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VARIETES A TROIS DIMENSIONS,
| PAR M. E. COTTON.

INTRODUCTION.

by

On appelle variété a n dimensions 'ensemble de n variables z; et d’une
forme quadratique de leurs différentielles, & discriminant différent de zéro, le
ds? de la variété.

L’intérét que présente I'étude de ces variétés s’explique par le grand nombre
de théories ol elles interviennent. On peut citer, en Géométrie, la théorie des
surfaces et son extension aux espaces a plus de trois dimensions, les recherches
sur la nature de I'espace et les Géométries non euclidiennes, les questions rela-
tives aux contacts de courbes ou de surfaces comprises dans des- familles dépendant
de plusieurs paramétres arbitraires.

On sait aussi que le probléme général de la Dynamique peut étre considéré
comme une extension du probléme des géodésiques aux variétés a un nombre
quelconque de dimensions. Sil'on remarque, enfin, que certaines propriétés phy-
siques d'un milieu peuvent étre définies au moyen des coelficients d'un ds?,
comme I’a montré Riemann & propos de la conductibilité calorifique, on voit que
la Physique mathématique donne encore une nouvelle interprétation des variétés
précédemment définies. ‘

- Le présent Travail est consacré a I'étude de quelques questions d’Analyse rela-
lives aux variétés, surtout aux variétés a trois dimensions. Il est divisé en cing
Chapitres que je vais analyser rapidement. :

Dans le Chapitre I j'expose des résultats connus relatifs aux invariants et aux
covariants des ds*. Je rappelle la définition de ces invariants et de ces-covariants,
en larattachant & la notion générale d’invariant différentiel donnée par M. Lie (').
J'indique alors, d’aprés le célebre Mémoire de Christoffel (2), la formation des
covariants successifs d’une variété. Tous ces covariants dérivent de P'un d’entre

(1) Mathematische Annalen, t. XXIV.
(2) Journal de Crelle, t. 70.
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eux, que Christoffel désigne par G,. Ce covariant est une forme quadrilinéaire
de différentielles, signalée d’abord par Riemann ('), ensuite par Christoffel et
Lipschitz (2).

Le procédé employé par Christoffel pour déduire de G, la suite des autres
covariants d'un ds® peut s'étendre & d’autres problémes, ainsi que I’a montré
M. Ricei (3). C'est ainsi que 'on peut former des covariants correspondant a -
I’ensemble constitué par une variété donnée et une fonction donnée des variables
indépendantes. Ces nouveaux covariants conduisent, d’'une fagon simple, aux
paramétres différentiels de Lamé et de M. Beltrami.

Je n’ai donné dans cette premiére Partie aucune démonstration. Les théorémes
généraux sur les invariants différentiels permettent de concevoir que les divers
covariants ou invariants dont il est question s’obtiennent par des opérations effec-
tuables, dont on trouve le détail dans les Ouvrages cités. Aucun des vésultats
indiqués n'est nouveau, je signalerai cependant le suivant : Dans le cas d’une va-
riété A trois dimensions, on peut substituer au covariant G, un paramétre différen-
tiel du premier ordre Df analogue au paramétre différentiel ordinaire Af. Cette
légére modification d’'un résultat de Christoffel est trés importante pour la suite.

Le Chapitre II est consacré au probléme de Vapplication des variétés. On dit,
par analogie avec un probléme de la théorie des surfaces (%), que deux variéiés
a n dimensions, x, ds?; 2/, ds'? sont applicables, s’il est possible de trouver unc
transformation de passage exprimant les x en fonction des z' et changeant ds?
en ds'*. Le probléme de Iapplication consiste & reconnaitre si une pareille trans-
formation est possible, et, dans ce cas, 4 la déterminer. 1l conduit & I'étude d’un
systéme S d’équations aux dérivées partielles du premier et du second ordre,
auquel on peut appliquer facilement les théorémes généraux sur les sysiémes
différentiels. On voit ainsi que la transformation de passage dépend, au plus, de
constantes arbitraires. Le nombre maximum de ces constantes est atteint lorsqu’il
s’agit de variétés a courbure constante; deux pareilles variétés ayant méme
courbure, sont, d’ailleurs, toujours applicables.

Je suppose alors que les variélés données sont a trois dimensions, et non a
courbure constante. Christoffel (3) a donné la solutien du probléme de I'applica-
tion lorsque la transformation de passage ne dépend pas de constantes arbitraires.
Je laisse cette restriction de coté. Pour étudier le systéme S, je considére I'en-
semble du paramétre différentiel ordinaire Af et du paramétre différentiel Df preé-

(1) OEuvres complétes. Commentatio mathematica....

(2) Journal de Crelle, t. 70, T1. — Bulletin des Sciences mathématiques, 1' série,
t. IV.

(3) Bulletin des Sciences mathématiques, 2° série, t. XVI.

(%) Darsoux, Legons sur la Théorie des surfaces, t. 111, Livre VII, Chap. II.

(3) CurisTorrFEL, Journal de Crelle, .70, p. 46 et 241.
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cédemment défini, comme l'ensemble de deux formes quadratiques dont les
‘variables seraient les dérivées de f. Cela conduit a envisager certaines [ormes
linéaires des dérivées de f, ou, en adoptant une définition bien connue, certains
symboles de transformations infinitésimales L/. On obtient de méme des
expressions analogues L'f 4 partir de la seconde variété; on égale alors les formes
homologues L f, I/f; le systéme S est ramené ainsi & un Lype connu d’équalions
linéaires étudié par M. Lie (').

Apres la discussion des divers cas possibles, je montre que les transformations
infinitésimales Lf sont, en général, échangeables avec les transformations infini-
tésimales du groupe G de transformations de la variété z, ds* en elle-méme. Cela
permet de déterminer les transformations infinitésimales de (3; j’ai donné a cet
endroit un exemple particulier de cette méthode que j’ai d appliquer fréquem-
ment dans la suite.

Le Chapitre III se rapporte & la représentation conforme des variétés c trois
dimensions. On dit qu'il est possible d’effectuer une représentation conforme
d’une variété x, ds* sur une aulre x’, ds'? s’il est possible de déterminer un fac-
teur p tel que les variétés x, p2ds?; 2/, ds'* soient applicables. On peut toujours
effectuer la représentation conforme de deux variétés a deax dimensions; il n’en
est plus de méme dans le cas général.

Je donne d’abord les conditions de possibilité du probléme lorsque la seconde
variété (&', ds”) est euclidienne; ces conditions étant remplies, on détermine
aisément o et la transformatjon de passage. Si ces conditions ne sont pas rem-
plies, on peut définir un covariant C de ds?, restant inaltéré quand on multiplie ds*
par une fonction quelconque des x. L’étude algébrique de ce covariant C et de
ds* conduit a adjoindre a la variété x, ds® une variété dite variété principale,
que l'on détermine par des opérations effectuables. Cette notion permet de
ramener le probléme de la représentation conforme au probléme de Papplication,
traité au Chapitre précédent.

Ces résultats ont été indiqués dans deux Notes aux Comptes rendus (). lls
paraissent susceptibles d’applications géométriques intéressantes.

Je donne, dans le Chapitre IV, le moyen de déterminer les formes de difjé-
rentielles invariantes vis-a-vis de certains groupes. Je montre d’abord com-
ment on peut associer, dans une multiplicité a n dimensions, un systéme de
n expressions de Pfaff /(dx) et un systéme de n transformations infinitésimales
Af. Je considére alors un groupe G dont les transformations infinitésimales X f

(1) Lie-Excevr, Transformationsgruppen, I. Abschnitt, Chap. XIX.

(2) 26 juillet 1897 et 16 aoit 1898. J’ai dia modifier la définition de la variété principale
donnée dans cette derniére Note; les racines de I’équation en A du n° 1V de cette Note
peuvent étre toutes nulles, contrairement a ce que jannoncais. Je démontre dans ce Travail
Pexistence de la variété principale en supposant le ds* donné défini positif.
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sont formes linéaires indépendantes des dérivées de f. Me servant de l'association
précédente, j’établis que I'on peut trouver une infinité de systémes de n expres-’
sions de Pfaff /(dz) invariantes vis-a-vis de G; la recherche de ces systémes
revient (') & celle des transformations infinitésimales A f échangeables avec celles
de G. On obtient aisément les formes de différentielles invariantes vis-a-vis de G,
en exprimant ces formes au moyen des expressions de Pfaff /(dz) de 'un des sys-
témes précédents. » :

Je montre ensuite que 'on peut adjoindre & tout groupe G, et a tout systéme
{(dz) correspondant, un ensemble de substitutions linéaires permetlant de ré-
duire & des types plus simples les formes de différentielles invariantes vis-3-vis
de G.

Dans le Chapitre V, je détermine des types canoniques pour les ds* & trois
variables admettant un groupe continu. En d’autres termes, je cherche une
forme simple pour les ds? i trois variables analogues aux ds* de révolution. Pour
cette derniére Partie, j'ai pris comme guide un beau Mémoire de M. Bianchi (2),
ou ce géométre a donné la solution compléte du probléme pour les ds? définis
positifs. Jai laissé cette restriction de coté.

Soit I' le groupe de transformations d’un ds? & trois variables en lui-méme. On
voit aisément que I' admet un sous-groupe G de I'espéce considérée au Chapitre I'V.
Je suis ainsi conduit : 1° @ déterminer les types possibles de groupes G, et les

N

ds? correspondants; pour cela japplique les méthodes du Chapitre IV; 2° a
classer les résultats obtenus, c’est-d~dire & reconnaitre ceux des ds® obtenus
admettant un groupe I' plus grand que G. Pour ce dernier point j’ai eu recours
aux méthodes du Chapitre 1I.

La premiére partie de cette recherche s’étendrait & un nombre quelconque de
variables, sans autres difficultés que celles des intégrations a effectuer. Par contre,
la classification des résultats parait compliquée dés qu'il y a plus de trois va-
riables. Il faudrait d’abord étudier les propriétés des groupes I' possibles, plus
complétement que I'on ne I'a fait jusqu’ici. ‘

Pour le cas de trois variables, j’ai ajouté aux types canoniques connus un
certain nombre de types nouveaux que M. Bianchi n’avait pas eu & considérer. En
outre, les formules générales dont j’ai fait usage me paraissent commodes pour
retrouver les résultats de M. Bianchi.

Les divers problémes traités au cours de ce Travail trouvent une application
dans la théorie des équations linéaires aux dérivées partielles du second ordre, si
fréquentes en Physique mathématique (le cas de trois variables est alors particu-

(1) Comptes rendus, 20 février 18g9. :
(2) Sugli spasi a tre dimensioni, etc. (Mémoires de la Société italienne des Sciences,
série III, t. XI, p. 267.)
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liérement intéressant). Dans un Mémoire ultérieur, je montrerai que Je probléme :
Reconnaitre si deux équations linéaires aux dérivées partielles du second
ordre sont transformables I'une dans I’autre par un changement de variables,
se raméne, suivant les cas, au probléme de I'application ou i celui de la repré-
sentation conforme de deux variétés. J’établirai également que les méthodes des
Chapitres IV et V permettent de former des équations & trois variables ana-
logues aux équations d’Euler et de Poisson. Ces résultats seront la généralisation
de ceux que j’ai indiqués antérieurement (') pour le cas de deux variables.

———0 GO w—

CHAPITRE 1.

INVARIANTS, GOVARIANTS, PARAMETRES’ DIFFERENTIELS D’UNE VARIETE.

1. Nous rappellerons d’abord la définition des invariants différentiels d’un
groupe de transformations fini ou infini (2). Considérons des variables z,,
Loy vuey Tni Siy Guy « .., 54 exprimées en fonction de nouvelles variables z'

29 I ) 9 b ) ~q 19

U ’

Zyy « ooy X3 5yy Byy -+ vy 5, par certaines formules de transformation formant un

’

groupe. Supposons 3, %3, ..., 3, fonclions de zy, &3, «.., Zu; &), Sy « -0y 3,
sont de méme fonctions de ', &}, ..., z,. Les dérivées partielles des z, prises
par rapport aux variables x, s’expriment en fonction des 2/, des 3’ et des dérivées
partielles des 5’ par rapport aux z'. Ceci posé, nous dirons qu'une fonction des z,
des z et de leurs dérivées

05, 023; ” . >

Zyy Xy S 3 Ty g e v ey
Q 22y ooy Lny Biy Sgy 0oy 3 ) >
’ ’ s Lny ’ ’ y ~qs dfl‘l ) % )

est un invariant différentiel du groupe, si ’on a identiquement en vertu des
formules de transformation

Qz, x Zpy 51y 3 93y 0z
Xy 2y o0 ny 21 2y ey Tgy vy Ny STy e
> E > » e P TU gz, dx; 0z,
05/ 023/
=Q (x’ x, a3, 5 o S, 2 ).
19 %29 = o0 Ly C1y gy 00y Rgy 72 > 7 72
dx dx ), dr,,

On sait que les invariants différentiels d’'un ordre déterminé sont fonctions
d’un nombre limité d’entre eux, ces derniers pouvant se déduire, a l'aide de

(1) Comptes rendus, 3o novembre 1896 et 5 avril 1897.
() Lig, Ueber Differentialinvarianten (Mathematische Annalen, t. XXIV, p. 538).
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différentiations et d’éliminations seulement, des équations de définition du
groupe (). '

On peut aussi obtenir les invariants différentiels comme solutions de sys-
temes complets, si 'on connait seulement les symboles des transformations infi-
nitésimales du groupe.

2. Soit

(l) ds?zzaijdwidxj,
i

RN

le ds* d’une variété a n dimensions. Effectuons le changement de variables
(2) x; =0, (X, Xy .oy 2y) (i=1,2,...,n),
nous obtenons

(3) dﬂ:E a,; dz d),.
ij

Les équations donnant l'expression des a en fonction des & jointes aux for-
mules (2) donnent les équations d’un groupe (5. Nous appellerons invariants du
ds? les invariants différentiels de G.

Considérons maintenant des fonctions U, des variables x, se transformant en
U), par la substitution (2 ). Les équations

(i) Uh:U}”

ajoutées aux équations de G, forment leés équations d’un groupe K. On appelle
paramétres différentiels du ds? ceux des invariants de K qui contiennent effec-
tivement les dérivées des fonctions U. On peut aussi considérer les paramétres
différentiels comme des opérations invariantes permettant de déduire de tout inva-
riant de ds? un invariant nouveau.

