces 3 points confondus; par suite, il est contenu dans le groupe
des subslitutions entre les g lettres qui permutent entre elles les solutions de (8),
les 3 lettres (2, 2,), (2, 2}), (2}, x;) étant distinctes ou non. Mais ce dernier
groupe n’est autre que le groupe I' de notre théoréme 11 dans le cas particulier o
r=r=3,q¢=n2.

Un méme mode de raisonnement est applicable aux aulres cas particuliers
mentionnés tout a I'heure et étudiés par M. Jordan, ou plus généralement aux
équations

w_ P+oz,mi+xputd 4. .+ a7

W u = - (j=1,2,...,p et 02p)

de la page 286 : les congruences (1), que les lettres (2, ..., £, ,), oy (217, ...y 21}
dont les indices y entrent soient distinctes ow non, expriment cerlaines pro-
priétés géométriques et équivalent & des relations rationnelles R = o entre les
abscisses ou les paramétres solutions de X = o. I’ensemble des fonctions R = o
est laissé invariable par le groupe de X = o, par suite aussi I’ensemble des solu-
tions des congruences (1), que les lettres (2, ..., 2,,), -+, (27*, ..., 273) qui
y entrent soient distinctes ou non. Il y a donc lieu & application du théoréme 1I;
mais il est bien évident que le groupe de X = o permute aussi exclusivement
entre elles les solutions de (1) pour lesquelles les r, lettres sont distinctes. Dans
chaque cas, ce qui précéde comportera d'ailleurs une interprétation géométrique.

Indiquons-la encore dans le cas des cubiques C ayant en 3 points un contact
du troisiéme ordre avec une quartique générale (sans point double).

Les solutions du probléme sont données par les 3 relations (1)

Uy +ty ...+, =3P +22,5i+ 0, A +2,B"+ 2B,
(9) Oy 0y 4.0, =3Q +2x,ni + 2, B"4+2,A' + 2B,

Wi+ wyt+. A+, =3R + 22,7l + 2, B + ;B + .z, A,

ol u, ¢, w sontdes intégrales abéliennes de premiére espéce attachées a la courbe,
et ou l'on fait

U =uy=uy=u, = uy’, Uy =...=us=uy, Uy ==... = Uy = Y,

Cop=.......= 9, =}, p; =... =0y = v, g =, = 0,

Il

— — — ') — —_ — p) — — — pS)
S TN =w,=w/, Wwy=...=wy=wY, W= ..= W =wy.

(1) AvpeLL et Goursat, Fonctions algébriques, p. j98.
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On a ainsi

3P +oxy'ni+ 2P A + 2YB"+ 2B’
4 .
iy ‘ , 30 + 22970 + 2 PB 29N+ 2B

v(lj) -l—V(2’) +V(3j) —_ Q 2 b[l 5 6 ,

W o ) —-
u +ud +u) = P

. s 3R+ 22V ni+ 2B + 2Y'B + 2 A"
W(‘])_l_ W‘ZJ)+W(3]): 3 [-'; H 6 .

\

A chaque systéme de valeurs des ¢, ..., 2}’ correspondent ainsi 3 points de
contact et une cubique G qu’on peut caractériser par (Y, ..., zy’).
Prenons 4 de ces cubiques, distinctes ou non,

M= (2, .., 2l), ..., eW=(a®, ..., zW),

mais telles que
(rbis) xf+a)+aP+ xf)=0 (mod 4) (p=1,2,3, 4,5 et 6).

Les 3 relations (9) exprimant la condition nécessaire et suffisante pour que
12 points de la quarlique soient sur une cubique, on voit que les 12 points de
contact des 4 cubiques ¢('), ..., ¢/ sont sur une cubique y. '

Mais il n’est aucunement nécessaire de supposer que ces 4 cubiques sont dis-
tinctes.

Prenons d’abord

‘Z(P” — x(p2)’ c(l): c(?);

la cubique correspondante v est tangente en 3 points a la quartique.

Prenons maintenant

on a forcément

La cubique correspondante est la cubique ¢(*.

" Il est bien évident ici que chaque substitution du groupe de X = o doit per-
muter entre elles les cubiques ¢/, les cubiques y, les cubiques ' respectivement (),
par suite, permuter entre eux les systémes de solutions, formées de lettres dis-
tinctes ou non, de (1 bis). Le groupe de X =o est donc contenu dans le groupe
linéaire général (mod 4) a 6 indices, d’aprés le théoréme I1.

* On pourrait aussi traiter le cas des cubiques ayant en 4 points un contact du

(1) Comparer CLEBscH, Journal de Crelle, t. 63, 1864, p. 205, ol sont signalées ces
diverses catégories de cubiques. ‘
Fac. de T., 2 S., VL, : 39
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deaxiéme ordre avec la quartique : on en trouverait (*) 3% systémes. Le groupe
de X =0 est compris, d’aprés le théoréme II, dans le groupe linéaire général
(mod 3), & 6 indices, et méme dans le groupe linéaire homogéne, puisque 'un
des systémes est formé des droites du plan (ce groupe permute entre elles les
solutions des congruences x'p -+ x'é, = 0 (mod 3).

Considérons encore, comme a la page 285, I'équation X = o qui détermine les
63 systtmes distincts de coniques tangentes en 4 points 3 une quartique générale;
ces coniques étant caractérisées par (zy,...,Zs) (mod2), le groupe de X =o
laisse invariables les solutions des congruences

o+ Zp+ Tp=o0 (mod 2).

Iei ry=3, r=2, ¢g=06, d =1. D’aprés le théoréme II, le groupe de X =0
est contenu dans le groupe linéaire homogéne (mod 2) a 6 indices.

V.
LA CLASSE DU GROUPE LINEAIRE ET DE SES SUBSTITUTIONS.

Méthode générale pour la détermination de la classe des substitutions
d’un groupe. — Indiquons d’abord une méthode générale pour la determmauon
de la classe des substitutions d’un groupe et de la classe de ce groupe.

Soient G un groupe de substitutions, a, b, ... ses lettres, en nombre n, ces
lettres étant effectivement déplacées par G. Classons les letires de G en catégo-
ries, en meltant ensemble celles que G permute entre elles. Soient

‘ a, b, ...,

(10) ad, b, ...,
10

al/’ bll, .

ces catégories, Hy le sous-groupe des substitutions de G qui laissent & immobile.
Classons les groupes H, en catégories, deux de ces groupes appartenant & une
méme catégorie pour les valeurs de o appartenant & une méme ligne de (10),
¢’est-a-dire & une méme catégorie de letires; les groupes d’une méme catégorie
sont les transformés d’un d’entre eux par les substitutions de G, par suite sont
semblables. Donc H,, H;, ... sont semblables; de méme H,, Hp, .... Prenons
dans chaque catégorie de groupes Hy un groupe la représentant : soient Hg,

(1) AppELL et GoOURsSAT, Fonctions algébriques, p. 498.
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Hgu, ... ces représentants; une substitution de G ou bien est de classe n, ou bien
laisse une lettre immobile et est semblable 4 une subslitution de H,, ou Hy, ou ....
Pour avoir sa classe il suffit de trouver la classe des substitutions de H,; H,, ....

On opérera alors sar chacun de ces groupes comme on I'a fait sur G; et ainsi
de suite. \

Dans les opérations successives que I'on fera, on pourra étre amené & consi-
dérer des sous-groupes, par exemple Hg,gy, qui soient contenus dans des sous-
groupes déja étudiés au point de vue de la classe, par exemple Hgy : il sera inu-
tile de s’en occuper. A un moment quelconque du raisonnement, nous pourrons
admettre que I’on ne considére que des sous-groupes non contenus dans les sous-
groupes déja étudiés. C’est ce que nous appellerons la condition (A).

Cette méthode est aussi, a fortiori, applicable pour trouver la classe de G.
Elle se simplifie méme, puisqu’il est inutile de s’occuper du degré des sous-
groupes considérés, tant qu’on n’arrive pas i un sous-groupe dont chaque substi-
tution déplace toutes les lettres de ce sous-groupe, et pour lequel la classe est

égale au degré.

Application au groupe linéaire (mod r) (r premier). — Considérons d’abord
le groupe linéaire général L non homogéne a m indices (mod r), r étant premier.
Nous allons établir le théoréme suivant :

Tatorime IIl. — Le groupe linéaire général homogene a m indices (mod r).
r étant premier, renferme des substitutions de classe r™ — 1, r™m —r,
rr—rp2 o — el pm— Y exclusivement. 1 est m fois incomplé-
tement transitif.

Le groupe linéaire général non homogéne renferme en outre des substitu-
tions de classe r™; il est m +1 fois incomplétement transitif.

La classe des deux groupes est r™— rm= ().

.

(1) JorpAN, Comptes rendus, décembre 1872, p. 1754. Rappelons que le groupe linéaire
général non homogéne (modr) est deux fois transitif quand r> 2, trois fois quand
r =2 (Jordan).

Le groupe abélien (JorDAN, Traité des Substitutions, p. 174) contient la substitu-
tion (m = 2my)

lx,,y,,xg, ceer Ymyy B+ Y1, Vi, T, "'7.}""4! (modr)

qui laisse immobiles les r27:—1 lettres pour lesquelles yy==o0 : sa classe est donc celle du
groupe linéaire géncral.

De méme pour le groupe orthogonal (JorpaAN, Traité des Substitutions, p. 155) qui
contient la substitution

| @1, oy X3y ooy Bon Zoy X1y T3y v vvy Tpn | (mod r)

laissant immobiles les 77~1 lettres pour lesquelles zy = @,.
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"En effet, rappelons d’abord la définition de la transitivité incom--
plete (). ’

Soient A un groupe transitif entre les n lettres a,, ..., a, qu'il déplace; A,, le
sous-groupe de A laissant a; immobile : A, est le transformé de A, par une subs-
titution de A.

A,, peut laisser en méme temps ay, ..., o, immobiles en déplacant toutes les
autres lettres :

Ap=Ap,=...= Aa,,l: Aa,a,...am;

A,, déplace toute autre lettre o;(j > p,). Supposons que A, soit transitif entre
les lettres o, 44, ...y @5 @ si py==1, on dit que A est deux fois transitif; il est
alors primitif; si p,>1, A est imprimitif (2), mais on peut dire dans ce cas que
A est deux fois incomplétement transitif (*). :

Toute substitution de A qui laisse une lettre az immobile est transformée d’une
substitution de Aai...am par une substitution de A, et elle appartient & un sous-

roupe A, o, de A laissant exactement p, lettres immobiles, comme A, ;
groupe Agi...ap P ’ )

P4
parmi ces lettres se trouve o, et ay, ..., &, different toutes de ces P ]cltres

4

%y, +eey %, OU lear sont toutes 1dent1ques, sans quoi le groupe dérivé de Aai.--a,,,v

Ag;...qp, laisserait au moins une lettre immobile, sans en laisser p, : un de ses

1

transformés serait contenu dans A, = A, oy € le contiendrait, tout en étant
1

plus grand que lui, ce qui est absurde. Fmalement ( ), A admet une reparutlon

de ses n lettres P a Py en S_yslemes S1y 82y c0y S, .
Pl . y

Soit dans Acx,.-.ah le sous-groupe Aa,...a,, des substitutions laissant a«,

1aF;+‘
immobile. Tout sous-groupe A’ des substitutions de A laissant immobile une des,
lettres d’un des systémes, s; par exemple, et une auatre letire de A non contenue

dans ce systéme, est semblablea A, ap, En effet, par une substitution conve- .

Gp,+1°

! F > b
nable, on transformera A’ en un groupe A, de la forme A“v-~°‘p,°‘m+i (j21), puis,
sij 71, par une substitation de Aai.--a, , qui est transitif entre o, 4y, ..., %, O

1 \
7
transformera A, en Aalu-apla,,ﬂq'

. . . ) . s <
Aal-~~apl°‘pl+l peut laisser immobiles d’autres lettres : sotent @, 2, <.y @, p, CES

(1) Intermédiaire des Mathématiciens, 1900, p. 157-158.

(2) Voir Jorbax, Traité des Substitutions, p. 283-285, et notre Mémoire des Annales.
de la Faculté des Sciences de Toulouse, 1895, D.18, théoréme VII.

(®) La définition donnée par Lie de la transitivité multiple dans les groupes finis continus.
est précisément analogue a celle de la transitivité incompléte dans les groupes de substitu-
tions ( Voir notre Mémoire du Journal de Mathematzques, 1901, p. 62 .

(%) Loc. cit., note (2) ci-dessus.
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lettres, a, ., ,..; (j21) étant déplacé par A, > 0na

—=A =...—=A =A .
Aaiv..apia,,ﬁ_l oo G Cp 42 LT — Ryeeellp ipy

Si Acxi-..a,,ﬁ,,, est transitif entre les lettres qu'il permute, on dira que A est trous

Jois incomplétement transitif, et ainsi de suite.

Dans un groupe A n -1 fois transitif ou incomplétement transitif, le sous-
groupe A, des substitutions de A laissant une des lettres, «,, immobile est n fois
transitif ou incomplétement transitif; le sous-groupe A, g, des substitutions de A,
laissant une des lettres déplacées par A, immobile est n —1 fois transitif ou
incomplétement transitif, et ainsi de suile; une substitution S qui laisse une lettre
immobile est semblable & une substitution S,, de A,;; une substitution de A, qui
laisse une lettre de A,,, déplacée par A, , immobile est semblable & une substitu-
tion de A, g, etc.

Ceci posé, considérons en particulier le groupe linéaire général L & m indices
(mod r).

Une de ses substitutions S peut déplacer r™ lettres : elle est alors de classe 7,
mais ne peut étre d’ordre 2 que si 7 = 2, cas ou 'on a toujours des substitutions
d’ordre 2 et de classe r™,

Considérons une substitution $' de L laissant une lettre immobile : L étant
transitif, cette substitution est semblable & une substitution S/ laissant immobile
la lettre agq...0, dont tous les indices sont nuls : pour avoir la classe de S, il suffit
d’avoir celle de S|. Le groupe L, des substitutions de L laissant a,,...o immo-
bile est le groupe linéaire homogéne qui est transitif entre r™—1 lettres, car
il remplace a,..., par une lettre arbitraire | formule (4), p- 287]. Si S, est de
classe 7—1, elle n’est d’ordre 2 que si r impair. On sait d’ailleurs que L, ,
transitif entre 7 — 1 lettres, renferme des substitutions de classe rm—1 ().

St S est de classe << r™—1, elle laisse une autre lettre déplacée par L,
immobile. Elle est semblable & une substitution 8” de L, laissant immobile la

lettre a,y...9, par suite & une du groupe L, . Les substitutions de L

ve00%g0e -0 oo -0%10-- ¢

sont de la forme

x, &+ ai xy+...+al'zy,

m

X a; ry+...+afx,
co (mod r);
X, A Ty—+ ...t amx,
Lg,...o00..., laisse invariables les 7 lettres pour lesquelles I'indice 2, est quelconque,

les autres indices étant nuls. Il suffit d’avoir la classe de S”.

(') JoroaN, Journal de Mathématiques, 1872, p. 331; voir encore plus loin, p. 312.
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Ly, . o2n.... remplace (0,1, 0,...,0)=0agy0...o par laletire (a3}, ..., a},) qui estarbi-
traire parmi les lettres pour lesquelles &, ..., 2, ne sont pas tous nuls (p. 289-290);
donc Ly, 4., st transitif entre les lettres qu’il déplace, en nombre 7™ — r, et

00-+-0%10-++0
contient des substitutions de classe 7 — r; r™ — r est pair, que 7 soit = 2 ou > 2.

