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SUR UNE

CLASSE DE POLYNOMES A DEUX VARIABLES

ET LE CALCUL APPROCHE DES INTEGRALES DOUBLES,

PAR M. P. APPELL.

Les polynémes a deux variables analogues aux polyndémes de Legendre
ct aux polyndmes cos(narccosz) ont été découverts par M. Hermite (*)
dont les indications ont conduit Didon a des résultats intéressants (?).
Dans un second Mémoire (*), Didon, se placant & un point de vue trés gé-
néral, forme des polynémes de deux variables U, ,(z, y) de degrés m + n,
tels que 'on ait

f K(x’y)Um,nUy.,v dxdy:o

tant que 'on n’a pas m = p. et n = v, K(z, y) étant une fonction donnée
et le champ d’intégration ayant une forme déterminée.

Nous avons montré comment les polynémes de M. Hermite, certains des
polynémes de Didon et certains polynémes analogues & ceux de Jacobi,
peuvent étre rattachés aux fonctions hypergéométriques de deux va-
riables (*).

Les polynémes de Legendre interviennent dans la méthode de Gauss
pour le calcul approché des intégrales définies, et les polynémes plus géné-
raux P, () caractérisés par les conditions

b
f K(z)P,(z)Py(x)dxr =0 C(nZv),

(1) Journal de Crelle, t. 64, et Comptes rendus de I’Académie des Sciences, . 1.X.

(2) Annales de I’Ecole Normale, 1™ série, t. V.

(3) Ibud., t. VII.

(*) Comptes rendus de I’Académie des Sciences, 1880; Journal de Mathématiques
pures et appliquées, dirigé par M. Resal, 1882; Archiv der Mathematik und Physik de
Hoppe, 1881.

V. — Fac. de T. H.i
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dans le calcul approché des intégrales de la forme

b
f K(z) f(z)dx

ol K () est une fonction déterminée (').

Ily a lieu de penser que les polynomes de M. Hermite et les polynomes
de Didon interviendront de méme dans le calcul approché des intégrales
doubles de la forme

f K(z,y) f(z,y)dedy,

K(z,y) étant une fonction déterminée servant & la définition des poly-
ndémes, et le champ d’intégration ayant une forme donnée.

(est & mettre ce fait en évidence, dans quelques cas trés simples pouvant
servir de types 4 une théorie générale, qu’est consacrée la présente Note.
Dans une premiére Partie, nous résumons les principales propriétés des
polynémes de M. Hermite généralisés par Didon, en y ajoutant quelques
faits nouveaux, parmi lesquels nous citerons une liaison trés simple entre
une certaine forme quadratique et la notion de polyndmes associés ou ad-
joints introduite par M. Hermite. Dans la deuxi¢éme Partie, nous nous oc-
cupons de 'approximation des intégrales doubles.

I. — Polynémes.

1. Imaginons, dans le plan 20y, un champ d’intégration auquel seront
étendues toutes les intégrales doubles considérées, et désignons par K une
fonction de et y susceptible d’intégration et conservant un signe constant
dans toute 'étendue du champ d’intégration. Cherchons le polynéme P en
x et y, le plus général d'un degré donné p, vérifiant les conditions

(1) f Kziy/Pdzxdy=o (i+j<p)

pour toutes les valeurs positives ou nulles des entiers i et j dont la somme

(1) Voir les travaux de Christoffel, Tchebicheff-et Heine (Handbuch der Kugelfunc-
tionen, t. I, p. 286).



SUR UNE CLASSE DE POLYNOMES A DEUX VARIABLES. H.3
est moindre que p. Le polynome le plus général de degré p,

m+n:p

-
P= z O, n ™Y,

m-+n=0

contient (—pi—ﬁ;[)—_‘_z—) coefficients «,,,. En écrivant les conditions (1) au

+1 : . . .
nombre de li(ﬁz——), on aura, entre les coefficients a,, ,, autant d’équations

linéaires et homogénes qui permettront de les exprimer tous en fonction de

(/v+l)(10+2)_1>(/02+1):p+l

2

d’entre eux convenablement choisis. Nous allons montrer qu’on peul
prendre arbitrairement les (p + 1) coefficients des termes de degré p dans
P, c’est-a-dire