Désignons par dy, différents symboles de différentiation que nous distinguerons

par leurs indices a(«=1, 2, ..., r). En adjoignant aux équations de G les
équations

(5) dyx; = d—x—,daa';, (r=1,2, ..., 15 [, p=1,2, ..., 1),
nous obtenons les équations d’un groupe G(). On appelle covariants du ds* les

invariants de G*) contenant effectivement les différentielles.
En adjoignant & ds? des formes F;(x, dz) des différentielles des variables x.

(1) TRESSE, Acta mathematica, t. XVIII, p. 1; 1894.
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formes dont les coefficients sont fonctions des z, on définirait d’une maniére
-analogue les covariants de l’ensemble ds?F,.

3. Christoffel (') a montré que les covariants d'un ds* se déduisent de I'un
d’entre eux que 'on obtient de la fagon suivante. Soit A le discriminant du
ds? (1); Ayjle coelficient de @;; dans A. Nous poserons

(rll- 1 /)a X d(l A d(’r A\
8 I LU2F I Nk o ah )
(6) [ k } T2 <01‘h + dzg ()J’/r)
). A [l
(7) ir\f“z_A—[k’
‘ k

les lettres ¢, &, g, k, {, r représentent des indices inférieurs ou égaux a n, d’ail-

leurs quelconques. Nous utiliserons également les symboles & quatre indices

.1/ 0%ay, 0*ay 0*ag;, *a;p
(8) (8ks hi) = 2 <dxh dx,  Oduydx; T Qx0xy ooy da"/,>

-

Le premier covariant du ds? est alors

/

(9) G, = 2 (gky i) (dagdx), — dzydxg)(DayAz; — Dx, Axy,)

(k) (hi)

comprenant quatre systéemes de différentielles, d, ¢, D, A. La sommation s’étend,
pour gk comme pour ki, aux combinaisons sans répétition des indices 1, 2, ..., n
pris deux a deux. ”

Christoffel (2) a donné une méthode réguliére permettant de déduire de ds? et
de G, toute une série de covariants ’

(lO) dS’?, G'u qu ] G']n }p—H,

Chacun d’eux se détermine a partir du précédent de la fagon suivante. Soit

(11) G,= 2 ity oy <oy i) dyy dyy,. . dyx,)
ity dp

(1) Curistorrer, Ueber die Transformation der homogenen Differentialausdrucke
zweiten grades (Journal de Crelle, t. 70, p. §6). Les notations employées ici sont. a trés
peu prés, celles de Christoffel.

(2) Mémoire cité, p. 56.
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un covariant dépendant de p systémes de différentielles d,, d,, ..., d,. Les rela-
tions

(L1, Lay veuy 1)

d.Z‘i

__2 [: l)l\i 5(1 lm 3oy lp) - )\ s(h’ 7\ oy e lp) o ]

(12) = (6 by ey Gp) =

définissent, & partir des coefficients (¢, ¢y, ..., ip) de Gp, les coefficients du
covariant

(13) Gpiq = 2 (G ., )dedia;,. .. d,,xip

b0y, ey dp

dépendant de p + 1 systémes différents de différentielles d, d,, ..., d,.
Il est bien évident que les invariants absolus (1) des formes ds?, Gy, ...; G, ...
considérées comme fonctions des différentielles sont des invariants de ds2.

Considérons, par exemple, la forme de différentielles suivante, covariant de ds?

) Z a;jdx; Da; 2 a;;dx; Ax;

A i ij
1‘ = ’
Zaiijlij E(l,‘j&l’i ij
i i l

qui est, comme G, une forme bilinéaire des binomes dxg oz — dxidxg et
Dz, Az; — Dz; Azy. Considérons la forme A F - G, ; c’est une forme bilinéaire
des mémes binomes (2). Egalons & zéro le discriminant de cette forme; les
racines de 1'équation en % obtenue sont des invariants du ds?. On les appelle
quelquefois invariants principaux de la variété correspondante.

On trouvera des détails plus complets sur les invariants d'un ds? dans les Mé-
moires de M. Ricci (?).

4. On a vu le procédé par lequel Christoffel a obtenu la suite des covariants
successifs d’une variété. Comme 1'a montré M. Ricci (#), on obtient d’une facon

(1) Ce mot est ici employé dans le sens qu’il a dans la théorie des formes.
. 1 G, , es . . PR
(2) Le quotient — ” —Fi représente la courbure de la variété au point considéré, telle que

I’a définie Riemann.

(®) Rical, Résumé de quelques travaux... (Bulletin des Sciences mathématiques,
2° série, t. XVI; 1892).

(%) Voir la note précédente. Les locutions de M. Ricci: dérivation covariante ou contre-
variante... ne nous ont pas paru indispensables pour le présent travail.
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tout a_fait analogue les covariants du systéme formé en adjoignant & ds® une ou
plusieurs fonctions des variables z et de leurs différentielles.
Ainsi, en adjoignant a ds? une seule fonction U des variables z, et remplagant

dans les formules (11) et (12) G, par la différentielle dU [et, par suite, les coef-

. .. . ou . . - .

ficients (4, 25, ..., ip) par 3.2:—]’ on obtient un covariant bilinéaire de 'en-
i

semble ds2, U. Ce covariant bilinéaire est la forme polaire du covariant quadra-

tique équivalent

(14) o(U, dx) :2 U, dz, dz;,
Ol‘l rs

. 0*U jrs) oU

I

M. Ricci a montré que les invariants simultanés des formes dU et ds* d’une
part, (U, dz), ds* d’autre part, donnaient précisément les paramétres diffé-
rentiels de M. Beltrami (*). Nous utiliserons surtout le paramétre différentiel
du premier ordre d’une fonction U

L o Ay U U
(13) AU—ZT()—%()—.%;)
Ul

et le paramétre différentiel mizte de deux fonctions U et V

A, 9U 9V
6 AU, V)= Ay 0U IV
(16) (v = A 9z, 0z,

qui se déduit facilement du précédent.
De la méme fagon, une expression de Pfaff

((dz) :2 l;dx,,
i
donne un covariant bilinéaire

up(dx,&t) :Zlijdxi6xj,
=9k Ny (¥
b= =2 {i]e

La somme §(dzx, 8xz) + 4 (32, dz) donnerait une forme quadratique analogue

(') Pour ce qui concerne ce point, voir le Chapitre II de 'Ouvrage de M. Bianchi : Le-
zioni di Geometria differenziale.

Fac. de T., 22 S., 1. 31



394 E. COTTON.

a la précédente; la différence ¢(dz, 8z) — (8x, dr) donne le covariant bili-
néaire bien connu de 'expression de Pfaff / (dz).
Si l'on adjoint a ds® une forme quadratique de différentielles

(17) A(dz) :2 A,y dx, dz,,
on obtient de méme un covariant cubique
(18) ZAkiijkdxiéxj

a trois systémes différents de différentielles, étudié par M. Bianchi a I'endroit
précédemment cité. Nous utiliserons ce covariant dans la suite.

5. On peut simplifier les résultats précédents, lorsque le nombre des variables
est deux ou trois. S’il y a deux variables, G; ne comporte qu’un seul terme. Le
coefficient de ce terme est, avec les notations précédentes, (1 2, 12). Le quotient

(12, 12)
A2
donne la courbure totale du ds* considéré. Les paramétres différentiels de la
courbure totale donnent d’ailleurs tous les invariants utiles pour le probléme de
Papplication des variétés a deux dimensions (*).

Dans le cas de trois variables, on peut remplacer G, par un paramétre diffé-
rentiel du premier ordre. Avant d’établir ce point, simplifions un peu les nota-
tions. Désignons par « et 3 deux indices que nous ferons correspondre aux
combinaisons ik, gh du n° 3, de facon que aik ct 3 gh soient des permulations
positives des indices 1, 2, 3. On peut ainsi, comme ’a fait Christoffel, substituer
aux symboles & quatre indices (ik, gh) une seule lettre affectée de deux coeffi-

cients. Nous prendrons
(19) -Aga[g:(ik, gh).

Christoflel (2) a montré qu’il revenait au méme de dire que G, est un cova-

riant de ds?, ou d’énoncer la proposition suivante :

Les deux formes quadratiques

dU U
I'= Jgag 02Xy dbvg
ou oU
®= Z “® 3y dzg’

(1) DarBovx, Legons sur la Théorie des surfaces, t. III, Livre VII, Chap. II.
(2) Page 66 du Mémoire cité.
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(U désigne une fonction arbitraire des variables) et A se reproduisent, par
un changement de variables, multipliées par une méme puissance du déter-
minant fonctionnel de la substitution.
. (1] e o .
Or le quotient 3 est le paramétre différentiel AU de la fonction U. Nous pou-
vons de la méme fagon déduire un paramétre différentiel de T' et dire :

Lexpression

' A dU U
(20) . DU :E N Eac—g

est un paramétre différentiel de ds*.

On démontre facilement que si I’on remplace dans DU les dérivées ;U par les

. s . . .
expressions ——-— on obtient un covariant quadratique de ds?. Ce covariant,
Lo ‘

signalé par M. Ricci, peut également remplacer G,.

CHAPITRE II.

APPLICATION DES VARIETES A TROIS DIMENSIONS.

6. On dit que deux variétés a n dimensions (') x, ds?; &/, ds'* sont appli-
cables si 'on peut déterminer les x en fonction des 2/, de telle sorte que la sub-
stitution correspondante transforme ds? en ds’2. On dit aussi que ds? et ds’? sont
équivalents.

Pour reconnaitre si deux variétés sont applicables il faut étudier le systéme S,
de n(n+1)

5 équations du premier ordre

(1) Eau gx‘ 3x{—a}s (& fsrys=1,2,..., 1)
ij

que doivent vérifier les x considérés comme fonctions des 2’. Christoffel a montré
que l'on peut donner aux équations obtenues par dérivation des équations (1) la

(1) Nous désignerons toujours par les mémes lettres, accentuées ou non, les éléments
homologues construits a partir des deux variétés.
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forme simple

’z,
) 5 omg +2k

(G kyryo, Byh=1,2,...,n).

ik dxi dxk_
| o ot =2

B | oz,
A0

x)

Egalant les diverses valeurs des dérivées troisi¢émes que l’on peut obtenir par
dérivation des équations (2 ), nous obtenons de nouvelles équations que I’on peut
réduire au premier ordre au moyen de (2). Aux équations du premier ordre ainsi
obtenues ajoutons les équations (2), nous obtenons un systéme S;. En dérivant
S;, et ajoutant & S, les équations oblenues réduites au premier ordre nous obte-
nons un systéme S,. Continuons ainsi, nous obtenons une suite de systémes
différentiels S,. Chacun de ces syst¢tmes S, se déduit du précédent S,_; en
ajoutant a S,_, les équations que I'on obtient en dérivant une fois S,_, et tenant
comple de (2).

On forme ainsi la suite des systémes S,, et 'on s’arréte :

1° Si I’'on rencontre un systéme d’équations algébriguement incompatible
entre les 2/, les = et leurs dérivées, il y a alors impossibilité;

2° Si les équations obtenues étant compatibles, en passant d’un systéme S
auw suivant Sp,,, on n'ajoute aucune équation qui ne soit conséquence algé-
brique des précédentes. Le probléme est alors possible, sa solution dépend de
n? 4+ n— q constantes arbitraires, q désignant le nombre des relations indé-

n(n-+r)

pendantes comprises dans S,. Le nombre ¢ est au moins égal a nombre

des équations (1).

La proposition précédente est une simple application des théorémes généraux
sur les systémes différentiels dont la solution dépend d’un nombre fini de con-
stantes arbitraires (1). On sait, d'ailleurs, que lorsque le probléme est possible,
on obtient la solution par I'intégration de systémes complets. Nous montrerons,
en effet, plus loin comment on peut substituer aux systemes Sp, dans le cas de
n =3, des systémes d’équations linéaires du premier ordre, ot les deux va-
riétés jouent un réle symétrique.

Ajoutons enfin qu’il résulte des calculs de Christoffel que les équations de S5,
s'obtiennent en écrivant qu'une méme substitution linéaire

dz; /
(3) d.T,':Eazldxl,,
P

effectuée sur les diverses différentielles des variables z, transforme ds?, Gy, ...,
’

G,_, respectivement en ds'2, G, ..., G,_,.

(1) Lig-ExeerL, Transformationsgruppen, t. 1, p. 179. — BOURLET, Annales de UEcole
Normale, 3° sévie, t. VIII; 1891.
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7. On peut obtenir toutes les transformations de passage relatives a deux
variélés abplicables z, ds?; 2/, ds'?, en combinant I'une d’entre elles avec les
transformations de passage de P'une des variétés (z, ds® par exemple) en elle-
méme. Ces derniéres forment un groupe fini admettant au plus (d’aprés le numéro

- n(n—+1 \ _— . .
précédent) (—2:-}-—) paramétres arbitraires. Ce nombre maximum est atteint

pour les variétés a courbure constante. On sait (') que la condition nécessaire et
suffisante pour qu’une variété soit & courbure constante K est que le rapport
- ; % des formes définies au n° 3 soit égal & K. Si K est nul, la variété est dite
euclidienne. On voit aisément, d’aprés le n® 6, que deux variétés a méme
courbure constante sont applicables. Les systémes S, se réduisent alors a S,,
c’est-a-dire aux équations (1) et (2), et I'intégration des équations (1) et (2) se
“raméne a celle d’équations différentielles ordinaires.

8. Nous supposerons maintenant que les variétés données sont a trois dimen-
sions et ne sont pas a courbure constante.

Soient f et p deux fonctions des variables z, f” et o’ ce qu’elles deviennent par
la transformation de passage supposée possible. Considérons le paramétre diffé-
rentiel du premier ordre Af défini au n° 4, et le paramétre différentiel Df défini
au n° 5 qui peut remplacer G,. Soient A'f", D' ' les expressions correspondantes
construites a partir de f' et ds'2.

Les deux expressions

(4) 8f=pAf+Df, @ f =pAf+D'f

doivent s¢ transformer 1'une dans P’autre par la transformation de passage, quels
que soient p, f.

