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SUR LES RACINES

DE LA

FONCTION SPHERIQUE DE SECONDE ESPECE,

PAR M. T.-J. STIELTJES.

Nous nous proposons de développer ici quelques Remarques, qui nous
ont été suggérées par I'étude du Mémoire de M. Hermite sur le sujet in-
diqué ci-dessus (Annales de la Faculté des Sciences de Toulouse, t. 1V).

Soient donc, en adoptant les notations de M. Hermite, X,=F(z) le
polynéme de Legendre du degré n, R(x) la partie entiére du produit

1 T I

5a
ensuite
T X +1
() Q"(2) = ;F(a)log (254 ) — R(x)

la fonction sphérique de seconde espéce.
M. Hermite a étudié¢ I’équation Q*(z) = o, et pour cela il pose

lo r+1 e+
Er 1~ T e—1’
. e’ 41
/(5)2(65——1)"Q"<e;i1>'

1l obtient ensuite la distribution des racines de I'équation f(z) = o sur
le plan des 5. Nous nous sommes demandé simplement ce que deviennent
ces résultats si on revient a la variable originale «, afin de connaitre ainsi
la distribution des racines de I’équation Q" (x) = o sur le plan des x.

1. La fonction analytique Q”(x) est non uniforme et elle admet une
infinit¢ de déterminations. Ces déterminations proviennent de ce que, dans
1IV. — Fac. de T. J.1
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Iexpression (1), le logarithme a une infinité¢ de valeurs différant 'une de
I'autre par des multiples quelconques de 2775 les déterminations de Q" ()
différent donc par des multiples de =iF (z). Pour une valeur quelconque
de x, il y a en général une détermination du logarithme et une seule, telle
que la partie purement imaginaire se trouve comprise entre = =i. lln'ya
exception que dans le cas ol cette partie imaginaire serait exactement
=== 71, ce qui n’a lieu que lorsque x est réel et compris dans I'intervalle
(—r1, +1).
Sil’on pose

b a une signification géométrique trés simple. Soient, sur le plan des x,
P, A, B les points qui représentent des quantités ¢, +1, —1 respective-

ment; alors b est égal a I’angle @, cet angle étant pris avec le signe +
lorsque P est au-dessous de 'axe des abscisses, avec le signe — lorsque P
est au-dessus de cet axe. Pour avoir les autres déterminations de Q*(x),
il faudrait ajouter a I'angle ainsi déterminé, et qui est compris entre ==,
des multiples quelconques de 2.

Mais appliquons une coupure le long de I'axe des abscisses de —1 &
-+ 1, et supposons que x ne soit pas sur la coupure. En adoptant alors pour
le logarithme la valeur dont la partie purement imaginaire tombe entre
=+ 71, on a une branche parfaitement déterminée de la fonction analytique
que nous considérons, et c’est cette branche particuliére que nous désigne-
rons par Q*(x). C'est cette fonction Q”(z) qui, lorsque modz > 1, donne
un développement convergent de la forme

Cy Cy Cy
(2) Qn(x): zn+1 + n+3 + an+s RaRRRL

car on sait que, dans le produit

1 I 1
F(x)<;+-3—5 +5?-{—...>,

les termes avec x~', 7%, ..., ™" manquent.
Il est clair, d’apreés ce qui précéde, que 'on a
) P ?

Q*(x +el) —Q*(x —el) =— niF(x),
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x étant sur la coupure et ¢ positif infiniment petit. Car pour x + ¢z la
partie imaginaire du logarithme est — wi, pour x — ¢i elle est + wi.

Par conséquent, si I'on traverse la coupure en allant de la moitié infé-
rieure du plan dans la moitié¢ supérieure, la fonction analytique Q*(x)
prendra une série continue de valeurs, mais on passe ainsi de la branche
Q*(x) ala branche Q*(x) + =i F(«). Tant qu’on ne franchit pas de nou-
veau la coupure, on a la encore une fonction continue et uniforme, et qui
répond a une détermination du logarithme dans laquelle la partie pure-
ment imaginaire est comprise entre + wi et + 3.

Sil'on revient a la variable

introduite par M. Hermite, on voit que, dans le plan des z, la bande comprisc
entre les deux droites y === = correspond a la branche Q"(x) telle que
nous venons de la définir. La bande comprise entre y =+ wiet y =+ 3w
correspond a la branche Q"(z) + i I'(x), .

Lorsque x est réel, mais non sur la coupure, la partie imaginaire du lo-
garithme est zéro ou plus généralement = 2k=. Pour la branche Q*(x)
elle est nulle, ce qui répond aussi sur le plan des z a I'axe des abscisses.
Dés lors on voit facilement que, pour la fonction Q*(x), la moitié supé-
rieure du plan des  correspond sur le plan des z 4 la bande comprise entre
les deux droites

y=o et y=—".

Au contraire, la bande entre y = o et y =+ = (sur le plan des z) cor-
respond a la moitié inférieure du plan des z.

