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SUR LES

POLYNOMES DE LEGENDRE,

PAR M. T.-]J. STIELTIJES.

L’expression remarquable, obtenue d’abord par Laplace pour repré-
senter asymptotiquement les polyndmes de Legendre, a été depuis I'objet
de plusieurs recherches, et M. Darboux notamment a donné une formule
qui permet d’obtenir une expression approchée, 'erreur commise étant de

. . I .
Pordre d’une puissance aussi grande qu’on le voudra de — (Journal de

Mathématiques pures et appliquées, 3¢ série, t. IV; 1878).

Nous développons, dans le travail actuel, un résultat plus complet. En
cffet, nous trouvons qu’on peut exprimer le polynéme de Legendre par une
série qui est convergente tant que la variable reste dans un certain inter-
valle. C’est seulement en dehors de cet intervalle que la série prend le ca-
ractére d’une simple expression asymptotique; mais, méme dans ce cas,
nous obtenons une expression trés simple de I'erreur commise en s’arrétant
a un nombre fini de termes (*).

- 1. En définissant P*(z) comme coefficient de ==' dans le développe-
ment de

(22— o2z +1) 2

suivant les puissances descendantes de =, on obticnt immédiatement I'expres-
sion par intégrale définie ' ‘

I szt ds
pnr = — Ny

(1) Le résultat principal de ce travail a été énoncé dans une Note insérée aux Comptes
rendus des séances de I’ Académie des Sciences en mai 189o.

IV. — Fac. de T. G.t
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'intégrale étant prise en sens direct sur un contour fermé C enveloppant
les points
E =ax+ar—1,

= — 2 1,

(qui sont les points critiques du radical. Ce radical doit étre pris avec un
signe tel que, lorsque |z | est trés grand, on ait, & peu pres,

—2x5+1.53 égal & +-1.

Le contour fermé C peut étre remplacé par le chemin abedefa, les points
@ et d étant trés voisins de 'origine. Pour préciser, nous supposons que Z

Fig. 1.

et E=' ne sont pas réels, c'est-a-dire que 2* — 1 n’est pas réel et positif. On
désignera alors par % celui des points critiques qui est situé au-dessus de
'axe réel, en sorte que la partie réelle de

e~ vy

\

est positive.
On voit alors facilement que la valeur du radical en @ doit étre + 1, et
qu'en d elle est — 1. On aura, par conséquent,

(2) Pr(z) = 5;—5(@%-—%),
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A élant la valeur de I'intégrale

3"dsz

/ Va—azs +1
prise sur un lacet partant de l'origine et enveloppant le point &, w la valear
de cette méme intégrale sur un lacet partant de I'origine et enveloppant le

point &', Le sens dans lequel ces lacets sont parcourus est arbitraire ; mais
la valeur initiale du radical doit étre toujours + 1, et 'on a évidemment

~n -n
(3) s ’ L) ds )
\/g—zxz+1 \/~-—2fcd+1

les chemins d’intégration étant rectilignes.

2. Pour préparer le développement en série que nous avons en vue, nous
allons transformer ces intégrales 4 et ¥. Posons, dans la premiére,

s=E(1—u),

en sorte que u prendra les valeurs réelles de o & 1.
En remarquant que

(2—2x5+1)=(1—E&3) (1—E13),
il viendra '
/ o — g Fr+t / _ (I —u) du b= _EQ_
(4) e \/u(l—/{u) &t

On pourra prendre ici v positif, pour y/1 — ku la valeur qui sc réduit i
-+ 1 pour « = o; mais alors il faudra adopter, pour y1 — £, la valeur finale
e yi1— ku pour u=1.

