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SUR LES

FONCTIONS ENTIERES ET QUASI-ENTIERES

A CROISSANCE REGULIERE

LES EQUATIONS DIFFERENTIELLES

( DECXIEME NOTE ),

Par M. Epmoxp MAILLET.

I.

M. Borel a introduit ('), dans la théorie des fonctions entiéres d’ordre fini, la
notion de fonctions a croissance réguliére. Mais il n’a donné aucun critére pour
reconnaitre @ priori si une fonction enti¢re donnée par son développement tay-
lorien est ou non a croissance réguliére. De pareils critéres semblent cependant
indispensables au point de vue des applications. Nous nous proposons de donner
ici un critére de régularité de la croissance et un d’irrégularité.

Ce critére s’étend de suite aux fonctions quasi-entiéres.

Il nous permet d’établir deux résultats importants dans la théorie des équa-
tions différentielles :

1° Les fonctions entiéres ou quasi-entiéres d’ordre fini, qui satisfont & une
équation différentielle linéaire a coefficients rationnels en z, sont a croissance
réguliére;

. . . . I
2° Les fonctions entiéres d’ordre fini augmentées ou non d’un polynome en —,
: x

(1) Legons sur les fonctions entiéres, p. 107. La lecture de notre Mémoire exige seule-
ment la connaissance du Cours d’Analyse de I'Ecole Polytechnique, des Lecons sur les
Sonctions entiéres de M. Borel, et de notre Mémoire Sur les Jonctions entiéres et quasi-
entiéres (J.de Math., 1902). ‘
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les fonctions quasi-entiéres d'ordre fini, ayant un point singulier essentiel unique
a l'origine, ne peuvent étre solutions des équations différentielles F = o ration-
nelles d’ordre &, quand F ne renferme qu'un terme eny, »/, ..., ou y*, que si
elles sont a croissance réguliére.

Nous indiquons finalement une application de ce qui précéde a certaines
équations différentielles linéaires dont les intégrales sont réguliéres au sens de

Fuchs.

1L

Soit une fonction entiére
(a) o(x)=ay+ayx+...+a,x"+...

d’ordre p fini. Nous savons que 'on a toujours

(8) Vam<——

-—t

mpP

et, pour une infinité de valeurs de m,

(7) ' ”\1/07;1>—rj—‘:

mpP

. . . . P
(e auss1 petil qu’on veut quand m est assez grand), les autres expressions \/a,,
ayant une valeur plus petite. Ceci a lieu” pour toutes les fonctions entiéres

\

d’ordre p, qu’elles soient ou non a croissance réguliére. 1l est intéressant de

by

chercher & voir dans quelle limite la loi de répartition des coefficients @, qui

satisfont & (7), influe sur la régularité de la croissance de la fonction, par suite,

d’aprés les définitions et les théorémes de M. Borel, sur la régularité de la réparti- -

tion des racines, de fagon a savoir reconnaitre i la seule inspection des coefficients,

au moins dans des cas étendus, si la fonction est a croissance réguliére ou non.
Considérons une fonction entiére

(1) @(x):z a,,x™.

Nous supposons que celte fonction soit d’ordre o, et, qu’a partir d’un cerlain
terme on puisse toujours en trouver un au moins sur 0 consécutifs (§ fonction
de m) qui soit de la forme

I
2 —— = Jnbm
(2) A ’

T 1
p= E - ¢, € tendant vers o avec o
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Supposons encore que, pour les coefficients d’indice m — 1, ..., m — 8,41,
m-u, ..., m~+ 0, —1(8,, 0, positifs 2 1), les coefficients soient de la forme

1
3 . = mI™
(3) =
avec

q=-+s¢,

c=p —m,

q9=p-+E

7,, § finis, limités inférieurement quel que soit m; au conlraire, nous supposerons
que les coefficients d'indice m — 0, m + 0, soient de la forme (2):
Nous savons qu’il y a une infinité de valeurs de z pour lesquelles

(3+9)

lo(@)[2e ™" 7,

¢ tendant vers 6 quand z croit indéfiniment.
Nous considérerons d’abord tous les termes de ¢ (x) pour lesquels (3) a lieu,
c’est-a-dire les termes dont I'indice n’est pas

ey m—06, m, m406, ....

La somme W de ces termes constitue une fonction entiére d’ordre 7/ avec

v

N -

q + &' =p+ & (&, fini),

¢’ tendant vers o quand m croit indéfiniment. On aura donc

| W -e'x'(zw).

N

1l

Pour que @ soit a croissance irvéguliére, il faudra que les termes de & — W
ne donnent pas toujours, quel que soit |z |, une somme d’ordre ell¢*,
Posons, pour une valeur donnée de m, p étant, par suite, parfaitement déter-

miné,
s :J’P
ct prenons
(4 y=e(m+0)=e(m;+0") avee 0 <<l <h,, m,<m.
On a
.
am| 'y — (l,,,‘)'p/'l e C’pml(ﬂll —+ 0’)”’"1.

m’l’]"_’»’ t
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Ce terme sera plus petit que e+ (5, < 1) dés que

(3) —

! 6)%1
" epm,(,n1 4 /] )pm‘ < elm+0) ,
1

!

