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SUR LE CERCLE

CONSIDERE

COMME ELEMENT GENERATEUR DE L’ESPACE,

PAR M. Euvcine COSSERAT,

Aide-Astronome a I’Observatoire de Toulouse,
Chargé d’un Cours complémentaire a la Faculté des Sciences de Toulouse.

INTRODUCTION.

Les recherches sur I'espace cerclé semblent commencer avec le Mémoire
de M. A. Enneper ('), dans lequel on trouve une classification compléte
des surfaces engendrées par le mouvement d’un cercle. M. Enneper, consi-
dérant la situation relative de deux cercles infiniment voisins, parvient a
séparer les surfaces cerclées en plusieurs classes :

Les surfaces de la premiére classe sont celles pour lesquelles deux cercles
infiniment voisins n’ont, en général, aucun point commun.

Celles de la deuxieme classe sont celles pour lesquelles chaque génératrice
a un point commun unique avec la génératrice infiniment voisine.

M. Enneper en donne la génération suivante : Sur une surface gauche,
considérons deux courbes I, I';, dont la seconde soit une trajectoire ortho-
gonale des génératrices, et soient ¥, w, deux points de T, T',, situés sur la
méme génératrice; dans le plan mené par le point = et par la tangente a la
courbe I', en =,, décrivons, de = comme centre avec ©w, pour rayon, un
cercle; la surface engendrée par ce cercle est la surface la plus générale de
la deuxiéme classe. On peut dire que le lieu du ‘point commun & deux géné-
ratrices infiniment voisines forme sur la surface une courbe a laquelle le
cercle mobile reste constamment tangent.

(1) A. Exneper, Die cyklischen Flichen (Zeitschrift fir Mathematik und Physik,
p- 393; 1869).
I — Fac. de T. E.x
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Les surfaces cerclées de la troisiéme classe sont celles pour lesquelles deux
génératrices infiniment voisines ont constamment deux points communs;
la surface est 1'enveloppe d’une sphére dont le centre décrit une courbe.

Si les deux points communs aux génératrices infiniment voisines sont
constamment confondus, on a deux nouvelles classes de surfaces :

Ou bien le cercle mobile reste constamment osculateur a une ligne &
double courbure : ce cas correspond aux surfaces de la quatriéme classe;

Ou bien le cercle mobile reste tangent & une courbe et son plan passe par
la tangente & la courbe décrite par son centre : ce cas correspond aux sur-
faces de la cinquiéme classe.

M. Enneper étudie, dans le méme Mémoire, les surfaces cerclées minima
déja considérées par Riemann, et introduit la notion des lignes de striction
des surfaces cerclées. Sur chaque génératrice existent quatre points ou la
génératrice est & une distance maxima ou minima de la génératrice infini-
ment voisine; les courbes déterminées sur la surface par ces points sont les
lignes de striction; Iéquation qui les détermine est analogue & celle qui
permet d’obtenir la ligne de striction sur les surfaces gauches.

L’étude des surfaces cerclées a ét¢ reprise par Laguerre ('), en introdui-
sant une notion importante relative aux cercles et qui est due & Chasles.
Etant donné un cercle dans 1'espace, par cc cercle, on peut toujours faire
passer deux sphéres de rayon nul. M. Darboux a donné aux centres de ces
sphéres le nom de foyers du cercle (*). Un cercle est déterminé par ses
deux foyers. Laguerre emploie la notation (/, /') pour représenter le
cercle dont les deux foyers sont f ct f7, et donne la génération suivante des
surfaces cerclées. Considérons une courbe gauche quelconque C et une sur-
face réglée V, telle que chacune de ses génératrices rencontre cette courbe
en deux points f;, f;. Soient f, £, fa fa, .- les génératrices de cette sur-
face; les cercles ( £\, £1), (fs, f2), ... engendreront une autre surface, que
I'on dira dérivée de la courbe C. D’une méme courbe donnée, on peut ainsi
déduire une infinité de surfaces cerclées; chacune des surfaces dérivées cor-
respond 4 un mode de groupement des points de la courbe C, défini par la
surface V. Lorsque la courbe C est plane, les droites f; f; enveloppent une

(1) LAGUERRE, Mémoire sur U’emploi des imaginaires dans la Géométrie de Uespace
(Nouvelles Annales de Mathématiques; 1872).