En procédant de la méme facon pour la seconde intégrale, on aura
'expression suivante :

. N 1
x — (1—wu)*du . —_— (1— w)*du
(3 Pr(x) = —I— -y — k ———— .t — A o
) () T 2 \/ . \/lt(l——/\”ll) : \/I ! \/1(1—-—/x1u)

E'-:

-2

ags

v k=

N

- ES

Supposons maintenant z = cos®, @ étant un angle compris entre o et T,
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on aura
f=e®, i@,
b E __cos® +isin®
TE—FtT 20sin®
ou
el
~ 2sin®’

T
en posant o = @ — S

Il est clair par cette valeur de k que la partie réelle de y1 — k doit étre
positive, car la partie réelle de 1 — ku ne peut s’évanouir pour aucune va-
leur de u comprise entre o et 1. Il faudra donc adopter la valeur suivante
de ce radical

\/——_\/ 4 z\{/. les !

& Eye £V/2sin®

car la partic réelle de cette expression est

.y i3
_sin(%oc—@))__sm<§®+4>

V2sin® - \/2sin® =
On a donc
R ey S Al
y2sin®
¢l de méme
oy — _ — fe— (nO+ix)i
Een=ty1— ey = Jisn®

k et k, étant des quantités imaginaires conjuguées, ainsi que Eettt,
La formule (5) prend donc cette forme

n® 41 i 1 n (@ 4ta)i . .
(6) P”(cos@):e( i) (1—u)rdu e (nO+ia) (1 — w)* du

my2sin® J Vu(i—ku)  w/2sin® J Vu(i—kou)

ou, plus simplement,

1 . ! — n.d '
(67 P"(c0s0) = ——— ><partleleelledee("@’“?“)'f (1—u)tdu

\/2 sin® . \/lt(l-—‘/\‘ll_)

. eir 1 e pre .
3. Le module de A= ——— détant ———> ce module sera inféricur a
28in® 2 sin®
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9 N 9
'unité tant que 'on a

T 5w
6=0<%

Dans cette hypothése, on pourra développer en série convergente le radical

1.3
SIS Y WLy S SIS
2 2.4

Vi— ku
et I’on obtient ainsi
" 1 2 34"
(5) P*(cos®)=C, cos(erj_2a)+ 1 cos(n@)‘—i—,a
V25sin® 2(2n+3) /(2sin@®)
N 12,32 cos(n® + $o), '
' s2.4(2n+3)(2n+5) V(25in@)?
N 12,3252 cos(n@—-l—%a)_'_ ’
2.4.6(2n+3)(2n+5)(2n+7) /(2sin0) T

2.4.6...(2n)
3.5.7...(2n+1)

/A

4
c, — 2
" r

. A 7r S5
développement convergent méme pour @ = goud=--

Mais on peut procéder autrement et obtenir le méme développement,
mais limité & un nombre fini de termes avec un terme complémentaire, et
cela pour une valeur quelconque de © comprise entre o et =.

11 suffit, pour cela, de remplacer, dans la formule (6'),

T
e par L B
Vi—ku P nJ, 1— kusin?v
ct de faire usage ensuite, dans 'intégrale double obtenue, de I'identité

1 . . (kusin?p)r
——————— =1 -+ kusin?eo 4. .. kusin?p)p—ty 2~ "~ |
1— kusin®p + R )i 1 — kusin?e
On retrouve ainsi le développement. (), mais limité a ses P preniiers
lermes et avec le terme complémentaire

8) Ry— — 2
) P ny/2sin®

O+la)i p1 a7 ! .

L e(nO+1 1 — w)?uP 7 kP sintr e

X partie réelle de ( ) — dudy.
T A I — kusin?y¢
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I.e module de k étant ———, on en conclut

28in@
1 T —1 .
] 1 — u)"uP " rsin®Py
X | = ( — dude|,
), Jo 1 — kusin?y

el, en désignant par M le maximum du module de

IRyl <

my/(2 sin@)er+t

1
7 9 )
1 — kusin®y

on aura, a plus forte raison,

ZNI ! & 1
R < —;T—_.__.——f f 1— w)*u’ "3 sin%? ¢ du d(‘,
IRy | /(2 sin @)+t Jy ( )

12.32.5%. (2p —1)? « 1
0..2p)er+3)(er+5).an+ap+1) T \/(5sin®)r

(9) IR, [ <MCy —

Ainsi, en prenantla somme des p premierstermes du développement (7),
I’erreur commise est inférieure en valeur absolue, a M fois le terme sui-
vant dans lequel on aurait remplacé d’abord par Uunité le cosinus qui
y figure au numérateur.