S” peut étre de classe 7 — r ou non; si non, S” est semblable & une substitution
de L, .a,.., laissant invariable «gyy...9, ¢’est-a-dire appartient a L
Les substitutions de ce groupe sont de la forme

Ko0e-0%10---0%o10:-0

x, T+ adxy;+...+alx,
Zy Xyt adxz+...+aYx,

xy ad x3+...+ajz, (mod r),

3 m
Zm amx3+° .o Ay Tm

et ce groupe laisse invariables les 72 letires (2, 2, 0, ..., 0). On voit encore que
ce groupe est transitif entre les 7 — 2 autres lettres, et ainsi de suite. Plus gé-
néralement le sous-groupe des substitutions de L laissant (z,, z,, ..., 2;, 0, ..., 0)
immobile est transiuf entre les r” — ré autres lettres. Il est aussi formé des substi-
tutions laissant (0, 0,...,0), (1,0,...,0), ..., (0,...,0,2;=1, 0, ..., 0) iImmo-
biles.

Dés lors, pour { = m — 1, ce sous-groupe est transitif; pour { = m — 2, deux
fois incomplétement transitif, etc.; pour = o, m fois incomplétement transitif.

Finalement on voit que le groupe linéaire homogéne (mod r) & m indices ren-
ferme exclusivement des substitutions de classe r™, r™m—1, r—rp, rm—p2 ...,
rm— pm=4; le groupe linéaire non homogéne renferme en outre des substitutions
de classe r™. C. Q. F. D.

Le rapprochement du théoréme IIT et du théoréme I nous donne alors ce
résultat :

Cororrame. — Une équation de degré r™ (r premier), dont le groupe est
contenu dans le groupe linéaire général non homogeéne a m indices (mod r),
ne peut avoir que r'"—, " —r, ..., ™ —1™"! ou o racines imaginaires st r
est impair, 2™, 2™ — o, 2™ — 92, ... oM —om~t—om™ ouosir=2 (!).

Nous allons encore appliquer la méthode générale ci-dessus (p. 298) a la déter-
mination plus ou moins compléte de la classe des substitutions contenues dans le

groupe lindaire général non homogéne L (mod p¥) & n indices (p premier, p.>1)

(1) Méme, d’aprés ce que nous verrons plus loin (p. 314), il y a 0 ou 2 — 2m~% racines

imaginaires [lc =1,2....0u E (%z)] quand 7 = 2.

\
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et aussi & la détermination de la classe de ces groupes, qui, croyons-nous, n’a
pas encore été évaluée pour u>1.

Déterminons d’abord la classe de L.

Le groupe L, de degré p##, contient les substitutions

| &gy ooy Ty @y 0y ey T+ Oty | (mod p*),

en nombre p#2, qui forment un groupe transitif et dont loutes les substitutions
sont de classe p2. Une substitution de L est de classe p#* ou semblable a une substi-
tution du sous-groupe Hg des substitutions de L laissant la lettre 2= (o, o, ..., 0),
dont tous les indices sont nuls (mod p¥), invariable. Hp, est formé des substitu-
tions linéaires homogénes

z, alx,+...+afz,

(11) , e e (mod pt).

D’aprés la méthode générale indiquée au début du paragraphe, formons les
catégories (10) pour Hg , catégories qui ne doivent comprendre que des lettres
déplacées par Hg,.

Soit $y=(1,0,...,0); Hgg, laisse invariable {,; ses substitutions sont telles
que ’

[l

aj=1, ay,=...=ay=o0  (modp*),

(12)

................

x, alz,+...+arx,

et, réciproquement, les substitutions de cette forme appartiennent a Hgg, .

Désignons, avec M. Jordan, par (') Q(p#") Pordre Jeg, de Hg,. La condition
nécessaire et suffisante pour que (12) représente une substitution est que son dé-
terminant (2) soit premier & p, par suite que

xy aizy,+...+ ajx,
(13) e e e (mod p*)

‘ 2
T, ApTy+.. +ajx,

(1) Traité des Substitutions, p. 93.
(2) Id.
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représente une substitution; a3, ..., a} sont arbitraires. Le nombre des substitu-
tions (13) est Q(p#n=1)); le nombre des systémes ai, ..., a} est p*2~1), Donc
’ B
Pordre Jeg 5, de Hg g, est

j(i{gu g,= p!’v(ll--i)g(pp.(n—l)).
Br est done permuté par H, avee (1)

3(’.30 _ Q(Pp'n)
g5, pHrDHQ(prir-t)

= (p¥, n) lettres,

(m, p) désignant en général le nombre de maniéres différentes de déterminer un
systéeme de p nombres %y, Ay, ..., A, inférieurs a m, et dont le plus grand commun
diviseur est premier a m. Or, parmi les p¥” systémes de nombres Ay, s, ..oy 2y
ol Ay, gy ovny Mg sONL égaux & o, 1, 2, ..., Ou pt—1 (modp#), ceux qui ont
un plus grand commun diviseur >>1 sont ceux pour lequels %, ..., X, sont
tous = o (mod p), en nombre p¥=972. Donc

(1) (ptymy = pre—pirin=pen (1= ).

Les lettres correspondantes sont les lettres de la premiére catégorie (10), et
Hg, les permute transitivement avec 3. D’autre part Hg, permute exclusivement
entre elles les lettres dont tous les indices sont = o (mod p), en nombre p—)7
lettres qui ne comprennent pas 3,. Il résalte, par suite, de (14) que les lettres de
la premiére catégorie comprennent toules celles dont un indice est =£o (mod p),
et Hg, est transitif entre ces derniéres. De plus, une substitution S de Hg, ne peut
laisser immobiles toutes les letires de la premiére catégorie sans se réduire a
Punité. ‘

En effet, S laisserait immobiles les lettres

(15) ﬁl? 327 cey 611’

pour lesquelles un des indices est =1 (modp#), les autres étant tous nuls; par
exemple, S laissera immobile §; telle que x;=1, les autres indices étant nuls
(modpt¥), ce quientraine, d’apres (1 1), al=r, a;E o (modp®) quand j 3£ i, Ceci
devant avoir lieu pour S quel que soit Z, il fandrait S =1. Donc une substitution
quelconque de Hg, déplace quelque lettre de la premiére catégorie.

Si alors v, est une letire de Hg, n’appartenant pas a la premiére catégorie, les

substitutions de H&m ou bien laissent immobile une autre lettre §, de la premiére

(1) D’aprés la formule de M. Jordan : @(m») = (m, n) mn—1Q(mr~1) (Traite des Substi-
tutions, p. 96).
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catégorie, ou bien déplacent toutes les lettres de cetle premiére catégorie, c’est-
a-dire sont de classe Zp¥— pw=17 Finalement, une substitulion de Hg y, ne
peut étre de classe inférieure a ce nombre que si elle appartient & un groupe
semblable a Hg g, qu’il nous suffira de considérer [ condition (A), p. 299]. Il ya
bien d’ailleurs dans Hg g des substitutions de classe plus petite que ppn — plo—1n

Hg,g, contient la substitution
(16) | @1y veny Zpoyy Tt 2+ pPlag,, v, 2y + pPla,, 2, (1 + P (modpt),

laissant invariables les lettres pour lesquelles xz,= o(modp), en nombre
prTreTt = pbn=t s cetle substilution a sa classe < pbn— pua=t < pun__ plu—on
quand n > 1.1l nous suffit donc, pour avoir la classe de Hg,, de chercher la classe
de Hgg,.

Opérons de la méme maniére sur Hg g, et répartissons ses lettres en caté-
gories (10).

D’abord Hg, g, laisse immobiles les lettres (z, 0, ..., 0), en nombre Y.
D’apres (12), Hg g, déplace la lettre B,= (o0, 1,0,...,0) dont tous les indices,
sauf le second =1, sont nuls, puisque Hg, g, contient la substitution

[ Zyy Loy ooy Ty Ty gy gy v .y z, | (modp#).

Nous classerons dans la premiére catégorie de HBOB, les lettres que ce groupe
permute avec {3,. Les substitutions de Hg g g, sont de la forme

r x+alzry+.. .+ alx,
Ty Ty ayxz+...-Falx,
(17) Xy alxry+...+alx, (modpt).

3 n
Zp (l”-l';;—l—. "+anxu

1 3 : . .
Leur nombre Jg,8,8, €St, puisque aj, ..., ay, a}, ..., a? sont arbitraires,

Q (py.(n—~2,")1)2p.(/z-—2) .

B2 est permuté par HB"& avec

Jg,8, _ pHr—DQ(prin-1)
RB« 81 8. B P'l”"’“'l)Q(pwnfg))'

B,=
Or,
Q(ptr=) = (p¥, n —1)ptin DQ(piin )
donc, d’aprés (14),
(18) By=(p¥, n— I)IJM:IJH(IL—1>+9-<I — [—;'ll—*‘> :PV‘”<I _ 173__‘),

Fac. de T., 2¢ S., VI. 40
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et Hg g permute avec 3, pl“’(l _17’:_4) lettres. D’autre part, Hg g permute

exclusivement entre elles les lettres pour lesquelles z, est arbitraire, zs, ..., Zn
étant = o (modp), lettres en nombre p=N(r=N+p— plp=tia+ti e} qui ne com-
prennent pas 3,. D’apreés (18), 8, est alors permutée transitivement par Hg g avec
toutes les lettres pour lesquelles un des indices s, ..., 2, est =£ o (modp). De
plus, une substitution S de Hg g, ne peut laisser immobiles toutes les lettres (15),
par suite les lettres que Hg g, permute avec 3y, sans se réduire a I'unité.

Si v, est une lettre déplacée par HBoﬁl et n’appartenant pas a la premiére caté-
gorie, les substitutions de Hg,g y,, ou bien laissent immobile une autre lettre de
la premiére catégorie, ou bien déplacent toutes les lettres de celte catégorie,

c’est-a-dire sont de classe au moins égale a p!’“”(l— — )+ Une substitution
P

de HBoﬁi ne peut ainsi étre de classe inférieure a
\

I
(19) /)W’<|——F)y

que si elle appartient & un groupe semblable & Hg g g,, qu’il nous suffira de consi-
dérer pour avoir la classe de L. D’ailleurs. & cause de (16), Hg g, est bien de
classe < p¥n — ppn—t < ppr— ppr—ntl sjun —1>pn—n—41,oun>2 ('),

On continuera de la sorte.

Admettons qu’on arrive ainsi & montrer, si la lettre 3; a tous ses indices nuls,
sauf z;=1 (modp¥) : 1° que Hg g g g permute exclusivement entre elles les
lettres pour lesquelles zy, ..., 2; étant arbitraires, les autres indices sont
= o (modp), letlres en nombre p= =0+l et qui ne comprennent pas Biy,;
2° que ;4 est permuté transitivement par Hy g avec I'ensemble E. i, de toutes
les lettres pour lesquelles un des indices z;y,, ..., 2, est 2 o(modp); 3° qu’an-
cune substitution de Hg g ne peut laisser immobiles toutes les lettres de E; .,
sans se réduire a I'unité. Enfin une substitution de Hg g, . g ne peut étre de classe

inférieure a

(20) pl*”<1—1)+_‘.>,

que si elle appartient a un groupe semblable & Hg g, g, ., qu’il nous suffira de
considérer pour avoir la classe de L, celte classe, a cause de (16), ne pouvant étre
supérieure a (20).

Nous classerons dans la premiére catégorie de Hg g . g,, les lettres que ce

(') Quand n =2, Hg,g,8,=1; Hg,s, est de classe & la fois au plus et au moins égale
a p-— p2—1, cest-a-dire précisément de classe p2l— p2p—1. '
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groupe permute avec B;,,. Les substitutions de Hg, g, sont de la forme

i n
x, x,+a\xp ..+ alx,

+ ‘ n .
Tivy Tipa+ Q3T+ + Al Ty

(21) (modpt).
+3 n
Ty A3 Lips+ o Ay Tn
Zn aBPris+... .4 arx,

Leur nombre est
Q(p(n—i=2) pun—i=2)i+2)

Biy2 est alors permutée par Hg, g, avec

. :}CBO B| 6i+i . 9(py.(n—i—i))pp.(n—iﬂl)(i+l)

Biy= Jeg T Q(p(r—i=2) pl(n—i=2i(i+2) :

0.0 Bita
Or, d’aprés (14) et la page 304,

g([)p,(n——[—l)) — (Pp,’ n—i— [)py,(n—ivmg(pp‘(n—-j~2) )’

(pp‘, n—i— I) :pp.(n—f~1) <I -— 1)u——ll:>,

B,'_,_g:[))‘ (l — PT_l——_—l>a

307

h=p(n—i—n(+1)—p(n—i—2)({l+2)+p(n—i—2)+p(n—i—1)

=pi+1)+p(n—i—1)=pn,

(22) B,'_'.‘_,:])F“l(l——-— ;>

pn—i—l

’, : v ] . N .
D’autre part, Hg g, permute exclusivement entre elles les lettres pour

lesquelles zy, ..., z;y, étant arbitraires, les autres indices sont = o (modp),

lettres en nombre

(23) pp(i+l)+(p.—1)(n—i—1)_.____p(p.—l\n—f—ia—i

el qui ne comprennent pas {3;,,. Il résulte de (22) et (23) que Hg, . ... permute

transitivement (3,;, avec l'ensemble E; ., des lettres pour lesquelles un des
indices Z;ys, .., X, est =£ o(modp). Enlin, aucune substitution de Hg,.. g, ne
peut laisser immobiles toules les lettres de E; > sans se réduire a 'unité et, par

suite, ou bien est de classe au moins égale a

(22) . pp.n . py.n—-n+i+1,
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ou bien appartient & un groupe semblable & Hg g, qu'il nous suffit de consi-
dérer, sous la condition que ce groupe soit de classe < pt — ppr=ntiti,

Il est ainsi établi, en général, que le raisonnement peut se continuer tant
que i + 2= n. Supposons { + 2 = n.