(?) DarBoux, Sur les relations entre les groupes de points, de cercles et de sphéres
dans le plan et dans Uespace (Journal de Liouville, 2° série, t. I; 1872). — Sur une
classe remarquable de courbes et de surfaces algébriques, p. 25.
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courbe qui peut servir & définir le groupement des points. Réciproquement,
étant donnée une surface cerclée quelconque, on peut toujours la considé-
rer comme une surface dérivée d’une courbe gauche; cette courbe est le
lieu des foyers des génératrices circulaires de la surface, et la surface ré-
glée V qui détermine le mode de groupement des points de la courbe est le
lieu des axes des différents cercles. Nous verrons que la courbe C est une
focale d’une quelconque des surfaces dérivées.

Les surfaces cerclées ont été considérées de nouveau par M. Demartres
qui a appliqué a I'étude de leurs propriétés infinitésimales la méthode ciné-
matique (*). M. Demartres a retrouvé les principaux résultats de M. Enne-
per et en a ajouté beaucoup d’autres, parmi lesquels ce théoréeme fonda-
mental : Chaque point pris sur Uaxe d’une génératrice circulaire G est
le centre d’une sphére tangente & la surface en deux points de G, et
loules les cordes de contact sont concourantes.

Les cercles de I'espace dépendent de six paramétres; on peut constituer
des systémes indéterminés de cercles, de méme qu’on I'a fait pour la droite.
Les premiéres recherches dans cette voie sont dues & M. Cyparissos Stepha-
nos, qui a donné sans démonstration des propriétés des systémes linéaires
doublement indéterminés, ainsi que du pentacycle ou systéme de cing
cercles qui vérifient six équations linéaires (?).

La voie & suivre dans I'étude des systemes linéaires a été indiquée par
M. Keenigs (*) qui, aprés avoir ¢établi le théoréme fondamental des recher-
ches de M. Stephanos, a donné une proposition remarquable relative au
systtme linéaire quintuplement indéterminé et découvert les invariants de
ce systeme. |

Un cercle étant déterminé par ses deux foyers, on voit que la géométric
du cercle dans I'espace n’est autre que la géométrie de I'ensemble de deux
points. On est ainsi amené, au début de I'étude du cercle, 4 considérer
comme ¢lément de I'espace le systéme de deux points auquel nous donnons
le nom de double point.

(') DemARTRES, Sur les surfaces & génératrice circulaire (Annales de I’Ecole Nor-
male, 3° série, t. I, p. 123).

(%) CypaRIssOs STEPHANOS, Sur une configuration remarquable de cercles dans les-
pace (Comptes rendus des séances de I’ Académie des Sciences, t. XCIIL, p. 578). — Sur
une configuration de quinze cercles et sur les congruences linéaires de cercles dans
Uespace (Comptes rendus, t. XCIII, p. 633).

(3) G. Koexies, Contributions a la théoric du cercle dans Uespace (Annales de la
Faculté des Sciences de Toulouse, t. 11).
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La premiére Partie de ce travail a rapport a I'étude des propriétés infini-
tésimales du premier ordre de I'espace cerclé. Nous avons cherché & con-
struire une théorie analogue & celle donnée par M. Keenigs dans le cas de
I'espace réglé, et fondée sur I'existence de la forme fondamentale (*).

Le théoreme déja signalé, et dit & M. Demartres, conduit & une proposi-
tion qui peut étre considérée comme I'analogue du théoréme de Chasles sur
la distribution des plans tangents a une surface gauche le long d’une géné-
ratrice et qui améne a la substitution de 1'usage des corrélations anharmo-
niques a celui du cercle infiniment voisin.

La rencontre de deux cercles infiniment voisins s’exprime par I'évanouis-
sement d’une forme biquadratique des différentielles des coordonnées; la
considération de cette forme, jointe a I'étude des corrélations anharmoni-
ques, conduit a la classification des surfaces cerclées, due a M. Enneper et
fondée sur la situation relative de deux cercles infiniment voisins.

A cette forme biquadratique sont associées les théories des systémes ad-
joints et des surfaces de singularités. Nous développons ces théories dans le
cas général ou l'on adopte comme élément générateur de I'espace une
courbe dépendant de (n + 1) paramétres; la rencontre de deux éléments
infiniment voisins s’exprime alors par I'évanouissement d’une forme des dif-
férentielles des (7 + 1) paramétres qui est intimement liée aux propriétés
infinitésimales des systémes d’¢léments, que nous désignons par les sym-
boles S, S,, S,, ..., S,, I'indice indiquant I'indétermination du systéme.