(2) %p,os  %p—1,15 %p—2,95 «-ey  Og,pe

Dans les équations du premier degré (1) qui déterminent les autres coeffi-
cients en fonction linéaire et homogéne de ceux-la, le déterminant des
coefficients des inconnues a; ;(i + j < p) n'est pas nul. En effet, si ce dé-
terminant était nul, on pourrait supposer les coefficients (2) tous nuls et
tirer des équations (1) des valeurs des «;;(i -+~ j < p) non nulles toutes &
la fois; on aurait alors un polynéme P, de degré (p — 1) seulement, véri-
fiant les conditions (1), ce qui est impossible; car, en multipliant chacune
des équations (1) par le coefficient a, ; (i + j < p) et ajoutant, on aurait

f KP?dz dy = o,

condition absurde, puisque K a un signe constant.

Ainsi on pourra résoudre les équations (1) par rapport aux coefficients
a;; (i + j < p) et les exprimer en fonction linéaire et homogéne des coeffi-
cients (2). Le polyndme le plus général P vérifiant les conditions (1) est
donc de la forme

P=o,0Vpotap1,1Vpri+0p 0oV got...+ ot,p Vo,p

avec (p + 1) coefficients arbitraires, V4, V,_,,, ..., V, , désignant des
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polynomes linéairement indépendants. Ce dernier point est évident, car le
polynéme V,,,(m + n=p) contient un seul terme de degré p, le
terme x™y".

2. Tout polyndéme en x et y de degré p peut étre mis sous la forme d'une
somme de polynémes V,, , de degrés égaux et inférieurs a p multipliés par
des constantes.

Pour le montrer, il suffit de faire voir que, si ce théoréme est vrai pour
un polynéme de degré (p — 1), il I'est pour un polyndme de degré p. Soit
donc un polynéme de degré p, que nous écrirons

0p( 2y ¥) = @p—1 (2, y) -+ Mo @P + P~y 4 My@P2y2 . .+ d,pP,
en mettant en évidence les termes de degré p- Le polynome
V@, 7) =2 Vpo+MVpig+ Vo oo+ .+2,V,,

est également de degré p et a les mémes termes de degré p que le poly-
nome ¢,(x,y). La différence

op(2,y) — V{2, )

est donc un polynome de degré (p — 1) exprimable par hypothése a l'aide
d’une somme de polynémes V,, ,; il en est donc de méme de ep(z,¥).

3. Les polynomes V,, , possédent évidemment cette propriété que 'in-
tégrale

(3) f KV,.n Vy,ydxdy

est nulle tant que (m + n) est différent de . + v. Si I'on imagine une suite
de polynémes V,,, obtenus d’une facon quelconque et vérifiant les condi-
tions (3), les polyndmes de M. Hermite par exemple, on pourra toujours,
comme le fait M. Hermite, leur associer des polynémes adjoints W, ,, tels
que l'intégrale

f KV 0o Wy dee dy

est nulle tant que ’on n’a pas m = p et » = v. Mais, suivant une remarque
qui nous a été faite par M. Tchebicheff (') a 'occasion de nos recherches

(1) Voir DboN, Annales de I’Ecole Normale, 17 série, t. VII, p. 265.
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sur la généralisation des polyndémes de Jacobi, nous chercherons & rem-
placer les polyndémes V,, , par d’autres U,,, de degré (m + n), identiques
a leurs adjoints, c’est-a-dire tels que I'intégrale

f KU, Uy, d dy

reste nulle tant que ’on n’a pas en méme temps m = ., n = v. \
Voici comment nous formerons les polynémes U,,, d’un degré donné

P> (m +n=p). Posons

Up,o — aOVp,0+ ay Vp—i,l -+ @, Vp—2,2 +.. apVO,p"
Upo1,i=00Vp,o+ bV 11+ 6V no+.. .+ b,V
(4) Upsp=0coVpo+ c1Vpi1+ 2 Vpgot...+ cpVo,ps

les lettres @y, @, @y, ...y @y, boy ooy by ooy by, ooy L, désignant (p + 1)?
constantes dont le déterminant n’est pas nul. Nous allons montrer qu’on
peut, d’une infinité de facons, déterminer ces constantes, de maniére #
vérifier les conditions suivantes

(5) f KUp—i,;Up-j,jdx dy =o (£)),

¢ et j désignant des entiers différents.
Posons, pour abréger,

A,-,j:ffKVp..i,iV,,_,-,fdx dy, A=A

et considérons la forme quadratique de (p + 1) variables z,, z,, ..., «,

i+j=p
‘P(l‘o, Lyy ooy Tp) = 2 Ai,jxixj

14+j=0
ou, d’aprés les valeurs des A, ,

(0, 1, ...,x,,):ffx(xovp,o+x,v,,_“+x2v,,_2,2+...+x,,v(,,,,)‘->d.,; dy.