Hg, g, se réduit a I'unité : Hg, g _, déplace loutes les lettres de E, et ne peut

n—1

étre de classe inférieure a

I
wn . ppn—1 — pun 1 — _>.
P p =p < p

Les substitutions de Hg, g, , sont de la forme

n-

J— - i3
U=z .oy Ty, @y T+ a2y, o« oy Ty + a2y, alz, | (modp¥),

avec la condition a? =£ o (modp). Parmi elles, il y a la substitution (16), qui laisse

invariables p##~t lettres exactement et déplace la letire (o,...,0,1). On en

conclut, d’une part, que Hg g, _, ne peut étre de classe inférieure a ptn — pun—t,

d’autre part qu’il ne peut étre de classe supérieure; donc il est de classe ppn — ppr=t,
Nous obtenons ainsi le théoréme suivant :

Tutorime IV. — Le groupe linéaire général de degré p¥* a n indices
(modpw), p étant un nombre premier quelconque, est de classe p** —pvr=1t,

Nous allons compléter ce théoréme en donnant quelques indications sur la
classe des substitutions contenues dans ce groupe linéaire L.
9 \ “ | - ..
D’aprés ce que nous avons vu (p. 306-307), Hg g, . g, permute transitivement

I LY ’ .
entre elles exactement pP"<1— pT-z> lettres de sa premiére catégorie. Une

substitution de Hg, g déplace donc ces p#” — ple=ntifettres, ou est semblable a
une substitution de Hg g, -

Hg, g, . g, permute transitivement entre elles, exactement, p#" — pyra-ntiletires
de sa premiére catégorie. Une substitution de Hg g .. g, qui ne déplace pas toutes
ces lettres est semblable & une substitution de Hg g, g . Considérons une substi-
tution S de Hg g, . g, qui les déplace Loutes :

xy, xH+a v+ +alx,

§— &y xi+a§+lxi+l+~'-+a;‘zxn (modpl").

i+1 n
Zipy aflz gy +.. .+ al, x,

- n
X, A i Ay,

S peut laisser immobiles certaines des lettres X pour lesquelles x,, ..., z; sont
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arbitraires, les autres indices = o (modp), en nombre pv—7+i letires qui n’ap-
partiennent pas a la premiére catégorie de Hg g .. On les détermine, si

T = S[+,p, R — E,,p, par les congruences

nr

At e ati,=o0
(24) e e e \ (modp#-1).
(. a4+ o+ (ay—1)E =0

Si ces. congruences ont § systémes de solutions en &4, ..., £,, le nombre de
ces lettres est p*é0. S déplace ainsi p#? — p#i{ lettres.
D’autre part, ces congruences (24) donnent aussi le nombre p—1i§ de lettres

laissées immobiles par la substitution

E_i Ei -+ af:+1 E,i+l ..t al"l E,n
(mod p*—1).

I+1 n
it Qg1 i1t a5 Cn

i+1 7 n
E,n Ay Cipy o Anin

Soit @, l'expression la plus générale du nombre de lettres déplacées par
une substitution quelconque de Hg g g,; p®= 1" — pw=1if est de la forme
O;u_1 et le nombre de lettres déplacées par S est compris dans la forme
prr— prrmntiy pi@; , . Le nombre de lettres déplacées par une subslitution
, analogue a S est compris dans la forme

de H?’oﬁimﬁ'

-+

pp.n__Pp.n—n—i-i—(-i_+_Pi+l@l,+‘,u_1.

Etec.,

Finalement ©;, est compris dans la forme pv» — pterti 4 pi@; ., y, ol
J=1U1+1,...,0un. Onen conclut que ,, est compris dans la forme

pp.n_ p(;x—l.-)n+j,+j,+...—o—jk_|_Pj,—i—j,+...+jL(.)j,ﬂM_lc

OUJy == 031y 0y OU RS Jo==J4, Jut 1y eeny OU RS sy Jh==Jh_ty Jhoa—1, ..., 0un,
car on établit, de suite, cette formule exacte pour k =1, pour des valeurs de
croissantes. Finalement, puisque Gju—n' =pt—ple avec Ju=ju_ 4, ju_i+1, ...,
ou n, 0, , est compris dans la forme

P(w —pjn"'jn"'"""jy-.

Si nous prenons Je=Ju1 = =Jmp=n, Jm quelconque =o, 1, 2, ...,
oun, jy=j,=...=jm_= o0, ce qui est possible, j,—{—,_,_!_jy: (= m) R+
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est un quelconque des nombres o i pn. Finalement, ©,, est compris dans la
forme p¥r—ptoun=o,1, 2,..., 00 pn—1.

Le maximum est bien p#* —1 et le minimum p#2 — ppn=1,

D’autre part, Hg est transitif entre toutes les letires de la premiére catégorie,
c’est-a-dire entre toutes les letires dont un indice est premier & p, lettres qu'il
permute exclusivement entre elles; mais Hg, qui contient la substitution

[ 1y Xy ooy X Ty~ Zay Xay o vy Xy | (mod pt),

remplace (o, p, 0, ..., 0) par (p, p, 0, ..., 0) et n’est pas transitif entre les letires
qu’il déplace.

On a ainsi ce théoréme :

Tutorime V. — Le groupe linéaire général non homogéne de degré pw»
a n indices (modp*) ne peut contenir que des substitutions déplagant p¥" ou

P = pt»— p7 lettres

avec n=0,1,2, ...,0upn—1(').
Le groupe linéaire général non homogene n’est ni deux fois complétement,
nie deux fois incomplétement transitif, quand p.>1. Ilest imprimitif ().

On en déduira facilement la classe des substitutions d’ordre 2 que peut renfermner
le groupe. Il suffira de faire P = o(mod2).
Supposons, en particulier, p =2 :

P — pir— pn.

P est pair quand p est impair, mais ne peut étre égal a p*"; si p=12, P n’est
. pair que sin 1.
Nous obtenons ainsi, a titre d’exemple d’application du théoréme T, le corollaire

suivant :

Cororrare. — Une équation de degré p**, et dont le groupe ést contenu
dans le groupe linéaire (modp?) & n indices a :

10 Si p> 2, ou p2— N p (,=0, 1, 2, ..., 0u 20 — 1) racines imagi-
naires;

2° Sip=2,00u2—2(n=0,1,2,...,0u 20— 1) racines imaginaires.

(1) Ce qui précéde ne prouve dailleurs pas qu'il en contient effectivement de chacune de
ces classes, sauf de la classe pt — pwn—1, La formule du théoréme V perfectionne une for-
mule indiquée par nous dans les Comptes rendus, 11 avril 19og, p. 891.

(2) JorDaN, Traité, p. 110.
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VI.

LES SUBSTITUTIONS D’ORDI‘.E 2 DANS LE GROUPE LINEAIRE.

On peut perfectionner les énoncés du paragraphe précédent en ce qui concerne
la classe des substitutions d’ordre 2.

Quand on applique le théoréme I, on est, en effet, conduit a n’envisager, dans
le groupe G, que les substitutions d’ordre 2. Supposons déterminées les classes
des substitutions du groupe G, @, pa, .... Les substitutions d’ordre 2 de G ne
pourront avoir comme classe que ceux des nombres p;, f2, ... qui sont pairs :
soienl 2, 2),, ... ces nombres.

Si, de plus, nous avons pu établir par un procédé quelconque que G ne con-
tient que des substitutions paires, c’est-d-dire (') équivalentes & un nombre pair
de transpositions, les substitutions d’ordre 2 de G seront formées d’'un nombre
pair de cycles, c’est-a-dire sont de classe multiple de 4. Finalement les substitu-
tions d’ordre 2 de G ne pourront avoir comme classe que ceux des nombres 2},
2As, ... qui sont multiplesde 4, 47}, 4}, ....

Cherchons a appliquer cette remarque aux groupes linéaires. D’aprés un théo-
réme de M. Jordan (2), nous savons que le groupe linéaire homogéne a n indices
est dérivé :

1° Des substitutions

8= I Lyy eery Limgy Liy Ligpy seey Tpy Tyy eeey Tigy i+ Ljs Litay ooy xnl (ll’lOdl)l);

2° Des substitutions

8=\ X1y ey Zpeyy Tus Xyy ey Tyyy CXy | (modm),

ou ¢ est un quelconque des nombres premiers a m.
La premiére, g, de ces substitutions laisse invariables, exactement, les leltres
pour lesquelles z;= o (modm), en nombre m”=1. Sa classe est

mt—mtt=m"» ' (m —1).
Son ordre est m.
La deuxiéme, g', laisse invariables les lettres telles que (¢ — 1)2, = o (mod m).
Soit & le plus grand diviseur de ¢ — 1 et m':

Cc—1 o m
5 x,,:o\mod§ 5

(1) SerrET, Algébre supérieure, t. 11, 5° édition, 1885, p. 273-277.
(2) Traité des substitutions, p. 93.
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N .. . m .o , . .
x, a ¢ valeurs distincltes multiples de = et la substitution g’ en question laisse

exactement o m” ' lettres immobiles, c’est-a-dire est de classe
mt— gm" = m"1(m — 9);

5 peut prendre ici une quelconque des valeurs des diviseurs de m qui sont < m.
Supposons d’abord m premier = p; ¢ =1. La classe des substitutions g, ¢/,
génératrices du groupe, est p»~'(p —1) : c’est aussi (théoréme III, p. 299) la
classe du groupe. L’ordre de g est p, celui de g’ est un des diviseurs, quelconque,
o' de p—1.
Si p =2, cette classe, 277!, est toujours multiple de 4 quand n23; g'=1 et
ordre de g = 2.

Levme. — Le groupe linéaire (moda) a n indices (n23) ne contient que
des substitutions paires. I'n particulier, il ne contient pas (') de substitution
d’ordre 2 et de classe 2" — 2.

Nous allons encore traiter le cas des substitutions d’ordre 2 du groupe
linéaire (modp), (p >2).

Si 'on se reporte & la forme canonique des substitutions linéaires (modp)
indiquée par M. Jordan (2) et a la détermination de l'ordre d'une substitution
linéaire de forme canonique donnée, on voit que les quentités ky, ky, ..., qui y
figurent, devraient satis(aive [ formule (4) de la page 127 du T'raité des substitu-
tions de M. Jordan] & A= Aj}=...=1(modp), ce qui donne ko, Ay, ...,
=1 (modp); les autres relalions (4), du méme Traité, étant impossibles,
montrent que la forme canonique est

[ ¥1s -5 Vus ©1Y1s -5 &ayn|l  (modp)

ol &y, ..., &, sont égaux & &= 1. Les quantités ko, ky, ..., étant réelles, on peut
ramener une substitution linéaire d’ordre 2(modp) a sa forme canonique par
une transformation d’indices réelle; toute substitution (*) linéaire d’ordre 2
est semblable & la substitution

G =&y oy T E1 Ty oy Eny | (modp)

OlL &4y « ..y &y SONLEgaUXT & 1.

(1) Ceci résulte d'ailleurs du fait que le groupe linéaire homogéne a n indices (mod2) est
simple pour n 23 (JoroaN, Traité des substitutions, p. 106).

(2) Traité des substitutions, p. 126.

(*) Comp. notre Thése de Doctorat, p. 86.
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Il ne nous reste plus qu’a voir dans quels cas, parmi les substitutions g”, il ya
des substitutions impaires.

Si k des quantités ¢, ..., g, sont = — 1, nous pourrons loujours supposer que
ce sont les & premiéres, et

/A .
& =Xy ooy iy Tty + ooy Ty — Loy vvny — Ly Ligrs =+ 5 T | (modp).
Cette substitution d’ordre 2 laisse immobiles exactement les lettres telles que
| =... == 0,

k
. 1 —1
en nombre p”*, et renlerme S (pr— pnk)y = prk —’li—2—cycles de 2 lettres.

Cette substitution est de classe p?— p?~*(k =1, 2, ..., ou n); elle sera donc
impaire a la condition nécessaire et suffisante que

prt—
2

==2h-41, pF—i1=2 (mod}j),
pr=3=—1 (mod4),

ce qui exige k impair et p = 4h—1; quand p = 4/ + 1, au conlraire, on n’a que
des substitutions paires d’ordre 2.

Tatorkme. — Les substitutions d’ordre o d’un groupe linéaire (modp)
(p>2) a n indices sont paires quand p=A4h—+1, paires ou impaires
quandp = 4h — 1. 1ly en a de chacune des classes p"~*(pk—1) (k=1,2,...,
ou n).

La premiére partie de ce théoréme peut d’ailleurs s’établir plus simplement :

.o . —1 . .
la substitution g’ pour ¢ = —1 est d’ordre 2 & p»~! 2—2—— cycles et est impaire

quand p = 4/ —1; d’autre part, quand p = 4h +1, les seules classes possibles
sont (théoréme ILL, p. 299) multiples de 4, et les substitutions d’ordre 2 sont toutes
paires.

Mais on peuat appliquer au groupe linéaire homogéne (mod2) un raisonnement
semblable : en effet, d’aprés la forme canonique des substitutions de ce groupe
(Traité des substitutions de M. Jordan, p. 125), ki=ki=...=1,
ski=2k}=...=o, les autres relations (4) de M. Jordan étant impossibles. La
moiti¢ des indices d’une substitution d’ordre 2 du groupe linéaire homogéne (mod 2) *
au moins, doit rester invariable, c’est-a-dire a toujours la forme

Y/ — . o
"= @py ey Tns Tpy Tayd= Xyy X3y Ty~ Xy oovy Zajyy Tagi -+ Lotieyy Lokt Lakiras voey Lo |
(mod2),

Fac. de T., » S., VL 41
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les indices pouvant encore étre supposés réels, puisque Ay= A, =...=1(mod2).
Autrement dit (Joroax, Journal de Mathématiques, 1872, p. 351-357) :

Toute substitution linéaire homogéne d’ordre 2(mod2) & n indices est
semblable a la substitution

o .
8" =&y ooy Tns Xy Xyt Xy, Ly Tageygy ek + Lageyy Tatrty Takias - - o> Ln

(mod2),
et de classe 2" — on—k [k: 1, 2,...,0u E<§>]

Cette substitution g"” laisse invariables les lettres d’indices

RS
Il
8
Il
l

Loy =0 (mod2),

< (n 0. .
c’est-a-dire est de classe 2% — o~k [k =, 2, .., h(—z- >_l il existe toujours des

Lo [ n
substitutions d’ordre 2 pour chacune de ces h(;) valeurs de 4.

Examinons encore le cas o m = 2¥(v >1), et voyons si le groupe linéaire
homogéne (mod2”) contient des substitutions impaires d’ordre 2, en étudiant les
substitutions g et g’.

Parité de g. — g est de classe 2¥(*=V)(2¥—1); son ordre est 2. Si z;= 2%¢,
ol o < v, £ impair, g remplace z; par z;+ 298, z;+ 298 par z;+2.29E, ..,
i+ a. 295 par x;+ (a + 1)2%E, ..., c'est-a-dire que g comprend 2¥"~2) cycles
de 2” % lettres correspondant a x; = 27§, et & une méme valeur de z;, d’ou

V=% oV

2v(n—2)
2 V¢

— 2\/(11,—1)‘1

cycles de 2779 lettres correspondant a ’ensemble des lettres pour lesquelles z; est
divisible par 2% sans I'étre par 2#+!. Ces cycles équivalent, comme on sait, &

V(1)1 (V=9 _ )
transpositions.
Il est, en général, inutile de calculer & combien de transpositions équivaut g :
" nous savons que g est une substitution paire dés que

v(n—1)—121, y(n—r1)Z2,

ce qui a lien dés que nZ3 ou n=12,vZ2.
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Sin=1,v=2, G estun groupe de degré 4 a un seul indice
|z, ax b (mod}).

La substitution |z, — x| (mod4) est d’ordre et de classe 2, par suite im-
paire.

Parité de g'. — En général, on remarquera que g' permute entre elles les
lettres pour lesquelles z,, ..., z,_\ ont mémes valeurs : si g’ opére une substitu-
tion circulaire d’ordre a entre les lettres correspondant a un certain systéme de
valeurs de zy, ..., Z4_y, et aux valeurs z,, x;, ..., x'* de z,, g’ opére une subsli-
tution circulaire de méme ordre a entre les lettres qu’on déduit de celles-la en
donnant a z,, ..., Z,_, des valeurs quelconques : I’ensemble de ces substitutions

circulaires équivaut alors a (@ — 1)2¥(*~!) transpositions. Donc g’ équivaut a
2¥r—D ¥ (g —1)

transpositions : quand » > 1, ce nombre est pair, et g’ esl paire.
Au contraire, st n =1

g =z, —a,] (mod 2v)

est d’ordre 2 et laisse immobiles exactement les lettres telles que 2,= —z, (mod 2v),
c’est-a-dire o, 2¥~'; donc g’ déplace 2¥— 2 lettres et est une substitution im-
paire.