Nous pouvons considérer O f, ®' f' comme deux formes quadratiques ter-
naires; les variables de la premiére étant les dérivées de f, celles de la seconde
les dérivées de f'. On doit passer des premiéres variables aux secondes par une
substitution linéaire 4 déterminant non nul. Par suite, les racines de I’équation
en p, obtenue en égalant a zéro le discriminant de O f, doivent se transformer par
la transformation de passage dans les racines de I'équation en p’ relative 2 0'f".
Egalons les fonctions symétriques homologues des racines des deux équations,
nous obtenons des relations de la forme

(5) Ilz(xn Loy xs):l’,l(x’l,x;,x;).

Si ces relations sont incompatibles, 'application est impossible. Supposons

(1) Lirscuirz, dnalyse de siw Mémoires, etc. (Bulletin des Sciences mathématiques,
1" série, t. IV, p. 152; 1873.) Le résultat avait été indiqué d’abord par Riemann.
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qu’il n’en soit pas aiusi, et établissons une corres]iondance (') entre les racines py,
o2) ps de la premiére équation et les racines o', pi, p 3 de'la seconde, en ayant
soin de vérifier que les racines homologues se comportent de la méme facon
vis-3-vis des mineurs des discriminants de © et ©'.

Ces conditions remplies, nous pouvons ramener par les procedés connus ( ) la
forme ©f a l'une des formes canoniques B

1. (p —p) (Lif)*+ (p — p2) (Laf)? + (p — 23) (Lsf)?
11 : (p—p)[(Lif)* — (L2 f)*] + 2(p —p2) L f L f,
ML (p—p) [(La f)* + (Ls /)] + (p — p) (L f)?

Iv. (p — ) [(La f)* + 2La f Lo f] -+ 2L, f Lo,

v. (p—p) [(Lo ) + 211 fLaf] + (LS,

VI. (p — p1) Af.

Les expressions L, f, Lyf, Ly f désignent des formes linéaires des dérivées de f
formes linéairement indépendantes.

Dans les cas I, II, IV les formes L f sont déterminées (au signe pres) Dans les
cas Il et V la détermination de ces formes peut se faire d’une infinité de ma-
niéres. Enfin, dans le cas VI on a manifestement une variété du type spécial (*)
de M. Lipschitz.

La forme ®' f’ donne lieu & une décomposition analogue, et les deux décompo-
sitions de © f et de O’ f" appartiennent nécessairement au méme type canonique.

Ceci posé, nous examinerons successivement les trois hypothéses suivantes :
1° La décomposition de © f appartient aux types I ou 1l ou IV; 2° au type Il ou
au type V; 3°au type VL.

9. Dans la premiére hypothése la transformation de passage doit satisfaire aux
équations (5) et aux équations (*)

(6) L/=Lif

et réciproquement toute transformation satisfaisant a ces conditions est transfor-

(1) Il peuty avoir plusieurs hypothéses possibles pour la correspondance entre les racines
p et p', comme plus loin pour les signes & choisir pour les L;f, lorsque ceux-ci sont dé-
terminés au signe prés. On examine successivement les diverses hypothéses. '

(?) DarBOUX, Sur la théorie algébrique des formes quadratiques (Journal de Liou-
ville, 2° série, t. XIX; 1874).

(3) Liescuirz, Extrait de six Mémoires, etc... (Bulletin des Sciences mathématigues,
t. IV, p. 1525 1873).

(*) Voirlanote 1.
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mation de passage. On interpréte les équations (6) de la fagon suivante, en don-
nant aux symboles L;f le nom de transformations infinitésimales : La trans-
Sformation de passage transforme les transformations infinitésimales L;f
dans les transformations infinitésimales L, f'. La recherche de la transformation
de passage est ainsi ramenée a un probléme connu (*). Rappelons sommairement
la solution. Les relations .
L:I»=L;T,

donneront de nouvelles relations de la forme (5) que 'on adjoindra aux rela-
tions (5). On appliquera encore les symboles L;f aux invariants obtenus, et
ainsi de suite, jusqu’a ce que I'on n’obtienne par ce procédé aucun invariant I
qui ne soit fonction des précédents. On formera ensuite les crochets

(LeLo) =Y wineLofs  (LiL) =Y i LS's
ce qui donnera de nouvelles relations de la forme (5), savoir

(7) Uiks = Uijgss

que l'on traitera comme les précédentes. On aura soin de s’assurer, au cours des

calculs, que les relations de la forme (5) sont compatibles; dans le cas contraire

le probléme serait impossible. S’il n’en est pas ainsi, on arrivera au bout d’un
p ’ !

nombre fini d’opérations & un systéme de la forme
(8) In="9%

comprenant r(r<3) équations indépendantes, et tel que toutes les équations
possibles de la forme (5) soient des conséquences des précédentes.
Si r = 3 la transformation de passage est entiérement déterminée par les rela-

tions (8); st << 3 on considérera le systéme complet
(9) L,F +L/F =o,

dont on connait déja r solations, & savoir J; —J. On détermine alors 3 — r
autres solutions de la forme Fy(zy, 2, 23, Z,, 2,, ) et les équations (8) jointes

aux équations
(IO) ) F/.-(.Z‘,JL‘I):C/‘.,

donneront la solution du probléme. Cette solution dépend de 3 — r constantes

arbitraires c.

(") Lie-ENGEL, T/‘ansformatiénsgruppen, t. I, p. 364.
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10. Examinons maintenant le cas ou la décomposition canonique de 0f est de
la forme IIl ou de la forme V. Dans ce cas, la forme L, f seule est entiérement
déterminée et il y a une infinité de systémes possibles pour les formes L, f, L; f.
Choisissons alors trois formes L, f, Ly f, Ls f bien déterminées, donnant lieu a la
décomposition canonique de Of, et de méme trois formes L', f/, L, f', L}, f' dé-
terminées, correspondant a la seconde variété. La transformation de passage doit
satisfaire évidemment : 1° & des équations de la forme (5); 2° & des équations de
la forme suivante :

Af= L. f=Lf,

“ | ss=F natar=1i.

Asf =X asilif =Ly f',

ou les a;; représentent des fonctions bien déterminées d’une seule lettre o (').
Nous considérerons o«.comme une fonction des x que nous chercherons d’abord
a obtenir.

Pour cela nous combinerons, comme précédemment, les équations (5) et (11),
de maniére a obtenir des relations nouvelles. Les équations obtenues pourront se
diviser en trois catégories : 1° équations contenant les z et les 2/ seuls; 2° équa-
tions contenant les z, les 2’ et a; 3° équations contenant les z, les 2/, « et ses
dérivées. Nous éliminerons les &' entre les seconds membres de ces diverses
équations et nous obtiendrons ainsi un systéme S d’équations aux dérivées par-
tielles entre o et les x seuls. Si Pon ne rencontre aucune incompatibilité, on
intégrera ce systéme, I'on portera la valeur trouvée dans (11), et I'on sera ra-
mené & intégrer un systéme analogue au systéme formé par (8) et (9).

Si S contient une équation d’ordre zéro, « est déterminé, on est ramené au cas
précédent; sinon o dépend de constantes arbitraires et la solution dépendra d’un
plus grand nombre de constantes arbitraires que précédemment. On congoit d’ail-
leurs que I'examen des types canoniques possibles pour les variétés applicables
d’une infinité de fagons sur elles-mémes donne des renseignements sur le sys-
téme S. L’examen de ces types canoniques indiqué au Chapitre V montre que
la solution générale dépend, au plus, de quatre constantes arbitraires.

Si la variété donnée est telle que © f appartienne au type VI, on procede diffé-
remment. La racine triple de 'équation en p ne se réduit pas a une constante,
sinon on aurait, contrairement a 'hypothése du début, une variété a courbure

(1) En considérant les lettres L;f et A;f comme des variables indépendantes, les rela-
tions (11) sont les équations (sous forme finie) du groupe de transformations des deux
formes Df, Af en elles-mémes.
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constante. Nous aurons donc certainement une équation de la forme
’ ’
(2, 25, x3) =1 (2}, 25, x5)-

Nous remplacerons alors Df par le carré de A(I, f), paramétre différentiel
mixte de I et f, et nous serons ramenés a I'un des cas précédents. Il est évident
d’ailleurs que A(I, f) n’est pas identiquement nul, puisque I dépend effectivement
des variables .

11. On détermine les transformations d’une variété z, ds* en elle-méme
par la méthode précédente. Il suffit de prendre, pour seconde variété z', ds'2,
celle qui se déduit de z, ds? par la substitution identique x = 2’. Ces transfor-
mations d’une variété en elle-méme forment un groupe; nous le désignerons
par G.

Les propositions précédentes permettent de donner quelques propriétés du
groupe G. Ainsi la forme des équations (6) et (11) montre que, pour loute variété
non & courbure constante, il existe aw moins une transformation infinité-
simale L inaltérée par les transformations de G, ou, ce qui revient au méme ('),
échangeable avec les transformations infinitésimales de G. On peut compléter
cette proposition lorsque la forme ©f conduit a trois transformations infinité-
simales L, f; Lo f, Ly f bien déterminées. Ces trois transformations infinitési-
males sont alors échangeables avec celles de G. Si I'on suppose, de plus, que
les invariants I se réduisent tous & des constantes, les trois transformations Lf
sont les transformations infinitésimales d’un groupe fini H, puisque les w sont
des constantes. Le groupe Hest d’ailleurs transitif, puisque les L fsont des formes
linéaires indépendantes des dérivées de f. De plus G, ayanl toules les transfor-
mations infinitésimales échangeables avec celles du groupe simplement tran-

sitif H, est, lul aussi, simplement transitif. En résumé :

Lorsque la forme O f conduit & trois formes Lf et que tous les invariants
se réduisent & des constantes, le groupe G de la variété est simplement tran-
sitif et les formes Lf sont les transformations infinitésimales du groupe
réciprogque (*).

Cette proposition peut étre établie d’une autre fagon, a I'aide des considérations
dua Chapitre V.

12. Nous allons donner un exemple de détermination du groupe d’une variété.

(1) Lie-EnceL, Transformationsgruppen, I. Abschnitt, p. 259.
(2) Pour la définition de ce groupe, voir LIE-ENGEL, Transformationsgruppen, Abs. I,
p- 38o0.
Fac.de T., 2 S., 1. 52
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Indiquons d’abord.la forme simple que prend le paramétre différentiel D f
lorsque les coefficients du ds? de la variété sont fonctions d’une seule va-

riable x,.
En posant : :
[ 6 — I da‘zaBQ da,, daa%
T 4A\dx, ) T dx, day,
bor— L dA da,s _l_d'a33
(12) 24N dxy dxey 2A dx?’
12
b 1 dA das,, 1 d’a,
BT LA dry dz, 2A dr?’

_ —1dA das; 1 d*a,,
T WA dx, dw, | 2A da?

Les formules du Chapitre précédent donnent alors

o) =07 o (Y o 2, (9

L’une des racines de ’équation en p relative 8 © f (n° 8) est alors égale a — 0;
b est fonction de z, seul; il en est évidemment de méme de tous les invariants de
la théorie précédente.

Cherchons maintenant le groupe de transformations de la variété z,,

Zay Ly,
(14) ds? = s e’ dx dxy+ (ceh® day -+ e% dx,)?

en elle-méme; h, ¢ sont des constantes. On trouve, tous calculs faits,

Af:_—QCe-x:gL df— - 2 e~ he, df df e (%)2,
2

dx, 0x, 0x, 0z,

Df—0Af=(h—1) [02 e—?% <;_£>24 e—2hx, < of ]

2 oz,

f est une constante contenant 4 — 1 en facteur, qu’il est d’ailleurs inutile d’écrire.
s q ‘
Dans le cas général, ott (2 — 1)c est différent de zéro, la décomposition cano-
nique conduit a trois transformations infinitésimales réductibles a

. hax, 5 1 - ——
(15) L,f—_e m.’i‘;;’ L‘f——e z ()x27 L3f i.Z‘l

Ce sont les trois transformations d’un groupe simplement transitif.
Le groupe réciproque, c’est-a-dire le groupe des transformations de la va-
riété en elle-méme, se détermine par des opérations connues; on peut prendre,
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pour transformations infinitésimales de ce groupe,

O of of of
— X, f= X _———+x —i—lzx. .
(16) Xuf duary T zf duxy’ of 0, d L2 0y
La conclusion précédente tombe en défaut dans les cas suivants :
1° h — 1 =o0. On a alors une variété euclidienne.
2% ¢ = o. Les transformations de la variété en elle-méme ne laissent alors inva-
riantes que les expressions
—hx d-/ 9
L,f:e ‘ID—, Af:(Lgf)-+2LlfL3f,
3
les L; f représentant loujours les expressions (15). En d’autres termes, une trans-
formation de la variété en elle-méme remplace L, £, L, f, L; f respectivement par

Mf=Lf,  Af=Lf+alif, Af=Lf—al.f—ZL/,

ol « désigne une expression que l’on détermine en écrivant que la structure
du groupe engendré par les Af est identique a celle du groupe engendré par
les Lf. On a ainsi

o= Ce(/L_—l)xi’

C désignant une constante. Le groupe de transformations de la variété peut alors
élre considéré comme engendré par les transformations infinitésimales (16) et par
une quatriéme transformalion infinitésimale donnant un groupe a un paramélre
remplagant les L; f par les A;f. En désignant par X f cette transformation infini-
tésimale et observant qu’a une transformation infiniment petite du groupe & un
paramétre X f'correspond une valeur de G trés petite, on voit que X f doit donner
lieu aux identités

(XL))f=0, (XLy)f=eDnLf, (XLy)f=—e=VuL,f,

qui donnent un systéme complétement intégrable pour déterminer les coefficients
de X f. On trouve ainsi que /a transformation

e /1—9)1‘ df ()f

— Xy )
h—2 Ox, dx,

Xof =

ajoutée auzx transformations (16), donne un groupe a quatre parameétres qui
est le groupe cherché. 1l est d allleurs aisé de vérifier direclement que ces trans-
formations infinitésimales laxssent bien invariant le ds? considéré.

13. On peut remplacer, comme on sait, les équations linéaires aux dérivées
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partielles par des équations linéaires aux différentielles totales. Il est intéressant,
pour I'extension de la méthode aux variétés i plus de trois dimensions, de con-
struire directement un systéme d’équations linéaires aux différentielles totales
qui donnerait encore la solution du probléme de V'application. On y parvient par
une méthode que nous allons indiquer rapidement, et qui présente de grandes
analogies avec la précédente.