De méme, pour la fonction Q*(z) + =i F(x), la moitié¢ supérieure du
plan correspond & la bande comprise entre les droites '

y== et y =27

sur le plan des z, et la moitié inférieure du plan des « & la bande comprise
entre
y=an et y—=3m,

Si 'on imagine dans le plan des @ un cercle tel que le rapport des dis-
tances d’un de ces points aux points A et B soit constant, et qu'on parcoure
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ce cercle constamment dans le méme sens, la partie réelle de

s loa Z1
ST e —1

restera constante, mais sa partie purement imaginaire variera toujours dans

le méme sens entre — o7 et + oot.

2. On peut passer maintenant directement des résultats obtenus par
M. Hermite, et qui se rapportent au plan des z, aux propositions équiva-
lentes se rapportant au plan des .

Considérons d’abord, sur le plan des z, la bande comprise entre les droites
y = === et qui correspond a la branche Q”(x). La fonction

e* —1

e =e—rer( 52

admet exactement 27 + 1 zéros dans cette bande, mais il faut remarquer
que toutes ces racines sont nulles. En effet, d’apres la formule (2),

es 41 e —1 n+1
n — = — ...
e (55)=+()

a déja un zéro d’ordre de multiplicité n + 1, =03 donc f(s)=o0 a la
méme racine avec 'ordre de multiplicité 27 -+ 1. Abstraction faite de cetie
racine multiple s = o, I'équation f(z) = o n’admet donc aucune autre ra-

cine dans la bande que nous considérons; et, puisque z = o correspond &
x = o, il en résulte que I'équation

Q*(z)=o

n’admet aucune racine (finie).
I.a bande comprise entre les droites

y== et Yy =2T

sur le plan des 5 ne renferme aucunc racine de f(5), et dans la bande com-

prise entre
y=oarx et y=3m

se trouvent n racines. On en conclut : I'équation

Q"(#) +miF(z)=o
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n’admet aucune racine dans la partie supéricure du plan, mais elle en a
précisément 7 au-dessous de 'axe des abscisses.
Généralement I'équation

Q" (z)+ kniF(x)=o,

ou k est entier (non nul ), a toujours exactement n racines qui se trouvent
au-dessous de I'axe des abscisses lorsque & est positif, au-dessus lorsque &
est négatif.

On remarquera que les zéros == 277, = 4=i, ... de la fonction

(ee—1)"
n’introduisent point des zéros dans f(z), mais contrebalancent sculement

A e 41 . , €51
les poles de Q”(ez_ 1>3 car, tandis que z = o est un zéro de Q"<z;—i—l>;

les valeurs z = == 2w, &= 47, ... sont des podles pour cette fonction.

3. On peut retrouver ces résultats par la méthode suivante. Considérons
la fonction Q*(x) dans l'espace annulaire compris entre les courbes C

Fig. 1. kig. 2.

u a B
LS S— / ( e~ad
_./ b

et ¢/, C étant un cercle de rayon trés grand, C’ enveloppant étroitement la
coupure (fig. 1). Dans ce domaine Q"(z) est partout uniforme et régu-
lier, c'est-a-dire développable par la série de Taylor. D’aprés un théoréme
de Cauchy, le nombre des racines de Q"(x) = o dans ce domaine peut donc
s’obtenir en divisant par 2w l'accroissement total de argument de Q(x),
lorsque x parcourt successivement les contours C et C' dans le sens in-
diqué (fig. 1). Or, sur le cercle C on a

Q™ (@)= 5 (1+¢)
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le module de ¢ restant aussi petit qu’on voudra. La variation totale de I'ar-
gument de 1 +- ¢ est donc nulle sur le contour C et 'accroissement de ’ar-
gument de Q*(x) sur ce contour est

—am X (n+1).

Pour avoir la variation de I'argument sur C’, nous réduirons ce contour
ala double droite de — 1+ ¢ a + 1 — ¢, et de deux cercles infiniment petits
entourant les points A et B et tels que le rapport des distances aux points
A et B est constant pour un point sur chacun de ces cercles. Sur le cercle
enveloppant le point A, la partie réelle de

log —
est alors constante, positive et trés grande, tandis que la partie imaginaire est
toujours comprise entre = wi. Ensuite, on a sensiblement sur ce cercle
F(x)=1 et R(x) égale a une quantité réelle.

On voit donc que la partie réelle de Q() est constamment positive trés
grande, tandis que la partie purement imaginaire est trés petite par rapport
a la partie réelle. La variation de I'argument de Q"(x) est donc insensible,
et il en est de méme pour le cercle enveloppant le point B. Puisqu’on sait
d’avance que la variation totale de I'argument sur C’ doit étre un multiple
exact de 2, nous pouvons donc nous borner a calculer la variation de I'ar-
gument sur la droite double de — 1 +ea +1—«.