Nous conclurons ce théoréme :

Tutoreve. — Le groupe linéaire (moda¥) (v >1) a n indices ne contiens
que des substitutions paires quand n>1. Il en est différemment pour
n—I.

VII.

APPLICATIONS GEOMETRIQUES.

Le rapprochement du théoréme I, de la remarque Il du théoréme 11, des théo-
rémes I, IV et 'V et de leurs corollaires nous donne dés lors, de suite, un
certain nombre de propriétés géométriques.

Ainsi (p. 295), le groupe de I'équation aux points d’inflexion des courbes du
troisieme degré est contenu dans le groupe linéaire non homogéne (mod 3) a
2 indices, dont la classe est 6 (théoréme IlI) : donc

L. — S¢ un des points d’inflexion d’une cubique (& coefficients réels) est
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imaginaire, 6 ou 8 des points d’inflexion de la cubique sont imagi-
naires (').

L’équation aux 46 cubiques ayant en trois points un contact du troisiéme ordre
avec une quartique générale a son groupe contenu dans le groupe linéaire non
homogéne (mod4) a 6 indices (p. 297). D’aprés le corollaire du théoréme V et le
théoréme TV (et la page 315).

II. — Parmi les 4° cubiques ayant en 3 points un contact du troisicme
ordre avec une quartique générale (réelle) il y en a o ou 4° ou 4°— 2n
(n=12,3,..., ou 11) qui sont imaginaires.

En particulier, s'il y en a une imaginaire, 2'' = 3 4° au moins sont ima-
ginaires.

L’'équation aux 3¢ — 1 systémes de cubiques (p. 298) ayant en 4 points un con-
tact du deuxiéme ordre avec une quartique générale a son groupe contenu dans
le groupe linéaire homogeéne (mod 3) a 6 indices. Choisissant, parmi ces cubiques,
celles quiont, en particulier, un point réel déterminé de contact sur la quartique,
nous déduisons des théorémes I et I1I le résultat suivant :

1. — Parmi les 3¢ — 1 cubiques ayant en 4 points, dont un réel arbi-
trairement choisi, un contact du deuxiéme ordre avec une quartique géné-
rale (réelle), si une est imaginaire, il y en a

36—35, 35—-34 ..., 3°*—3 ou 35 —1

qui sont imaginaires.
En particulier, s'il v en a une imaginaire, 35— 35=2 3% au moins sont
2 fw) ) 3
imaginaires.

L'équation aux 2% —1=063 systémes de coniques tangentes en 4 points a une
quartique générale (p. 285 et 298) a son groupe contenu dans le groupe linéaire
homogéne (mod 2) a 6 indices. Raisonnant comme ci-dessus (d’aprés la page 314) :

IV. — Parmi les 25— 1= 63 coniques tangentes en 4 points, dont un réel
choisi arbitrairement, a une quartique générale (réelle), si une est imagi-

naure,
26 — 03— 23 —= 39, 26 — 2 —/8 ou 26— 23 =156

sont imaginaires.

(1) Comparer SERRET, Algébre supérieure, t. II, 5° édition, 1885, p. 613. — SaLMoN,
Géométrie analytique (Courbes planes), traduction Chemin, Paris, 1884, Chapitre V,
en particulier Section III.
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En particulier, st une est imaginaire, 2= 32 =% 2% au moins sont ima-

ginaires.

V. — Parmi (') les 32° courbes du cinquiéme ordre ayant en 10 points un
contact du second ordre avec une sextique générale (réelle), il y en a

o, 320 __ 3[9’ 320 __ 318’ cey 320__3 ou 320__ 1

qui sont imaginaires.
En particulier, si une est imaginaire, 3*°— 3'9 =2 32° qu moins sont ima-

ginaires.

VI. — Parmi les 4*=16 plans (*) qui coupent une courbe gauche du qua-
triéeme ordre en 4 points consécutifs, s'il y en a d’imaginaires, 8, 12 ou 16

sont imaginaires.

On pourrait évidemment multiplier ces exemples.

L’application du théoréme I réussit encore dans des cas ol il n’y a pas lieu &
I'application des théorémes II et suivants.

On sait (3) que les 16 plans tangents singuliers de la surface de Kummer dé-
pendent d'une équation du seiziéme degré dont le groupe G est contenu dans le
groupe linéaire non homogéne de degré 16 & 4 indices (mod 2). De plus, le
groupe G est dérivé de 6 substitutions (substitutions A, B, G, D, E, F de
M. Jordan) toules paires. D'aprés le théoréme III, les substitutions d’ordre 2 de
G, qui doivent étre paires, par suite déplacer 44 letires, ne pourront étre que
des classes 8, 12 ou 16. A '

Des propriétés semblables ont lieu pour les 16 points singuliers de la surface
de Kummer : les 16 points étant 6 a 6 dans les plans tangents singuliers, on peut
leur appliquer les raisonnements que M. Jordan applique aux plans tangents sin-

guliers.

VII. — Parmi les 16 plans tangents singuliers de la surface de Kummer,
ilyenao,8, 12 ou 16 qui sont imaginaires; de méme parmi les 16 points
singuliers de cette surface.

Il est encore intéressant d’utiliser la méthode générale indiquée au début du
paragraphe V pour déterminer la classe des substitutions d’ordre 2 du groupe G

(1) Joro\N, Traité des substitutions, p. 308.

(2) 1d., p. 308. Le groupe correspondant contient effectivement des substitutions d’ordre 2
et de classe 8 ou 12.

(3) JorpaNn, Traité des substitutions, p. 313.
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qui contient celui de I'équation aux 27 droites des surfaces du troisitme degré,
et est dérivé des substitutions A, B, C, D, E, F de M. Jordan (7raité, p- 316).

G est transitif entee les o7 lettres a, b, ¢, d, e, f, g, k, i, k, |, m, n, p, 7
ry s, b ouy, my ', ply g, s’ U, W, Les catégories (10) se réduisent a une. Il
suffit de déterminer la classe de H,.

H, permute transitivement entre elles, d'une part,
b, ¢, d, e f, g h I, k, |

c’est-a-dire les 10 lettres qui figurent avec @ dans un méme trio du Tableau des
45 triangles (1), d’autre part les 16 autres lettres de G,

I3
m, n, p, ..., u,

comme on le vérifie en considérant successivement les 15 substitutions

DECD® =(mn ...)..., DECB =(mn'...)...,
DE =(mp ...)..., DB =(mp'...)...,
DC =(mg ..))..., DECBDE =(mgq'...)...,
D =(mr ...)..., DEB* =—=(mr'...)...,
DEC? =(ms ...)..., DECBD® = (ms' ...)...,
D =(mt ...)..., DEB =(mt..)...,
DEC =(mu ...)..., DECBD —=(mu'...)....
DEB2D = (mm'...)...,

Pour déterminer la classe de H, il suffira de déterminer celle des groupes Hs
el Hup.

Previer cas @ Groupe Hyyo — abe est laissé immobile par Hyp, en sorte que
Ha=Hase (Hy 4,4, est le groupe des substitutions de G qui laissent o, o,
g, ... immobiles). L’ordre 3¢, de Hgp est

o
—J_ —8.24.
27.10

Hgsc peut déplacer une quelconque des 24 autres lettres. H, permutant exclu-
sivement entre elles b, ¢, ..., { d'une part, m, n, ..., ' d’autre part, il en est de
méme de Hgpe.

(1) Le dixiéme triangle du Tableau de M. Jordan est cm'n’ et non cm'n.
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H.s. permute transitivement
d’ h) kr 8 f9 i’ l: €,

comme le montrent les substitutions C, D, E, ED, DC. De méme, il permute
transitivement m, n, ..., « d’une part, m/, n/, ..., ' d’autre part.
Les catégories (10) correspondant & Hgg. seront alors représentées ici par les
groupes
Habcdy Habcm, Habcm'-

D’ou 3 sous-cas a distinguer.

Premier sous-cas : Hypcq. — Comme 1'a montré M. Jordan, et comme on le
voit de suite,
Habcd: Habcde

et

Opérons sur Hgjeqe comme nous 'avons déja fait sur G et ses sous-groupes :
Hapeqe contient D, E, F, et en est évidemment dérivé, car on vérifie que le groupe
dérivé des substitutions opérées par D, E, F entre m, p, r, t est le groupe symé-
trique de 4 éléments.

Formons les catégories analogues a (10). Hgscqe permute transitivement

So& N bk
m, p, I, U
m', pl, r, t;
n, q, Sy u,

n, ¢, s, u'.

Il suffit de considérer les sous-groupes suivants :

Huscaer, d’ordre 4, qui contient F et DEDF de classe 12, DED de classe 20, et
est de classe 12; Hupegem, d’ordre 6, dérivé de E et F, et dont la classe est évidem-
ment 12,

Habca’em’ = Hahcdcm - Habcden: Habcdcn'-

Deuxiéme sous-cas : Hapem = Hapemn. — 1l est encore d’ordre 24, et contient
les substitutions C, E, F dont il est dérivé.
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Formons les catégories analogues a (10). Hypemn permute transitivement

d, h, k, f;

e, I, I, g3
pPs ¢ Ty s, t u;
m', s, u, q's

n'y ry, U, p.
Appliquant la condition (A) (p. 299), nous n’avons & considérer que

Habcmnu d’ordre 4,

Habcm am Qordre 6
ou

Habcm nn' d’ordre 6.

Husemnne est dérivé de E et F et contient 1, E, E* F, E-*FE, E=2FE2; sa classe
est 12 :

Habcmnn‘ == Habcmnm’-

Enfin Hapeman laisse ¢ immobile, et contient

CE = (dk) (hf) (el) (ig) (m'u') (s'q") (pg) (rs) (n'¢)(p'r'") de classe 20,

URC = (dk) (el) (¢n') (m' ') (qr) (ps)
et

CE.CFC = (k) (gi) (¢'s") (p'r') (pr) (gs) = EFE-".

H . semnu est de classe 12.

Troisieme sous-cas : Hapenr = Hapemn- — Il est encore d’ordre 24 et contient
E et F. Hypen contient également

' K = (gd) (hK) (il) (¢f) (np) (s) (m7) (r0) (r's') (' a'),
par suite,
K-1EK = (ekh) (dli) (ner) (mus) (p's'e') (q'r'¢").

Nous considérerons le sous-groupe de celles des substitutions de Hgpepm e qui
group q
laissent une aantre lettre immobile.

Si cette lettre est une des lettres d, e, f, 2, h, i, k, [, le sous-groupe corres-
pondant est semblable & un sous-groupe de Hus.4; on apphque la condition (A)
(p- 299). Si c’est une des lettres m, n, p, q, 1, s, ¢, u, le sous-groupe correspon-
dant est semblable & un sous-groupe de Hupem; on applique encore la condi-
tion (A). 1l suffit de considérer le cas ou c’est une des lettres p', ¢', ', &', ¢/, u'.
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Ces 6 lettres appartiennent certainement 3 une méme catégorie, puisqu’elles
sont permutées transitivement ensemble par E, K='EK et leurs dérivées. Il suf-
fira donc de considérer Hupem'n'p= Hasemn'pg, qui contient F, mais non E, et
permute exclusivement entre elles 7/, s', ¢/, #'. Hapemnp'g est d’ordre 4, et con-
tient F et K. D’ailleurs,

KF = (dg) (ef) (np) (mq) (r'u') (s't').
Donc Hapemnpg est de classe 12.

Deuxiime cas @ Groupe Hgp,

__27.10.8.24
Ham = 27.16

5.24.

Nous diviserons les lettres déplacées par H,, en catégories analogues a (10) :
les lettres b, c, ..., { qui figurent dans les trios ol entre @ sont permutées exclu-
sivement entre elles par H,; elles forment une ou plusieurs de ces catégories.
I1 est inutile de les considérer, car H,qp, par exemple, est un sous-groupe de H,q,
semblable au groupe H,s déja étudié [condition (A)].

Hum est dérivé de G, E, F, B; en effet, G, E, I, B permutent exclusivement
entre elles n, ¢/, s/, u', m'; G, E, F et leurs dérivées opérent entre m/, ¢', ', u'
les substitutions du groupe symétrique de 4 éléments. Donc C, E, F, B et lcurs
dérivées operent entre n, m/, ¢', ', u' les substitutions du groupe symétrique de
5 éléments. Il en résulte que les 15 lettres de G autres que a, b, ..., ! et m se
répartissent en 2 catégories analogues & (10) comme il suit :

n, m, ¢, s, u,
' [ ' ’
P 9 T 8 & u, n, p, r, (.

Nous avons & considérer les 2 sous-groupes

Hamn, Hamqo

Premier sous-cas : Hampn=Haspm est contenu dans Hg;; il suffit d’appliquer
la condition (A).

Deuziéme sous-cas : Hypny. — Ce groupe, d’ordre 12, contient
B, F et E-CFCE=(df)(eg) (n'p') (m'q") (ru) (st),
qui permutent entre elles transitivement

p s d’une part,

n'y ps 1, s, t w« - dautre part,
Fac. de T., 2¢ S., VL. 42
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Hgmg est dérivé de ces 3 substitutions, car Hgpgp' contient F et est d’ordre 2.
Nous n’avons d’ailleurs & répartir en catégories que les 9 lettres. précédentes.
Il suffit de considérer .
Homgr et Hapmgp-

Hamgp= Hamgps €L est contenu dans Hg;; la condition (A) s’applique.
Hmgp se réduit aux substitutions 1 et F et est de classe 12.

Tous les cas sont ainsi épuisés, et nous voyons que la classe du groupe G de
I’équation aux 27 droites des surfaces du troisicme degré est 12.

Mais on peut aussi déterminer les classes des substitutions d’ordre 2 contenues
dans ce groupe G. D’abord G ne contient que des substitutions dérivées de A, B,
C, D, E, F qui sont paires : ses substitutions d’ordre 2 auront leur classe multiple
de 4 et déplaceront 12, 16, 20 ou 24 letires. Nous avons rencontré une substi-
tution d’ordre 2 et de classe 20 (p. 319); mais nous allons voir qu’il n’y a pas de
classe 16.

S’il y avait une substitution de classe 16 et d’ordre 2, il y en aurait une dans
le groupe Hy, par suite dans Hap = Hgase, ou Hyp.

1° Si ¢’était dans Hyye, il y en aurait une dans

Hopea= Heascaes Hevom= Havemn ou Hopem= Heoomn

Si c’était dans H‘,lbcde, ce groupe est dérivé de D, E, F, et déplace exactement
22 lettres; donc il y aurait une substitution de classe 16 dans Hgpcder, ce qui n’est
pas, ou dans Hzpcdem dérivé de E et de F, ce qui n’est pas.

Si ¢’était dans Hypemn, ce groupe est dérivé de G, E, E et déplace exactement
29 lettres; donc il y aurait une substitution de classe 16 dans Hupemnn dont les
substitutions sont de classe 12 et 20, ou dans Hupemnm = Havemnn’ dérivé de E
et F et dont les substitutions d’ordre 2 sont de classe 12.

Si c¢’était dans Hgpemn, ce groupe est dérivé de E, F et KEK et déplace
encore exactement 22 lettres; donc il y aurait une substitution d’ordre 16
dans Hupemnp dont les substitutions sont de classe 12 et 20.