M. Keenigs, qui, le premier, a considéré cette forme et lui a donné le nom
de forme fondamentale, a prouvé que si le nombre des parameétres est
supérieur & quatre, elle admet non plus une forme adjointe, comme dans le
cas de l'espace réglé, mais un systéme adjoint composé de (7 — 2) formes,
dont 'emploi permet de constituer, a I'égard du systeme S,, une théorie
analogue a celle développée par M. Klein dans le cas du complexe de
droites, par I'introduction de la forme adjointe.

Nous montrons qu’a chacun des systémes Sy, S,, ..., S,_, on peut, de
méme, faire correspondre un systéme adjoint de la forme fondamentale
dont I'existence est intimement liée aux propriétés infinitésimaleés du sys-
téme auquel il est associé.

Ces systémes adjoints conduisent naturellement a la généralisation de la

(1) G. Koenies, Sur les propriétés infinitésimales de Uespace réglé (Annales de
U’Ecole Normale, 1882).
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notion de surface de singularités du complexe de droites; la surface focale
de la congruence et la surface sur laquelle sont réparties les courbes de S,
apparaissent comme des surfaces de singularités, et forment ainsi les der-
niers ¢léments d’une suite de surfaces qui présentent entre elles une liaison
remarquable. Les théorémes qui lient entre elles les surfaces de singularités
de trois systémes consécutifs peuvent étre trés utiles dans la recherche des
surfaces de singularités, ainsi qu’on le voit, plus loin, dans I'étude des sys-
témes linéaires de cercles. La proposition qui établit un lien entre la surface
de singularités du complexe de droites et les cones du complexe apparait
comme un cas particulier d'une proposition plus générale.

Nous appliquons les résultats obtenus aux différents systémes de cercles.
On trouve, pour les cyclides de raccordement des surfaces cerclées, unc
définition analogue & celle des hyperboloides de raccordement des surfaces
gauches, en utilisant la génération des cyclides due a M. Casey. A I'égard
de la congruence de cercles, nous retrouvons la surface focale, considérée
par M. Darboux dans le cas général des congruences de courbes. A propos
du systeme quintuplement indéterminé, nous montrons comment la notion
de surface de singularités conduit naturellement au beau théoréme que 'on
doit & M. Keenigs (') et qui est la généralisation de la proposition de
M. Klein relative aux complexes de droites; nous établissons également la
réciproque de ce théoréme, pour le cas du cercle.

Dans la seconde Partie, nous abordons I'étude des systémes linéaires de
cercles.

La théorie des systémes linéaires de droites peut se déduire, comme on
sait, d'un seul théoreme. Il existe de méme, a 'égard des systémes linéaires
de cercles, un théoréme qui peut servir de base a leur théorie. Cette propo-
sition n’est, d’ailleurs, que I'interprétation géométrique d’une propriété de
certaines formes bilinéaires. A la recherche des conséquences que I'on peut
en déduire, nous associons I'application des propositions développées dans
la premiére Partie.

(') G. KoeNies, Sur une classe de formes de différentielles et sur la théorie des sys-
témes d’éléments (Comptes rendus, t. CIV, p. 673-675, 842-844). — Acta Mathematica,
t. X, p. 313-338).

T
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PREMIERE PARTIE.

PROPRIETES INFINITESIMALES DU PREMIER ORDRE
DE L’ESPACE CERCLE.

I. — Les corrélations anharmoniques; leur réle dans les propriétés
infinitésimales de l’espace cerclé.

Considérons comme élément de I'espace 'ensemble de deux points auquel
nous donnerons le nom de double point; la droite joignant les deux points
sera la droite du double point.

Appelons couple le systeme formé par 'ensemble d'un double point et
d’une sphére menée par ce double point; nous désignerons le double point,
formé de I'ensemble des deux points @,, a,, par a. Un couple pourra se dé-
signer par la notation (@, a), ou @ est le double point et o la sphére du
couple.

Appelons couple simple le systéme formé par 'ensemble d’un point et
d’une sphére menée par ce point; nous désignerons un couple simple par la
notation (&, ), oi @ désigne le point ct « la sphere du couple.