Quant a la valeur de M, puisque &k = ;(1 — icot®), on a

1
1— kusin?v| = cos?0 4+ ——— (2sin20@ — usin?¢)?;
| =/ o0 b s

d’ot1 'on conclut

L lorsque sin2®@< 1,
(10) |cos® | 1 =

M—=25sin0® lorsque sin?@®2>1.
Ainsi ce facteur numérique M ne varie quentre 1 et 2.

4. Le résultat que nous venons d’obtenir conduit a plusieurs conséquences
qu’il est bon de noter. En premier lieu, le raisonnement donne, dans le cas
le plus simple p = o,

MC,

|P7(cos®)| < %sin@)
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Or on sait que

C,,:'- ——2_::(1—5-8),

Vnrw

' 1
¢ tendant vers zéro avec ~
Nous pouvons donc conclure que, lorsque @ a une valeur fixe comprise
entre o et &, on a toujours, pour n = o,

limP” (cos®) =o.

it il est clair que cette relation subsiste encore, méme lorsque @ tendrait
, I . . o . N
vers zéro avec —» si seulement 2@ croit au dela de toute limite. Clest la un

résultat important obtenu d’abord d’une facon toute différente par M. Bruns
dans le Tome 90 du Journal de Borchard:.
On sait, d’autre part, que

e\ e : : ,
limP <cos ;) =J(0)=1— Pl EE T e +. ...
- 0 .
En remplagant @ par -~ dans la formule (7) et posant 2 =, on obtient
donc .
~ cos <® _7;\) 12 Cos <® —3_[:?> 12,32 Ccos <O—— JTT:>
/2 N A S 4 .
(11) J(@)_\/ﬂ - Jo + 3 T + 876 N +...y

c’est le résultat d & Poisson (Journal de I’ Ecole Polytechnigue, X1X¢ Ca-
hier) ; mais nous pouvons ajouter maintenant qu’en prenant la somme des
p premiers termes, 'erreur commise est inférieure en valeur absolue au
terme suivant dans lequel on aurait remplacé par 'unité le cosinus qui y
figure au numérateur. En effet, il est clair que le facteur numérique M est
ici égal a I'unité.

-

5. En sccond lieu, nous pouvons maintenant séparer les racines de I'équa-
tion P"(cos®) = o. En effet, prenons p =1 et remplacons, pour simplifier,
M par sa limite supérieure, on aura

C, IS
n — _ 1 —_— .
(12) p (0059)—“25“]6[C,Os(n®+2a)+z(gn+3)sin@]

— <A <A41.
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Posons

__ km
T on 41

(k=1, 2, ...,zn);

k —
la valeur correspondante de 70 + Lo est > i "7 : donc

L
cos(n® +la)=(—1) ? \/_.

%

D’autre part, la plus petite valeur de 2(27 + 3)sin® pour les valeurs de
® que nous considérons est

. ™ .
2(2n + 3) sin l>2(2n—|—1)sm

2n + 2n +1

N . . . -
Or I'expression 2(27 + 1) sin ——— croit avec n, et, pour lg plus petite

valeur de nn, n =1, elle est = 33 > 2.

On voit donc que
| <cos kn >
2n +1
If!— k

ale signe de (—1) * ; d’ou 'on conclut qu’en désignant par

TN >Ty > X3>. .. > Ty

les racines de P*(xr) = o0, ona

(2hk—1)7 N 2km
COS[ 2n +1 = Xp> €08 an +1

(Vest une limitation obtenue par M. Bruns dans le Mémoire déja cité;
on pourrait trouver facilement des intervalles plus étroits pour ces racines,
mais nous n'insisterons pas.