Nous avons vu (n° 5) que 'on peut substituer & G, dans le cas d'une variété
a trois dimensions, un covariant quadratique. Soient ds? el do’2 les covariants
quadratiques qui correspondent ainsi aux variélés x, ds2 et 2/, ds'?. En désignant
toujours par p une fonction arbitraire des z, par p’ ce qu’elle devient par la trans-
formation de passage, nous réduirons (comme précédemment) & une forme cano-
nique P'expression p ds? -+ ds* considérée comme forme quadratique des diffé-
rentielles dz. En opérant de méme pour ¢’ ds'? + ds’? et comparant les résultats
obtenus, nous obtiendrons d’abord un systéme de la forme

(17) I(z)=T1(2"),
et, en oufre, trois équalions
(18) li(dx) = l;(dz"),

les {;(dx) désignant trois expressions de Pfaff correspondant a la muluplicité z,,
Za, x5 les I;(dx'), trois expressions analogues relalives aux z'. [Dans certains
cas, il peut étre nécessaire d’introduire une arbitraire o dans les premiers membres
des équations (18) : celte arbitraire sera considérée comme une fonction a déter-
miner des variables z.] Avant de voir comment on exprime que les équations pré-
cédentes sont compatibles, montrons rapidement comment, en général, on
obtiendrait un systéme analogue dans le cas de variétés a n dimensions.

On chercherait une décomposition canonique pour les formes F et G, (voir n°3),
et les formes F' et G relatives aux deux variétés. En général, on obtiendrait

d’abord des équations de la forme

(19) (g, gy ooy 2y =1 (2}, ), o0y 2,

puis des équations de la forme

(20) N bij(da; by — da;dz) = N by (day o) — de) b)),
ij i

dont le nombre dépendrait de la nature algébrique des formes considérées. On
chercherait ajors & ramener simultanément a une forme canonique I'une des formes
bilinéaires précédentes

Eb;j(dxi 3.70; — dxj 61’[),
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et la forme bilinéaire
ES 9ds®
ko dxy’
k

ce qui donnerait n équations de la forme (18), ou pourraient cetle fois figurer
plusieurs fonctions a, B, ... des letires , fonctions qui resteraient & déterminer.
On simplifierait, bien entendu, les équations obtenues en lenant compte des équa-
tions (19) et des équations de la forme (20) laissées de c6té.

En résumé, des opérations algébriques, plus ou moins compliquées suivant les
cas, et des dérivations raménent la recherche de la transformation de passage a
I'étude d’un systéme composé : 1° de n équalions linéaires aux différentielles
totales

li(dr) = l;(dz");

2° d'équations de la forme
7 ’
I/L(‘Ill’ Ly ooy XTp) = I;L(xll’ Lay o vy z,).

Pour étudier la compatibilité d'un pareil systéme sans rien lui enlever de sa
symétrie par rapport aux deux multiplicités, on pourrait utiliser les covariants
bilinéaires des {;(dz) et des [;(dx’). Mais il serait plus simple de ramener ’étude
de ce systéme & celle d'un systéme d’équations linéaires aux dérivées partielles
(ot la symétrie serail conservée) en se servant d’une notion qui sera expliquée
plus loin : la notion de systémes associés d’expressions de Pfaff et de transfor-
mations infinitésimales (voir Chap. IV, n° 23).

CHAPITRE 111

REPRESENTATION CONFORME DES VARIETES A TROIS DIMENSIONS.

14. Elant données deux variétés a n dimensions, z, ds?; 2/, ds'?, nous dirons
quil est possible d’effectuer une représentation conforme de I'une de ces va-
riétés sur Paulre, s’il est possible de déterminer un facteur p(xy, 3, ..., Zu), de
telle sorte que les variélés x, p? ds*; &/, ds'? soient applicables. En se reportant
aux formules qui servent & définir les angles relatifs & une forme quadratique de
différentielles ('), on vérifie sans peine que la transformation de passage de la

(1) Cette notion est due @ M. Beltrami. Foir Darsoux, Legons sur la Théorie des sur-
JSaces, t. 11, p. 500.
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variété z, p2 ds? a la variété o', ds'> transforme les angles relatifs a ds® dans les
angles des éléments homologues de la variété z/, ds’2. On peut dire encore que la
transformation de passage conserve la similitude des éléments infiniment petits
des variétés x, ds® et 2/, ds'?, ce qui explique le mot de représentation conforme.

Nous allons donner le moyen de reconnaitre s’il est possible d’effectuer une
représentation conforme de deux variétés a trois dimensions 'une sur aulre, et
la maniére d’obtenir alors la transformation de passage. Nous examinerons d’abord
le cas ol 'unc des variéiés données est euclidienne. Cela nous conduit a certains
covariants qui permettent de ramener le probleme général de la représentation
conforme a celui de 'application.

15. Dire que la variété définie par z,, x», x; et
(1) dsﬂ-:za,-j dx;dx;

est susceptible d’une représentation conforme sur l'espace euclidien, c’est dire
qu'il est possible de déterminer un facteur p(xzy, 2, 3), de telle sorte que la
variélé xzy, &y, 3, p* ds® soit a courbure totale nulle. Nous poserons

do? = p* ds?.

Nous aurons un systéme S d’équations aux dérivées partielles pour déterminer p
en écrivant que le covariant G, de la variété «, ds? est identiquement nul. La
condition nécessaire et suffisante pour que le probléme soit possible est que le
systéme S soit compatible.

Il est aisé de voir que, de toute solution du systéme S, on peut déduire une
nouvelle solution dépendant de quatre constantes arbitraires. En effet, la
variété z, ds? est applicable sur la variélé &, z,, z,, da? + dx’} + dx'}. Cette
derniére variété est susceptible d’une infinité de représentations conformes sur

elle-méme. D’une facon plus précise, posons

@(d’) — k2

— 7 E T PR TR
(&) — @)+ (2 — @y)* 4 (0 = ay)* |
, @y, az et k désignant des constantes arbitraires. Les variétés
z', 0(x ) (dz}+dx) + dzi?) et ¥y, dy?+dyr+dy}

sont applicables (*). Remplagons dans ©(z') les 2’ a I'aide d’une transformation

(1) Vour, a ce sujet, un Mémoire de M. Darboux (Annales de I’Ecole Normale, 2° série,
t. VII; 1878).
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de passage de la variété 2/, dx? + dz} + dr} a la variété z, ds*; désignons
-1

par ©(z) la fonclion obtenue. Il est évident que 0® * dépend de quatre con-
stantes arbitraires et se trouve, comme g, solution du systéeme S.

Du moment que la solution générale du systéme S, supposé compatible, doit

dépendre de constantes arbitraires, on doit pouvoir tirer de'S ct des équations

obtenues par dérivation, I'expression des dérivées d’un certain ordre p de la fonc-

tion p, en fonction des dérivées d’ordre moindre. On peut prévoir d’ailleurs que p.
est égal 4 2. Clest ce que nous allons constater directement.

16. Désignons par A;; les coefficients du covariant G, attaché a ds? (la
letire A;; étant réservée, comme au n° 5, aux coefficients du covariant G, de ds?).
J ) ) 4
Développons A;; en mettant en évidence les termes contenant les dérivées

J

secondes de p; il vient

2

0 0? 0?
2‘11:_‘1339072 —azzP()?E +2a239072;hz‘_3 +..,
(2)
02 02 32 92
R - v — 4P g @130 gy T
1 2

. Les autres

expressions ﬂ,-j se déduisent des précédentes par permutations circulaires des

les termes non écrits contenant au plus les dérivées premiéres de

indices 1, 2, 3. On peut former des combinaisons linéaires et homogénes des X,;
ne contenant chacune qu’une dérivée seconde de p. Conservons, en effet, les no-
tations du Chapitre I et ajoutons-leur les suivantes :

(3) P:Z'?tllall (l’,j:l',2,3),
i
1 | a,
Ay = —pTZ —Z'EP + Mg A+ A Ay — Ap Ay — Am}'m],

1 [a
A= A [‘21—1 P— Agdas— A Ay + 2A233‘23] .

-

Définissons d’une maniére analogue Ayy, Ajs et Ays, Agy, en effectuant une per-
mutation circulaire des indices 1, 2, 3 dans les formules précédentes. Il est aisé

de vérifier que
0%p

1
A,’j—fgm—}"...,

les termes non écrits ne contenant pas les dérivées secondes de .
Le systéme S est composé, par définition, des six équations

('/l) 2‘,'1' .- 0.
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Mais il résulte de ce qui précéde que ces équations peuvent étre remplacées par
les suivantes

(5) Az‘j:Oy

et nous avons bien le résultat annoncé au numéro précédent.

Nous allons effectuer un changement de fonction dans le systéme S. Remar-
quons, a cet effet, que les A;; sont fonctions homogénes de p et de ses dé-
rivées des deux premiers ordres, le degré d’homogénéité étant 2. Par suite,

les A;; sont fonctions homogénes de degré zéro de p et de ses dérivées; en

, . 1 d
d’autres termes, o ne figure dans les A;; que par des combinaisons telles que — 2£
p dx

1 0% !
S P

Nous prendrons, comme nouvelle fonction inconnue,

R =1logp,
ce qui donne
1o _OR1 _dp R | IR IR,
4 dl’i - dxx’ 4 dl’idﬁi’j - ().Z'idl'j d.Z‘i dxj’

nous désignerons encore par les mémes lettres A;j le résultat de cette substi-
tution dans les expressions (3). La fonction inconnue R ne figure dans les équa-
tions (5) que par ses dérivées partielles des deux premiers ordres.

Le systeme (5) doit admetire une solution dépendant de quatre paramétres
arbitraires; par suite, en verlu de théorémes connus sur les systémes différentiels,
il ne doit donner, par dérivation, aucune équation nouvelle. Les conditions de
compatibilité de ce systéme s'expriment donc par des relations entre les coef-
Jicients de ds* et de leurs dérivées. Si ces conditions sont remplies, on aura R
“et par suite p, par 'intégration d’un systéme d’équations différentielles ordinaires.
Une fois que I'on connaitra une valeur de g, on déterminera la transformation de
passage de la variété correspondante z, ds? a la variélé o/, dx'? + dz} + dx},
d’aprés les méthodes connues. '

17. Nous allons donner, sous forme explicite, les conditions de compatibilité
du systéme (5). Nous examinerons d’abord un cas particulier, le résultat s’étendra
ensuite au cas général.

Supposons que ds? soit de la forme

(6) ds* =B!dz?+ B} dx? + B2 dxl.
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En d’autres termes, imaginons que les surfaces
x, = const., &, = const., x; = consl.

Jorment un systéme triple orthogonal relativement ¢ ds*.
Signalons d’abord les expressions suivantes des symboles & trois indices de

Christoffel :

% ik é — (si les trois indices sont différents),
(,..) % vk - g /.(' 1 0B
7 %“ ~ B, oz,
i B; 0B; .
V%:—B—;a}“ (e£9).

On trouve ensuite les formules suivantes :

J0 /1 0B, J <1 0B, 1 0B, 0B,
i =— BB, [01 <B§ 0x3>+()x2 B, H;) BF o, aTJ

dm:tB< 0*B, v 0B, 0B, 1 0B, dB;;)‘

(8)

0xy0xy, B, dx, dxry; B, dx, dx,

les formules donnant les autres <\;; se déduisent de celles-ci par permutation cir-
culaire des indices 1, 2, 3. On retrouve bien les équations classiques de Lamé (')
en égalant & zéro les expressions précédentes.

On obuent les ﬂ,l en remplacant dans les formules (8) B; par pB;, et les for
mules des A;; donnent alors, tous calculs faits,

A R 1 OR\* 1B OR\* 1 B(OR\
g o= o1 () i (o) 5w ()
1 9B, R B, 9B, OR B, 0B, 0R «, B,
(9) " B, 0z, 0z, " B 0w, dw, | B 0z, 0w, | 2 B,B,’
A,— PR OR IR 1 dB, R 1 dB, R
BT 0xydr, Ox, dxy B, dx; dx, B, O, dxs W

ou 'on a posé, pour plus de simplicité,

“/%11 oy3
ay = — [— ’
1 B2B3’ 23 B!

oy, =—a,B,+ a,B,+ asB:,.

Les autres A;; ont des expressions analogues. Les conditions de compatibilité

(1) Coordonnées curvilignes, p. 76.

Fac.de T., 2 S., 1. 53
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du systéme
(5) */\l'j =0

s’obtiennent en égalant les diverses valeurs des dérivées troisi¢mes de R obtenues
en dérivant les équations (5), puis en remplacant, dans les relations obtenues, les
dérivées secondes al'aide des équations (5). Les conditions oblenues peuvent étre
mises sous la forme suivante :

(10) 4 1\{.(3,)_—_0 (rys, t =1,2,3),
en posar;t
0N 0A, rs re|
(ll) A,.(S” = -—di;;-———()z +23”EA1M—-2§“’AW.
u.

had v

1l est facile de vérifier que les expressions A, ) ne dépendent plus de R. En
résumé, les relations (10) sont les conditions nécessaires et suffisantes pour
que la variété proposée soit susceptible d’une représentation conforme dans
Uespace euclidien.

18. Avant d’aborder le cas général, observons que, dans une variété a trois
dimensions, il existe toujours des systémes triples orthogonauz par rapport
a la forme fondamentale. En effet, on peut toujours, par un changement de
variables, ramener le ds? & ne contenir I'une des différentielles que par son seul
carré ('). Par un raisonnement analogue & celui de M. Darboux pour Pespace
cuclidien (2), on peut alors appliquer les théorémes de Cauchy aux équations aux
dérivées partielles des systémes triples orthogonaux de la variété considérée et
établir Pexistence de pareils systemes. On pourra donc toujours ramener par
un changement de variables le ds* d’une variété a trois dimensions a la
Jorme (6).

Désignons toujours par
(l) ds‘l:za,-jdxidwj
les ds* de la variété donnée, que nous supposons maintenant de forme quelconque.

Conservons, d’une fagon générale, les notations précédemment adoptées a une
exceplion prés : la lettre R représentera maintenant une fonction arbitraire des

"~ (1) Darsoux, Legons sur la Théorie des surfaces, t. II, p. 505. Le raisonnement fait a
cet endroit suppose le ds? défini positif, mais on peut démontrer la proposition pour un'ds?
quelconque, a discriminant non nul,

(2) Lecons sur les systémes triples orthogonaux et les coordonnées curvilignes,
t. I, Chap. I.
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variables . Nous emploierons les letires accentuées 2/, a.,, A, 3}1., A, R,

pour désigner les éléments homologues de z, a,;, A, ﬂ,'j, Ay, R, ..., dans une
variété x', ds'* déduite de z, ds* par un changement de variables quelconque.