6
7 (6) = (m,+ 6')° — pm, log <| —+ ;l—1> — pmy+ (p,— p)m,logm,> o.

Nous supposons m + = m, + 0’2 mi*% (¢, fixe et aussi petit qu'on veut).
D’abord

! ! ! m ! /
2(0)=0o,(m;+ 0 )0'.—1—-me_—‘6—, = m[al(mi—t—@ )0 — pmy].
14—

m,

Quand m, + 6’2 m‘f’c‘, ona

1 (602 [0'1”1(1‘+t"°'"[’m1]>0

my+ 6

pour des valeurs de o, telles que 1 — o, soit fixe et > o. Par conséquent (5) aura
lieu pour les valeurs de m, + §'>> m'*% s’il a lieu pour m, + 0= mi+%; il suffira
pour que (5) ait lien

(MY — my) = mi+20% ¢, pm, logm,— pm;-+ (p,— p)m,logm,> o.

Il suffira de prendre (1 -+, )o, =1+, (¢, fixe et positif, ainsi que {, — ¢})
pour que (5) ait lieu, dés que m, est suffisamment grand, par exemple dés que
my;> .

Deés lors la somme des modules des termes de ® — W d’indice <m se compose
de deux parties : celles des modules des termes d’indices Spoqui est =S

"
LY Le(my-+0)]PmE (my+0')0 (O, gy fini);
1
celle des modules des autres termes en nombre < m et dont la somme est <

me(m e+ —- g eim+0)%1 — e(m+0)"’|

o, — o aussi pelit qu’on veut pourvu que m soit assez grand ).
Voyons maintenant les termes de ® — W d’indice > m. Nous poserons

y=e(m+0)=e(m —06) avec o< h<b,, m;>m,

A, )P =

!
e (my— 6,

my
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Nous voulons

6" \pme noy_
(5 bis) erm (1 ) i < eontrm,
l .

6/
«(0Yy=(m;— 6" — m; — pm, - pm, log <1 — ;1—‘> —(p —py)m;logm, > o.
On a
1
T m — gy (my— 6")% + pm,
X,(e'):_ai(ml“6’)6’_'*‘17”11 91/ = ! ;n‘——G’ .
T
Prenons m, — §'< mi—%

(1—C)oy=1—10)

13

(€, fixe et positif, ainsi que §;, — ¢}).

m et m, étant donnés, /(') est alors positif si m, est assez grand; il suffira
pour que (5 bis) ait lieu que X(m, — m"‘cs> soit > o, ou

MR — my — pmy — pmylogmy (— £}) — (p — p1) my log my> o,

ce qui a lieu, car { étant donné, on peut prendre m assez grand pour que [p — pi |
soit aussi petit qu’on veut.

Les modules des termes de ® — W d’indices > m sont alors tous plus petits
que ceux de la série

e(m+0)" r.

e )

NS 1
leur somme est << e(m+0)"1—m -
I — -
e

Il en résulte que @ esta croissance irréguliére sil'on a, dés que m est supérieur
a une limite déterminée,

m + 9 mi%,
m—+ 62 mi+t,

1+
m; 2 m—t, = mi+%

(& fixe, fini et positif).

Nous en concluons finalement le résultat suivant :

Soient my, m,, ..., les valeurs de m satisfaisant a (2), rangées par ordre
de grandeur croissante; si parmi elles il y a une infinité de couples de va-

leurs m,, my consécutives, qui sont telles que la différence de ces deux valeurs
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croisse plus vite que m™— m, (& fini positif arbitraire), la fonction 3(x)
est & croissance irréguliére.

Nous allons maintenant, par une méthode différente, indiquer un critére de
régularité. '
Soit M(r) le module maximum de ¢(z) pour rr = |z | et

M(r)=e".

On sait ou 'on voit facilement (') que, le long d’un contour C entourant I’ori-
gine,
1 F(s)ds

A= . T
27l ¢ Zm—i—i

K

et, st C est un cercle de rayon r,

: M, e
(6) lan| < Gi= 0
avec
(7) arSp+e€,

I
(e'r tendant vers o avec ;)-

Considérons, pour une des valeurs de m satisfaisant a (2), Péquation
(3) o g, = m.

M, étant fonction continue de r, 7 o, varie d’'une maniére continue ainsi que g,
avec r, et il y a toujours une valeur de » qui satisfait & cetle équation, quel que

soit m, puisque \
r°rg, = logM, o,

prend des valeurs aussi grandes qu’on veut pour des valeurs de r assez grandes.

Soit , une de ces racines :

m
7'?"1 e
o,
m
1 m e%r, )
l Am I = 1 <

d’ou

m 1 m
m 1. m
mor, < m<P * ) " (eap,)°r:.