Si I'on s'en tenait au premier terme du développement de P”(cos®), on

(4k—n)r
An—+2

aurait cos comme valeur approchée de ;. On obtient une approxi-

mation bien plus grande par 'expression

[ = o) o Yam®
2(2n —+1)? fn—+2
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obtenue en tenant compte aussi du terme suivant :

G.g

n=q Val. approchée. Correction. n=r1o Val. approchée. Correction.
Lieaian. 0,968 058 -+ 0,000 102 Xyooeonn 0,973 823 ~+ 0,000 084
L3...... 0,836 ooy ~+ 0,000 024 Loeoonns 0,865 044 -+~ 0,000 019
Lyeoonn. 0,613 362 -+ 0,000 009 Xyeoonnn 0,679 4o2 -+ 0,000 008
Lo vvnnn 0,324 250 -+ 0,000 003 Lhyovnene 0,433 392 -+ 0,000 003
Tgesennn 0,148 873 -+ 0,000 001

6. En ayant égard a la formule (5), on reconnait facilement que la for-
mule (7) peut s’écrire ainsi

P7(cos®) = partie réelle de %’-‘ Ere\[T —kF (4,4, n+3, k),

le symbole § désignant la série hypergéométrique.
Oron a
VimRG (b hn 30 =F(hntnn 25 );
donc

. C - .
P2 (cos®) = partie réelle de —l'f EnH1F (L, n 1, n43,82),

c’est-a-dire

1(n—+1)

(13) 1(2n+ 3)

P”(cos@):C,,[sin(n+1)®+ sin(n+3)0
1.3(n+1) (n +2)

1.2(2n+3)(2n+5)

sin(n+5)@+...J.

C’est la le développement de P*(cos®) en série de sinus par la formule de
Fourier, obtenu par M. Heine (7Traité des fonctions spheriques, t. 1,
p- 19, 89). La série cesse évidemment de représenter la fonction pour
0 = o0 et ® = 7, mais elle la représente pour toutes les valeurs de © entre
ces limites.

Cette déduction de la formule (13) ne saurait étre considérée comme en-
titrement satisfaisante sans de nouveaux éclaircissements, d’abord parce que
la série (7) n’est pas convergente dans tout l'intervalle (o, %) et ensuite
parce qu’on a considéré la série hypergéométrique sur le contour méme du
cercle de convergence. Mais nous n’insistons pas, ayant voulu simplement
indiquer ce rapprochement entre les deux formules.

7. Le polynéme P” () satisfait 4 'équation différentielle linéaire

dy dy
—x2)—L oty —
(14) (t—=z ) o 22 +n(n+1)y=o,

IV. — Fac. de T.

G.2
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dont une seconde solution est donnée par I’expression

=P [ e

En effectuant la décomposition en fractions simples, on a

1 o 1 I Al An
(1—22) P2 () ™ 2(z+1) 2(x—1) + (x — x,)? et (x —z,)*

car les fractions simples de la forme _ doivent disparaitre, I’équation
P P y Leq

différentielle n’admettant que les points singuliers = 1.
I1 vient, par conséquent,

(15) 0" () = 'P”<x>log(“’+‘> R (2),

R”(x) étant un polynéme du degré n — 1.

Il est clair qu’on peut développer Q”(x) en série suivant les puissances
descendantes de x, mais une telle série satisfaisant a 'équation différen-
tielle (14) doit commencer par un terme en z" ou en ™', On voit par la
que R*(x) est la partie entiere de

1P"(x)log< +) P"(x)( 3—%+—51§+>

et que, dans ce produit, les termes en z~', z72, ..., ™ manquent.

La fonction Q"(x) n’est pas réelle dans l'intervalle (— 1, + 1), et, comme
nous voulons envisager particuliérement les intégrales de I'équation diffé-
rentielle dans cet intervalle, nous sommes amené a considérer, au licu de
Q*(x), cette autre solution de (14)

(16) s"(x):gpn(x)logCij)_Rn(x).