Les Apg s’expriment linéairement en fonction des A;;; ceux-ci s’expriment
linéairement en fonction des ﬂ;l e, par suite, des A}, . Donc les A, se déduisent
des A’ par une substitution linéaire homogéne dont il est facile de déterminer

les coefficients. En effet, R élant arbitraire, les coefficients des A’ . dans les

g
sont visiblement ceux des dérivées

’
Py’
()2 R/ . 2
secondes ———- dans l'expression de ————
0z, dx,, Jdz, dog

el secondes de R’. On peut énoncer ce résultat sous la forme suivante :

expressions des A,; en fonction des A

en fonction des dérivées premiéres

La forme quadratique (') de différentielles

(12) 7\(dx):Equd.rpdx,,
P.q
est un covariant de ds*.

Nous avons vu (n° 4) que toul covariant de différentielles attaché a ds? donne,
par dérivation, un covariant nouveaua (2). Appliquons ce résultat & %(dz). En

POSant
q o ()L&A-l’ ()Akj ’ ik . k‘/e
(13) Ak(zj)—de_"dwi f%;psl\m—;&$”‘z\_m,

le nouveau covariant obtenu est

(14) C(dz, oz, Dx) ZEA“,‘” Day(dz;dx,; — dx; dz;),

kif)

La sommation s’étend aux valeurs 1, 2, 3 de I'indice %, et aux combinaisons

sans répétition

(l/) — (23)’ (31), (12),

des indices 1, 2, 3 pris deux a deux.

Dans le cas de la forme (6) les coefficients de ce covariant C coincident en-
ticrement avec les fonctions A,y définies au n° 17. Mais nous pouvons supposer
que ds'* a la forme (6). Les fonctions A, et le covariant C' ne dépendent pas
de R'. La transformation de passage de ', ds'? & x, ds? change R’ en R, et le
covariant C’ dans le covariant C. Donc :

Le covariant C(dz, 3z, Dx) ne dépend pas de la fonction arbitraire R.

(*) La relation Apg = Ag), résulte immédiatement des équations (3) de définition de Apg.
(%) Pour le cas particulier qui nous occupe, voir Biaxcui, Lezioni di Geometria diffe-
renziale, Chap. II, p. 53.
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Les propriétés d'invariance de C et les résultats du n® 17 nous permettent
d’énoncer encore la proposition suivante :

La condition nécessaire et suffisante pour que la variété proposée puisse
étre représentée conformément sur Uespace euclidien est que le covariant
C(dx, ox, Dz) soit identiqguement nul.

Le premier probléme que nous nous étions proposé est donc résolu.

19. Soit p une fonction des variables z; posons, comme précédemment,
do*= p* ds™.

Il résulte de ce qui précéde que le covariant C est le méme pour les variéés z,
ds? et x, ds*. Admettons, pour un instant, que 'on puisse former a I'aide de C
un invariant de ds* qui, exprimé en fonction des coefficients de ds* et de 3,
contienne en facteur une puissance de po. Nous pourrons disposer de o de
JSacon que cet invariant, supposé différent de zéro, devienne égal & ’unité.
A cette valeur de p correspond une variété x, ds* bien déterminée, que nous
désignerons par x, dS*, et que nous appellerons vARIETE PRINCIPALE.

Soient maintenant z, ds*; x', ds'* deux variétés dennées ('), pour lesquelles
nous supposerons possible le probléme de la représentation conforme. Soit 7 un
facteur tel que les variéiés x, r* ds*; o', ds'? soient applicables. Désignons par
h2r2 ds? le dS? de la variété principale attachée a 2, ds*; par h' ce que devient &
par la transformation de passage de x, r*ds* & ', ds'?. Cette méme transfor-
mation de passage transforme la variété principale z, dS* dans la variéié
', W'2r'2 ds'?; et, comme la valeur de I'invariant qui a servi & définir la variété
principale ne change pas, la seconde variété o', /272 ds'* est aussi principale. On
peut donc énoncer la proposition suivante :

Si deux variétés sont représentables conformément ’une sur Uautre, leurs
variétés principales sont applicables et réciproquement.

Ce dernier point est évident.

20. 1l nous reste a établir l'existence d’un invariant de ds* différent de zéro
contenant en facteur une puissance de p. Nous supposerons pour cela ds? dé-
fini positif.

Nous montrerons d’abord que le covariant C(dz,dx,Dx) peut étre rem-
placé par un cocariant bilinéaire équivalent.

(1) On remarquera que ds'2 a une autre signification qu'au numéro précédent.
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Cn posant
w,=dx, 0x;— da, ox,, uy=dx;dx,— dr,dx;, uy— dr, ox; —dr,dx,

el
Cri= Ve, Co=Negn,  Ck=Niu,
on peut écrire
- ~
C(dxz, dox, Dx) :ZCM Dz u,.

ki

On vérifie aisément que les deux expressions
Elli<p3\,/A Dx,-),
i

9 do
> 93;5 dd;,- (s*VADx)

i

sont des covariants de ds2. (Rappelons que A représente le discriminant de ds2.)
1 ddo?
p3\/K ddx;

gement de variables, la-méme substitution linéaire que les wu;, et (ue, par con-

Nous pouvons en conclure que les expressions subissent, par un chan-

séquent, la forme bilinéaire

Lo N N\ 'qdu’ag
; W (dx, Do) = 2‘ N Day s

ki

est un covariant de ds*. Le covariant analogue, relatif a ds?, est manifestement
W(dz, Dz). 1l est évident d’ailleurs que W ne s’annule identiquement que
lorsque G est identiquement nul.

Les deux séries de variables dx, Dz, de la forme W subissant, par un change-
ment de variables, la méme substitution linéaire, nous sommes conduils i consi-
dérer les formes suivantes, que I'on oblient en échangeant les variables dz, Dz,

ajoutant et retranchant les résultats obtenus :
L ¥(dre, D)= L W(dz, D) + — U(Di do),
p 2p 2p
1 1 1
- \r 4 r)— — W X "——f > )
P(‘(dx, D) ?'P‘P(df’, D) 29‘1(])1, dx)
Sil’'on pose

Wy :2 v dr; Dy,

ik
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on aura

F(dx, Dx) :2.;.(%,‘,.;_ yui) dag Doy,
ik

(‘l(d]’, l){r) :2%(7,‘/;— }J/x'i) a'.r,- [),‘,U/‘A.

ik

Nous voyons ainsi que F est la forme polaire de la forme quadratique

®(dx) :E :I; (yri+ 7ir) dvidry,
ik
et que 'on a I'identité

G(dx, Dx) + G(Dx, dr) =o.
nfin I'identité
¥ =F+ G,

montre que F et G ne sont identiquement nuls que lorsque W et, par suile, C sont
identiquement nuls.

21. Nous pourrons donc remplacer G par U'ensemble de la forme quadra-
. 1 e o
tique - ®(dz) et de la forme bilinéaire - G(dz, Dx).
o
Les fonclions symétriques élémentaires des racines de I’équation en A obtenue

en annulant le discriminant de % ds? + = ®(dz) sont des invariants de la variété
p
x, ds2.
~ . . . I
Chacune de ces fonctions contient en facteur une puissance de —, d’exposant
P
égal & son poids. Observons, de plus. que ds* étant défini positif (ds* et @ sont
nécessairement a coefficients réels), les racines et les fonctions symétriques de

ces racines ne sont toutes nulles que dans le cas o ® est identiquement nul.

. Si @ est différent de zéro, nous aurons au moins un invariant répondant & la
. . . I ' .
question. Si ® est nul, nous aurons recours a la forme -G(dz, Dz). Combinons
p

cette forme avec la forme polaire de ds?; nous obtenons une nouvelle équation
en A, en annulant le discriminant de

A n_ 0ds? U,
EEDJJ,W -+ _f;(j(da’ Dl‘).

Les fonclions symétriques des racines’de cette équation présentent les mémes
propriétés d’invariance que celles de la précédente; elles contiennent aussi en

. . 1 . . cee o
facteur une puissance de —- Il reste & voir dans quelles conditions ces fonctions
p
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symétriques sont toutes nulles. Pour cela, supposons ds* ramené, par un chan-

gement de variables, a la forme EQQB? dx}, 'équation en X est alors
6332 2 2 )\ 2 2 2 2 2 27 —
e*ABBIBIB; + A [Bf (y25— 752)*+ B3 (vs1— 713)* + B (yia—y21)* 1 =04

Pour que les racines de celte équation soient toules nulles, il faut que
Yas— Yaz2y Y31 — Yia, Yi2a— Y21 le soient, c’est-a-dire que G soit identiquement
nul. Or, si ® et G sont nuls tous deux il en est de méme de C(dxz, cx, Dx).

En résumé :

Etant donnée une variété a trois dimensions et ¢ ds? défini positif, il est
toujours possible, soit de la représenter conformément sur U'espace euclidien,
soit de lui adjoindre une variété principale.

22. Le probléme de la représentation conforme parait se compliquer dés que
I'on suppose les variétés données a plus de trois dimensions, ainsi que nous allons
I'indiquer sur un cas particulier.

Supposons que 'on ait une variété a n dimensions (n > 3) x, ds* dont le ds?
ait la forme particuliére

(15) ds‘*:ZB}'dx? (f=1,2, ..., 1),

étudiée par M. Darboux ('). Si I'on veut chercher les conditions pour que la
variété précédente soit représentable conformément sur I'espace euclidien a n

dimensions, c’est-a-dire sur l'espace z',, z}, ..., x,, ds'*

(16) ds’2:2dx}2,

on procéde de la facon suivante : On considére la variété x, ds?, en posant
(17) do?= p* ds.

M. Darboux, dans le Mémoire cité, a donné les conditions pour qu’une variété
dont le ds? a la forme (15) soit cuclidienne. On peut appliquer ces conditions a
la variété x, ds?, puisque ds? est de la forme voulue. On obtient ainsi un sys-

téme Z d’équations aux dérivées partielles du second ordre qui doit donner la

fonction - On peut encore prendre R =logo comme fonction inconnue dans le

syétémc 2

(1) Annales de UEcole Normale, 2* série, t. VII; 1878.
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) . N . oL s .
Ce systéme 24 est alors analogue ausystéme S du n° 15; mais il en différe, si n

est supérieur & trois, par le fait suivant : On peut résoudre 2 de différentes
facons par rapport aux dérivées secondes de R. En égalant les valeurs
trouvées, on obtient une premiére série de conditions de compatibilité ot
ne figurent que les coefficients du ds? et leurs dérivées d’ordre inférieur ou
égal & deuzx. 1l est inutile d’écrire ici ces conditions.

Si ces conditions se trouvent satisfaites, 2 donne un systéme de valeurs bien
déterminées pour les dérivées secondes de R. Egalant alors les diverses valeurs
des dérivées troisiémes de R, obtenues par dérivation des valeurs trouvées pour
les dérivées secondes, tenant comple des équations précédentes, on obtient une
seconde série de conditions de compatibilité ot figurent les dérivées des trois
premiers ordres des coefficients de ds2. Les deux séries de conditions sont néces-
saires et suffisantes pour que la variété donnée soit représentable conformément
sur I’espace euclidien & n dimensions.

Considérons maintenant un ds* de la forme (15) pour lequel les premiéres des
conditions précédentes sont seules satisfaites. 1l est évident que I'on pourrait,
comme précédemment, définir un covariant cubique, a trois systémes de différen-
tielles, commun a toutes les variétés x, p* ds?, o étant fonction quelconque des
variables z. Il est probable que ce covariant permettrait de définir encore une
variété principale ; mais I'étude algébrique du probléme devient évidemment plus
compliquée que pour le cas de n = 3. 4 fortiori, en serait-il de méme pour les
variétés quelconques dont le ds? peut prendre la forme (15); et plus encore pour
les variétés a ds* absolument quelconque. En effet, le théoréme du n° 18 ne peut

pas se généraliser pour une variélé a plus de trois dimensions. Il faudrait alors
commencer par éludier directement les équations obtenues en égalant a zéro les
coefficients du covariant G, de Christoffel relatif a la variété z, ds2, ce dont
nous avons pu nous dispenser dans le cas de trois variables.

CHAPITRE 1V.

FORMES DE DIFFERENTIELLES INVARIANTES VIS-A-VIS
DE CERTAINS GROUPES.

23. Considérons, dans la multiplicité xy, xs, ..., &,, n expressions de Pfaff

(1) li(dx):Elij(x,,xg,...,xn)dxj (i, j=1,2,...,n).
]
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Nous supposerons que ces expressions considérées comme formes linéaires des
difféventielles dzj sont linéairement indépendantes. On peut alors résoudre les
relations (1) par rapport aux différentielles dz; et, par suite, exprimer la diffé-
rentielle df d’'une fonction quelconque des variables z en fonction linéaire et
liomogene des {(dx), et cela d’une seule fagon. Soit

(2) df—_—Eli(dx)A,-f.

Les A; f sont des formes linéaires indépendantes des dérivées de f; nous les
considérerons comme les symboles de n transformations infinitésimales ainst
ASSOCIEES aux expressions de Pfaff données.

Inversement, on peut se donner & l'avance n transformations infinitésimales,
dont les symboles soient des formes linéaires indépendantes des dérivées de f, et
leur associer, par la relation (2), n expressions de Pfaff /;(dx).

Il est bien évident que deux systémes associés d’expressions de Pfaff et de
transformations infinitésimales restent associés aprés un changement de
variables quelconque.

Nous ferons deux applications particulieres de cette remarque.