En allant de — 1+ ¢ & + r — ¢, on doit prendre

1 xr —+1 —1 I+ .
og T —1 —log —z — T,

etenallantde +~1—c¢ad —1+¢

X +1 1+ .
log o —=log T ) T T

Mais on voit facilement (parce que la fonction Q”(z) est soit paire, soit

impaire) que la variation de I'argument est la méme dans les deux cas. 1l
suffira donc de calculer la variation de 'argument de

11—

éF(x)[log<'+“’> +77:i] _R(z)=X +Yi,
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<3

« diminuant de + 1 — ¢ 3 — 1+ ¢ et de doubler le résultat. Or, on a

X = éF(x) Iog-<iﬁi> —R(=z),

I1—x

Y— éﬂ:F(x),

et Pon reconnait facilement que 'équation X = o admet » + 1 racines
1>}’1>)’2>)’3>- . ->yn+|>— I.

Dans les intervalles de ces racines se trouvent les n racines de Y = o, x,,
Loy «evy Lny

]’1> ~7€1>J’z>xz- . "Z‘n>yn+l'

Il importe de remarquer que 1'équation X = o ne saurait avoir d’autres
racines réelles dans I'intervalle (— 1, + 1), car, d’aprés un théoréme de
Sturm, on en conclurait pour 'équation Y = o plus de » racines, ce qui
est absurde. Or on reconnait maintenant sans difficulté les variations de
signes de X et Y lorsque » décroit de 1 —¢ & — 1+¢, et qu'on peut dé-
duire du Tableau suivant

z. Signe de X. Signe de Y.
+1—¢ + +
Y1 o -+
Z, — o
e o -
x, -+ o
e o -+
X, (—1n)» o
Yn+1 o (—1)"
— 1+ (—r)n+t (—1)”

Pour x = + 1 — ¢, X est positif trés grand, Y positif fini, 'argument po-
sitif trés petit. Pour z =y, 'argument est + g; donc I'accroissement de

I'argument est, pour l'intervalle (+1—cay,),

+

vl

Il est clair ensuite qu’on a pour les intervalles indiqués les accroissements
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de Pargument suivants
(J"l é‘ .},2)9 + 7,
(.}’2 a Y3 )’ o+ T

(Yn & Y1) -+ T,

(Vn+1 & —14¢), —+ =

En faisant la somme et doublant, la variation totale de I'argument sur le

contour C’, est
+2m X (n+1),

et pour le contour C on avait un accroissement
—2m X (n+1);
donc I'équation Q*(x) = o n’admet aucune racine.
4. La méme méthode s’applique & 'équation
Q*(z) +7iF(x)=o.
Dans ce cas on a sur le cercle C
| Q"(z) +miF(z) =Ca"(1+¢);

donc la variation de I'argument sur C est

—+ 21T X n.

Mais il faudra prendre maintenant, en allant de — 1 +cd +1— ¢,
1 1+ 2
Y=+ nF(a),

etenallantde +1—cad —1+¢

X= R (@) log(152) —R (),

Y=+ gﬁF(w).
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La variation totale de I'argument sur C’ devient nulle, les deux parties
se détruisant; donc I'équation

Q*(z)+niF(x)=o

admet n racines. D’aprés le théoréme de M. Hermite, ces n racines se
trouvent au-dessous de ’axe des abscisses; on peut retrouver ce résultat en
évaluant la variation de 'argument sur le contour abedefga( fig. 2). La

varlation est
Sur abe, +7w X n,

e

is

Sur cd, — =
2

Sur ef, + 7 X (n+1),

T

Sur ga, ——»
en sorte qu'on trouve n racines a I'intérieur du contour. Les mémes consi-
dérations s’appliquent évidemment aux autres branches de la fonction, et

I'on pourrait méme déterminer le nombre des racines de
Q'(zx) +kriF(z)=0
pour une valeur non entiére ou méme imaginaire de A.

5. La fonction Q"(x) peut s’exprimer par I'intégrale de M. Neumann

1 T (u)du

() — —
Q( ) 2_l LL’—U’

et on peut conclure de la, trés simplement, que 'équation Q"(z) =on’a
point de racine. Supposons, en effet (« n’étant pas naturellement sur la

coupure ),
(3) 'HF/(u)du: ’
., *—u
on aurait aussl
+1 .
%) f F/(ll) duzo,
_1 X — U

i ‘ f F(u)du :f F(u)g(u‘;%l;(x)du—kF(x) [* F{ili(fu

X — U L

[N —1

IV. — Fac. de T. J.2
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et dans le second membre la premiére intégrale s’annule en vertu des pro-
priétés de F(u), la seconde en vertu de (3). Or, je dis que la relation (4)
est impossible; soit, en cffet,

x=a -+ bi,
on devrait avoir
+1
F(u)? . .
Ii w—_—-{m(a—ll—bl)dU—O.

La partic purement imaginaire ne peut étre nulle, 4 moins qu’on n’ait
b= o0; mais x serait réel et, n’étant pas sur la coupure, « — u ne changerait
b ) )
pas de signe, et la relation (4) est encore impossible.