(1) BoRrkL, Legons sur les fonctions entiéres, p. 62.
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Prenons les logarithmes

m 1 m
—logm < m (5 -+ s) logm —+ ?I()g(eo-,“),

r / ™y

d’oti, 5, étant positif, puisque m Dest,

1 T
— < -+g
G"i P
a
Gr 2 Pt S

7 r' ot . b) 3 N . 7 N .
¢, €tant aussi petit qu’on veut dés que m est assez grand. D aprés (7) on aura
(9) p+enSo.Sp+en.

Nous en concluons ce lemme :

Levwe. — Si p est ’ordre d’une fonction entiére d’ordre fini, on sait qu’il
Y a toujours une infinité de coefficients tels que, dés que m dépasse une limite
finie

my—— T
A =

Ol=-
+

m

s aussi petit gu’on veut, malis fini : il y a toujours pour chacune de ces valeurs
. 1
de m un nombre ¢, qui tend vers o avec —et tel que pour
)

1

< m >P+51

r— - )
p &

o+e
M, = e,

on ait

Ceci posé, soient m et m + 6§ deux valeurs de l'indice de «,, satisfaisant & (2):
les valeurs correspondantes de o, dans (8) satisfont a (g).
Considérons I'¢quation analogue a (8)

(10) ’ o, 1=

u variant entre m et m -+ 8, r9% o, varie dans les mémes limites d’une maniére

continue et prend toutes les valeurs comprises entre m et m + 0. Supposons que

'on puisse assigner un intervalle entre m et m -+ 0§ ou 0 — 5,28 (€ fini positif

limité quels que soient p et m dans cet intervalle), dés que m dépasse une certaine

limite, c’est-a-dire que la fonction ¢(x) soit & croissance irréguliére. Supposons

en particulier que ceci ait lien pour w = m k. On devra avoir dans cet inter-
Fac. de T., 2 S, 1V. 58
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valle :

1 e’

(rr) Q| = n
' l (- +e

<
me ) " <

p—ozt.

Ql®
SN——

pour une valeur de s telle que

On en tire

(12) X—_—’;—l(logp—logc) ——(1nlognz)<é—|—s>—%<o.

Pour p.=m, p — s 2%, ceci n’a pas lieu dés que m est assez grand.
D’ailleurs la dérivée
Xp—=— —

1
o @

est loujours négative pour p > m. X est loujours décroissante quand w croit : il
suffira que X soit négatif pour une valeur de p pour qu'il le soit pour les valeurs
plus grandes : prenons p.= m(logm)'+*. On a

m . I

P [logm —loga + (1 + «) loglogm] — (m logm) (5 —l—s> — m(logm)t+%< o,
dés que o positif fini aussi pelit qu'on veul; au contraire, celle égalité n’a plus
lieu dés que 2 est négatif. Elle est donc impossible si

<< m(logm)t—* (=« positif),
ou, a fortiori, si
m + 0 << m(logm)'—*,

c’est-a-dire que (11) est impossible dés que
m+ 0 <<m(logm)'—%.

La fonction est alors & croissance réguliére.

Siles valears de m satisfaisant a (2) sont telles que la différence de deux d’entre
elles consécutives my et m, (my > m,) croisse moins vite que m, (logm)'~*—m,
(= fini positif arbitraire) dés que m, dépasse une cerlaine limite, la fonction est a
croissance régulicre.

‘En résumé, nous pouvons énoncer le théoréme suivant :
Tutorivwe I. — Soit

(1) ‘?(w) :Eanzxm )
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, T . L _ ) o
une fonction enti¢re d’ordre fini o. On sait qu’il y a; pour m asses grand,
une infinité de coefficients a,, tels que

m— I

(2) ) Vau =

-y
+g

Ol —

ns

sinférieur a un nombre fini arbitraire aussi petit qu’on veut positif.

7

Si O est un nombre positif qui croit moins vite avec m que
m(logm)'=*— m (o positif aussi petit qu’on veut, mais fini), et si,
sur 8 coefficients consécutifs a partir de a,, il y en a toujours un tel
que (2), dés que m dépasse une limite finie, la fonction o(z) est a
croissance réguliére.

PREMIER
CRITERE.

Si 8 croit plus vite avec m que m'*— m ({, fini positif aussi petit
quon veut), pour une infinité de valeurs de m satisfaisant é () dés

{

( que m dépasse une limile finie, la fonction ¢(x) est a croissance irré-

DEUXIEME
CRITERE.

guliére.

Remarque I. — Ce théoréme s'étend immédialement aux fonctions quasi-
enli¢res : il suffira de remarquer quc la fonction quasi-entiére d’ordres finis

25 Pos Ry <o oy Py

(13) C")(S)'{—(Po(é.)+§7|<;I—‘(‘l—l‘>+..-+(?k<;_—_l—&‘/:>)

ol 9(5), 94(5), .., 9x() sont des fonctions entiéres d’ordres finis, 2y Poy+vs P
avec @ £ axF...Aar7# 0, a sa croissance réguliére s'il en est de méme
de 9(5), 29(3), ..., ©x(3), irréguliére st I'une de ces fonclions a sa croissance
irréguliére.

Si p(s) n’est d’ordre fini qu’aux environs d’une partie de ses poinls critiques
essentiels, les critéres sont encore applicables aux environs de ces points.