La condition
f KU, Up_y,1dzdy =0
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devient, si I’on remplace U, , et U,_,,, par leurs valeurs (4),

Vo by S +bqu’ +. +b,,j*‘ —o;

de méme, la condition

f KU, Up_sdzdy =0
peut s’écrire

o oy o

Cogor T CLgo- - Cas 4+ 9% =
" Ja, ' 9a, * 9, c,,i o,

ct ainsi de suite pour toutes les conditions (5). Les équations (5) expriment
donc que, dans I'espace & p dimensions, les points ayant pour coordonnées
homogénes

(Qoy @15 Aoy« ooy @)y (Boy byy ooy bp)y oy Loy Uiy lay -+ o5 0p)

sont les sommets d’un polyédre de (p + 1) faces conjugué & la quadrique
Y (g, %y, @, - - -, p) = 0. Le discriminant de la forme quadratique { n’est
pas nul, car cette forme ne peut pas s’annuler pour des valeurs de z,,
&, ..., v, non nulles a la fois, comme il résulte de I'expression de { sous
forme d'intégrale définie. On pourra donc déterminer les quantités
(@oy @iy ooy @p)y (Boy iy oy bp)y wony Ly iy ooy l,) d’une infinité de fa-
cons, par exemple en décomposant la forme ¢ en carrés. L'une de ces dé-
terminations étant adoptée pour chaque degré p, on aura des polynémes
U,y tels que

f KU, Uy,ydxdy =o,

tant que P'on n’a pas m = et n=v. De plus, comme les quantités
(@oy @uy v vey @p)y (Bgy v ey bp)y vy (Lyy -y 1) e sONL déterminées qu’a des
facteurs prés, on pourra supposer ces facteurs choisis de telle fagon que
les intégrales doubles

f f KU2,dz dy, f KUl dedy, ..., f KUz, d dy,

(ui ont pour expressions respectives

$( @y @y, Azy <5 Ap)s $(boy b1y o vy bp)s vy $(loy by ooy bp)s

soient toutes égales a I'unité.
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En résumé, nous avons formé des polynomes U,, , linéairement indépen-
dants, de degrés (m + n), vérifiant les équations
f KU, ,Uyydxdy=o0
tant que 'onn’apasm =y, n=v, et

f KUZ .dxdy =1.

Un polyndme quelconque d’un degré p, 9,(x,y), pourra se mettre sous la
forme d’une somme de polynémes U, , multipliés par des constantes

m-+n=p

?P(x’y): E )\m,nUm,n,

m+n=0

et I'on aura, en multipliant les deux membres par KU,,, dx dy etintégrant,

)\m,n:ffK op(2, ¥)Up,ndx dy.
Plus généralement, si I'on admet la possibilité de développer une fonc-
tion 9(x,y) en série de polynémes U, ,

m—+n=cw

¢(@)=" 3 ImnUnum

m-+n=90

on aura de méme

)‘m,n——_ffK(P(x,'}’)Um,n dxa’y.

4. D’aprés une remarque de Didon (Annales de I’Ecole Normale,
1" série, t. VII), sil'on a une suite de polynomes, tels que I'intégrale

f f KV 0 Vi da dy

soit nulle tant que m + » est différent de @ + v, on peut en déduire une
infinité de systémes de polynémes associés P, , et R,,, xy tels que

f KPm,an.,v dzx d}’ =0

tant que I'on n’a pas m = @, n=v. On vérifiera sans peine que I'on ob-
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tiendra les polynémes P,, , et R,,, d'un degré donné p par la méthode sui-
vante. On posera, comme dans le numéro précédent,

Poo =agVpo+ayVo_iy+...4+apVp,
Pp_1’1: bOVp,0+ b] Vp—l,l+‘ .o bPVO,P’

puis
Rpo =ayVpo+ @\ Voii+...+a,Vy,,
Rpos,i=0,Vp0+ 0, Vpi14... 4+ 8,V p,

Ropy = L, Vpot LVy it Vo s
et 'on prendra, pour

(aoy @iy ooy @p)y (boy byy ooy bp)y oy (b by ooy L),
(@y, @)y o ooyay), (U, by, .8, oy (Ll o 1),

les coordonnées homogeénes, dans 'espace a p dimensions, des sommets de
deux polyedres a (p + 1) faces conjugués I'un de 'autre par rapport a la
quadrique

qJ(xoy Ly o ~,xp) —= 0,
définie a la page 5.