En premier lieu, nous compléterons une proposition établie a la fin du Cha-
pitre II (n° 13). Nous avons démontré, & cet endroit, que la transformation de
passage d'une variété x, ds?, en une autre x/, ds'2, devrait satisfaire & un systéme
d’équations aux différentielles totales de la forme

(3) l;(dx)=1](dz") (i=1,2,...,n),

que 'on obtient par des opérations algébriques et des dérivations. Désignons par f
et f’ deux fonctions dépendant la premiére des variables z, la seconde des va-
riables z'; supposons que f et f' se correspondent par la transformation de pas-
sage. Soient A;f et A f" les systémes d’expressions de Pfafl associés respective-
ment aux /;(dx) et aux /;(dz'). La transformation de passage doit satisfaire au
systéme d’équations linéaires aux dérivées partielles

(4) Aif = A,

équivalent au systéme (3). On remarque bien, comme nous l'avions annoncé,
que le systéme (4) est symétrique par rapport aux deux variétés. On compléterait
I'étude du systéme (4) comme dans le cas de trois variables.

Imaginons, en second lieu, que nous ayons un changement de wvariables
transformant en elles-mémes les expressions de Pfaff : il transformera ausst

en elles-mémes les transformations infinitésimales associées. Sile changement

Fac. de T., 2¢ S., 1. 54
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de variables correspond & une transformation infinitésimale d’un groupe & un
paramétre, la proposition précédente prend une forme intéressante, que nous
allons établir analyliquement au numéro suivant.

9%. Soit

) xr= Ny, @)L

dz;

une transformation infinitésimale quelconque de la multiplicité z(, z, ..., z,.
Prolongeons (') X £, la transformation obtenue

' JF JF
(1 F xr) — ¢ — L
(6) X F (@, ) = Do o+ e g

est relative & la multiplicité & 27 dimensions z;, dz;.
Dans I'identité

(7) dX f(z) =XV df(x),

exprimons les différentielles X f el df au moyen de (2), 'identité ohtenue peut
s’écrire

(8) 2l,L(dx)(A,LX)/“:'EA,JX“)lk(dx).
h k

Supposons tous les X [y (dx) nuls; autrement dit, supposons que les {x(dz)
admettent la transformation XWF (on dit aussi admettent la transforma-
tion X f), le second membre de l'identité précédente se réduit a zéro, et, par
suite, tous les crochets (A, X)f sont nuls. En résumé :

Si les expressions de Pfaf I(dz) admeltent la transformation X f, les
transformations infinitésimales associées sont échangeables avec X f et réci-
broquement.

(La réciproque est vraie parce que lous les A f ne peuvent étre nuls en méme
temps.)

La proposition précédente raméne la recherche des systémes (1) d’expressions
de Pfaff invariantes vis-a-vis des transformations d'un groupe G donné, a celle
des transformations infinitésimales échangeables avec celles du groupe G. Ce
dernier probléme est bien connu (2) et nous conduit aux propositions suivantes :

Soient X;f les transformations infinitésimales d'un groupe G, nous suppo-

(1) Lie-EnGevr, Transformationsgruppen, I, Gh. 25.
(?) Lie-ExckiL, Transformationsgruppen, I, p. 376.



SUR LES VARIETES A TROIS DIMENSIONS. hig

serons qu’il n'existe entre elles aucune relation de la forme
(9) Doil@, @0,y @) Xif =0
i

Il existe alors une infinité de transformations infinitésimales échangeables avec
celles de G. Choisissons n de ces transformations de fagon que leurs symboles Ay f
solent formes linéaires indépendantes des dérivées de f. Les expressions de
Pfaff ; (dz) associées aux A; f a I'aide de (2) sont invariantes vis-a-vis des trans-
formations de G.

1l y a une infinité de systémes de n transformations infinitésimales L; f, formes
indépendantes des dérivées de f et échangeables avec celles de G. L’un quel-
conque de ces systémes se déduit du systéme choisi Az f par une substitution
linéaire & déterminant non nul, les coefficients de la substitution étant des inva-
riants de G. D’ailleurs, & toute substitution linéaire effectuée sur les Ay f cor-
respond une substitution linéaire effectuée sur les expressions de Pfaff associées.

Par suite :

Il existe une infinité de systémes de n expressions de Pfaff invariantes
vis-a-ois des transformations d’un groupe G de Uespéce indiquée. Tous ces
systémes s'obtiennent a partir de Uun d’entre euzx par des substitutions li-
néaires & déterminant non nul, dont les coefficients sont des invariants de G.

Nous dirons que ces divers systémes sont équivalents.

Inversement, en effectuant, sur un systéme d’expressions de Pfaff {4 (dz) inva-
riantes vis-a-vis de G, une pareille substitution, on obtient encore un systéme

de n expressions de Pfaff invariantes vis-a-vis de G.

25. Considérons une forme de différentielles F(x, dx) invariante par les
transformations du groupe G. Nous pouvons y prendre comme nouvelles va-
riables les expressions de Pfaff { (dz) précédemment définies. 1l sulfit de résoudre
les équations (1) par rapport aux différentielles (ce qui est possible puisque
les {(dz) sont linéairement indépendantes) et de porter les valeurs Lrouvées

dans F(z, dz). On obtient ainsi une forme

Ola, U(dr)] = ¥ Aijrp(@1 2y ooy @) li(d) (de) . L (der).

6]y P

La condition nécessaire et suffisante pour que ® soit invariante vis-a-vis de G
s’obtient en écrivant que X' ® est nul, X' I étant la transformation prolongée
d'une transformation arbitraire X f du groupe G. Or, X [x(dx) est nul quel
que soit k. De plus, les A ne contenant pas- les différentielles, les deux expres-
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sions X" A et XA sont identiques. On doit donc avoir

XOd = 2 XAi, pli(dzx)l(dz) ... 1,(dx)=o.

[N

Cette identité ne peut avoir lieu que si tous les X A sont nuls, c'est-a-dire si
les A sont invariants de G. Donc :

Toute forme de différentielles invariante vis-a-vis de G est une forme des
variables I(dx), les coefficients de cette derniére forme étant des invariants
de G.

La réciproque de cette proposition est évidemment vraie.

On démontrerait, d’'une maniére analogue, qu’une forme F(z, dz, 3z, ...) de
plusieurs systémes d, 3, ... de différentielles des variables z, invariante vis-a-vis
de G, s’exprime en fonclion des systémes correspondants I(dx), {(3x), ... et des
invariants de G.

On établit aisément, d’une fagon directe, la proposition suivante, en quelque
sorte corrélative de la précédente :

“Un parameétre différentiel du groupe G s’exprime en fonction des trans-
formations infinitésimales Ay f échangeables avec celles de G et des inva-
riants de G.

Remarquons enfin que, si G est transitif (il est alors simplement transitif) les
invariants précédents sont des constantes.

26. Le groupe G salisfaisant aux conditions du n° 24, étant ramené & une
forme choisie comme forme canonique, on déterminera les formes {(dx). Il est
naturel de prendre ces formes aussi simples que possible; mais, ce choix fait, on
peut encore, par un changement de variables convenable, modifier les formes de
différentielles invariantes vis-d-vis de G, et cela sans changer la forme adoptée
pour les transformations de G, ainsi que nous allons 'expliquer.

Désignons par

J
(10) Xif = Rkslon a2 55
j
les transformations infinitésimales de G, et par /;(dz) les expressions de Pfaff
choisies, invariantes vis-a-vis de G. Il existe des changements de variables
(11) ;= 9;(xy, Xy ooy X0),

transformant le groupe G en un groupe G’ relatif & la multiplicité 2’ et admetlant
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pour transformations infinitésimales
1
(12) Xif'= Byt who oo 2 5
j

les fonctions & étant les mémes que plus haut. les transformations (r1)
jouissant des propriétés précédentes forment un groupe (fini ou infini) que nous
appellerons H. H estle plus grand groupe admettant G comme sous-groupe inva-
riant (1); et 'on sait que les équations finies (11) de H s’obtiennent par l'inté-
gration de systémes complets.

La substitution (11) transforme les expressions /,(dz) en des expressions de
Pfaff A, (dz') invariantes vis-a-vis de G'. Et il est bien évident alors que les
M (dz') sont fonctions linéaires des /, (dx') déduits des {,(dx) par le changement
de z,, s, ..., Zzp en x', x,, ..., z,. Nous aurons donc

(13) li(dx):)\i(dx’):z ain(1) 1, (d').

h

Les a;; sont fonctions des invariants I' de G’ et restent, dans une certaine
mesure, arbitraires lant que la transformation (11) n’est pas complétement déter-
minée. On peut, dans tous les cas, obtenir les a par 'intégration de systemes
complets; puisque 'on peut obtenir ainsi les transformations (11). Mais, si l'on
veut simplement obtenir les a indépendamment des équations (1 1), on peut, dans
certains cas, procéder algébriquement.

Cette circonstance se présente si G est transitif. Aux systémes d’expressions
de Pfaff {(dx), M(dx'), I (dz') invariantes vis-a-vis de G ou de G/, sont associés
des systémes bien déterminés de transformations infinitésimales A f, L f7, A’ /" des
groupes @ et ¢’ réciproques de G et G'; et a la substitution

(14) li(dz)=2(da’) = Y, s, (da')
h
correspond une substitution relative aux A f

(15) Arf(@)=Lef' (@)= D A A f/(2')

h

[f' désigne ce que devient f par la substitution (11)]. Dans les formules (14)
et (15) les a et les A représentent des constantes (2). On peut déterminer directe-

(1) Lie-ENGEL, Transformationsgruppen, Ab. I, p. 361.
(2) Les substitutions (14) et (15) se déduisent facilement I'une de P’autre, en observant
que les /;(dx) et les Arf sont, en quelque sorte, des variables contragrédientes.
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ment les A, d’aprés un théoréme de M. Lie (') : Les A sont les constantes les
plus générales telles que les constantes de structure soient les mémes pour
les Ly f" et pour les A, f'. La détermination des A se fait bien algébriquement.

p & gebriq

27. Les équations (13) peuvent étre considérées comme les équations d'un
groupe linéaire et homogéne S (dont les variables sont /(dx)). Donnons-nous
maintenant une forme de différentielles F[/(dx)] invariante vis-a-vis de G. Nous
pourrons toujours disposer des arbitraires contenues dans les formules (13), de
maniére a transformer F[/(dx)] en une autre forme plus simple ®[(dx')]. 1l
faut alors distinguer deux cas : ou bien on peut choisir ® de sorte que la substi-~
tution ramenant I & ® soit déterminée entiérement; ou bien cela n’est pas
possible. Dans ce dernier cas, quelle que soit la forme ® choisie, la substitu-
tion (13) ramenant F & ® contient encore des arbitraires. 1l est bien évident alors
que F admet les substitutions d’un groupe linéaire et homogéne T

(de) = 361y (1) 4 (e,
J

détaché du groupe S. A ce groupe T correspond manifestement un groupe K,
détaché du groupe H précédemment considéré. Le groupe G est alors un sous-
groupe invariant du groupe K.

28. Les propositions précédentes suffisent pour la détermination des variétés a
trois dimensions admettant un groupe continu, probléme qui nous occupera plus
loin. Nous indiquerons auparavant comment on peut utiliser ces propositions a
la détermination des formes de différentielles invariantes vis-a-vis de groupes ne
satisfaisant plus & la restriction du n° 24. Soit I' un pareil groupe. On peut tou-
jours trouver un sous-groupe G de T, satisfaisant a la condition du n° 24 (on
prendra pour G un groupe aussi grand que possible). Désignons par X f'la trans-
formation infinitésimale la plus générale de T, par I, les invariants de G sup-
posés délerminés; supposons, en outre, que ’on ait un systéme d’expressions de
Pfaff /;(dx) invariantes vis-a-vis de G. Une forme de différentielles F[ I, & (dz)],
invariante vis-a-vis de G, le sera aussi vis-a-vis de T si l'on a

IF
o,
h

F

XD F[l, le(dz)] = XL+ Y ZXW 1, (de) = o,
- .

)
I

en désignant par X" o(z, dz) la transformation obtenue en prolongeant la trans-
formation infinitésimale arbitraire X f du groupe I'.

(1) Lie-ExceL, Transformationsgruppen, Ab. I, p. 338 et 381."
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Il est alors facile de voir que la détermination des formes invariantes vis-a-vis
de T' se raméne a U'intégration d’un systéme complet, dont les variables sont I,
et lx(dx).

CHAPITRE V.

VARIETES A TROIS DIMENSIONS ADMETTANT UN GROUPE CONTINU.

29. Nous allons appliquer les résultats précédents a la détermination de
types canoniques pour les variétés admettant un groupe continu de trans-
Sormations en elles-mémes. Nous ne trailerons entiérement le probleme que
pour les variétés a trois dimensions. Dans ce cas particulier, M. Bianchi (') a
donné une solution compléte pour les variétés a groupe réel, et a ds* défim
positif. Nous laisserons de colé ces restrictions; il serait, d’ailleurs, aisé de voir
-directement quelles modifications elles apporteraient aux résultats obtenus.

Considérons d’abord une variété quelconque x4, s, ..., z,, ds?, admettant un

groupe continu. Soit

une transformation infinitésimale de ce groupe, X' F(z, dz) la transformation

prolongée correspondante. On doit avoir I'identité

XM ds*=o,

n(n—+1)
T2

qui conduit a équations du premier ordre auxquelles doivent satisfaire

les § : équations données par M. Killing (2). Ce sont les équations de défini-
tion (3) du groupe de la variété. En les dérivant on peut obtenir des équations
du second ordre que I'on peut résoudre par rapport aux dérivées secondes de &.

Nous n’écrirons pas les formules de Killing; mais nous uliliserons les proposi-

tions suivantes qui en résultent immédiatement :

Le groupe de transformations d’une variété en elle-méme n’admet jamais
de transformation infinitésimale d’ordre égal ou supérieur a deux (*).

(1) Biancur, Sugli spazi a tre dimensioni, etc. (Mémoires de la Société italienne des
Sciences, série III, t. XI, p. 267.)

(2) KiLuing, Ueber die Grundlagen der Geometrie (Journal de Crelle, t. 109, p. 121).

(3) Lie-ENcEL, Transformationsgruppen, L, p. 184.

(%) Ibid., p. 191.
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Deuz transformations infinitésimales du groupe de transformations d’une
variété en elle-méme ne peuvent avoir leurs trajectoires communes ().