Remarque II. — Les dérivées d’ordre quelconque des fonctions entiéres ou
quasi-entiéres d’ordre fini quelconque qui satisfont a 'un des critéres du théo-
réme I y satisfont également. Elles sont en méme temps a croissance réguliére ou
irréguliére (1),

(1) La méme propriété est évidente pour les fonctions entiéres ou quasi-entiéres d'ordre
fini dont toutes les racines sont réelles (a part un nombre limité), car leurs dérivées ont
toutes leurs racines réelles (4 part un nombre limité), les ordres subsistent par la dériva-
tion, et, entre deux racines réelles de la fonction, il Y a, en général, une racine réelle de la
dérivée.
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1II.
Le théoréme I conduit & des applications imporlantes dans la théorie des équa-
tions différentielles.

Tuatorive Il. — Les fonctions entiéres ou quasi-entiéres d’ordre fini qui
satisfont a une équation différentielle linéaire rationnelle en z ont leur
croissance réguliére.

Soit I’équation différentielle linéaire

d* y .
(14) Aoz;'z. o Ay A o= F(x, y, )y o, )
avec
(15) Ay=al i+ +a) (i==0, 1, 9, ..., K=41),

an des a! étant £ o ainsi qu'un des coefficients «"', ..., @, ¢ ayant méme

valeur pour tous les A;.

Supposons que
4+ o
(16) y :Za,, an

soit solution de cette équation. Le terme général en z*, par exemple, devient,
pour n assez grand,

- (k) I (k)
(17) ag oyt ayliod, . A a, g

fe— = ,
+(nnyaf Vo +. o+ a) V(R —q 1) g

+(n+hk)y(n+k—r1).. . (n+1)a) appt. ..

+n+hk—q)(n+h—g—1)...(n—qg+1)a) dp;p_g=0.

oy I T ;g
Le terme général en — se déduitdu précédent parle changement de n en — n.
x

Supposons que y soit une fonclion quasi-entiére
I
o(5) + 0ol =

(18) A= —5—) Oy, == ————

d’ordres p, 9y, avec



LES FONCTIONS ENTIERES ET QUASI-ENTIERES A CROTSSANCE REGULIERE, ETC. 457

pour une infinité de valeurs de n, ny, ¢, ¢ tendant vers o respectivement avec

1 1
—et —-
nooon

Quand on fait varier n(n,), par exemple, il n’y a qu’un nombre limité de
coefficients o qui figure dans chaque équation (17); & partir d'une valeur finie
de n (ou n,) ils doivent figurer tous dans I’ensemble des équations (17), sans
quoi y contiendrait une infinité de coefficients arbitraires.

Les équations (17) contiennent k + ¢ -+ 1 coefficients conséculifs au plus, I'un
des coefficients @, ..., ;" n’étant pas nul. Le coefficient de a; est d’ailleurs un
polynome entier en n qui ne peut étre nul dés que n dépasse une certaine limite
pour toutes les valeurs de j, sans quoi tous les a; seraient arbitraires. Nous

aurons donc pour (17), en donnant a j une valeur n telle que 2, = , unc

¥
— g
n( p )
équation de la forme
AWy . =0,

®, étant un polynome entier en n, de degré k au plus, et les aulres coefficients
y ) )

T 1 .

en nombre limité étant de la forme ——— avec ¢ <p. On aura alors une relation
nka +81>

impossible si un des autres coefficients n’est pas de la méme forme avec p — o=z,

¢, lendant vers o quand n croit indéfiniment. Par conséquent, on peut affirmer

que, sur k + g -+ 1 coefficients consécutifs de y, 1l y en a toujours au moins deux de
9 ) J

I'ordre de % si n est 'indice correspondant; de méme pour les exposants
n 5+8
négatifs. D’aprés un théoréme précédent, la fonction y» est donc une fonction
enliére ou quasi-entiére dont la croissance est réguliére.
Il n’y a pas de difficulté & étendre ce qui préceéde aux fonctions quasi-entiéres

de la forme (13). La fonction

— o(3) ! . -
. Yy =29(s —i-jcp0<5>+<P1<5_a1>+...+ﬁ°k<z_ak>

ne peut étre identiquement nulle que si tous les coefficients le sont : en effet,

. 1 . . . . -
si <Z>’ par exemple, n’est pas identiquement nul aux environs du point s =o,

I . .
Po <E> peut prendre des valeurs aussi grandes qu’on veut et aussi ). Posons

alors
y=Y+ Y+ Y, +...,

Y=9(2), Yo:%<§>’ ’1:e°.<,'a>,
< 3 —
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On aura

.o

Fz,y,p's ..., py")=F(2,Y,Y, ..., Yh) + F(a,Y,, Yy, ...)+..