5. Soit un polyndome P, de degré p, vérifiant les conditions
(1) f Kxiy/Pdxdy =o, {+] <p;

il est évident que ce polyndme doit s’annuler dans le champ d’intégration,
car s’il y gardait un signe constant, I'intégrale (1) ne serait pas nulle pour
I=j=o.

Plus généralement, si le polyndome P est décomposable en un produit de
deux facteurs entiers P = QR, chacun des polynoémes Q et R doit s’annuler
dans le domaine d’intégration. En effet, sile polynome R, par exemple,
gardait un signe constant dans le champ d’intégration, I'intégrale

/ 'fKQP drdy

qui devrait étre nulle en vertu des relations (1), puisque le degré de Q est
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moindre que celui de P, ne le serait pas, car en remplacant P par QR,
elle deviendrait

f KQ*R dx dy,

ce qui est une intégrale composée d’éléments ayant tous le méme signe.

Il. — Quadratures mécaniques.

6. La théorie des quadratures mécaniques est ordinairement rattachée
aux propriétés des fractions continues. Mais, pour préparer son extension
aux intégrales doubles, nous adopterons le mode d’exposition suivant, que
nous indiquerons rapidement, sans le donner comme nouveau (').

Soit K(«x) une fonction donnée de x susceptible d’intégration dans un
intervalle donné a, b, et

S(z)y=a+a,x+a,x*+...+ayx’+. ..

une série convergente dans cet intervalle ainsi qu’aux limites.
Pour évaluer I'intégrale

VY=o

I :fbK(x)f(x) de =Y a,

v=0
b
I'v:f K(z)a¥dx,

substituons & f () le polynéme de degré n — 1

(& — 29) (2 — &3).. (& — z) (# —xy) (2 — x)...(2

= _'Zln,)
CP(x) B (xl—$2)(x‘—x3)"‘($l—wn) f(xl)+ («I'g'_l'l)(-Z'2_~l‘3)-.-(«1’2—$’n f(/vﬁ)_}_.
(x—z))(x—29). . . (T — Xp—y)
- (Lp— &) (X — 2). . (xp— J;"_‘)f(xn)’

qui, d’aprés la formule de Lagrange, devient égal & f(x) pour n valeurs
Zyy Tay -- ., T, choisies dans l'intervalle @, b. Nous prendrons pour valeur
‘approchée de I'intégrale I, I'intégrale

b
J:f K(z)¢(z)dz =p, f(2)) +paf(2:) +...+paf(x,),

(1) Voir Jorban, Cours d’Analyse, t. 11, p. 108.

IV. — Fac. de T- : H.2
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Pis Pas - -y Pn désignant des constantes qui dépendent de la valeur de x,,
Ly, -+ ., Ly, mais non de la nature de la fonction f(x). Par exemple,

b
Ptzf ((x~x2)(x—x3)(x—x,,) K(z)dz,

Xy — Zy) (2 — 23). . . (2y— 2p)

En remplacant f(x,), f(x,), ..., f(,) par les séries correspondantes,
on a

V=
J:E ay (P& 4 paXy 4. .. paZy).
v=0
Si 'on suppose nuls les coefficients

a,, Qp+y, ..., adinf.,

f(x) se réduit & un polynéme de degré n —1, ¢(x) devient identique
a f(x), et I'on a alors
1=1J

quels que soient a,, @y, ..., @,_,. On a donc

Pr1+pet.. .+ p,=1,
P1Zy+ PaXy ...+ prx, =14,
(6) P14+ pexit. .+ paxi=1,

Pyt pexi T A pazy T =

Ces relations ont lieu quels que soient z,, z,, ..., z,. Pour obtenir une
approximation plus grande, disposons de ces n quantités de fagon a rendre
égaux les n termes suivants en

Qns  An+i1y -« oy Qan—y
dans les expressions de I et de J. Nous aurons les 7 nouvelles équations

Py A pext . ppzn =1,

(7) plw;H_l +P2x’zl+l +-~~+an;’i+l =Ilps1,
- - an—1
P12l pox?t Tl pp ki =1, .