30. La premiére de ces remarques permettrait de simplifier la détermination des
types possibles pour les groupes de transformations d’une variété en elle-méme.
On sait (2) qu’a tout groupe G d’une multiplicité z, x», ..., x,, et qu'a lout
point P(z!, ..., 2%) de cette multiplicité est attaché un groupe linéaire et homo-
géne T, indiquant comment G transforme les éléments linéaires passant par P.
Si G est le groupe de transformations d’une variété en elle-méme, T laisse inva-
riante une forme quadratique & coelficients constants (P est fixé). On peut donc
déterminer les formes possibles du groupe I'. Cela fait, si G est transitif, un
nombre fini d’opérations effectuables et I'intégration d’équations différentielles
ordinaires donneraient les symboles des transformations infinitésimales de G. Ce
cas particulier de la détermination d'un groupe transitif est plus simple que le
cas général, parce que I'on n’a pas i considérer de transformations infinitésimales
d’ordre supérieur & un. C'est d’ailleurs la méthode employée par M. Lie dans ses
recherches sur le probléme de Riemann-Helmholtz (*). Nous pourrons nous
dispenser de la recherche précédente dans le cas de trois variables.

Une fois connus les divers types possibles pour les transformations infinitési-
males d’un groupe de transformations d’une variété en elle-méme, on obtient les
variétés correspondant a I'un de ces groupes de la fagon suivante. On écrit que
les équations de définition du groupe de la variété sont vérifiées par les transfor-
mations infinitésimales du groupe donné. En considérant les relations obtenues
comme des équations aux dérivées partielles, ot les fonctions inconnues sont les
coefficients du ds2, on obtient un systéme différentiel qu’il ne reste plus qu’a in-
tégrer. C'est la méthode qu’a suivie M. Bianchi, en faisant usage, en outre, de
considérations géométriques qui simplifient beaucoup l'étude du systéme diffé-
rentiel précédent. M. Bianchi recherche d’abord les variétés correspondant aux
groupes dont les transformations infinitésimales X f sont formes linéaires indé-
pendantes des dérivées de f. Dans ce cas, comme nous T'avons vu précédemment,
I'intégration du systéme différentiel revient a la recherche des transformations
infinitésimales échangeables avec celles du groupe donné.

31. Limitons-nous maintenant au cas de trois variables. Nous allons examiner

les diverses hypothéses possibles (#) pour le groupe de transformations de la va-

(1) Biancut, Mémoire cité, p. 272.

(2) Lig-ExceL, Transformationsgruppen, I, p. 603.

(3) Lie-ExeeL, Transformationsgruppen, I, Chap. 17.
(*) Voir les § 5 et 36 du Mémoire cité de M. Bianchi.
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riété en elleeméme. Rappelons que ce groupe est nécessairement fini et comprend
au plus six paramétres.

Si le groupe en question, que nous désignerons par G, n’est pas continu (se
réduit, par exemple, a la transformation identique) les coefficients du ds* peuvent
étre des fonctions quelconques des variables xy, 2, z3; mais on peut toﬁjours,
et d’une infinité de facons, trouver un changement de variables ramenant le ds* a
ne contenir que les carrés des différentielles (').

Si G est a un paramétre, on a, de suite, un type canonique pour la transfor-
mation infinitésimale G et la méthode du Chapitre IV (n° 25) est applicable.

Si G est a deux paramétres, on peut le considérer comme engendré par deux
transformations infinitésimales X, f, X,f. Ces deux transformations infinitési-
males ne peuvent avoir leurs trajectoires communes, et, par suite, X, f, X, f sont
formes linéaires indépendantes des dérivées de f. Ayant choisi des formes cano-
niques pour X, f, X, f, on aura les ds? des variétés correspondantes par la mé-
thode du n° 25.

Si G est a trois paramétres, il faut distinguer deux cas. Si G est intransitif,
on considére un sous-groupe a deux paramétres de G (on sait qu'il existe tou-
jours). On est alors conduit a rechercher dans quels cas les ds* précédemment
trouvés, donnés par un groupe a deux paramétres, admettent un groupe plus
grand. Si G est transitif, il est simplement transitif; on détermine des types
canoniques auxquels on peut ramener de pareils groupes; et a chacun de ces
types on applique la méthode précédemment indiquée (n°® 23).

Enfin le cas ot G est a plus de trois paramétres se raméne aux précédents. En
effet, tout groupe a plus de trois paramétres admet des sous-groupes a trois pa-
ramétres. On cherchera donc dans quels cas les ds? précédemment trouvés
admettent des groupes a plus de trois paramétres.

Nous avons conservé cet ordre pour l'exposition des résultats trouvés. Pour
tous les groupes dont les transformations infinitésimales X f sont formes linéaires
indépendantes des dérivées de f, nous indiquons le systéme choisi pour les
formes I(dx) et la substitution S correspondante. (Voir Chapitre précédent,

n* 26 et 27.)

Groupes intransitifs.

32. On peat prendre pour forme canonique de la transformation infinitésimale
d’un groupe a un paramétre

9,
T, Xif:—d—i:.

Le groupe correspondant laisse invariantes les fonctions des variables x,, 25 et

(1) Voir Chap. III, n° 18.
Fac. de T., 2° 8., 1. 55
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les formes
ldl l,-(dx‘):d.z‘i.

Les ds? correspondants sont donc réductibles a la forme canonique
1 Ea,~j(x2, xy) da; de;,

que I'on pourrait simplifier encore a Paide de la substitution (')
Sy by, by U cli+ d‘Pn d‘?z, chsa

les © étant fonctions quelconques de z,, z3, ¢ une constante arbitraire.
Les groupes intransitifs & deux paramétres n’admettant qu’un seul invariant

sont semblables (2) soit au groupe engendré par

p)
T, X,f:d—;g, X, =L,

da,

soit au groupe engendré par

' 0 ad
f;, X1f:5‘£7 ng:ede_:z/;‘"

3

Les deux groupes précédents admettent z, comme invariant.
A T, on peut faire correspondre les formes

Lz l,(d.x) :d$i,
et la substitution
S, Uy, b, Uy oilyy  @ali - ogaly+ gy, 03y + age by + oyl

les o sont fonctions arbitraires de 2, seul ; les a. sont des conslantes arbitraires. Une
forme quadratique des variables /,,7,, /3, dont les coefficients sont fonction de z,
seul constitue le ds* d'une variété admettant le groupe T,. Les substitutions S,
permettent de réduire une pareille forme a 1'un des types canoniques suivants :

11 dxt =+ s dxl 4 2 a5, dzx, dos + azy dol,
I a(dx;+ bdxy)? 4+ 2dz, da,y

les lettres a et b désignent des fonctions de z,.
On s’assure, de méme, que I'on peut faire correspondre a T; les formes inva-

(1) Nous écrirons toujours de cette facon abrégée les substitutions S; nous supprimons,
en outre, les accents des seconds membres des équations (13) du n° 26.
(?) Voir Lie-Excer, Transformationsgruppen, Ab. I, Chap. XIX.
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riantes
L, l(dz) =duz,, l,(dzx) =dx,, l,(dz) = dzx;— x3dx,,
et la substitution (')
S, L, L, U oly, L+, eV (L4 xl+y4);

w, 7, ¥ désignent des fonctions arbitraires de z; o, o', ¥, leurs dérivées. On vé-
rifie aisément que le ds? d’une variété correspondant au groupe étudié peut étre
ramené 4 I'une des formes canoniques

111 dx? 4 @3y A2 2 Qyy dxy (dawy — 2y d2y) + ayy(dzey— 23 dx,y)?,
1 a(dxy— x,dz,)t+ 2 dz [day+ b(da; — xydx,)],
1t adzxl—+ 2dx,(de;— xydr,+ bdzy);

les lettres a et b désignent des fonctions de x,.

33. 11 nous faut maintenant rechercher dans quels cas les ds? donnés par les
deux groupes précédents admettent un groupe intransitif & plus de deux para-
métres. Nous observerons, pour cela, qu'un groupe laissant invariants a la fois x,
et ds? laisse aussi invariants dzx, et le covariant quadratique ¢ (z,, dz), attaché
a x, et ds? (défini au Chap. I, n° 4.) De I'ensemble de formes ds?, ¢(x,, dz),
dz, nous pourrons, en général, tirer un systéme de trois expressions de Pfaff
invariantes, équivalent au systéme L, ou au systéme L; suivant le ds* dont on
est parti. Il est alors aisé de voir que le groupe dont on est parti est le groupe
le plus général, laissant 2, et ds? invariants. Si, au contraire, 'ensemble ds?,
o(@y,dz), dz, ne donne pas un systéme de trois expressions de Pfaff, il peut
arriver que l'on ait un groupe a plus de deux paramétres laissant invariants z,
et ds?. :

Le calcul des formes ¢(z,, dz) n’offre aucune difficulté et conduit aux résultats
suivants.

Pour le ds? désigné par I, on a

(1) ¢ (24, dz) = ay, da? + 24y, deyday+ @y, dx},

les lettres accentuées désignant les dérivées des fonctions correspondantes de z,.

(') Pour déterminer S;, on a cherché directement les changements de variables de la

0 0,
forme @1=291(2}), 2= 92(¥}, @y, 7}), @3 = 93 (2}, @5, &), transformant dfz’ e%s o en des

Z'3
. ... . . of . of
combinaisons linéaires a coefficients constants de prl ex: Y
' 2 3
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Considérons, avec cette forme, 1'expression
(2) ds? — dx? = ayy dz} + 20,5 da, doy + asg dxl.

L’ensemble des deux formes (1), (2) et de dz, donne un ensemble de trois
expressions de Pfaff équivalent (') & 'ensemble L,, sauf dans le cas ou aj,,
@y, Ayy sONL proportidnnels A agay Aa3y @33, C'est-a-dire lorsque les rapports
mutuels des a sont des constantes. On peut alors, par une substitution conve-

nable S,, ramener ds? 3 la forme
IV dz? + a(z,)(dz} + dz?),
qui admet manifestement le groupe a trois paramétres engendré par

d __of . af af
oz, Xof = ox;’ Xof =, PENELD

T, X,f=

On trouve, pour le ds2, 1T,

o (@, dz) = ab (dz;+ bdx,) dxy,

et 'on en conclut aisément que si &' n’est pas nul, II' n’admet que le groupe T\.
Si & est nul, b est une constante que ’on réduit a zéro par une substitution S,;
) q P

on raméne alors, par un changement de variables, ds? a la forme
\4 a(z,)(dx} + 2dz, dz,),

admettant le groupe engendré par

U Xpmn Y of

: _ 9 — _
T X\ f= iy X/ =57 T ox; T P 0w,

(),
Pour le ds2, 111,
(@, dz) = ay, dxl + 24y, day(daey— 2y da,) + afy, (day — x5 day).

Dans ce cas encore, ds? n’admet un groupe a plus de deux paramétres que si
les rapports mutuels des @ sont des constantes. Dans ce cas, une substitution S;

raméne ds? ala forme

VI . dx} + a(ax,)[dx} + (day— x5 dz,)*],

admettant le groupe

\ 9 J 9 —% 2y 9
’la X‘f:—d_‘;;, X2f:ez2()£3, X3f:x3e"x=d'—;+67(l—|—x§)a%;'

(1) Voir Chan. IV, n° 24.
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Pour les ds2, 111" et 1117, on a respectivement

o(xy, da) = a(dr;— x; dry) + b(drs— x4 dx,) dz,,

o (xy, dor) =dx,dz,,

et I'on s’assure aisément que les ds? considérés ne peuvent jamais admetire un

groupe intransitif 4 plus de deux paramétres.

Groupes transitifs.

34. Avant d’examiner les différents types de groupes G simplement tran-
sitifs, indiquons une méthode pour déterminer les substitutions S (n° 27) cor-
respondantes. Tout revient, comme on sait, & trouver les substitutions linéaires
a coefficients conslants, qui, effectuées sur les transformations infinitésimales A, f
du groupe réciproque T', n’altérent pas les constantes de structure.

En désignant par c; ces constantes, on a

(AiAg) = EciksAsf-
S
Le groupe I' étant a trois paramétres, on peut considérer, avec M. Lie ('), la
forme bilinéaire
F(u,v)= 2 (Cags Uy = Cay5Uy =+ Cyaslly) Ve

s

Soient

Lif= Xahif, Lf=XBiAif,

deux transformations infinitésimales de T', on a

dF(u, ) -
(L,LQ)—_—ETASJ”:b(u, AS),
s
en remplacant u,, u,, 3 respectivement par asfy— o382, 3By — 2 Py, 21 Pa— 22y
Exprimons les A;f en fonction de trois autres transformations infinitési-

males A fdeT,

(3) Aif= X his A,
)

et faisons correspondre aux constantes o et 3 des constantes o/, ' telles que

(1) Lie-ENcEL, Transformationsgruppen, Ab. III, p. 718.
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. I'on ait

’ ﬁ ’
EaiAif=Zd2Azf, 2 Bidif = Z BiALS.
i i S i

Soit ®(u', ¢') la forme bilinéaire correspondant aux A’. En remplacant les u
comme précédemment, et, d'une fagon analogue, ) par o)) — o, @), ..., on a
évidemment '

(4) F(u,Af)y=@(u',A'f).

Mais il est facile de déterminer la substitution linéaire exprimant les « en fonc-
tion des «’ et de remplacer alors I'identité (4) par la suivante,

F(Ag, Af)y=® (AN o, A f)| 2],

en désignant par %] le déterminant de la substitution (3), par ¢ une fonction
quelconque différente de f. On conclut de 1a le résultat suivant : Les substitu-
tions cherchées sont celles qui, effectuées simultanément sur les deux séries de
variables de la forme F (A9, A f), reproduisent cette forme multipliée parle déter-
minant de la substitution. De 1a résulte la régle suivante :

On détermine d’abord les substitutions (3) qui, effectuées sur les Af et
les Mg, transforment en elle-méme F (Ao, Af). La substitution cherchée est
alors

hys
A= — A"
if 2 | A | i/
i
Remarquons encore que si le discriminant de F(Ap, Af) n’est pas nul, | 7] est
égal & =1, et que les substitutions cherchées transforment en elle-méme, au
signe prés, la forme F(As, A f).

35. Les transformations infinitésimales d’un groupe simplement transitif a
trois variables peuvent étre ramenées a 'un des types (5), (7), Tr, Ts, Ty exa-
minés plus loin. ’

Pour chacun de ces types, nous indiquons les transformations infinitésimales A f
choisies pour le groupe réciproque et la forme correspondante F(Ay, A f).