On transformera F (2, Y,, Y\, ...), par exemple, en posant £ — @, =z, de

. s I <.
fagon & le mettre sous la forme f, <—> Si
X

S

F(z, Y, Y, ...) =/(a),
F(z, Yo, Y, ...):fo(i),

F(x,Y,,Y;,...):f.<i>,

on devra avoir

f@ e 1u(3) 44 (5) + =0

1

: 1 ., ..
Pour des valeurs des exposants de x, —y —; ..., qui dépassent une limitle
z x

finie, tous les coefficients de z”, 2=, z7™, ..., doivent étre nuls, et I'on est

conduit évidemment a des équations tout a fait analogues a (17).

V.

Ces propriétés subsistent en partie pour des catégories étendues d’équations
différentielles rationnelles en z, y, y' ..., ¥®. Nous allons établir i cet égard le
théoréme suivant :

Tuatoreme IIl. — Sost
(19) F(az,y,)'s ...,y =0

une équation différentielle entiére en y, y', ..., y'® qui ne renferme qu’un
seul terme en y, 'y ..., oy,

Une des fonctions P <é> -t EQ,,x” ou P(x)+ E %‘;, ole P(x) est un poly-
0 0

o«

. N n . .\ . . . By
nome entier, Zﬁ,lx une fonction enti¢re de genre fini, ne peut satisfaire a
0

@
. . . "We n . i P cy L
Uéquation (1) que si nX" est a croissance réguliére.
]
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En effet, nous pourrons toujours supposer F mis sous la forme
(19) FZEAyio)"il..._}'(k)ik,

les A étant des polynomes entiers en z.

Supposons que
3 J— \ n— _l_ w’ Iz
(20) Sy =0z _P<I)+)6nwz
— 0
soit solution de (19)
On a
[y —=...+(=n)b_ s ... —0_ 57+ 0 +2%a+...+nb,3" '+, .,

Y =4+ (=n)(—n-—1)0_,57" 24,
+ 0 (—1)(—2)s%+20,+...+n(n—1)0,5" 2 +...,

(21)

y”"’:r...—&— (—n)(—n—1)...(—n—k+1)0_,z 4 ..

+ O (=R st kOt o+ n(n—1). . (n—k+1)0,5" kL

©

Quand on substitue EQ,,x" dans F = o, le résultat doit étre identiquement
-
nul. Nous allons chercher le coefficient de z” dans le produit

Yoyl . ythiis,
D’abord le terme général d’exposant positif E a son exposant de la forme
(22) E=mla—+...4+mi(ay—1) ...+ mi(op—k)+...+m} (3, — k),

4, ..., 6f pouvant étre posilifs ou négatifs, mais étant limités cn valeur absolue
dans le deusi¢me cas; a;— Z, par exemple, quand ;2o est tel que ;27 (*).
Son coefficient est

N )
(23) B — 7! 0!

e m mk m}' m! m}
T omilooom)! mil.  m*) TR Ek"al""al EEE
0

2 IIIF

X [(or—hk—+1) oo, [(Sr—Fk—+1)...0,]",

(1) Dlailleurs, s’il en était différemment, le coefficient B correspondant serait nul.
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avee
0 0 — 7
‘ me ...+ mj =1,
(2;1) ) ...... bt e e s
k J
L my . mp =0

Le coefficient G de 2" dans I, aprés substitution & y de 29,,95", est
—

(25) ZaB —=o,
et Uon a, pouar chaque terme correspondant de ZAyfo. ..y®% un exposant de la

forme
n=E~+r (7 fini),

chaque terme Ayh...y®% correspondant & une ou plusieurs valeurs de E en
nombre fini.

Considérons, dans chaque expression Ay, ..y®i les termes T de ZaB qui

sont 3£ o et pour lesquels 'indice o’ de 0, est maximum parmi ceux qui ont
un coefficient o'(o/ —1)...(a«/ — &/, 4 1) d’ordre maximum en o/. On I'obtiendra
en considérant tous les termes B pour lesquels tous les indices «, ...; sauf 1, par

5
exemple o, ..., 8, ..., %, ..., v ont les valeurs minima telles que 0,...0;...0,,
soit £ o, prenant pour le dernier indice o (ici ) les valeurs qui résultent
de n = I& + r, et parmi celles-la celle qui correspond a la valeur minima de r; on
aura ici

a=...=20, cee O == =Yy

c’est-a-dire que les indices minima provenant de y%, y'4, ..., y®% sauf in-
dice o' (ici &), seront respectivement égaux entre eux. Il n’y aura dans
: ; o . R Nk NEE
Ayio...y®ik qu'un T, de la nature T qui corresponde & y(f) ", c’est-a-dire pour
lequel le coefficient o' soit un des indices oy, ..., Gz, pourvu que 7 soit = o.
Parmi les termes T analogues correspondant a Ay, .. y*% si iy est I'exposant
d’indice le plus élevé qui soit = o parmi les exposants Z, ..., ix, nous choisi-
rons celui qui a pour coefficient o' (o' —1)...(a'— A'+1). C’est évidemment le
terme T cherché : il est unique.

Si F = EAy"u...yW"k conlient d termes Ayb...y®% il y a d termes de

EaB de la nature T.

Les coefficients B correspondants, en nombre fini, sont de la forme
B'=B,0a (a! —1)...() — k'+1),

B, étant une constante et &'k, o' différant de n d’un nombre fini (1).