Finalement H,;. ne contient pas de substitution de classe 16.

2° Si Hg,. en contenait une, il y en aurait une dans Hgng, dérivé de B,
FetE *C~'FCE, et qui déplace 24 lettres. 1l y en aurait donc une dans Humgp qui
ne conlient qu’une substitution de classe 12. Hgp, ne contient pas de substitution
de classe 16.

Finalement G ne contient pas de substitution de classe 16, et nous obtenons, .

grice au théoréme I, ce résultat :

VIll. — Le groupe de léquation auz 27 droites des surfaces du troisieme
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degré est de classe 12 ses substitutions d’ordre 2 déplacent 24, 20 ou 12 lettres.:
Cette équation posséde 3, 7, 15 ou 27 racines réelles.

Parmi les 25 drottes d’une surface du troisiéme degré, si o sont réelles,
a est un des nombres 3, 7, 15 ou 27 (').

Ce qui précéde va encore nous donner une application dans la théorie des
courbes du quatriéme degré (c’est-a-dire des quartiques). On sait que ces courbes
possédent en général 28 tangentes doubles; le groupe G, de I’équation détermi-
nant ces 28 langentes est contenu dans un groupe T, dont le sous-groupe H
formé des substitutions laissant une méme lettre immobile coincide avec le
groupe de G de I’équation aux 27 droites des surfaces du troisitme degré. I' est
donc de classe 12, et ses substitutions d’ordre 2 déplacent 12, 20, 24 ou 28 lettres.

IX. — Le groupe de Uéquation aux 28 tangentes doubles des quartiques
générales est de classe 12; ses substitutions d’ordre 2 déplacent 28, 24, 20
ou 12 lettres.

Cette équation posséde o, 4, 8, 16 ou 28 racines réelles.

Parmi les 28 tangentes doubles des quartiques générales, si o sont réelles,
a est un des nombres o, 4, 8, 16 ou 28 ().

On bpeut songer cncore a faire application du théoréme I'a d’autres problémes
de contact, étudiés par Clebsch et a des équations corrélatives envisagées par
M. Jordan (T'raité, p. 329-333). Ces groupes sont :

1° Les deux groupes de Steiner, dont nous venons d’étudier un cas particulier
(groupe de I’équation aux 28 tangentes doubles des quartiques générales);

2° D’aulres groupes non linéaires ( T'raité, p. 331).

Ce qui précéde pose le probléme de la détermination de la classe de ces groupes
et de celles des substitutions d’ordre 2 qui y sont contenues.

Nous nous contenterons de remarquer a ce sujet que le premier groupe G de
Steiner a 2n indices est dérivé ( Traité, p. 231) de substitutions d’ordre 2 et de
classe 2R,_y, olt '

‘q{n: 22n~l — 271.——1.

Ces substitutions sont paires dés que

Rpmq= 23— gn—2=go (mod 2),

(1) Comparer, par exemple, D’OcAGNE, Nouvelles Annales, 1895, p. 339 et suivantes. —
L. LEvy, id., p. 334 et suivantes.

(?) D’aprés SaLMON, Géoméirie analytique (courbes planes), traduction Chemin,
Paris, 1884, p. 3t2, Zeuthen a montré qu’une quartique peut posséder exactement 4, 8, 16
ou 28 bitangentes réelles (Math. Ann., t. VII, p. 411). Il resterait a voir si le groupe de
I'équation contient des substitutions d’ordre 2 et de classe 28.
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c’est-d-dire n23. 1l en sera, a fortiori, de méme pour le second groupe de
Steiner G{ qui est contenu dans G?). Donc :

X. — Les deux groupesde Steiner & 2 nindices, de degré &, = 23"~ — a2t
ne contiennent que des substitutions paires, quand n23. Une équation de
méme degré, dont le groupe est contenu dans un de ces groupes, a 4h racines
imaginaires (h entier).

Le théoréme Il est susceptible d’extensions au cas ou la quantité r (p. 286)
n’est pas un nombre premier, ni une puissance de nombre premier. Nous allons le
vérifier sur un cas particulier.

On sait que les points (*) ol une conique a avec une cubique générale un
contact du cinquie¢me ordre sont déterminés par

2P+ 20+
(25) = 161+ 20

v, et w, étant les périodes d’une fonction elliptique de paramétre « dépendant de
la cubique, et 2, x, des entiers prenant les valeurs o, 1, 2, 3, 4, 5. Quand z,, z,
sont pairs simultanément, on obtient les points d’inflexion, au nombre de g. Sur
les 36 points (25), il y en a véritablement 27 de surosculation par une conique.
Les 36 points dépendent d'une équation X = o du trente-sixi¢éme degré.

La condition nécessaire et suffisante pour que trois de ces points soient en ligne
droite est que

mn v

(26) r +X +2i=x,+xy+x,=0  (mod6).

Par exemple, les points d’inflexion pris 3 & 3 constituent un cas particulier des
solutions de ces congruences; de méme que les trois points de surosculation qui
sont les points de contact des 3 tangentes issues d’un point d’inflexion. Le
groupe G de X = o est contenu dans le groupe T' entre les 36 lettres (xy, ) (mod6)
dont les substitutions laissent invariable ’ensemble des solutions de ces con-
gruences (2). D’aprés ce que nous avons vu (p. 286), le groupe I contient : 1° les

) JORDAN, Cours lithographié d’Analyse de I’Ecole Polytechnique, 1'* division, —
AppELL et Goursat, Fonctions algébrigues, p. 4go. — SERRET, Algébre supérieure, t. 11,
5¢ édition, 1885, p. 624.

(2) Les seuls cas analogues traités par M. Jordan sont ceux ou le module est premier ou
une puissance de nombre premier, et sont compris comme cas particulier dans notre
théoréme II.
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substitutions

(27) | @y, X35 @y oy, 2o+ %y | (mod 6),

telles que o, a, soient des nombres pairs quelconques (mod6), puisque le plus
grand commun diviseur de ry=3 et r =6 est 3, substitutions qui forment un
groupe G| d’ordre g; 2° les substitutions

(28) | X1 Za5 Aj 21+ A2y, alxy+ ala, | (mod 6),

qui forment un groupe G',. L'ordre de G, est (') Q(62) = (6, 2)6(6, 1) = 24.6.2.
Ces 2 catégories de substitutions permutent entre elles les g lettres dont les 2 in-
dices sont pairs.

Je dis que T' ne contient pas d’autres substitutions que celles dérivées de G
et G'.

Considérons une substitution S de I' qui ne laisse aucune lettre immobile, et

faisons dans (26)

(29) 3xi=3z,=0 (mod6).

On obtient g solutions correspondant aux g systémes de valeurs paires de z,
et x,, ¢’est-a-dire aux points d’inflexion; la droite définie par les 3 points iden-
tiques satisfaisant a (29) est la tangente d’inflexion; I' remplace une solution
de (29) par une autre solution, c’est-d-dire permule entre eux ces g points, par
suite, les 27 autres des 36 points solutions de X = o.

S remplace un de ces g points (2) @,, par un autre de ces g points A, z, ; Mais,
parmi les substitutions (27), il y a une substitution 2 remplacant a,, par a,, .2,
avec ay =, o= z,. Donc SZ! laisse @,, invariable et appartient au sous-
groupe H de T laissant a,, invariable.

Seit S, une substitution de H. Faisons dans (26)

J— J— [— / I .
xr\=z)=o0, z = z], Zy=a, (mod6) :

(26) devient
2x)=2a,=o0 (mod 6).

' (1) Joroan, Traité des substitutions, p. 96, ou l'on trouvera la signification du sym-
bole (m, p), indiquée d’ailleurs plus haut, p. 304 :

@n=o(-£)(-5)

(2) Nous désignerons, en général, ici le point d’indice @y, @; par ax,a,.
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S,, qui laisse @y, immobile, permute entre elles les solutions de cette congruence,
c’est-a-dire les lettres dont les indices sont tous deux multiples de 3 ; géométrique-
ment, les points solutions @y, »; (autres que ay,) sont les points de contact des
tangentes issues de @, & la cubique; les 3 droites correspondantes sont ces tan-
gentes, que S, permute entre elles.

Ceci posé, S, remplace a,, par une lettre a;; dont les indices ont leur plus
grand commun diviseur premier a 6. Mais, parmi les substitutions (28), il existe
une substitution X, jouissant de cette propriété : il suffit, en effet, de prendre
al=E, al=t, Eia?—Eal==1 (mod6) : Péquation & al—Eyal=1
(1811, | 621 £3), et, a fortiori, la congruence &, a} — §;a? =1 (mod6), possédent
toujours une solution a3, a}. Alors S,=3S5,3]' laisse a,, immobile; de plus,
d’apres

(30) o0+ I—I=I+4+1—2=0+2—2=2+1—3  (mod6),

cette substitution laisse @, , immobile quel que soit z,.

Les substitutions (28) qui laissent @, , immobile sont telles que a} =1, a}= o,
c’est-a-dire de la forme

2=z, 55 &, +a’x,, ajx,| (mod 6) al==1

elles remplacent @y par @asq;, o0 @ ==1. '

Considérons S, : S, permute entre elles les lettres dont les indices sont divi-
sibles tous deux par 2 ou 3, et laisse a,, , immobile, par suite remplace a,,
par agz; si &, n'est pas premier & 6, S,, qui laisse @y, immobile, remplace,
d’aprés (30), @, par 6 lettres ag g, telles que £, a, avec 6, un commun
diviseur > 1. D’aprés

(31) —Zi o+ x| =0—2y+ x,=0,

on voit qu’il en serait de méme de @y, 4, puisque S, laisse @_g,, immobile. Ce
résultat est absurde; donc S, remplace, comme %, ag, par az,z,, ot £,===1. On
peut donc trouver ¥, telle que S;=S,37' laisse @,y immobile. D’aprés (3o0),
S; laisse @yp, immobile, comme aussi @, ,; d’aprés (31), S, laisse @z, immobile,
quels que soient z, x}, et se réduit a 1. Donc :

Le groupe T est dérivé des substitutions (27) et (28). ll permute entre eux les
27 points ou les 2 indices ne sont pas pairs a la fois, et I'équation de degré 36
précitée, réductible, se décompose en 2 : une de degré g aux abscisses des points
d’inflexion, une de degré 27 donnant les 27 autres points. Dés lors :

Tatorime. — Le groupe de Uéquation aux 25 points (aulres que les points
d’inflexion), ot une cubique générale posséde un contact du cinquiéme ordre
avec une conique, est contenu dans le groupe Ty des substitutions que le
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groupe T dérivé du groupe G| des substitutions
| 2y @35 @y~ oty Xy oty ] (mod 6)

[#1, a2 pairs (mod6)], et du groupe G, des substitutions

|2z, @35 alx 4+ aiz,, alx,+ alx, | (mod 6)
opere entre les 27 lettres a, . dont un des indices est impair.

Il nous reste a trouver la classe de T, et la classe de ses substitutions d’ordre 2.
Iy est transitif entre ses 27 lettres a,, ., telles que z,, 2, ne sont pas pairs a la
fois. En effet, il contient la substitution

|y, 255 alz)+ alzy+ ay, alz, + alz,+ a, | (mod 6),

ou a,, a, sont pairs a la fois, substitution qui remplace @,, par la lettre arbitraire
agp, avec &y =al + o, Ea=al + a,, @l a?—ala*===1. &, ou &; est impair; si,
par exemple, c’est &, on prend a, tel que a| soit ===1; puis ai=o, a2=1,
@y =&y — ay, et on obtient bien une substitution remplacant @,, par az g,
Appliquons encore la méthode générale (p. 298) pour la détermination de la
classe des substitutions d’un groupe; il suffit de considérer le groupe H des
substitutions de T'y, laissant a3, immobile : les substitutions de H sont telles que

Jal +a,=3, Jal+oa,=o0 (mod 6);
ay, @y sont divisibles par 2 et 3, par suite nuls. On a
3(al—1)=o, 3ai=o;

a, est impair quelconque, @} pair quelconque; les substitutions de H sont de la

forme
S'=|x, x3; alx,+ alx,, ajx,+ alx,| (mod 6)

avec a|a;— ajay==1 (mod 6); a} estimpair.
Formons les catégories correspondantes : H contient les substitutions (')
(mod 6)

T =|z, x3; &+ @y, 221+ 2, &ordre 8,
Ti=|ay, 225 21+ Xy, 22, + 32, d’ordre 6,
Ty=|z,, x5 z,+ 2, 2y | d’ordre 6,
Ty= |2y, 235 21— 23, —a; | d’ordre 2,
T,= |z, xa3 Ty, 2T 4 Xy d’ordre 3,
Ty=|ay, 23 — xy, Zy | d’ordre 2.

(') Nous prions le lecteur de former, en cas de besoin, les substitutions correspondantes
entre les @y, r,. '
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T et T, permutent a,, transitivement avec 8 lettres au moins; T,, T; laissent ay,
immobile, et le groupe dérivé de T,, T; est formé des substitutions de H

S"'= |z, x93 21+ alx,y, a4 (mod 6)

(a? quelconque) au nombre de 12, qui laissent @,, immobile : c’est le groupe H,, .
La catégorie représentée par a,, comprend alors 8 lettres, puisque ordre H=3=q6.

T et T, permutent transitivement @y, avec 16 lettres au moins; T';, T; laissent a,,
immobile, et le groupe dérivé de T, T est d’ordre 6 et formé des substitutions

de H
7 S\ =|x, ;3 £y, 2kz+ 2] (mod 6)

(k=o0, 1 ou 2), au nombre de 6 : c’est le groupe H, . La catégorie représentée
par a@,, comprend 16 lettres.

Enfin la catégorie représentée par a,3 comprend a,3 et ay;.

Une substitution de H déplace 26 lettres (cas de la substitution T} d’ordre 2),
ou appartienta H, , H, , H, .

Au lieu de continuer & former les catégories (10), il sera plus simple d’étudier
directement les substitutions de ces trois groupes.

H

(UM

— 8" laisse a,. », immobile si

T

2 —
ayTy= o, Xy

9

Avec le signe +, a} £ o, et l'on obtient 6, 12 ou 18 lettres laissées immobiles,
ryoy O Ay g €L Ay 3y OU gy Ay s €L Ay . Avec le signe —, xy =10 ou 3, et l'on
obtient 6 ou 12 lettres laissées immobiles, a, ,, ou a,, et @, ;.

Il faut négliger, parmi elles, celles dont les 2 indices sont pairs, au nombre
de 3, 3 ou g; on obtient ainsi 3 ou g lettres laissées immobiles, sur 27 : les substi-
tutions de H,  sont de classe 24 (exemple T), ou 13.

H

. . R
ane — O laisse a,. ,, }1nm0blle si
== 2y, 2kxy= (k=o,10u2).

Avec le signe +, k 3£ 0, , = 0 ou 3; les lettres laissées immobiles sont (o, z,),
(3, 2,). Avec le signe —, on a les mémes lettres : parmi les 27 letires de T'y, il

en reste g laissées immobiles, et les substitutions de H,, sont de classe 18

oy

(exemple T5).

H,.
letire immobile, c’est-a-dire est semblable a une lettre de H, , on H, . Donc :

— Une substitution de ce groupe est de classe 24, ou laisse une aulre

Cororrame I. — Le groupede Iéquation aux 27 points (autres que les points
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d’inflexion) o une cubique générale a un contact du cinquiéme ordre avec
une conique est de classe 18; ses substitutions déplacent 27, 26, 24 ou
18 lettres. Cette équation posséde 27, 9, 3 ou 1 racines réelles.