Un couple sera dit situé sur un cercle G, ou bien le cercle C sera dit ap-
partenir au couple, si ce cercle est sur la sphere o du couple et passe par le
double point @ de ce couple. Les mémes expressions, employées a 'égard
du couple simple, auront une signification semblable.

Lorsque nous considérerons sur un méme cercle plusieurs doubles points,
nous les concevrons en général de la maniére suivante : choisissons dans le
plan du cercle un point P et menons par ce point une sécante; elle coupe le
cercle suivant un double point; en faisant tourner la sécante autour de P,
nous aurons différents doubles points. On peut ainsi envisager le cercle
comme engendré par un double point, la droite de ce double point passant
par un point fixe P. ‘

Etant donnés quatre doubles points ainsi déterminés a, b, ¢, d, leur rap-
port anharmonique (a, b, ¢, d) sera le rapport anharmonique des quatre
droites de ces doubles points.

Quatre couples (a,a), (b,B), (¢,7), (d,3) étant situés sur un méme
cercle, on dira que ces couples sont en relation anharmonique, s'il y a
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¢galité entre les rapports anharmoniques.

(a,b,¢c,d) et (o,B,7,9)

des quatre doubles points @, b, ¢, d et des quatre sphéres a, 3, v, C.

Considérons un cercle et supposons donné le point P qui détermine la
description du cercle par le mouvement d’un double point. Pour définir un
couple sur ce cercle, on doit alors envisager deux coordonnées z et u«, défi-
nissant, I'une le double point, et 'autre la sphére. Un couple sur un cercle
donné dépend alors de deux conditions; une équation entre 5 et u assujettit
le couple & une condition; les couples correspondant & un point P et satis-
faisant ainsi 4 une méme condition forment une corrélation. Sil’on remarque
qu'un couple d’une corrélation est défini par une nouvelle condition, on
peut dire qu'une corrélation est une correspondance ecntre les doubles
points d'un cercle C relatifs & un point P et les sphéres passant par ce
cercle. Si m doubles points correspondent a une sphére et si y spheres
correspondent a un double point, on dit que la corrélation est du ™= ordre
ct de la pi*me classe, et I'on peut la désigner par le symbole I'y'.

Rappelons enfin le théoréme suivant, conséquence immédiate du principe
de correspondance : )

Quatre couples d’une méme corrélation T'}, du premier ordre et de la
premiére classe, sont en relation anharmonique, et réciproguement, les
couples qui, situés sur un cercle, sont en relation anharmonique asec
trois couples fixes situés sur ce cercle, engendrent une corrélation T, du
premier ordre et de la premiére classe.

C’est pour cette raison qu’on donne & la corrélation du premier ordre et
de la premiére classe le nom de corrélation anharmonique.

Deux corrélations T’y et Ty, correspondant & un méme point P, ont en
commun un nombre de couples égal a

mp 4+ m'y,

et, en particulier, deux corrélations anharmoniques correspondant & un
méme point P ont en commun deux couples (a, a), (b, ).

Arrivons au réle des corrélations anharmoniques dans les propriétés infi-
nitésimales de I'espace cerclé.

Supposons qu’un cercle donné C dans I'espace appartienne a une surface
cerclée. Pour étudier la surface autour du cercle, prenons pour plan des xy
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le plan du cercle, les coordonnées étant rectangulaires. Les équations de la

génératrice de la surface cerclée seront

s=ax+By+y,
22+ y 4+ st ax + by +c=o;

a, b, ¢, a, B, v sont des fonctions d’'une méme variable A, les fonctions «,
8, y s’annulant simultanément avec la variable. Le développement en série
donne

=0 h+ a2+, . ., a=a,+ah+d N+...,
B=BA-+B1R2+..., b=by+ bk + b\ R+...,
y=7ih+ 7 R4, c=co+ A+ A+

Cherchons les points (z, y, 0), ol la sphére
2+ ¥+ 52+ agx + by + o= .3,

(qui passe par le cercle C, touche la surface.

Posons
M=—az+ by +cy

Q=uoz+By—+ 7.