8. L’expression explicite du polynome R*(x) est assez compliquée ct
difficile & obtenir. Dans le Tome 55 du Journal de Borchardt, M. Chris-
toffel a obtenu cette formule

R"(x)_——lTP” ) + 5 P' M) 4 29 pa-i(g) 4. ..,

(l 5(n—2)
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et M. Hermite a donné, il y a plusieurs années, dans son Cours & la Sor-

bonne, cette expression

R*(z) :E -;;Pk—l(x) Pr—k(z),
1

(ui peut se déduire aussi du Mémoire de M. Christoffel.
Mais c’est une autre formule qui va nous permettre d’obtenir la limite de

- (V)
S <cos ;) pour n = . Rappelons, pour cela, la formule connue

n(n 1) <x—l>+n(ﬂ—l)(ﬂ+1)(”+2) <x-—l>2+”.

l)n r)—1
(r) + 1? ) 12,22 2

= 11—
=5 —n,n+1,r, ,
2

que nous écrirons ainsi

(17) Pn(x):“o‘*‘“i(x;I)“*‘“z(x—

alors on a

(18) R”(.r)%ﬁo+@i<x—l> +{32(x;_1>2+...+p”_,<x_’>n‘l’

2

1 1 I
—=\{1I - 5 ... —
Bo < +5 3+ —|—n>oz0,

1 1 )
B = PR TR b 20
I 1
B, = (-3-+...+,-2>a2,
1
Br= o et

On obtient cette formule a I'aide de I'équation différentielle a laquelle
satisfait R*(x)

d*R*(x dR”(x
(=) S — 2 D)

+n(n+x)Rn(x):2%.
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Les formules (16), (17), (18) donnent maintenant

- 0 0 0 1 1
S <cos 75) =—P= (cos ;) log<n tangﬁ>— <1 + o logn) ot

I I ., 0
+|=—+...+=—logn)asin®*—
2 n 2n

1 1 ., 0
—5+...+—=——logn)a,sin* —
n 2n

d’oti I'on conclut, pour n = =,
. 0
(19) lim§~ <cos7l> _J(@)log< ) C -+ (C —1)~—

1\ 0+ 1 I (CH
—<C_‘_5>'ZTI2+<C—"5“ ’) POV

C = 0,577, ... étant la constante eulérienne.
Nous désignerons cette fonction par K (@), c’estla une solution de I'équa-
tion différentielle de Fourier et de Bessel

oL dy

a8 7 48

+@y——o,

dont l'intégrale générale est y = C, J(0) + C, K(0).

9. Nous allons vérifier maintenant & I'aide de la formule (1) que P"(z)
satisfait bien & Péquation différentielle (14). Soit

\7: '”’d@
\/ e

le chemin d'intégration étant quelconque.
Par un calcul facile on obtient

2
(I—J?)d‘: x‘ﬂ+n(n+1)V f

s [n—(2n+1)xs + (n+1)5%]

o Vit — 225 + 5%)3

d(L)dﬁ’

On obtient donc une solution de (14) en prenant I'intégrale V sur un
contour fermé enveloppant les points ¢ et &', de maniére que le radical re-
vienne 4 sa valeur initiale. C’est la solution P*(z) qu’on obtientici; maisil



SUR LES POLYNOMES DE LEGENDRE. G.13

est clair maintenant qu’on a encore une solution en prenant l'intégrale sur
un lacet partant de Porigine et enveloppant I'un ou I'autre des points cri-
tiques. Par conséquent, les intégrales & et wb considérées dans le n° 1 sa-
tisfont séparément a I'équation différentielle, et 'on pourra les exprimer
linéairement & I'aide de P*(z) et de S*(x). C'est ce que nous nous propo-
sons de faire maintenant.

10. Considérons d’abord lintégrale V prise en sens direct sur un cercle
décrit autour de l'origine comme centre avec un rayon trés grand, et po-
sons
(20) ez +1—— 54U
ou

u?—1

5=

2(u—x)

Pour z =%, onau=2E&, et pourzs ="', u =", il est facile alors & voir
qu’on peut écrire la relation entre z et u ainsi

() =)

Il vient
5ndz ll2~—-l n
e ——— —;LL“—)Tz——Q——ld"'
Va— 2z 41 2" (u —x)

Quant au chemin d’intégration de l'intégrale transformée, puisque |z]| est
trés grand, on a, d’apreés (20), a fort peu pres,

Uu—2sz—ux,

en sorte que u décrit autour du point — = comme centre, et dans le sens
direct, un cercle de rayon double de celui décrit par =.