Parmi ces 27 points de surosculation, si a sont réels, a est (') un des
nombres 1, 3, g ou 27.

On sait que I’équation en question est résoluble par radicaux : cela pourrait aussi
se déduire de I'étude (2) des facteurs de composition de T'.

On peut encore le voir directement : T opére entre les abscisses des g points
d’inflexion les substitutions du groupe linéaire g(mod 3) & 2 indices, d’ordre 9.8.6:
I' contient donc un sous-groupe invariant d’ordre 6 laissant les abscisses de
ces g points immobiles. T est alors composé avec ce groupe d’ordre 6 (ou un
isomorphe holoédrique de ce groupe) qui est résoluble, et le groupe g qui P'est
aussi. Donc (3) I et tout groupe qu’il contient (*) sont résolubles.

APPLICATION AUX CONSTRUCTIONS QUE L’ON PEUT EFFECTUER AVEC LA RiiGLF.,

OU PAR LA REGLE ET LE COMPAS.

Etant donnée I'équation X = o de degré d, si I’on peut résoudre complétement
I'équation en lui adjoignant (%) quelques-unAes de ses racines xy, %3, ..., 5 convena-
blement choisies, les autres racines sont des fonctions rationnelles de z,, 2., ... 3,
que I'on sait, dés lors, construire géoméiriquement avec la régle seule (*). La
connaissance du groupe de X = o0 ou d'un groupe I' le contenant permettra de
fixer la valeur exacte ou une limite supérieure de 9.

Exemples. — Pour résoudre une équation dont le groupe est contenu dans le
groupe linéaire général non homogéne a ¢ indices (modr) ( premier), il suffit de

(1) On sait (SALMON, loc. cit., p. 160. — SERRET, loc. cit., p. 613 ) qu'une cubique générale
a au plus 3 points d’inflexion réels. La tangente en un point de surosculation réel passant
par un point d’inflexion réel, on voit que, en réalité, a = 27.

(2) Il suffit de s’appuyer sur la théorie générale des facteurs de composition du groupe
linéaire (JorDAN, Traité, p. 99).

(3) JorbaN, Traité, p. 395.

(%) Ibid., p. 387.

(%) Pour le sens de ce mot, voir JorpaN, Traité, p. 253.

(%) On sait, en effet, construire le produit af et le quotient g a laide de la régle seule,
par suite une fonction rationnelle quelconque des quantités connues et adjointes. De méme
les radicaux carrés se construisent a I'aide de la régle et du compas (voir, par exemple,
Pruvost, Géométrie analytique, t. I, 1888, p. 10).

Fac. de T., 2 S., VL 43



330 E. MAILLET.

. .
connaitre les racines
(0,0,...,0), (1,0,...,0), (0,1,0,...,0), ..., (0,...,0,1),

dont un seul indice est £ 0 et =1(modr),au nombre de ¢+ 1. Donc ici SSqg+1.
Si ce groupe coincide avec le groupe linéaire général non homogéne ou homogéne,
en vertu du théoréme 1II, 8 = ¢ + 1 ou ¢ respectivement.

La connaissance de 3 points d’inflexion convenablement choisis d’une courbe
du troisi¢éme degré suffit pour construire les autres par la régle seule.

En général, d’ailleurs, quand on adjoint d —1 racines de X =o, la d*™* racine
est déterminée rationnellement. Si « est la classe du groupe de X = o, la connais-

sance de d — w racines détermine les autres rationnellement.

Application. — Connaissanl mn — 1 des points d'intersection de 2 courbes
de degré m et n, le mni®c peut étre construit a I'aide de la régle seule.

Dans certains cas, la considération du groupe I' permettra encore de dire com-
bien il faut connaitre au minimum de racines pour construire les autres a I'aide
de la régle et du compas.

Soit A une fonction alternée : elle est susceptible de 2 valeurs au plus, et
dépend d’une équation du second degré au plus, a coefficients rationnels; on peut
la construire par la régle et le compas. En I'adjoignant & X =o, on réduit le
groupe I' aux substitutions de I' qui sont contenues dans le groupe alterné, et
forment un groupe I'. Adjoignons alors. a X =o0, A et d — 2 racines de X : le
groupe de X =o se réduit a 'unité. La connaissance de d — 2 racines permet
donc de construire les autres par la régle et le compas. Ainsi : quand on connait
mn — 2 des points d'intersection de 2 courbes de degré m et n, on peut
construire les 2 autres par la régle et le compas; quand on connait 7 points de
I'intersection de 2 cubiques, les 2 derniers peuvent se construire par la régle et
le compas.

D’ailleurs, ces résultats relatifs aux constructions par la régle ou parla régle et
le compas sont plus ou moins connus, ou sont des conséquences du Livre IIT du
Traité des substitutions de M. Jordan.

Mais nous allons indiquer une méthode pour déterminer le nombre mi-
nimum de points, courbes, etc. déterminés par une équation X =o, qu’il
suffit de connaitre pour que les autres puissent étre construits par la regle
seule ou par la régle et le compas.

On sait que I’adjonction d’une racine @ & une équation réduit le groupe de cette
équation a celles de ses substitutions qui laissent @ immobile. Pour résoudre
’équation, il suffit de lui adjoindre successivement assez de racines pour que le
nouveau groupe de I’équation se réduise a I'unité.
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La méthode générale a employer pour déterminer le nombre minimum des
racines nécessaires a la résolution compléte est identique a celle que nous
avons indiquée pour la détermination de la classe d’un groupe (p. 298).

On remarque, en effet, que 2 groupes semblables ne différent que par la nota-
tion; soient 2 équations qui ont pour groupes ces 2 groupes : si la résolution de
'une s’obtient par I'adjonclion de k racines convenablement choisies, la résolu-
tion de l'autre s’obtiendra par I'adjonction de 4 racines convenablement choisies.

Dés lors, avec les notations de la page 298, 'adjonction d’une racine réduit le
groupe G de 'équation a ’un des groupes H,, Hy, ..., 0u & un groupe semblable
a I'un de ceux-la; il suffit d’étudier un représentant de chacune des catégories de
groupes correspondant & (10), en opérant sur chacun d’eux comme on I'a fait
sur G, etc. Dans la suite des opérations, on applique encore la condition (A).

Soit n le degré de G, '

4, g,

les degrés de H,, Hy, .... L’adjonction d’une racine déplacée par H, & H,,
autrement dit, la considération du sous-groupe des substitutions de H, laissant
immobile une lettre déplacée par H, conduit a de nouveaux groupes représentants

de degrés
Ryqy Nigy ey << Ny

de méme H, conduit & de nouveaux groupes représentants, de degrés
Royts Moy o ovy < Mg
et ainsi de suite. En général, on obtiendra des sous-groupes de degrés

Riyis, .. ik

constamment décroissants.

Le nombre cherché ici, M, relatif aux constructions par la régle seule, cst

la valeur minima (') qu’il faut attribuer a k pour que
i,

gy iy = T+

(1) On pourra aussi chercher la valeur maxima, ou méme les valeurs exactes : si u est la
classe de G, ces divers nombres sont Sn — u. Si, en laissant de coté le sous-groupe de G
formé de la substitution 1, on peut trouver dans G des groupes déplagant n — u,,
n—uy, ..., n—u)x—y lettres, avec uo<<u;<...<up—q, €t non n—uy, avec wu) & o,
Uy, .., Up—1, G est dit un groupe a : degrés (voir notre Note du Bull. Soc Math., 189-,
t. XXV, p. 189). La connaissance de A donnera ici M, 2,
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Considérant les divers nombres n,, _, salisfaisant a cette égalité, le plus petit
des nombres n, ;. corrélatifs est égal a la classe du groupe G.

Pour déterminer le nombre M,., analogue & M,,, mais relatif aux constructions
par la régle et le compas, on remarquera d’abord que M,.=M,. On considérera,

en appliquant la méme méthode, les sous-groupes de degrés

iy in, o ire

La condition nécessaire et suffisante pour qu’une équation soit résoluble
a Paide d’équations du second degré, autrement dit pour que ses racines puissent
étre construites par la régle et le compas, est que I'ordre du groupe G de cette
équation soit une puissance de 2.

En effet, on sait qu’un groupe résoluble d’ovdre m a pour facteurs de compo-
sition (') les divers diviseurs premiers de m, c’est-a-dire que sa résolution se
raméne & celles d’équations d’ordre et de degré égaux a ces divers facteurs : ces
équations seront du deuxi¢me degré a la condition nécessaire et suffisante que les
facteurs de composition soient tous égaux & 2. Par conséquent, 'ordre de G doit
étre une puissance de 2.

Réciproquement, si ordre G = 27, on sait (2) que G est résoluble par radicaux
du second degré, c’est-a-dire que tous ses facteurs de composition sont premiers
et égaux a 2.

Le nombre cherché ici, M,., relatif aux constructions par la régle et le
compas, est la valeur minima qu’il faut attribuer a k pour que le sous-
groupe correspondant soit d’ordre = 2™.

Appliquons cette méthode a 'équation aux 27 droites des surfaces du troisiéme
degré, et au groupe G (p. 317) qui comprend le groupe de cette équation. Les
développements des pages 317 et suivanles montrent que la construction de ces
droites par la régle et le compas est possible quand on se donne (*) a, b, d, f, la
construction par la régle seule quand on se donne a, b, d, f, h.

XI. Il suffit de connaitre 4 des 27 droites, convenablement choisies, d’une
surface du troisieme degré, pour que lon puisse construire les autres a l'aide
de la régle et du compas. Il suffit de connaitre 5 de ces droites, convena-
blement choisies, pour que U'on puisse construire les autres a Uaide de la
-régle seule. ‘

(1) JorDAN, T'raité des substitutions, p. 387.

(2) Yogr, Résolution alg. des équations, Nony, 1895, p. 136.

(3) D’autres groupes de lettres conduisent au méme résultat; ainsi la construction par la
régle et le compas est possible quand on se donne @, b, m, u ou a, b, m', p' oua,m,q, p'.
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On vérifie encore qu'on ne peut diminuer ces nombres en adjoignant d’autres
séries de racines.

Considérons maintenant les 28 tangentes doubles d’une quartique générale. En
adjoignant a I'équation du vingt-huitiéme degré correspondante une de ses racines,
on réduit le groupe a un groupe contenu dans le groupe G précédent. Donc :

XIl. Il suffit de connaitre 5 des 28 tangentes doubles, convenablement
choisies, d’une quartique générale, pour que l’on puisse construire les autres
a Uaide de la régle et du compas. 1l suffit de connaitre 6 de ces bitangentes,
convenablement choisies, pour que l’on puisse construire les autres a ’aide
de la régle seule ().

VIIL

SUR LA TRANSITIVITE ENTRE LES COMBINAISONS DE Y LETTRES.

Reprenons la propriété 2° énoncée page 284 : on peut la préciser un peu plus.
Sans étre py + 1 fois transitif, le groupe G de X = o pourrait étre transitil entre les
combinaisons g, 41 & u+1 des d points; cela suffit pour entrainer que
les d points sont sur la méme courbe de degré u.

De méme, s'il y a une relation géométrique entre les points, courbes, etc.
définis par X =o, relation o 'on peut faire figurer p, de ces points, courbes, etc.
choisis arbitrairement (2), et s'il n’y en a pas ot o1 arbitrairement choisis
puissent figurer, il est bien évident que le groupe de X = o ne pourrait permuater
transitivement les combinaisons des lettres o1 a 1.

Nous sommes ainsi amené incidemment a envisager dans la théorie des substi-
tutions, en vue d’applications géométriques possibles, et, de plus, en raison de
son intérét propre, un genre de transitivité relative ainsi défini :

Si un groupe G de substitutions entre d lettres a,, a,, ..., ag contient une
substitution remplacant une combinaison quelconque de v des d lettres par
une autre arbitrairement choisie, nous dirons que G est transitif entre les
combinaisons v & v de ces d lettres.

L’étude de ce genre de transitivité a déja été envisagée dans plusieurs de nos

(1) Comparer CieBscH, Lecons sur la Géométrie, trad. A. Benoist, t. IH. Paris, 1883,
p. 451.

(?) L’ensemble de ces relations forme alors ce que nous avons appelé (Note au bas de la
p. 282) un systeme complet; le faisceau des substitutions laissant invariable la valeur numé-
rique de chacune des fonctions du systéme forme un groupe, qui contient, G.



334% E. MAILLET.

Mémoires antérieurs (*). Un groupe v fois transitif entre les d lettres est transitif
entre les combinaisons v & v des d lettres; mais la réciproque n’est pas vraie;
ainsi (2), le groupe des substitutions W = | z; a*z + b | (modp), (p premier),

p—I1
2

d’ordre p

> quand p = 4 h + 3, est transitif entre les combinaisons 2 & 2 des

p lettreso, 1, 2, ..., p — 1, et, cependant, il n’est pas deux fois transitif.

Nous savons encore (3) que, si un groupe G est transitif entre les combi-
naisons v & v de d lettres, il est transitif entre ces d lettres; que si G est transitif
entre les combinaisons 3 & 3 de ces d lettres, il ’est aussi entre les combinai-
sons 2 a 2.

Mais Uon peut, plus généralement, se poser les problémes suivants :

1. SiG, dedegré d, est transitif entre les combinaisonsv & v de d lettres

d . .. .. .
<v < §>, est-il transitif entre les combinaisonsV' a V', quand v/ <<v?

La réponse est affirmative pour v =1, ou pourv<3.

1. Si G ne contient pas le groupe alterné de degré d, v <supposé < ;—i>

est-tl limité en fonction de d, comme Uest (*) la transitivité de G?

HI. Si¢ G ne contient pas le groupe alterné de degré d, et si G est transitif
entre les combinaisons v a v de ses lettres, sa classe est-elle limitée infé-
rieurement en fonction de d?

Plus généralement, on pourra songer a traiter, pour ce genre de transilivité,
les mémes problémes (*) que pour la transitivité ordinaire.

Nous allons indiquer ci-dessous un résultat relatif a la question I, et résoudre
affirmativement les questions II et IIIL.

I. Il y a, en dehors des cas ol soit v'=1, soit v=3, une infinité de valeurs de d
pour lesquelles la propriété I comporte une réponse affirmative.

(1) J. de Math., 1895, 1897. — Mém. des Savants étrangers, t. XXXII. — Bull. Soc.
Math., t. XXIV, 1896, p. 89.

(2) Bull. Soc. Math., t. XXIV, 1896, p. go.

(3) Id., p. 89.

(*) JorpAN, Traité des subst., p. 76 et J. de Math., 1895, p. 35. — A. Bocugrtr, Math.
Ann., t. XXIX, XXXIII et XL.