(1) «' n'a pas forcément la méme valeur pour tous les termes B’
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Par hypothése, il y a au moins un terme en y® : supposons qu'il n’y en ait
qu’un : le terme B’ correspondant sera de la forme

(26) B"=B,0a" (" —1)...(a" — k +1) avec B,#o.

Pour de grandes valeurs de «, il ne pourra se réduire avec aucun des termes B/,
au moins lant qu’on ne spécifie pas les valeurs des 0: il ne pourra donc étre de
module supérieur & la somme des modules des autres termes.

Supposons qu’il y ait plusieurs termes en y® : il pourray avoir plusieurs termes
de la forme aB"£ o analogues & T contenant un méme coefficient 8, analogue

a Uy et donnant dans EaB un total
(27) 'F1:<E(l’l}2>0a"a”(a”—l)...(OC”—k—{'—J).

Si Ty £ o, les autres termes de EaB qui contiennent f,~ étant en nombre li-
mité et d’ordre So’ (2" —1)...(¢" — k4 2) ne peuvent se réduire avec T, : T,
devra donc se réduire avec I’ensemble des autres termes, et la somme de leurs
modules devra alors étre d’ordre de grandeur au moins égal a celuide T,. Si

Za’Bzz o,

quel que soit a; les termes de T provenant de y® n’interviennent plus. On peut

T,=o0,0na

considérer les termes en y~1) et l'on raisonnera dessus de la méme maniere :
le coefficient de O, o (o — 1)...(a"— k—+2), a" élant aussi grand que possible,
est nul ou non, celui de o (o —1).. . (¢ — k 41) Iétant : s'il ne Pest pas,
il doit étre d’ordre de grandeur < la somme des modules des autres termes; s'il
I'est, on considérera les termes en y*=2) elc.

Sl Ry adans F qu’un terme en y*) pour une valeur o S k'S k, Uensemble
des termes de EaB qui contiennent 8, doit étre d’ordre de grandeur < la

somme des modules des autres termes.
Admettons qu’il en soit ainsi.
-3
Supposons alors que Eﬁmz”‘ soit une fonction entiére a croissance irréguliére.
0
On aura, pour une infinité de valeurs de m,
(28) 6/": T

Fac. de T., 2* S., IV. 59
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s élant l'ordre de la fonction enticre; pour les autres valears,

1

(29) 0,”: —_—)

m

m°

o —a étant fini, positif et limité inférieurement. De plus, si m, et my(my,>m,)
sont deux nombres m consécutifs pour lesquels (28) a lieu, on a une infinité de
valeurs de m, telles que

1
(30) my>my (logm,)? (théoréme I).

Supposons encore que ¢’ soit une de ces valeurs m,. La chose est possible,
P 1

quel que soit m, (pourvu que m, soit assez grand); car, les autres indices du
terme 677, . .62 .. ¢tant fixés comme il a été dit plus haut, pour la détermina-

tion de o', n restant arbitraire, on en conclut une relation
n—oa"+w,

w élant une constante parfaitement déterminée la méme, quel que soit n : pour
choisir o' = m,, il suffit de prendre n = m, + .

Les auatres termes, pour lesquels les indices sont £ a" et Sa'—+ 7' (4 fini),
sonl tous de la forme

X me "11
el 05,

les o, ..., ok, ... élant en nombre limité et <P’ (P" maximum des quantités
P=iy+ i +...4 k), avec

(31) mio+...+m}é=n—1r",

ol 1 est fini el peut avoir plusieurs valeurs.
. ik
Pour chacune de ces valeurs de 7, cherchons un maximum de w93t .05 .. ..
On a, {8, élant positif,
(32) 08, = —5; (B,Za" et Za"+r,, Kk limité).

Désignons, pour plus de commodité, par By, ..., {3 les modules des quan-
. \ \ . .
lités a, ..., dx, ... en nombre /, chacune élant comptée aulant de fois que l'in-

dique son coefficient m{, ..., mk respectivement dans (31). On aura, d’aprés (32),

B
(gt b )T = kBT BE (K find)

(33) avec

Bi+...+Bi=n—+r (r, fini).
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Parmi les quantités toutes de méme signe 8y, ..., B, il y en a alors une, 3,
par exemple, qui est la plus grande en valeur absolue, et telle que

n—+r

(34) 18122

Pour cette valeur 5,59 — ¢ ({ fini, positif, limité), car

51(105’.61)%2 <n —'l- I") Iog<,Z _(l— "1>

quel que soit le nombre fini 7, dés que 7 est assez grand. On pourra poser

-

19,

>n-—r,,

(35) oo’ =p—L.

B, étant supposé fixe, cherchons un minimum de

B B 1
BT ... pErz(BY. . .BRE (1)
avec .
Bi+...+ Bi-y=const.=n +r,—f3,.