Les coefficients directeurs de la normale & la surface au point (x, y, o)
sont proportionnels &

22 + ay, 2y —+ by, %
Ceux de la normale a la sphére sont proportionnels a
2Z + @y, 2y + by, —
Fcrivons que ces deux normales sont confondues; il vient
M=—uQ.
Nous retrouvons donc ce théoréme, dit 8 M. Demartres (') :

Chaque point pris sur Uaxe du cercle C est le centre d’une sphére
tangente d la surface cerclée en deux points de C; toules les cordes de
conlact sont concouranlies.

(1) DEMARTRES, Sur les surfaces & génératrice circulaire (Annales de U’Ecole Nor-
male, 3¢ série, t. I1, p. 123).
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La droite Q = o est la caractéristigue AA’ de M. Demartres.

La droite M = o est 'axe radical aa'.

Les deux points «, o’ du cercle situés sur aa’ correspondent & la sphére,
qui admet le cercle comme grand cercle; les deux points A, A’ situés sur
AA’ correspondent au plan du cercle; en ces deux points A, A’, la normale
est perpendiculaire au plan du cercle; donc :

1l existe sur chaque génératrice deux points ot elle est tangente a
une ligne asymplotique de la surface, et ces deux points sont situés sur
la caractéristique.

Remarquons également cette proposition, énoncée aussi par M. Demar-
tres : La courbe lieu des foyers des cercles qui engendrent la surface
est une focale de cette surface.

Placons-nous dans le cas général ot Q =0, M = o sont deux droites
distinctes; P étant leur point d’intersection, concevons le cercle comme
décrit par un double point dont la droite passe par P. On peut alors énon-
cer le théoréme suivant, qui constitue, a 1’égard des surfaces cerclées, le
théoréme analogue au théoréme de Chasles sur la distribution des plans
tangents a une surface gauche le long d’une génératrice :

Les couples formés par un double point d’une surface cerclée et la
sphére tangente en ce double point, et qui sont situés sur une méme
génératrice circulaire, engendrent une corrélation anharmonique.

Considérons une autre surface cerclée passant par le cercle Cj; elle don-
nera lieu a d’autres développements et a une autre corrélation anharmo-
nique qui sera, en général, relative a un point P, différent de P. Les droites
des doubles points qui correspondent & une méme sphére forment des fais-
ceaux homographiques de sommets P et P, ; par conséquent :

Deux surfaces cerclées passant par un méme cercle sont, en général,
langenles en qualre points de ce cercle.

Supposons que P et P, soient confondus, c’est-a-dire supposons que les
déterminants compris dans la matrice

221 51 71

a b ¢

IIl. — Fac. de T-

&=
o
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soient proportionnels aux déterminants analogues, en sorte quon ait

0‘1[’1—0151 e — gy Bicl_ b171,
oy by — ay 3 %30y — Qa2 Bacs— bays’

les couples communs aux deux corrélations correspondant au méme point P
seront les couples de raccordement des deux surfaces.
Si, de plus, tous les déterminants compris dans la matrice

a, by oy B
a, by oy B

sont nuls, les deux corrélations coincident; les deux surfaces cerclées sont
tangentes tout le long du cercle C.

Réciproquement, si deux surfaces cerclées sont tangentes le long du
cercle G, les points P, P, qui leur correspondent, sont confondus et, de
plus, les deux corrélations coincident.

Ceci posé, on apercoit immédiatement que les conditions qui corres-
pondent & ce cas particulier peuvent s’écrire de la fagon suivante :

ay=pa;,  by=pb, Cy == [-Cy, Oy == 2y, Ba= 31, 72— /1

On a, par suite, la conclusion suivante :
Considérons le cercle C, qui a pour équations

z3=o,

x4y 4 ayx + byy 4+ cy=o.

Si on laisse a,, b, ¢, ct a,, b,, ¢,, a,, B, v, invariables, et que l'on
attribue aux constantes o, a,, ..., By Byy o ovy Yhy Tar covs @py Aoy - ooy DY,
U, ...,c, ch,...tellesvaleurs quel'on voudra, les développements suivants,
ol : est une variable indépendante, conviendront a toutes les surfaces cer-

clées tangentes entre elles tout le long du cercle C.

oa=o h+ o\ A2+ .., a=a,+ah+a,+...,
B=BA+0BR+..., b="by+bih+b,N+...,
Y=k +Y R4 c=coH ok

Or attribuons a % une valeur infiniment petite ¢; en négligeant les termes

du second ordre, on a

a=oe, PB=275 y=y& a=a+ag, b=0by+be, c=co+ce.
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Le cercle correspondant est infiniment voisin du cercle C, et, comme il
est indépendant de o, ..., on en conclut qu’il est commun a toutes les sur-
faces cerclées qui définissent la méme corrélation sur le cercle Cj c’est ce
qu’on peut exprimer en disant qu’une corrélation anharmonique sur un
cercle C correspond a un cercle de I'espace infiniment voisin du cercle C.