(%) On peut d’ailleurs encore se poser les mémes problémes a propos de la transitivité
incompléte, définie plus haut, page 3o00.
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En effet, supposons G transitif entre les C}, combinaisons des o lettres v av :
chaque combinaison de v lettres comprend v combinaisons de v — 1 lettres. Si G
n’est pas transitif entre les combinaisons de v —1 lettres, il permute exclusivement
entre elles X\ des C}! combinaisons des d lettres v — 1 av — 1, avec A << C;7!. Si
une combinaison de v lettres comprend exactement A, combinaisons de v — 1 lettres
appartenant a ces X, il en est de méme pour chaque combinaison de v lettres en
vertu de la transitivité de G entre les combinaisons des d lettres v a v. On peut

v
alors supposer A, < 5

Ces ) combinaisons comprennent en tout A, C}; combinaisons de v — 1 lettres,
chacune étant comptée ainsi d —v 41 fois, puisque chacune appartient
a& d — v -1 combinaisons de v lettres. Donc

~ )‘IC:’( <V.
A—m, avec )\]:‘_z"
7\:)\Ia'(d—-l)..‘(a’—v—}—2).

vl

Prenons

d=v!lh—1 (h entier >o0);

d—1i,(i=o0,1,2,...,v—2), a avec v! le plus grand commun diviseur { + 1.
Donc d(d —1)...(d —v—+ 2) aavec v! le plus grand commun diviseur (v —1)!:

/A . . . .
~! devrait étre entier, comme A, ce qui n’est pas. Donc G est transitif entre les
v

combinaisons v —1 a v — 1 de ses d lettres.

Posant v— 1 =v,, on peut raisonner sur les combinaisons de v, etv, —1 lettres,
comme on vient de raisonner sur celles de v et v —1 lettres. Les conclusions
seront les mémes, car si v =/h,, d =v,! iy — 1. G est transitif entre les combi~
naisons v — 2 a v — 2 de ses d lettres.

On pourra évidemment ensuite raisonner de méme surv,—=v, —1==v — 2, ...
vj=v—J, .... Donc :

Tutoreme. — Si¢ un groupe G, de degré d=v!h —1, (h entier > o), est
transitif entre les combinaisons v a v de ces d lettres, il est transitif entre les

combinaisons v' a V' de ses d lettres, quand v' < v.
Il en est de méme pour d quelconque quand v =1 ou quand v2= 3.

II. St G est transitif entre les combinaisons des d lettres v a v, il 'est aussi
entre les combinaisons des d letires d — v ad — v : car soient ¢,, c; 2 combinai-
sonsv av; C,, C, les combinaisons d —v a d — v des d lettres formées par celles
des d lettres qui n’appartiennent pas & ¢, ou ¢, ; une substitution de G qui rem-
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place ¢, par ¢, remplace forcément G, par C,. On peut donc se contenter d’exa-
miner ce qui se passe dans le cas ou G est transitif entre les combinaisons v 4 v des

d lettres, avec v < . La propriété a établir est alors la suivante :
d
— —vio(d
> So(d),

ol z(d) est une certaine fonclion > o de d.
Nous indiquerons d’abord une démonstration directe du lemme suivant de

M. Jordan ('), démonstration indépendante de la considération des facteurs de
composition.

Lemme 1. — Si un groupe T, transitif et de degré d, a son ordre dicisible

. d oo . o
par un nombre premier p > 5 autrement dit si T contient une substitution

circulaire d’ordre p > > T est primitif, par suite d —p -1 fois transitif.

Nous savons d'abord que ce lemme est vrai quand I' est primitif (2); mais nous
allons montrer que I' ne peut étre transitif, sans étre primitif.

En effet, supposons I' transitif, mais non primitif, ' contenant une substitution

. . , d , .. .
circulaire d’ordre p > 5 I' admet une répartition de ses d lettres en systémes de

non-primitivité de 0 lettres (Qéf—: <p>. On a p << d, puisque d est divisible
par § << d, par suite non premier.

Désignons par Hy le sous-groupe des substitutions de I' qui laissent la letire
immobile : H, contient une substitution circulaire S d’ordre p. Soit s, le systéme
d'imprimitivité auquel appartient o : Hy permute exclusivement entre elles les
f —1 lettres de ce systéme autres que a, letires dont aucune, par suite, n’appar-
tient 4 la substitution S, puisque § — 1 <p. Soient @y, @,, ..., ap les lettres de
S=(aras...ap).

Sia, et aryy (0 << k<p—1) apparliennent & un méme systéme s, de non-pri-
mitivité, S¥= (@, axyy Askyy ...) montre que Sk laisse s, invariable; @, est rem-
placé par une lettre @sxi de 3, @skys par une lettre aszyy de sz, ete. Finale-
ment, les p lettres de S appartiendraient au systéme s, ce qui est absurde, puisque
p > 6. Donc les p lettres de S appartiennent a p systémes distincts, ce qui est

(1) JorpAN, Traité des substitutions, p. 284.
(2) Id., Note G, p. 664. — Jorbax, Journal de Mathématiques, 1871, p. 384. — E. NETTO-
Barracrini, Teoria delle Sostitusioni, p. 79-8o.
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d \ d .
encore absurde, car le nombre % des systémes est = - <p, puisque 62 2. Donec

F ne peut étre imprimitif. C. Q. F. D.

Ce lemme en entraine un autre quand on s’appuie sur le théoréme suivant (')

de M. Jordan :

Quand p est un nombre premier impair, un groupe de degré p + k ne peut
étre plus de k fois transitif, si k23, a moins de contenir le groupe alterné.

. d , .
Soit alors ;<p§d-—3 : tout étant posé comme au lemme I, T sera

d — p +1 fois transilif; p +k=d, k23, d —p+1=4Fk 4 1. T serait de degré
p + k avec k23, et plus de k fois transitif, ce qui est impossible d’aprés le théo-
réme ci-dessus. Si donc nous admettons que, d étant quelconque, il y a toujours

. . d
un ou des nombres premiers plus petits que d — 2 et plus grands que 5 bous

obtenons ainsi une limite de transitivité des groupes de degré d ou intervient le

plus grand de ces nombres premiers :

Lemve II. — S¢ p est le plus grand des nombres premiers inférieurs a
d — 2, un groupe G de substitutions transitif entre d lettres et qui ne contient
pas le groupe alterné de d lettres n’est pas plus de d — p fois transitif, ou,
ce qui revient au méme, est d’ordre premier a p; on a

[CREY

<p<d—2 (%)

Ce n’est qu'une transformation de ’énoncé de M. Jordan. Mais cette nouvelle
limite de transitivité s’étend a la transitivité entre les combinaisons v a v des
d lettres.

En effet, considérons un groupe G transitif entre les combinaisons v 4 v des

d . .
d lettres (v§ ;), et qui ne contient pas le groupe alterné des d lettres. Son
ordre G est divisible par

v__d(d——l)...(d—v—l—l).

4= v!

Soit encore p le plus grand des nombres premiers plus grands que 2 et infé-
2

(1) Bulletin de la Société mathématique, t. 1, 1872-1873, p. 42.
(2) D’aprés Tchebychef; voir ci-dessous.
Fac. de T., 2* S., VL. 44
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rieursd d —2:sid —v—+1Sp ouv2d—p +1, G contiendra une substitution
d’ordre p et sera d — p + 1 fois transitif contrairement au lemme II. Donc

vid—p.

Mais, d’aprés Tchebychef et Serret (Algébre supérieure, t. 11, 5™ édition,
1885, p. 238), il y a loujours un nombre premier < d — 3 et plus grand que

log*(d — 3) 105 log(d — 3) . 2

5 -
Sa=g(d—=3)—2yd =3 —ab —rrrg 2%A A

A =o,92129...,

5
6d:6d('_sd)’ (ea>0, t.=0);

les logarithmes sont ici népériens, et d 2 6.
Donc, dés que d est supérieur a une certaine limite A,

4

0g> 5‘1,

etil y a toujours un nombre premier au plus égal a d—3el> gd.

-On vérifie que, si Pon prend A =10 003, ¢, — g est positif pour d Z A, 6y — gA

est aussi posilif, par suite aussi Sa— —g-d quand d > 10 003 (').

(1) Pour les valears de d < 10 003, on vérifiera a I'aide d’une Table de nombres premiers

qu’il y a un nombre premier p avec gd < psd—3 tant que d2 4o. Un des moyens les plus

rapides de le faire est de se reporter a la Table suivante de M. J. Glaisher : Factor Table
for the Fourth Million, London, Taylor and Francis, 1879, p. 48; olt 'on trouve tous les
nombres premiers jusqu'a 30 341 avec la différence A; des nombres premiers consécutifs 2
a 2 (on peut aussi se contenter du Tableau de la page 340). On remarque que 4,< 36, quand
d < 10003; p existera donc tant que

d—3—-d=

—3237, d2200.

[BIEN
[ER Y

Quand d < 200, AjZ14; p existe tant que

%—-3215, d 2 go.
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Nous obtenons ainsi ce lemme :

Lemme. — Quel que soit le nombre d, il y a toujours un nombre premier p
au plus égala d — 3 et supérieur a gd, des que d est supérieur a 39.
. . 4 d .
‘Dés lors, si d est assez grand, vSd — p, p > gd, <% Nous obtenons ainsi
ce résultat :
Tatorime. — Soit G un groupe de substitutions entred lettres qui permute
. L X d
transitivement les combinaisonsv av de ces d letires <v§ ;) > p le plus grand

e d
nombre premier inférieur & d — 2 et plus grand que Srona Jorcément

vid—p.
Quand d Z 4o, on a
vz
5
pour d < 4o,
v<8

Ce théoréme comprend le lemme II comme cas particulier, car un groupe de
degré d v fois transitif est transitif entre les combinaisons des d lettres v a v.

Remarque. — MM. A. Bochert (') et Jordan ont indiqué pour un groupe ¢ fois
transitif de degré d des limites de transitivité trés avantageuses en général. Ainsi

M. Jordan a démontré (2) que pour ce groupe

log(d —¢t)2aytlogt  (lima=1log2).
d=ow

Mais la formule v S d — p du théoréme précédent est susceptible de nous donner
une formule analogue v={¢(d) si I'on connait une limite supérieure de la diffé-

Quand d < go, A;X6; p existe tant que
d250.
Pour 40 £d < 50, on vérifie la chose directement.
Enfin, quand d < 4o, on voit de suite que
v<8.

(1) Math. Ann., t. XXIX, XXXIIT et XL.
(2) Journal de Mathématiques, 1895, p. 35.
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rence d — p en fonclion de d : l'utilisation de la valeur de {(d) déduite des résul-
tats de Tchebychef nous a précisément donné en général v < %

On ne connait pas, croyons-nous, de valeur plus avantageuse de ¢(d), ou
mieux, de la limite supérieure de la différence A, entre 2 nombres premiers consé-
cutifs &, , (w, > ;) en fonction de m, ou m,, quel que soit w,. Mais, dans
les limites des Tables des nombres premiers, on peut chercher une valeur de ¢(d)
aussi avantageuse que possible. En particulier, on peut chercher & vérifier ainsi
jusqu’a d = g.10°% par exemple (Tables de Burckhardt et de M. Glaisher), pour la
transitivité entre les combinaisons de v lettres, une formule analogue a celle de
MM. Bochert ou Jordan.

Voici comment on peut opérer : formons (par la pensée) un Tableau ou les
nombres premiers sont rangés par ordre de grandeur croissante, et oti nous por-
tons, vis-i-vis de chaque nombre premier, la différence A avec le nombre pre-
mier précédent; puis ne conservons dans ce Tableau que les différences A, qui
sont supérieures A toutes les précédentes. Nous obtenons le Tableau suivant (1),
valable pour les g.10¢ premiers nombres :

Nombres Différence A, Valeur Valeur Valeur
premiers.  avec le précédent. A, + 2. de 2log,,®,. de (2log,,®,)%

2 [ 3 0,602 0,36

5 2 4 1,398 1,96

I 4 6 2,083 4,34

29 6 8 2,925 8,56

97 8 10 3,974 15,80
127 14 16 4,208 17,70 .

541 18 20 5,466 29,88

907 20 22 5,915 34,99

1 151 292 24 6,122 37,48

1 361 34 36 6,268 39,29

9 587 36 38 7,963 63,41

15 727 44 46 8,393 70,44

19 661 52 54 8,587 73,74

31 469 72 74 8,996 80,87
156 oo7 86 88 10,386 107,77
360 749 96 98 11,114 123,59
370 373 112 114 11,137 124,03
492 227 114 116 11,384 129,60

1 349 651 118 120 12,260 150,31
1 357 333 132 134 12,265 150,43
2 o1o 881 148 150 12,607 158,94
4 652 507 154 156 13,335 177,82

(1) Pour les 100 000 premiers nombres, nous avons déja un Tableau analogue, ne compre-
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-Soit z; le nombre premier qui figure dans la tme ligne de ce Tableau, §; la diffé-
rence A, correspondante : quand d — 2 Sx;y — 0i44, le nombre premier p immé-
diatement inférieur & d — 2 est au moins égal a d — 2 — g, et

v:d—pid-—(d—2—90;)=0;+2.
Donc :

Cororramre I. — Quand d — 2 Sz — 8iy4, 00 @

v<d;4 2,

nant que les deux premiéres colonnes, dressé par M. J. Glaisher (Messenger of Math.,
1878, t. VII, p. 174-175), et rectifié ici par nous d’aprés J. GLAISHER, Factor Table for the
Fourth Million, London, Taylor and Francis, 1879, p. 48. Au dela, nous nous sommes servi
du Tableau des différences A, de 8o et au-dessus pour le premier million (Mess., loc. cit.,
p. 104), 100 et au-dessus pour les 9 premiers millions (GrAIsHER, Factor Table for the
Sizth Million, etc., 1883, p. 64-65). Enfin nous avons vérifié personnellement, d’aprés les
Tables de Burkhardt (Paris, 1817), 'exactitude du Tableau précédent entre 100 000 €t 405 00o0.

Les mémes résultats et vérifications nous ont encore permis de constater 'exactitude,
dans les limites des Tables, de ce théoréme empirique :

h étant donné, on peut toujours trouver » nombres premiers conséculifs dont la diffé-
rence est 2 h.

Ce théoréme était déja vérifié implicitement par M. Glaisher, qui, toutefois, ne I'a pas
énoncé, jusqua %~ = 32 (pour les 100 000 premiers nombres, Mess., loc. cit., p. 174, et
Factor Table for the Fourth Million, p. 48). Pour 4o <= 70, il résulte des Tableaux de
séquences de nombres non premiers (valeurs de A;— 1) indiqués par M. Glaisher (7'ables
et Mess., loc. cit., p. 104 et 171). Pour 33<h <39, on a:

Pour 162 209...... Ay = 66 Pour 404 671...... Ay =74
134 581...... 68 212 777.ven.- 76
173 429...... 70 188 107...... 78
31 469...... 72 (Glaisher)

Enfin, d’aprés les Tableaux de M. Glaisher, on peut encore avoir
h =173, 74, 76, 77.
Finalement, ce théoréme est vrai pour 25 70. On sait de plus (Mess., loc. cit., p. 106 et
E. Lucas, vol. VIII, 187g, p. 81) que la différence 24 de 2 nombres premiers consécutifs

peut croitre indéfiniment.
Mentionnons les différences

265 703 — 265 621 = 82, 360 749 — 360 653 = g6,
396 833 — 396 733 =100, 404 941 -— 404 851 = go,

qui ne figurent pas dans la Table de M. Glaisher (Mess., loc. cit., p. 104).

Notre travail personnel nous permet d’affirmer, sauf erreur de notre part, et sous réserve
de Vexactitude de la Table des nombres premiers de Burckhardt (Paris, 1817), les résul-
tats précédents pour les nombres < 405 ooo. Au dela, une vérification spéciale serait utile.
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z; et o; étant le nombre premier et la différence A, correspondante de la giéme
ligne (2 premiéres colonnes) du Tableau précédent (d < 4 652 356). Quand
9.1002d 24 652 356,

\

v 2136.

|

On peut substituer i ce Tableau une formule valable dans les limites des Tables,
en cherchant une limite supérieure de d — p en fonction de d a I'aide de ce
Tableau.