On a, en prenant les logarithmes,

%logﬁ,—i—...—l—%—_—'log&_,z BilogB+...+ B/ logﬁz—l,
1 1—1

Pt
et
d(BylogBi+...+ By logB,-y) =o,
dg,+...+dB,y=o,
(1+logB)dB+...+ (1 +logPi~y) dBi-1y=o0,
ou enfin

o= (logf,—1logf,—1)dBs+. ..+ (logfs—s—logfi—s) dB .

dBy, ..., dB;_2 sont ici indépendants. Donc il faut

1
La valeur correspondante de (88:...335)P: est

n+ro—f
n—+ri—B [
{—1

C’est un minimum, car, par exemple, elle est inférieure & la valeur obtenue en

(') p1=p +¢, | c] aussi petit qu’on veut, mais fini.



464 E. MAILLET.
faisant 8, =... =B, a=1,

Bioy=n+r—3,—1+2,
gui est

nry—B—1+2

(n+ri—Bi—1l+2) &

dés que >1, ce que nous supposerons provisoirement. Dans cette hypothése,
on a donc

n+r—By

Be
e

Il+r,—[5[

B
s (n—+r—273;
Bl( {—1 > H.

=
2=

- B...BT

v

D’autre part,

lOgH:X‘:?logﬁl—l—n_'_lpl xﬁll ll—l-l]l—l-ﬁl

a pour dérivée en 3,
n+r,—035; 1

’——-l o __._l. o - v
X! = = (1+1ogB/) o log — -

1 1 1 1 !
:?logﬁ,— P—llog(n—l—l‘,—ﬁ,) o+ alog(l—~1)~— a

De méme
1 I

X = e + ———
YT p(r i —By)

n-r
)

sa valeur minima a donc lieu ici pour 3;=

qui est toujours positif pour ;2 - X/, est une fonction croissante de 3 :

n-+r
)

)
5 cest

1 n+ry LI . l——l.
—-+-P—loo"(l——-1)—-—{~3—+ —log i _EIO”(n_‘—")—l

Pour n assez grand, cette valeur est toujours positive, et dés lors X est ici tou-

n4-r
jours positif. Par suite, X, croit avec 3, dés que 8,2 — 5 1, et
N\
n—+r
nobry——
; renst P R
— a7 n—r—p P /ntry l
=7 T ’ = { l—1
Il;l—l,“ nl+rl 1)
- i n—+ry 1
- !
n—+rg n4-ry _1___1‘)

<n+71> 21 <n+7‘1‘) a6y .
l-‘/
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Finalement, d'aprés (33),

n—+ry n+ry (1 l*) —1

(5 fr.
m ek n—r P n-+r,
LI A B “<—[—> < - > :

Cetle inégalilé reste évidemment vraie quand {=1.

Le nombre des termes de EaB est d’ailleurs < au produit d’un nombre limité
par le nombre des solutions de
nAry=nlo ...+ mhap. o,
%, ..., ax ne pouvant étre négatifs que si leur valeur absolue est limitée, et r,
n’ayant qu'un nombre limité de valeurs. Ce nombre de termes est alors <nt,
? étant limité : la somme des modules des termes de ZaB autres que ceux qui

contiennent 8, est d’ordre

v.
ns

e (I T)
n—+ry A2 n—+r A G py
o)

{, éant la plus grande des quantités [, qui sont limitées. Cette somme est

< (¢ limite),

évidemment d’ ordre
I
< —
— (l+ &)
o

qui est Pordre des termes f,72"...(2" — k'4-1), et, par conséquent, EaB ne
®

peut s’annuler contrairement & ce qui doit avoir lieu si Ze,,x" est solution de
-

IF=o (").

La méme démonstration s’applique aux fonctions quasi-entiéres d’ordre
fini > 22 : il n’y a presque rien a y chang

P y a presque r a y changer.

D

Nous concluons finalement ce théoréme :

(1) Chaque fois que I'on pourra établir, pour une équation différentielle rationnelle F =o,
Pexistence d’un terme 3£ o0 analogue a (26), on sera évidemment conduit aux mémes conclu-
®
sions et E 0,2" ne pourra étre solution de F = o que si elle est a croissance réguliére.
—M
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Tutorime I11. — Sod¢
(19) Fla,y,5, ..., y*)=o0

une équation différentielle enticre en y,y', ..., y'® qui ne renferme qu’un
seul terme en y,y', ... ou y,

Une des fonctions P<LT> +26”x" ouP(x) —i—z%,‘;, P(z) étant un poly-
0 0

nome entier et EG,,x” une fonction entiére d’ordre fini, ne peut satisfaire
0

L
a Uéquation (19) que siEQ,,x“ a sa croissance réguliére.

0

Remarque I. — Nous croyons utile d’insister sur une conséquence des résul-
tats qui précédent : nous avons vu antérieurement qu’il y avait des catégories
étendues de fonctions entiéres ne satisfaisant & aucune équation différentielle
rationnelle (1), pourvu que la décroissance des coefficients fit suffisamment
rapide. Il résulte de ce qui précéde que, quelle que soit la rapidité de décroissance
des coefficients pour les fonctions entiéres d’ordre fini, la généralité de ces
fonctions ne comprend aucune solution des équations différentielles linéaires
rationnelles, ni méme de catégories étendues d’équations différentielles ration-
nelles non linéaires.