On a en tout 2. équations (6) et (7) & 2n inconnues py, Pa, - .-, Pry T4y
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Lyy o ey Tye Solt
P(z)=hh+Mox4+ M+, ..+ 2t A2
le polynéme de degré n ayant pour racines z,, ,. ..., x,. On aura
P(z;)=o, zP(x;) =o, 2P (x;)=o, ceey x}'P(x;)=o0

pour =1, 2, ..., n. Alors, en multipliant, dans le Tableau des équa-
tions (6) et (77), la premiére par A, la deuxié¢me par A, ..., la (n + 1)itme
par A, et ajoutant, on verra que les coefficients de p,, p,, ..., p, sont nuls,
et I’on aura

bolo+=2 L+ .+ 2 L+ 2,1, —o.

De méme, en multipliant la deuxiéme de ces équations par 2,, la troi-
siéme par A, ..., la (n + 2)!™¢ par A, on aura

2oL+ )\112+ Ly M=o,
et ainsi de suite jusqu’a
)-oln—-l + A L+...+ )\n—i Lin—s+ 2, L,—i=o.

Ces ¢quations, qui déterminent les rapports des coefficients A, A, .. oA,
a I'un d’entre eux, expriment que le polyndome P(x) satisfait aux » re-
lations

b
f K(x)2z?PP(z)dx =o, P=0,1,2, ..., n—1,

qui déterminent le polynéme P () & un facteur constant prés, a condition
que K (z) garde un signe constant entre a et b. Par exemple, si K(z)=r,
a=—1,b=+1,P(z) est é¢gal, & un facteur prés, au (n — r)iéme poly-
nome de Legendre.

Si K(«) changeait de signe dans lintervalle a, b, le polynéme P ()
pourrait ne pas étre déterminé par les conditions précédentes. 11 parait
alors possible d’annuler un terme de plus dans la différence I — J. Par
exemple, en prenant e = —1, b=1, K(z) =522+ » V15, il existe une
infinité de polyndmes du second degré P () vérifiant les deux conditions

f K(z)P(z)dz—o, f+ K(z)2P(z)dz = o.
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(est ce que I'on vérifiera sans peine, en montrant que le polynéme P con-
tient deux coefficients arbitraires.

7. Le probléme de I'extension de la méthode de Gauss aux intégrales
doubles se présente maintenant d'une maniére simple. Nous ne ferons que
I'indiquer sommairement, car cette théorie doit étre développée par
M. Gourier dans une thése.

Soit K une fonction de x et y susceptible d'intégration, gardant un
signe constant dans le champ d’intégration, et f(x, y) une fonction déve-
loppable dans le champ d’intégration en une série de puissances

B+v=u=

Sz, y)= Z Ay, 2hyY.

p+v=0

I.intégrale double

l:f K f(x, y)dxdy

aura pour expression

Y+v=w

1= E ayy Iy,

®+v=0

Ip,v:ffoPy"dx‘dy.

Prenons un polynéme ¢(«, y) de degré p en x et y : ce polynéme
contient un nombre

st 'on pose

(p+0)(p+2)
2

n-—

de coefficients b, ,

h+v=p
o(xr, y)= 2 by ™y,
P+v=0
que nous déterminerons en exprimant qu’il prend la méme valeur que
f(z,y) en npoints (z,,¥,), (Zay¥2)s +++y (X, ¥,) situés dans le champ
d’intégration et n’appartenant pas a une courbe d’ordre p. Les coefficients
b, élant ainsi déterminés par des équations du premier degré dont le dé-
terminant n’est pas nul, le polynéme ¢(x, y) prendra la forme

CP(JJ,_)’) - Pl(x’y)f(xh ]i) -+ P?(‘t;y)f(‘rb )2) .1 P,,(.’L‘, y)f(xm,}'n)
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J::fchp(x,y)dxdy

J :Plf(xl,yi) +P2f(x29)’2) —+.. -+Pnf(xn,yn)’

et 'intégrale

deviendra

P13 Pas - -1 Pu 0 dépendant que de (z,, ¥, ), (@3, ¥2)s «+y (%yy yn) €L non
de la nature de la fonction f(z, ). Cette intégrale J pourra s’écrire

w+V=w

J= 2 au (P12} Y]+ paxhys 4. pazh Yy

w+vV=0

et 'on prendra J pour valeur approchée.de 1. Si, dans f(x, y), les coefli-
cients @, , de tous les termes de degré supérieur & p, (. + v > p), étaient
nuls, f(w,y) serait un polynéme de degré p et o(x,y) serait identique
a f(, y). On aurait donc

1=,

quelles que soient les valeurs des n premiers coefficients a,,(® +v=p).
ce qui donne

(8) Pizt YL Py e pal yl = L
pour toutes les valeurs de y. et v dont la somme est moindre que (p + 1)
r+vip.