Puisque la fonction intégrée n’a qu'un péle u = x, on peut en conclure
immeédiatement la formule de Rodrigues

I ar(z*—n)"
2%, 1.2.3...n dx”

(21) Pr(x)=

Par un changement continu, on peut transformer le cercle décrit par la
variable z dans le contour abcdefa considéré dans le n° 1. Quel sera le
contour correspondant de la variable «? Il est clair qu’on pourra supposer
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qu’en sc transformant le contour décrit par 5 ne présente jamais un point
double. Il en sera de méme alors pour le contour décrit par . En effet, =
est une fonction uniforme de u, et un contour fermé décrit par « corres-
pond toujours a un contour fermé décrit par 5.

Ainsi, si le chemin de u avait un point double, il en serait de méme du
chemin décrit par z contre notre hypothése. Ensuite, en a, z est trés petit
ou nul, et le radical égal & + 1, donc # = + 1; de méme on verra qu'en d
u est égal & — 1. Puisque z reste fini et ne passe point par les points § et &,
il s’ensuit que u reste toujours a une distance finie de « et des points 3
et 5!

On conclut de tout ce qui précéde que le chemin de u, correspondant au
contour abedefa, est un contour fermé qui part de + 1, passe par — 1 et
revient & + 1 apres avoir enveloppé en sens direct les points z, § et &*.

Mais il est clair que la seule chose essentielle a savoir, c’est que ce che-
min enveloppe en sens direct le point z qui est le seul péle, les points & et
£=* ne jouant aucun role dans I'intégrale relative a .

I1 est clair maintenant aussi que 'intégrale & se présente sous cette forme
nouvelle

o (uw>—1)"
(22) BN f2"(u 2y du
de u =+1 & u = — 1, mais tous les chemins de + 1 & — 1 ne conduisent

pas & la méme valeur de I'intégrale, et tout ce que nous avons dit jusqu’a
présent ne suffit pas pour déterminer avec précision le chemin d’intégration
qu'il faut adopter dans cette formule (22). En effet, nous n’avons point fait
intervenir encore la circonstance que le point § est au-dessus de P'axe réel,
ce qui permet de distinguer les intégrales A et wb.

Considérons la droite D dont tous les points sont également éloignés de
£ et de £, droite qui passe évidemment par le point x = Eif;f

Il est clair par la relation (20") que les points correspondants z et z sont
toujours du méme coté de D. Les trois points o, == 1 sont donc du méme
coté de D. Deux cas sont 4 distinguer maintenant :

i° Le point £ se trouve du méme coté de D que les points == 1. Dans ce
cas, on peut évidemment supposer que le contour abed ne coupe pas la
droite D. Il en sera donc de méme du chemin correspondant de « allant de
+1 4 — 1. Mais ce chemin peut étre tracé maintenant arbitrairement, a la
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seule condition de ne pas traverser D; car, « étant sur D, on obtiendra
toujours la méme valeur de 'intégrale (22).

2° Le point & se trouve par rapport & D du coté opposé des points == 1.
Dans ce cas, le point £ se trouve du méme coté que les points =1, et 'on
conclut, maintenant comme tout a I’heure, que le chemin defa de = corres-
pond & un chemin quelconque de « allant de — 1 & + 1 et ne coupant pas
la droite D. Cela étant, on peut tracer aussi sans ambiguité le chemin de «
qu’on doit adopter dans l'intégrale ., car on sait que le contour entier
abedefa de 5 doit correspondre & un contour fermé passant par les points
=1 et qui enveloppe en sens direct le point x.