C’est un résultat plus précis, mais moins général jusqu’a nouvel ordre, que
celui que nous avons obtenu par extension d’un théoréme connu de M. Cantor,
aux équations différentielles rationnelles.

V.

Le théoréme 1I peut s’étendre aux solutions générales ou non de certaines
équations différentielles linéaires dont les coefficients sont des polynomes enliers
en x.

Soit I’équation dilférentielle

(1) Ay

ol Ay, .... A, sont des polynomes entiers en x, que 'on peut supposer premiers

entre eux.

(V) Journal de Mathématiques, 1902, p. 37.
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On sait, et I'on voit sans peine, par le changement de variables

dn=1y ’ dr—2y (_I;y_

dzit )0 dpi—s e dx

=Yn—1

ct Papplication d’un théoréme de Cauchy ('), que les seuls points critiques
a distance finie des solutions de (1) sont les zéros de A,.

Si A, se réduil a une constante, (1) n’a aucun point critique a distance finie.
L’intégrale générale est unc fonction entiére : le théoréme II s’applique.

Sinon, soit .
Ay=(ax + b)¥* (a#0);
grace a un changement de variables simples, on peut toujours supposer

a==r1, b=o, Ay=a% (p enlier).
Soit 7 une racine de I’équation déterminante : on a une intégrale

Y = 2" u,.

Supposons encore que (1) ail ses intégrales réguliéres, au sens de Fuchs: 'on
sait qu'alors wSn, A; étant divisible par z¢~, si p.2 7. En multipliant tout
par 2", on peut supposer w = n. Cherchons I’équation différentielle a laquelle
satisfail u,; on a

dr=+Y dn—t—1
A-Ldnk A/.ZC;/.dnAftlor(r—l).,,(,-_1+,)x,._/’

avec
Ap—= A xn—k ct ISn—k,

’ ’ .
4 clant un polynome entier.
On aura ainsi le terme
dr—*-ly '
"ol o0 e . b
4 Clot g P (7= 1) (= L) ke,
avec
n—»~Lk-—1{zo.

dn=rk=1ly ,

Donc 27 sera en facleur, et le coefficient de Z[T_T
- i

est divisible par an~%-C,
Supprimons le facteur 27.

I’équation en u, sera encore une équation différentielle linéaire de la forme (1),
avec (== n, ayant ses inlégrales réguli¢res. Mais la racine de I’équation détermi-
nante qui correspond a z” sera nulle.

(') Voir, par exemple, Cours d’Analyse de I’Ecole Polytechnique.
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La solution w, correspondante n'a plus de point crilique a distance finie, et
est monodrome dans tout le plan : c’est donc un polynome ou une fonction
entiére.

Dans le second cas, I’équation différentielle en w, est de celles auxquelles notre
théoréme Il est applicable. Si u, est de genre fini, elle est & croissance régu-
liere.

A titre d’exemple d’application des considéralions précédentes on peut citer
I'équation de Bessel.

Les mémes considérations sont applicables au cas ot tl y a plus d’un point
critique, mais o tous les points critiques a distance finie aulres que x = z, (I’'on
peut toujours supposer comme lout & 'heure 2, = o) sont des podles pour I'inté-
grale générale. On a un systéme de n intégrales indépendantes (*)

Yo= (& — 2¢)"tty,

Yi=(x — )" (0 tto+ uy),

avec

1
6, =——=log(x —x
1 2L b( 0)’ ’

Uo, Uy, ... sont des fonctions quasi-entiéres n’ayant & distance finie que des
poles : si u, est d’ordre fini, u, est & croissance réguliére.
Nous pourrons ainsi énoncer le théoréme suivant :

Tuatorkme IV. — Soit une équation différentielle linéaire

dn—ly

dn,
A, dx{_l_Al i A, x=o0

dont les coefficients sont des polynomes et dont les intégrales sont réguliéres
a distance finie au sens de Fuchs. St tous les points critiques a distance finie
autres que x = x, sont des pdles pour Uintégrale générale, il y a un certain
nombre d’intégrales de la forme (x — )" w,y ot uq est une fraction ration-
nelle ou une fonction quasi-entiére n’ayant d autres points critiques «
distance finie que des pdles (c'est-a-dire la somme d’une fraction rationnelle
et d’une fonction entiére) : u, ne peut étre d’ordre fini que si sa croissance
est réguliére (au sens de M. Borel).

(1) Les considérations ci-dessus sont des généralisations de considérations dues a Hal-
phen. — Voir Jorban, Cours d’Analyse de I’Ecole Polytechnigue, t. 111, 1887, p. 211,
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L’équation de Bessel est de celles auzxquelles ceci s'applique.
Si Ap=const., U’intégrale générale est un polynome ou une fonction entiére
qui ne peut étre d’ordre fini que si sa croissance est réguliere ().

(1) Ce théoréme ne doit évidemment étre considéré que comme un cas particulier : il
appelle bien des extensions.

Fac. de T., > S., IV. 6o