De méme qu'un point de 'espace infiniment voisin d’un point fixe définit
une direction issue de ce point, et que, inversement, la considération de
cette direction peut souvent étre substituée a celle du point voisin, de
méme, dans 'espace cerclé, un cercle infiniment voisin d’un cercle définit
sur lul une corrélation anharmonique dont 'emploi peut remplacer celui
du cercle infiniment voisin dans un grand nombre de (uestions.

Arrivons & la représentation analytique des cercles et des corrélations
anharmoniques. ‘

Les cercles de I'espace forment un systéme sextuplement indéterminé;
un cercle dépend de six paramétres

Uy, Uyy oevy Ugs

nous désignerons ce ccrcle par la notation (u).
Un cercle infiniment voisin du cercle (#) a pour coordonnées

w; -+ Au;,
ou, en négligeant les termes du second ordre,
u;+ du;.

On peut le désigner par le symbole (z + du).
Chaque systeme de valeurs des rapports

du,:dus: ... dug

*définit un cercle infiniment voisin du cercle («) et, par suite, une corréla-
tion anharmonique sur ce cercle. Si ¢,, Z,, ..., {; sont des quantités finies
proportionnelles & du,, du,, ..., du,, on pourra dire que les quantités ¢
sont les coordonnées homogénes d’une corrélation anharmonique sur le
cercle (u). .

Les corrélations anharmoniques sur un cercle donné («) forment unc
quintuple infinit¢. Une équation entre les coordonnées d’une corrélation
représente une série quatre fois indéterminée de corrélations; deux équa-
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tions représentent une série trois fois indéterminée, etc. Si toutes les équa-
tions sont linéaires, on a des systémes linéaires de corrélations que nous
représenterons par les symboles M,, M;, M,, M,, M,, l'indice indiquant
I'indétermination du systéme.

Revenons a la corrélation sur le cercle C, défini par les équations

z=o,

2%+ ¥+ ayx + by + ¢y =0,

afin d’étudier tous les cas qui peuvent se présenter.
Etant donnée la sphere

24 yr 4B ayx + by + co=p.5,

les points de contact avec la surface s'obtiennent, ainsi qu'on I'a vu, en
coupant le cercle par la droite qui a pour équation dans le plan des zy

M=— P‘Q,
en posant
M=a,z+ by + ¢,

Q:“v”‘i‘ﬁl,}"i‘}’r

Supposons d’abord que les deux droites M = o, Q = o soient distinctes :
elles se couperont en un point P.

Le cas général est celui ot le point P est quelconque.

Si le point P est sur le cercle, on dira que la corrélation est singulicre.

Le point P, considéré comme double point (la droite du double point
étant la tangente au cercle), et la sphére correspondante constituent le
couple singulier.

Supposons maintenant que tous les déterminants déduits du Tableau

Xy @1 71

a b ¢

solent nuls.

Dans ce cas, les couples formés par les sphéres tangentes et les doubles
points de contact se composent, ou bien d’une sphére fixe et d’'un double
point quelconque, ou bien d'une sphére quelconque et d'un double point
fixe. Si ce dernier double point est formé de deux points distincts, on peut
dire que la corrélation est doublement singuliére; s'il est formé de deux
points confondus, la corrélation sera triplement singulicre.
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II. — La forme fondamentale et les systémes adjoints.

Lorsqu'on adopte comme élément générateur de l'espace une courbe
dépendant de n + 1 parameétres u,, u,, ..., U,,,, la rencontre de deux
éléments infiniment voisins s’exprime par I'évanouissement d’une forme
M(u|du) des (n + 1) différentielles des (n + 1) paramétres dont dépend
I'élément. Cette forme joue un role fondamental dans la géomeétrie des sys-
témes de courbes que I'on peut former avec 1’élément considéré.