Nous écrivons dans le méme Tableau les valeurs de A, + 2, les logarithmes
ordinaires de d (base 10), enfin le nombre (2 log,,d)?. On constate que I'on a
constamment, pour les nombres = 29,

A+ 2 < (2log,d).

D’ailleurs, 4log},d =6 dés que

logmdi\éi =1,224..., dz16,79 ou dz17.
Par conséquent :

Levme. — Dans les limites des Tables de nombres premiers (w, et d < g.10%),
la différence A, entre 2 nombres premiers consécutifs &, wy(@s > ®,) satis-
Jait a

AZ4(logym,) — 2,

quand wy>17. De méme, la différence A, entre un nombre quelconque d >13
et le nombre premier p immédiatement inférieur a d — 2 est telle que

Aé/;(log,od)?.

Cororratre II. — On a
vE4(logyd)?,

quand 13 < d <g.10°.

C’est 13, bien entendu, jusqu’a nouvel ordre, une formule empirique.

Il est bon de signaler ici que 3; doit croitre indéfiniment avec z;, ainsi que 1'ont
remarqué MM. Glaisher (') et E. Lucas (2).
En effet, si p est premier impair, les nombres p! + (i =12,3, ..., p+1) ne

(1) Mess., loc., cit., p. 106.
(%) Mess., loc. cit., vol. VIII, 1879, p. 81.
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sont pas premiers. Quand

I

p+

X

1

p

d:p!+p—l—4=<;> Varme(r+¢),

A2p+3;
logd = (p+ %) (logp —loge) (1+¢') =plogp(1+¢&);
log logd = logp + loglogp + log(1+¢&") =logp(1+¢");

logd

_ iy,
p—'loglogﬂl(l_‘-E )

Finalement, pour une infinité de valeurs de d,

. logd

*= log logd (&™),

(lime)= o pour d = ) et A, croit indéfiniment avec d.
On peut améliorer un peu cette limite inférieure en considérant, au lieu des
nombres p! -+ i, les nombres 2.3.5.7.11...p + , oufigure seulement le produit

des nombres premiers au plus égaux a p. En remarquant que, si
6(p)=1log.2.3...p,
on a, d’aprés Tchebychef (),

(1+n)Ap<i(p)<(1+n,)¢Ap, (A=o0,92129..., lim de 1 et n;=o0 pour d = »),

on trouverait
A,22 logd (A fini)

pour une infinité de valeurs de d.

II. — On sait () que si un groupe G de degré d estv fois transitif (% Zvz 2);

e e, . n
sa classc u est limitée inférieurement en fonction de d(ui —» quand n > 29)- On

peul se demander si un théoréme analogue n’a pas lieu pour la transilivité entre
les combinaisons de v lettres. Nous allons établir le théoréme suivant, qui permet
de répondre affirmativement, mais est, sans doute, susceptible de perfectionne-

ments :

L

(1) Journal de mathématiques, 1852, p. 379, ou SERRET, Algébre supérieure, t. I,
5¢ édition, 1885, p. 236. L’emploi de la formule d’Halphen, 6(p) = p(1+ ) (HaDAMARD,
Bulletin de la Société mathématique, 1896, p. 217) conduit a une inégalité de méme
forme.

(%) A. Bocuert, Math. Ann., t. XL, 1892, p. 181.
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Tutorkme. — S¢ un groupe G, de degré d, est transitif entre les combinai-
sons de ses lettresv avy <E Zv2 2), il est primitif; par suite (') sa classe u est

limitée inférieurement en fonction de d.

En effet, supposons que G admette une répartition de ses lettres en systémes
de non-primitivité de & lettres,

Ay Qyy  wevy Qi3 Qiggy ooey Aok ooy et d=ko22k.

On peut écrire
v=ki4+m avec oim < k.

Prenons la combinaison ¢,

Ary  cevy Ap5 Qpyqs  covy Qops  ceey Aprrys ooy Qplim *

. d
sim=oour, lil;kl—;—m_—_vg;-

Supposons d’abord que, en dehors des /-1 systémes d’imprimitivité
(! si m =o0) qui ont des lettres dans c,; il y en ait au moins 2 autres, c’est-a-
dire ({ + 3)k<d (quand m = o, ({ + 2) k< d). Ceci aura toujours lieu, puisque
akl+amsd, d22kl+k, dés que (I+3)k<okl+k, cest-a-dire (22
(quand m =o, 2kl d, dés que ({+2)kS2kl, oul22).

Nous pourrons trouver une combinaison ¢, contenant les lettres de ¢,, sauf 2,
arbitrairement choisies, et de plus 2 lettres a;, @; appartenant a 2 systémes diffé-
rents et différents de ceux qui ont des lettres communes avec ¢, : il y a une
substitution S remplacant ¢, par c,; elle substitue 3 une des letires Qiy oeny Apg
la lettre @; ou aj, et a une lettre du méme systéme une des lettres a,, ..., @xym,
c’est-d-dire que G n’admettrait pas la répartition en systémes considérée.

Supposons alors I < 2 : .

1° =1, 1Emsk—1,d22k+2m,d2 4k oud=23k.

Sid2 4k, (I4+3)k=4k<d, et le méme raisonnement réussit.

Sid =3k, soit k> 2,d>6 (pour d<6, le théoréme résulte du théoréme qui
suit); nous prendrons 2 lettres a;, a; appartenant au troisi¢me systéme; il y a une
substitution T remplacant @, ..., @xm par ces mémes lettres, moins deux arbi-
traires appartenant au premier systéme, et par @;, a;. Parmi les £ 4 m nouvelles
lettres, il y en a forcément, puisque & > 2, une appartenant au premier systéme.
Les lettres a,, ..., @xym comprennent les lettres de 2 systémes, les lettres substi-
tuées, celles de 3 systémes : résultat absurde.

(1) JorbaN, J. fir Math., t. LXXIX, 1875, p. 248-258.
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2° [=1,m=o0, d22k. Quand d23%, on raisonne comme quand /22;
quand d = 2k, on raisonne comme pour /=1, m > o.

3 l=o,v=m<k—1,d2a2m,d22k.

Si d2 3k, on peut raisonner a peu prés comme quand /2 2. Soitdonc d =2k :
@iy ..y @m_1 @y appartiennent au premier systéme; il y aurait une substitution S
remplagant @iy ovoy Am_1 G PAT Ay, ..., Am_y@j OU a; appartient au deuxiéme
systéme, ce qui est absurde. : C. Q. F. D.

Nous allons encore établir le théoréme suivant :

Tutorime — Soit G un groupe de substitutions de degré d, transitif entre
les combinaisons de ses lettres 3 a 3 ou 2 a 2 : G est primitif. S’il n'est pas
2 fois transitif, d est impair, et le sous-groupe de ses substitutions laissant

une lettre a, immobile permute transitivement entre elles les d —1 autres
—1 . d—1
a

2

d
lettres

En effet, soit G un groupe de substitutions de degré d entre les lettres
Ay Ay ...y Qqs

supposons ce groupe transitif entre les combinaisons 2 & 2 de ces lettres, et
soit H,, le sous-groupe des substitutions de G qui laissent @, immobile. Le cas
ou G serait transitif entre les combinaisons 3 a 3 se raméne a celui-1a (théoréme
de la page 335).

H,, est d’ordre 3¢, et ses substitutions sont

I:hl, hg’ sy h:}c;

elles permutent entre elles, transitivement, § — 1 des lettres a,, ..., a4 autres

que a,, par exemple
@y oeey  Ape

Désignons par sy, la combinaison ayay, : si g» remplace a, par a,,, et
Sty e ey 810
par

Sll)\,v MR s)\l)\ei
hjg, est de la forme

<a1 a, ...><a, ay > <a, a, >

a, ap ... a, ay ... a, ay ...

(k=2,3,..., oul), et remplace s,, par une des combinaisons s, ..., ORE
Fac. de T., 2* S., VI. 45
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Formant le tableau des substitutions de G
S W
higas hages . hg@é’?a
hlgda hﬁgda ey /ljcg(h

ol hy g;= gi est une substitution n’appartenant pas aux lignes précédentes, on
voit que ces substitutions remplacent s,, par au plus df combinaisons distinctes.
d—1

Or, G est transitif entre les combinaisons 2 & 2, s),, au nombre de d

d_ljeid—'

» €n

sorte que di=d 5

Si 6=d —1, G est 2 fois transitif; sinon, nous opérerons sur @, ap,; comme
nous venons de le faire sur @, @,, et nous trouverons encore que H, permute ag,,

d—1 .. X ..
avec §'2 — lettres distinctes, et forcément distinctes de a,, ..., ay.

Or 84 0/<d — 1; done = = L=

> d impair.

Enfin, G est primitif; en effet, il en est bien ainsi quand G est 2 fois transitif;
si G n’est pas 2 fois transitif, soit G imprimitif : G devrait admettre une réparti-
tion de ses lettres en systémes de non-primitivité 8 a g, ¢ divisant d : H, permute
entre elles les lettres du systéme de non-primitivité dont fait partie a,, et ce

d—1

sysléme comprendrait au moins 1+ lettres, ce qui serait absurde. G est

donc toujours primitif. C. Q. F. D.

Nous avons vu (*) qu’il y avait des groupes de substitutions G entre d lettres
(d premier = 4h + 3) qui ne sont pas 2 fois transitifs, et qui permutent transiti-
vement les combinaisons de leurs lettres 2 & 2. De méme, il y a des groupes G
entre d lettres qui ne sont pas 3 fois transitifs, et qui permutent transilivement
les combinaisons de leurs lettres 3 a 3.

En effet, nous allons obtenir ce résultat :

Tutorime. — Le groupe de degrép +1(p premier) et d’ordre M{@——_—Q

Jormé des substitutions linéaires fractionnaires (modp) dont le déterminant
est résidu quadratique (modp) et qui n'est que 2 fois transitif entre
ses p -1 indices, permute transitivement les combinaisons 3 a 3 de
ses p +1 indices quand p = 4 h + 3.

(1) Bulletin de la Société mathématique, 1896, p. go et ci-dessus, p. 334.
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En effel, considérons le groupe G des substitutions linéaires fractionnaires

az + b
Zy m l (mOdP)7 ab' — bd,é o,
ol p est premier, 3 fois transitif, de degré p 41 entre les nombres o, 1, 2, ...,

p—1,0, etd’ordre G=(p +1)p(p —1). Soit p = 4h + 3.
L’ensemble des substitutions de ce groupe dont le déterminant est résidu qua-
dratique (modp) forme un groupe G, deux fois transitif, qui ne contient pas la

substitution | z, — z| (modp), et qui est d’ordre (ﬁj‘_})_é’LP_—'_l) =G, = g

G opére entre les combinaisons 3 4 3 de ses nombres ouindices les substitutions
d’un groupe transitif I de degré C,,. Le sous—groui)e L des substitutions de G
laissant une de ces combinaisons, o, 1, — 1, immobile est d’ordre 6; ce sous-
groupe comprend la substitution |z, — z|(modp), dont le déterminant, pour
P =/4h+ 3, n’est pasrésidu quadratique (modp). Le sous-groupe M de G, laissant
la combinaison o, 1, — 1 immobile est formé des substitutions de L dont le déter-
minant est résidu quadratique (modp), ¢’est-a-dire est d’ordre 3. Donc G, permute
transitivement entre elles au moins

91
3

J— 3
=Coiy
combinaisons 3 a 3, c’est-a-dire est transitif entre ces combinaisons.

Remargue. — Ce qui précéde suggere I'idée suivante :
q p

Un groupe G transitif entre les combinaisonsv a v de ses lettres, n’est-il
pasv —1 fois transitif?

Si l'on pouvait répondre affirmativement, on en déduirait certains des résultats
précédents comme corollaires. 7
Inversement, ce qui précéde peut aider a élucider cette question.

IX.

INDICATION DE SUJETS A ETUDIER COMME CONSEQUENCE DE CE QUI PRECEDE (').

I. — Détermination plus compléte de la classe des substitutions d’ordre 2, ou

(1) Nous nous contenterons de signaler I'application immédiate des théorémes I, etc. aux
équations de la division des fonctions elliptiques, hyperelliptiques, a I'équation modulaire
(JorDAN, Traité, p. 343, 344, 354).
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méme d’ordre 3£ 2, des groupes connus, en particulier pour les groupes linéaires
a nindices (modm), m étant quelconque, pour les groupes orthogonaux, abéliens,
hypoabéliens (indices réels ou imaginaires) et pour les groupes de Steiner (voir
p- 323 ci-dessus). Consulter Jorpan, Traité des substitutions et L.-E. Dickson,
Linear Groups, Leipzig, Teubner, 1go1.

Il. Détermination de la classe des mémes groupes ou d’une limite inférieure
de cette classe.

III. Extensions du théoréme Il au cas ol le module r est quelconque : la méme
marche, avec des modifications convenables, est peut-étre applicable.

IV. Application géométrique des théorémes I, II, III, etc., et des déterminations
proposées ci-dessus a d’autres théorémes de Clebsch (Cresscn, Journal de
Crelle, t. 63 et 64; Crrsscu et Linvemann, Legons sur la Géométrie, traduction
Benoist, Paris, Gauthier-Villars; Joroan, 7'raité des substitutions, Livre 111,
Chap. III), aux travaux de M. Humbert sur la Géométrie (par exemple, Journal
de Mathématiques, 1886, p. 308 et suivantes).

V. Continuation de ’étude de la transitivité entre les combinaisons de v lettres
ou de la transitivité incompléte. En particulier, si un groupe G, de degré d, est

transitif entre les combinaisons de v letires (v§ ;), Vest-il, en général, entre les

combinaisons de V' lettres (v << v), ou peut-on citer des cas ou celte propriété
n’ait pas lieu?

Quand v 22, 3, 4, peut-on assigner une limite inférieure a la classe u de G,
analogue & la limite inférieure de la classe trouvée par M. A. Bochert (Math.
Annalen, t. XL, (892, p. 176 et suivantes), pour les groupes 2, 3, 4 fois tran-
sitifs? Peut-on trouver pour v une limite supérieure en fonction de d, quel que
soit d, analogue a celle indiquée par MM. A. Bochert (Math. Annalen, 1. XXIX,
XXXIII et XL) et Jordan (Journal de Mathématiques, 1895, p. 35).

G n’est-il pas v — 1 fois transitif entre ses d lettres?

VI. Soit
®=3x,x5...2%... TN (M>2)

une somme de produits de d lettres z, s, ..., Zd4, ces produits contenant une
fois, et une seule, chaque combinaison de ) lettres, mais non toutes les combi-
naisons de A1 lettres : étude des groupes de substitutions entre d lettres
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laissant @ invariable. Sont-ils transitifs, et dans quels cas? Classe des substitutions
de ces groupes. Applications géométriques, s'il y a lieu.

Cas ot A =2, N =3 (Comparer Jorvan, Traité des substitutions, Livre IlI;
Chap.III, en particulier, ses systémes de trios; et Nerro, Substitutionentheorie,
Tripelnsysteme ou Nerro-Barricrini, Teoria delle Sostituzioni, equasione
ternaria, p. 220).

Bourg-la-Reine, avril 1g904.