On pourra ensuite chercher a disposer des 27 indéterminées (x,, y,),
(23, ¥2)y -y (4, ¥,) de facon a rendre identiques 27 des termes suivants
dans les développements de I et de J, ce qui fournira 2n équations nou-
velles de la forme

(9) P&y Az YL 4 pazhyl =10

On aura en tout un systéme de 37 équations (8) et (9) a 3n inconnues
Pis P2y o3Py (Zas Y1)y (B2, ¥2)y -y (%, ¥n)- Il faudra, pour que le probléme
soit possible, que ces équations soient compatibles et donnent, pour les
points (x,, %), (L2, ¥s), ..y (,, ¥n), des points réels appartenant au
champ d’intégration et non situés sur une courbe d’ordre p.
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8. Le cas le plus simple de tous est le cas de p =0, n =1. On substitue
alors a f(w, y) une constante f(x,, y,) égale & la valeur que prend

J(x, y) en un certain point (z,, y,) du champ d’intégration. L’intégrale J
devient

I=pif(x, 30), PlszK(x,]) drdy=1,.

On pourra disposer du point z,, y, de fagon a égaler les deux termes
suivants dans les développements de I et J, ce qui donne

P1Zy= It,o, P1Y1= I‘o,n
d’oti

Donc le point (z,, y,) devra étre choisi au centre de gravité du champ .
d’intégration, la densité en chaque point étant égale & K(z, y).
Sil'on forme le polynome le plus général du premier degré

" P=Az+By—+C

s'annulant pour = z,, y = y, on voit, en écrivant Az, + By, + C=o,
¢'est-a-dire Al, , + B, , + CI, , = o, que ce polynéme possédera la pro-

priété
[fKdedvy:O;

ce sera donc le plus simple des polyndmes considérés dans la premiére
Partie. Ce polynome égalé & zéro donnera une droite passant par le point
fixe cherché (y, y,) 1 A, Vio+ 2 Vo, =o.

). En donnant & p d’autres valeurs, on se trouve en face de certaines
difficultés : les équations obtenues peuvent étre incompatibles ou donner
des points non situés dans le champ d’intégration. Nous nous bornerons a
signaler un cas intéressant a étudier en détail, c’est le cas out p = 4 : le po-
lynome ¢ (z, y) contient alors n =15 coefficients. On pourra chercher a
disposer des 30 coordonnées (x,, y,), (£3,¥2)s «-+y (Ti5, ¥15), de facon &
rendre identiques les coefficients des quantités a,, ,, dans les développements
des intégrales I et J, pour toutes les valeurs de w et v dont la somme est in-
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férieure 4 g. On a ainsi les équations

Pty + pa@byy o P Vs = oy
(o) oSp—+v<Ss,
au nombre de 45, déterminant p,, pa, ---, Pisy (L1 Y1)y (%2 Y2)s
(@5, ¥15)- Les 15 points (z;, y;) n’étant pas sur une courbe du quatriéme
degré, on pourra chercher I’équation générale d'une courbe du cinquiéme de-
gré passant par ces points. Soit

b(z,y)=o0

I'équation d’une courbe du cinquiéme degré passant par ces 15 points, on
aura les conditions

x?}'?q’(xi’)’i):o’ U==1,2, ..., 1),

oSa+PB<3.

D’aprés les équations (10), on voit que le polynéme du cinqui¢me degré
Y («, y) est d’abord assujetti aux conditions

f Kz*yBy(z,y)dxdy =o,
ofa+ <3
au nombre de 10.
Comme ce polynéme contient 21 coefficients, ces conditions en déter-
minent 10 en fonction des 11 autres, et 'expression la plus générale d’un
polynéme {(z, y) vérifiant ces 1o conditions est

p+v=s

U(z,y)= Z oy V(25 7)),

B+v=t

les polynémes V,, étant ceux qui ont été définis dans la premiere Partic.
Les coefficients A,,,, au nombre de 11, sont encore assujettis & d’autres
conditions, puisque I'équation d’une courbe du cinqui¢me ordre passant par
15 points ne contient plus que 6 coefficients d’'une maniere linéaire et ho-
mogene.