Le groupe

. Jd —
(5) }s,f: (7;[;7 (XiXk):o
laisse invariantes les différentielles dz;. Les coefficients de la substitution S sont
des constantes quelconques. On peut toujours ramener les ds? correspondants
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a la forme euclidienne

(6) ' dst = dx? + dz? + dx?.
Le groupe
=9 — 9 —_ 9 o
(7) Xif = dxs Xof = oz, Xof = dx, + % 0z,

(X X)) =(X;X;)=o, (XeX3) =X, f

conduit a
_of _ o __ 9o af
Mf=5a M=y M=o TGy
(8) L(dz)=dxy+ 1 dzs,  b(de)=dz,, L(dz)=—dz,

F(A¢, Af) = MSAro,

(9) S Ly by Uy oy by ogg by o3y, Ayl ctasly, 03 by a3l

Les o sont des constantes et a,, est égal & ayy033 — %z30232. On a deux types

possibles pour ds?,

(10) Cldz? + dx? + 22 dowydoes+ (14 x2) dxl],

(11) Cldz: + 2 dxy (dzy+ x, dzy)],

C désignant une constante quelconque.
Au groupe

_ _ o o . of
T, X f=2 z; X2f_dx3’ Xaf__zd'_.m+('rz+2x3)d_%+‘l39;;’

(X;X;)=o, (XiX3) =X/, (X X)) =Xy f + X, f

correspondent

Alf: —(;_)gj, Ae_,f:e_—;—dla A3f::e~?’< df df>’

s 9z~ % oa,
L. L(de)=de, b(de)=e®(day+x day), l(dz)=e? dos,
FoAg, AS)= A0 Aof + = (A0 Asf — Asg Asf),

S, by &, U Uy aa by das o+ 0gs by, gy by gy L.
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On peut alors ramener les ds? correspondants & 'une des formes

Vi1l Cldz} + ce® (dxy+ x, dxy)? + e® dx? ],

VIV .Cldx} 4+ 2ce® (day+ x, dxy) dxy],

Vi e* (dxy+ z,dxs)? + zce%dx, dzx,,

(12) etdr?+ zce%dxl(dx2+ x, dxy).
Lg groupe

, _ Jd - d
o xX/=2, x= ()f
‘2 2
(X,X;)=o, (XiXy) =X, f, (X X5) =0X, f

(/e désigne une constante) donne

af 2 O 9
/ — e—hx, = e % / -
Af=e P A f=e 0y A\ f = P
L l (dx) = e"* dx,, l(dx) = e* dx,, li(dx) =dx,
F(Ao, Af) =Ao A, f—hA0 A, f,
Ss b, &, L oyl oy ly, o by oyl 13-‘
On peut ramener ds® 4 'une des formes
VI C(da} + e*i day + acel? )% drx, doy + €% dr?),
VI C(dz} + 2eh 0% dpy doeg + ce** dxl),
VT (e* dz, -+ ceh® dx3)é “+2e" dx, dx,,

C et ¢ sont des constantes.
Le dernier groupe & étudier est

x, e %

- R o o . O __i o 9
Ty X, f=e2 Er ) P s —a@x,e 3—0—»1‘;’ X, f= D X:;/——éxlzirf;

(XIX‘Z):XI.f’ (X1X3):2X2f, (szs): s/

Nous prendrons

af af af

A f=a? L 1= 20,%5) =— — 2.0y -
1/ Lo, +( ! Z)d.u, Yox,’

7} 9 ad
Agf_—._——xi f—l— 3£+5£g’

Asf = 5"1
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et
‘ l(dz) =dzxy— xy dxs,
L, ¢ L(dxr) =dxy+ 22 (dxy— 2, dxs),
( l(dz) =dx,+ x, dxy+ 23 (dey— 2. dxs).

La forme bilinéaire F(As, A f) est la forme polaire de la forme quadratique

Alanf — (Azf)e,

et I'on voit alors aisément que les substitutions Sy sont celles qui transforment
en elle-méme la forme 41,l,— (3. Nous prendrons

IX ds* — ; Cijli(d.l')lj(dl'),
Al
i
les coefficients ¢;; étant des constantes. On réduirait le nombre de ces constantes

3 aide des substitutions S, ; mais, comme nous n’aurons pas de calculs a effectuer
9 ) p

avec les ds? de ce type, nous n’effectucrons pas cette réduction.

36. On obtient des types canoniques pour les ds* admettant des groupes plus
étendus que les précédents, en complétant. I'étude des ds? donnés par les groupes
a trois paramétres. Examinons d’abord ceux de ces ds* dont le groupe est intran-
sitif, c’est-a-dire les ds2, 1V, V, VL.

La méthode du Chapitre 1I, n** 11 et 12, conduit sans difficulté au résultat
suivant. Pour que le ds?

v dz? + a(x,)(dx} + dx})

. . . g 1 da .
admette un groupe a plus de trois paramétres, il faut que -~ soit une con-
a dx,

stante ; mais la variété correspondante est alors une variété euclidienne ou une
variété a courbure constante. Les types canoniques de ds* de ces variétés sont
bien connus (voir n° 39).

La méme méthode appliquée au ds?, V, conduit a différentes hypotheses que
nous allons indiquer. Pour plus de simplicité, nous désignerons par des accents
les dérivations relatives a la variable z;,.

Le paramétre différentiel Df du ds?
A% ds* = a(x,)(dx} + 2 dx, dzx,)

i1 s asf O \?
se réduit a 32 <5§> en posant
2

Fac. de T., »*S., 1. 56
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Donc, si 32 est nul, c’est-a-dire si « est de la forme (¢ et d étant

1
(cxy+d)?
des constantes), on a une variété euclidienne.

Si @ est différent de zéro, la condition nécessaire et suffisante pour que le ds?
considéré admette un groupe a plus de trois paramétres est la suivante : L'ez-
pression

R

1
ad
est une constante. On peut déduire de la la forme que doit avoir «, en déter-

minant d’abord a_5 au moyen d'une équation du second ordre facile & intégrer.

Mais on vérifie direclement, en suivant la marche indiquée au Chapitre 11, que la
variété considérée est applicable sur la variété dont le ds? est

% dax? + 2e%dr, da,.

Ce dernier ds* a déja é1é ¢étudié (Chap. 11, n° 12); nous le retrouverons plus
loin (X11I).
Il reste & examiner le ds?, VI. Un changement de variables permet de le ra-

mener a la forme plus simple
dx} 4+ a(x))(dx? + e**.dx?).

Iétude directe des équations de définition du groupe correspondant est ici
plus simple que I'application de la théorie générale. Cetle étude a été faite par
M. Bianchi ('), quia oblenu ainsi les résultats suivants : Le groupe du ds? pré-
cédent est a plus de trois paramétres si l’expression a’a — a'* est une con-
stante; les ds* correspondants ou bien sont & courbure constante, ou bien sont
réductibles & un type canonique examiné plus loin (XI).

37. Examinons maintenant les ds* donnés par les groupes simplement tran-
sitifs. On applique sans'difficulté la méthode et les formules (*) du Chapitre 11
aux ds* correspondant aux groupes aulres que Ty. Voici les résultats obtenus :

Le ds* (10) ou

X ' Cldx? + da} + 2@, duy dzs+ (14 22) dx? |

admet toujours un groupe & quatre paramétres; il est aisé de voir d’ailleurs
que la substitution T définie au n° 27 ne se réduit pas a la substitution identique.

(1) Paragraphes 10 et 11 du Mémoire cité.
2y Voir les formules au n® 12.
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Le groupe correspondant est engendré par les transformations infinitésimales

e O d/ o of
“le—~7.27 \/ **) ng_~7—i-.r. z

(X Xy) = (X Xp) = (XuXy) =0,  (XuX3) =X,
(XoXy) ==Xy f, (X5X0) =X, /.

Le ds* (11) est euclidien;;

Les ds?, VII, VII', VII” n’admettent jamais de groupe a plus de trois para-
metres; ' '

Le ds* (12) est euclidien;

Le ds?, VIII, admet un groupe a plus de trois paramétres dans les cas suivants :

1° h=1; la variété correspondante est alors & courburc constante;

2" h=o0; le ds?, VIII, devient alors
X1 C(dx} + e** dx} + ace® day doy+ dx?)

admettant le groupe & quatre paramétres correspondant &

d )

(w_xz (e >-z: ey

1— ¢? d.x, 1 —c? dx?

o
Iy

(X0 Xe) = (X, X3) = (X, X)) =o, (Xi X)) ==X, f,
(XiXy) =X3/, (X:X,) =—X,/.

Le ds?, VIII', admet un groupe a plus de trois paramétres si o =1, ou si b = o.

Dans le premier cas, on a un ds? i courbure constante ; dans le second cas, on a

le ds?
XII _ C(dx} + 2e® dry day+ ce** dx?)

admettant le groupe a qualrc paramétres :

g _af _of o af
’ \ M=o XS=o Xf=— o, T gy
12 1
_af oz Idf of
( Xif == dxr, 2 Oz, e ldx;;’

(Xlxz):(x‘zxzc):(xzxa):oa (XiX3) =X/,
(X4 Xy) ==X, f, (X5X,) =X, /.
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Enfin, le ds*, VIII", admet un groupe a plus de trois paramétres lorsque i = o
(on a alors un ds* euclidien), ou lorsque ¢ = o, ce qui donne

X1II e dx? + 2et* dr, du,,

admettant le groupe (')

‘x/f_l, ng:d"i, X, f=— —‘Z+x f+/w3-‘1/i,

Ts -2z, g of " "
( Xif= elz—z' ()a{ xz-(m,
(X,X,) = o, (XiXy)=X,f,  (XaXy)=4X,,
(Xi X)) =X,of,  (X,X,)=o, (X, X)) = (1— 1) X, /.

38. Examinons enfin les ds? du type IX. Supposons le groupe I' d'un pareil ds?
plus grand que le groupe Ty; le nombre des paramétres de T est 4, 5 ou 6.

Supposons I' & quatre paramétres. T admettant un sous-groupe simple i trois
paramétres, le groupe Ty, ce sous-groupe est sous-groupe invariant (*) de T'.
D’aprés le n° 27, la subsutution T ne se réduit pas alors a la substitution iden-
tique, la réduction canonique de la forme ds? indiquée au n® 27 est alors possible
d’une infinité de fagfons. Il serait aisé, par suite, de former des types canoniques
pour les ds? (IX) admettant un groupe I' a quatre paramélres; mais cela est
inutile. En effet, il n’existe pas de groupes a quatre paramétres n’admettant
comme sous-groupes a trois paraméires que des sous-groupes simples, et, par
suite, lous les ds* admettant des groupes & quatre paramétres sont réduc-
tibles a Uun des types canoniques précédemment trouvés.

Si le groupe T est a siz paramétres, on a une variété & courbure constante;
le ds? est réductible a un type canonique connu. Cette circonslance se présente
évidemment lorsque les formes ds* et 4, l; — {; ne différent que par un facteur
constaﬁt.

Démontrons enfin qu'il #'existe pas de ds* admettant un groupe I' a cing
paramétres. En effet, il existerait alors (Chap. II, n° 11} une transformation infi-
nitésimale échangeable avec celles de T'; le groupe I' serait systatique (*). Con-
sidérons alors le sous-groupe y de T', laissant invariant un point zf, zj, xj de
situation quelconque. D’aprés un théoréme de M. Lie (*), ce sous-groupe serait
sous-groupe invariant d’un sous-groupe |’ de T, plus grand que y. Or, y étant a

elh—2)x,
h —

(2) LIE-SCHEFFERS, Vorlesungen itber continuierliche Gruppen, p. 572.
(3) Lie-EnGEL, Lransformationsgruppen, Ab. I, p. 510.

(*) Lie-EnceL, Transformationsgruppen, Ab. I, p. 520.

(1) Si b =2, on remplace

par x; dans X, f.
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deux paramétres, on peut supposer y' & trois paramétres. Comme ' admet un
sous-groupe invariant, il est réductible a 'un des types entiérement étudiés et qui
ne donnent jamais, d’aprés ce que nous avons vu, des variétés admettant un
groupe a cinq paramétres (').

39. Rappelons enfin les formes canoniques connues des ds* a courbure con-
stante (2).
Le ds? euclidien

X1V dx? + dx} + dx?

admet le groupe a six paramétres engendré par

sx,f:b‘%, =2, xg=2%, xf=22_ .

T 0z, oz’ 3 0, 20z,
14 3
Y of o of
(Xsf——-l‘i'dxs-—xsdxiy Xsf_xg—(—)—x—i——x].gx_?

. . I
Le ds? a courbure constante — P

de? (1 — Ex}’,) -+ <Zxk dxk>2
XV 3 c ¢ ~ 7 L 2 & ’
()

h

admet le groupe donné par

‘le-_—.b-(%—x,U, X, =Y v, Xof=L _ av,

of =
1 Jdx, oz,

3 ( X /=, af _“ﬂ X, /= af af Xof= af of

) Xy ~———& b} Xy —~— — Xy ——>
oz, o, L0y 3 0z, > 0z, Yoz,

1

U af of of

=r s— Xy < A
'dx,+ 2dx2+ A

En résumé :

Les ds* a trois variables admettant un groupe continu sont réductibles &
Uun des types canoniques I, 11, 11, 11, ..., XV,

Ces types canoniques admettent respectivement les groupes engendrés
par T|, T2’ ey r]:‘45-

(1) Voir le Mémoire de M. Bianchi, § 36, 37.
(?) Lie-EncEL, Transformationsgruppen, Ab. III, Chap. XVIII.
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Nous avons conservé & trés peu prés les notations de M. Bianchi. Il est aisé,
dés lors, de voir que les ds* de M. Bianchi correspondent aux types cano-
niques désignés par les chiffres romains non accentués (en écartant toutefois
le ds?, V). La transformation de passage des ds* de M. Bianchi aux ds? précédents
pourrait d’ailleurs introduire des imaginaires, puisque nous n’avons fait aucunc
distinction entre les ¢léments réels el imaginaires.

Observons enfin que 'on obtiendrait sans difficulté des types canoniques
pour les variétés a trois dimensions a ds* défini positif admettant un groupe
continu de représentation conforme sur elles-mémes.

Le probléme de la représentation conforme se ramenant, d’apreés le Chapitre 11,
a celui de 'application, il suffirait de chercher la variété principale correspondant
a chacun des types canoniques de M. Bianchi. On voit d’aillears aisément que
plusieurs des variélés considérées sont susceptibles d’une représentation conforme
sur I'espace euclidien.

———D YT —