11. Supposons maintenant

x = cos0, 0<<0O < ,
E= e®, = 9,

La droite D se confond avec 'axe réel; le contour abed peut done étre
tracé tout entier dans la moiti¢ supérieure du plan; il en sera donc de méme
du chemin dans I'intégrale transformée

C{‘):[‘

< +1

1

(?—1)" du

zlz(u . a.)ll.—i-—l :

Pour achever le calcul de cette intégrale, nous suivons la méthode donnée
par M. Hermite dans son Cours de la Sorbonne (3° édition, p- 173). En
tégrant par parties n fois, il vient, en faisant attention a la formule (21),

Ao ==

“1pn,
Pr{w) (”)a’u

1 u—x

ou

-1 . “lpn —Pn
b =P (x) du —f Pr(z) = Pr(w) du.
+1

u—.x u—x
~+1

Or, & ¢tant réel et compris entre les limites =1, et le chemin d’intégra-
tion étant tracé dans la moitié supérieure du plan, on a '

du 1+ & .
:log( “+ i,
+1 U —x I—wx

A =P (x) [log(’ +i> -+ ni] — 2R, (.r).

] —
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%, en effet, doit &tre de la forme a P?(z) + B S*(2); on a donc nécessai-
rement

(23) 9R (x)__f+ Pn(-l'x)‘:fn(u)d
(24) b =28 (x) + niP2(x)

et de méme
W =128"(z) — i P*(x).

Il est ais¢ de vérifier la formule (23); car on constate facilement que,

P*(x) étant un polynéme quelconque en z, l'intégrale du second membre
est toujours la partie entiére de

P”(x)100*<xi )

1

12. Nous pouvons obtenir maintenant un développement en série de
S"(cos®) entiérement analogue au développement de P?(cos0).
En effet, les formules (4) et (24) donnent

1 n
$”(cos®) — partie réelle de £n+'\/1 — k (I;-——t_)_ﬂ;
0 Vu(t — ku)
c¢’est-a-dire

fe(nO+ia)i Al e du
V2sin® 0 Vu(i— ku)’

S7(cos®) = partie réelle de

d’oti 'on conclut

5 2 q, . sin(n® + 1a) 12 sin(n® + a
(2D)ES‘(cos®)_—C,,[ Vasn® ey \/((2?0_;3)
+’ 12,32 sin(n® + 2a)
2.4(2n+3) (210 +5) V(2sin®)3
12,3252 sin(n® + Ia)
24.6(2n+3)(2n+5)(2n+7) \/(2sin®) ]’

+

C _4 4.6...(2n)
n—ﬂ 7

2.
3.5.7...(en+1)

Quant a la convergence de ce développement, et I’erreur commise en
prenant seulement les p premiers termes, on arrive évidemment & des con-
clusions parfaitement analogues 4 celles obtenues précédemment.
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En remplacant @ par g et passant a la limite pour n = =, on trouve

- sin<@—;> , sin(@—g—;}> 2 32 sin(@——i)
26) K(0)=—/T LA, VAN o]
(2 - 2 NG 8 NG 8.16 NCE

On reconnait encore facilement que

3N 1

. Ao 0
b"<cos ) (hA=1,2,...,2n)

K2+ k
ale signe de (— 1) * ; d'oti 'on conclut que I'équation

St(xr)y=o

admet 7 + 1 racines comprises dans les intervalles

[cos( 2 kT >, cos(?'k_H)n] (hk=o,1,2,...,n).

2n +1 21 41

Entre deux racines consécutives de S*(z) = o se trouve une racine de
P*(x) = o, ce qui est bien conforme & un théoréme connu dit & Sturm.

Enfin, de méme que nous avons pu passer de la formule (7) au dévelop-
pement de Heine (13), on pourra déduire de la formule (25) cet autre dé-
veloppement obtenu aussi par Heine (Fonctions sphér., t. 1, p. 130)

(37)  28%(c0s0) = C, | cos(n + )0+ cos(n+-3)0

(2n+3)

1.3(n—+1)(n+2)
.2(2n+3)(2n+35)

cos(n—+5)0 .. .],

(o< O < m).

. o

IV. — Fac. de T. (.3