On verra, de méme, que toute courbe du sixiéme, septiéme, huitieme
ordre passant par les 15 points (x;, ¥;) a une équation de I'une des formes
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sulvantes
w+v=6

2 by V(2 y) =0,
p+v=3

P4V =T

E lu,vvl_,,,v(x,y) =o,
b+v=2

H+-v=8

2 hov Vpv(z,y) =o.

B+v=1

10. On pourrait aussi imposer aux points (z,, ¥,), (€a; ¥a)y ++ -5 (Tay V)
des conditions particuliéres, en diminuant d’autant le nombre des termes
que 'on annule dans la différence I — J. Supposons, par exemple, que le
champ d'intégration soit un cercle de centre O et de rayon 1 et que K =,

x*+ y*—1Zo.

Les polynémes V,,, sont alors composés linéairement avec les poly-
nomes '
dm+n(x2_|_ y2_ I)m-o—n

Ulll,’l - dx”l d‘yn

de M. Hermite. Prenons 3 points (x,, ¥,), (., ¥,), (%3, ;) dans le cercle,
et substituons a la fonction f(x, ¥) & intégrer un polynéme du premier
degré |

(2, ) =bo0+b10x + bo,y

qui devienne égal a f(z, y) aux 3 points. En raisonnant comme plus haut,
on verra que, dans la différence I — J, les trois premiers termes sont nuls.
On pourra alors disposer des coordonnées des 3 points de maniére & an-
nuler les termes du second ordre et 3 des termes du troisieme ordre. Annu-
lons seulement les termes du second ordre : nous aurons en tout 6 équations

Pi+patps=l,,=m,
P1%y+ P Xy + Py =1 =0,

P11+ Py +psys =l =o,

(11) P&+ paxy+psx; =L, =

b

E ]

=]

PrZ1Y1+ Pae Yo+ paxsys =1 =

b

3

P1Y: +pPayi+psyi=l=

1A
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On pourra, dans de certaines limites, choisir arbitrairement 3 des
uantités qui figurent dans ces équations. On peut remarquer que si
949 8

Y(x,y)=Ax2?+Bzxy+Cy*+Dax+Ey+F=o0

désigne I'équation d’une conique passant par les 3 points, les équations (1)
multipliées par F, D, E, A, B, C et ajoutées donnent, puisque

'4/(»’01,)’1):(% "P(xb)'?)_:o) (1‘1('1"3’)’3):07

(12) F—{—é——i—%:o
b 4

n particulier, si cette conique est un cercle, son équation sera de la
forme
224+ y*+Dar+Ey—}—o,

et la puissance de I'origine par rapport a ce cercle sera constante. La condi-
tion (12), que nous venons d’obtenir, peut aussi s'interpréter en remarquant
qu’elle signifie

f b(z,y)daedy —o;

donc Y (x, y) est de la forme

p+v=2 k+v=2
Ly — v v — . v j Ve
b(x,y)= Ay V= Ay Uy
p+v=1 p+v=t

les Vy, étant les polyndmes considérés dans la premiére Partie, les Uy, les
polynémes de M. Hermite, A, , et A, , des constantes arbitraires.
Particularisons le probléme et assujettissons les 3 points (x4, 1),
(#2, ¥2), (%3, yy) & se trouver sur un cercle de centre O. Alors, d’apres ce
qui précéde, D = E = o et le cercle sur lequel se trouvent les points est

x4+ y*— L —o.
Faisons

. T . T, . T
T+ iy = —=ebi Tyt iyy= —= e, X3+ 0y = — e
2 2 V2

eeii: [1, eezi: [2, eexi: t3°
IV. — Fac. de T. H3
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.
Nous aurons, d’apres (11),

Pty = paty + p3tz—=o,

.&_’_& —I—‘[)—:“:O,
4 2 i

(13) /
Pili+pati-+pyt; =o,

Py P2 Ps
e T

En éliminant p,, p,, p, entre ces 4 équations, on trouve deux condi-
tions qui, aprés suppression du facteur (¢, — ,)(¢, — 4,)(t; — ¢,), donnent

L+t +t;=o, tyls L3t 4+ Lty —o0.
Ces 3 quantités sont donc racines d'une équation bindme de la forme
r*=e"* etlona

ty=e%, thh—e 3 ty—e 5.