M. Keenigs, & qui I'on doit la notion de la forme fondamentale M (u|du),
a montré que, si le nombre des parameétres est supérieur a quatre, celte
forme fondamentale présente des particularités caractéristiques (') : I'une
de ces particularités consiste dans I'existence d’un systéme adjoint composé
de (n— 2) formes. Il nous est nécessaire de rappeler comment M. Kcenigs
établit ce point.

Supposons les équations de I'élément considéré mises sous la forme

= [f(5, Uy, Usy ...y Upsy) = f(5]0),

y=c(s]|u).

Convenons d'une facon générale de la notation suivante; 0 étant une
fonction de u,, u,, ..., 4,,,, nous poserons

[ET]= 2 tv v 2
= Ja; L+ o, .. o lnre

Ottpry

Si les courbes () et (« + du) se coupent au point (x, y, 5), on a

7] =,
o 2u] —o.

En éliminant z entre ces deux équations, on trouve une forme homogeéne
des différentielles du, dont les coefficients dépendent des «. Désignons par
M(u|du) cette forme qui n’est définie qu’a un facteur prés, indépendant
des différentielles. Au lieu des du, introduisons des quantités finies ¢,,

(1) G. Koenigs, Sur une classe de formes de différentielles et sur la théorie des sys-
temes d’éléments (Acta Mathematica, t. X).
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lyy +«ey lyey €L considérons la forme
M(ult),

qui provient de I'élimination de z entre les équations

(A)

,‘A,
>
~
I
°

Pour interpréter ces ¢quations, M. Kcenigs fait usage de la considération
des espaces a plusieurs dimensions. Regardons les quantités « comme con-
stantes, et les £ comme les coordonnées linéaires homogenes d’un point d’un
espace & n dimensions. Une équation homogeéne entre les ¢ définit un espace
4 (n — 1) dimensions que l'on peut appeler une surface; si I'équation est
linéaire, on a un espace linéaire & (n —1) dimensions que I'on peut appeler

un plan.
Ceci posé, différentions totalement les équations (A), en regardant.les «

comme constants, il vient

[0
d

[A]
+
I
S
Il
L

Js
d| o, ¢
- ds + | ¢, dt| =0;
d’ot, en posant
a| fit
= ds ,

on conclut

[ZZI'FI + 2|0, dt| =o.

Par conséquent, si nous exprimons le contact de 'espace lincaire a
(n — 1) dimensions ‘
Tty 4 Thta+. .ot Thy, Ly =0

avec la surface
M(u|t)=o,



" SUR LE CERCLE CONSIDERE COMME ELEMENT GENERATEUR DE L’ESPACE. E.15
nous avons a éliminer = et A entre les équations

T T} TS,
U 0% O 502 T of L, 99

+ 2 =
du, du, du, du, Aty 0ty

ct nous obtenons (n — 2) équations homogenes entre les quantités T*, dont
les cocfficients dépendent des u, et que nous écrirons

My (u|TH)=o, My (u|T') =o, R N, s (2| TY) =o.

Le systéme des premiers membres de ces (72— 2) ¢quations est le systéme
adjoint composé de (n — 2) formes.

M. Keenigs a montré I'importance de ce systeme adjoint dans 1’étude du
systéme de courbes défini par une relation entre les (7 + 1) parameétres
Uyy ...y Uy, 3 nous y reviendrons d’ailleurs plus loin.

Nous verrons qu'il y a également intérét a attacher au systéme de courbes
défini par k relations entre u,, u,, ..., #,,, un systéme adjoint qui pourra
¢tre dit de ki¢me espece et qui sera composé de (n— k —1) formes.

Si nous exprimons le contact d'un espace linéaire a (n — k) dimensions
avec la surface M(u«|?) = o0, nous avons a ¢liminer =, A, t,, Uy, ..., Uy
centre les équations

e T4 o T2y T3+ e T T T2+ o+ TS

of 592 I 5 9%
g o 0w M ou
BTN O R o T Y ,
o a9 do
dun+1 + )\ durH—l

ct nous obtenons (n—k-—1) équations homogénes entre les (uantités
T+, ..., T% quec nous écrirons

Ny (u|THL T ..., TF) =o, . Mgy (| T T2, oL, TF) =o0.

Le systéme des premiers membres de ces équations est le systéme adjoint
de kitme espéce, composé de (. — k — 1) formes.

Considérons le cas particulier de 'espace cerclé.