Donc enfin, les 3 points forment les sommets d'un triangle équilatéral

. . . 2

mscrit dans le cercle de centre O et de rayon %—; I'un de ces sommets esl
arbitraire. Les équations (13) montrent ensuite que p, = p, = p, el lapre-
miére des équations (11) donne, pour la valeur commune de ces 3 coef-
S ™

ficients, 3

11. Nous avons dit plus haut que le probléeme de déterminer

P1s P2y -+ s Py Ty Y1y Lay Yoy, --o5 Ly Ya

par les équations (8) et (9) peut, dans certains cas, étre impossible. Pour
en donner un exemple, prenons encore une intégrale double

t=[ [ f(x.y dedy

2 2
x4 y*—1lo,

é¢tendue au cercle

la fonction K étant supposée égale & I'unité. Substituons & f(.r, y) un poly-
néme du premier degré

9(2, ) = bo,o+ y,0x =+ bo,1 Y
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prenant les mémes valeurs que f(x,y) en 3 points (x,¥,), (€2 2),
&€ non en liene droite situés dans le champ d’intégration, ct adop-
3y Vs g p g ) 1

tons comme valeur approchée de I I’expression

J:ffcp(x,y)dxdy.

Dans la différence I—1J, les trois premiers termes sont nuls. On
pourra alors chercher a disposer des coordonnées des 3 points de manicre
a annuler les termes du second ordre et les trois premiers termes du troi-
sitme ordre. On aura ainsi g équations

pi+pe+py=I,=m,
P1&y + P2y + pyxy =1 y7=o0,
P1Y1 +Pays +psys =1 1 =o,

Y ™
P1x} +paxy 4+ pyx; =1, o= Z’

(14) {Pi“\)’t+P21’2)’2+P31’3}'3:11,x:0» ’
2 2 b — I T
Pyt Py pays =l 7

prxi +prxy +pyxd =1 y=o,

P1Ziy1 + paxiys+psxiys; =1l =o,
| pr@y? + padayt -+ pawsyl =T, =o.

Or ces équations ne déterminent pas 3 points remplissant les conditions
requises. En effet, soit

Y(z,y)=Az*+Bay +Dex+Ey+F=o

I’équation d’une conique passant par les 3 points cherchés ct un point a
I'infini sur I'axe Ox. On aura

Y(xs yi) =0, zib(xn yi)=o0,  yi¥(x,yi)=o0
pour i =1, 2, 3, d’ot1 'on déduit immédiatement

AIg,o -+ BIl,l —+ DII,0+ EIO,1 -+ F[0,0: O’
(13) Al o+ BL,, + DI, ,+ El, , + FI, ;= o,
? A12_1+ BIA,2+D11,1+E10_2+FI(,A:O,
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L] ) . ‘
c’est-a-dire

f Y(z,y)dedy =o,
(16) \f/kx'\}a(.r,‘y)dxdvyzo’
f y¥(z, y)dedy =o.

Ces conditions (16) montrent que le polynéme (x, y) est de la forme
AUy, (2, 7)+pUy, (2, ) +vUga(x, y),
U, désignant le polyndme de M. Hermite

d"”'”(:l?2 -+ y2 — I)Ill+!l
0£llz dyﬂ

>

A, et v des constantes assujetties a4 la condition d’annuler le coefficient
de y* dans J (z, »). On obtient ainsi 'expression cherchée de {/(z, y); on
I'obtient également & I'aide des relations (15) qui donnent, d’aprés les va-

leurs des intégrales I, ,, 1, ,, ...,

A+ 4F =o, D=o, E—=o.

La conique }(x,y) = o, passant par les 3 points cherchés et le point a
I'infini sur O, a donc pour équation

F(1—42*) +Bay —o.

Quand B et F varient, cette conique passe bien par 4 points fixes, mais
2 d’entre eux seulement ct non 3 appartiennent au champ d’intégration,
les autres sont a I'infini. Le probléme est donc impossible.

On remarquera que, dans ce probléme, 'un des axes joue un réle spé-
cial, tandis que, dans les autres questions que nous avons résolues, la direc-
tion des axes ne joue aucun role.