Si nous prenons pour coordonnées du cercle les coefficients a, b, ¢, o, 3, v

dans les équations
axr+By+y—sz=o,

@y az 4 by =0
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du cercle rapporté a trois axes coordonnés rectangulaires, la condition de
rencontre des cercles infiniment voisins

(a,b,¢,0,8,7) et (a-+da,b+db,...,y+dy)

s'exprime par I’évanouissement d'une forme biquadratique des différen-
tielles da, db, ..., dy, qu’on obtient en éliminant x,y, s entre les quatre
équations
xdo + ydB +dy=o,
x da + y db +dc = o,
ax +Ly+y—z=o,
2+ y*+ ' +ax+by+c—o.

L’¢limination est immédiate. Si I'on prend ensuite des coordonnées u,,
Uy, - - -5 Ug quelconques pour le cercle dans I'espace, cette forme devient une
- forme biquadratique des différenticlles du,, du,, ..., duy, que nous dési-
gnerons par N(du). Soient N, (du), N,(du), N,(du) ce que deviennent

les formes quadratiques

dbdy — dj dec,
dc do — dy da,
dadB — dodb,

on aura
N(du) :Nf -+ Ng -+ N; -+ (aN1+ bNg)Ng—l— (O(N1+ @N2+'}/N3)2.

Soit K une expression indépendante des différentielles des coordonnées;
I'évanouissement de la forme biquadratique des différentielles des coor-

données
M(du) j— KN(dlt) = Zl\lijNiNj

exprime la rencontre des cercles infiniment voisins () et (u + du).

La forme M(du) est la forme fondamentale relative au cercle; c’est une
forme quadratique ternaire par rapport a N,, N,, N,. D’aprés sa définition,
elle n’est déterminée qu’a un facteur prés K, indépendant des différentielles.

Si I'on exprime que les deux cercles infiniment voisins se rencontrent

en deux points, on obtient deux conditions en annulant les déterminants

déduits du Tableau
da db dc

da dp dy

On aura donc, d'une facon générale, ces deux conditions en annulant les
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trois formes quadratiques
N,(du), N,(dw), N;(du).

Si l'on exprime que les deux points de rencontre sont confondus, on a
une nouvelle condition
P(du)=o0;

la forme P (du) est une forme quadratique des différentielles.

Si l'on se reporte & ce que I'on a dit sur les corrélations et si I'on consi-
dére une corrélation anharmonique sur un cercle, on voit que :

1° L’évanouissement de M(¢) exprime que la corrélation est singuliére;
le cercle (u + du), qui la détermine sur le cercle (), rencontre ce cercle
en un point; '

2° L’évanouissement simultané de N, (?), N,(¢), N,y(¢), qui équivaut a
deux conditions, exprime que la corrélation est doublement singuliére; le
cercle (¢ + du), qui la détermine sur le cercle (%), rencontre ce cercle en
deux points.

Les cercles (u) et (u+ du) ont ainsi un couple commun (a, «). Ce
couple est le couple singulier de la corrélation doublement singuliere.

Tout couple d’une corrélation doublement singuliére admet pour un de
ses éléments (double point ou sphére) au moins un des éléments du couple
singulier.

3° L’évanouissement simultané de N,(¢), N,(¢), N,(¢), P(z) exprime
que la corrélation est triplement singulicre.

Nous pouvons maintenant compléter ce que nous avons dit précédem-
ment. On est amené a la classification rationnelle des surfaces cerclées due
a M. Enneper et fondée sur la situation relative de deux cercles infiniment
Voisins :

Premiére classe. — Deux cercles infiniment voisins n’ont, en général,
aucun point commun,

Deuxieme classe. — Chaque génératrice a un point commun unique
avec la génératrice infiniment voisine; les points communs forment sur la
surface une courbe a laquelle le cercle mobile reste constamment tangent.
Nous donnerons, d’aprés M. Darboux, le nom d’aréte de rebroussement de
la surface a cette courbe.

Troisiéme classe. — Deux génératrices infiniment voisines ont constam-
ment deux points communs. Le cercle mobile reste constamment tangent a

1. — Fac. de T. E.3
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deux directrices curvilignes; chaque génératrice est une ligne de courbure de

la surface.
Quatrieme et cinquiéme classes. — Les deux points communs se con-

fondent.
Arrivons maintenant au systéme adjoint de premiére espéce et prenons

encore les équations du cercle sous la forme

( U+ Uy +U3— 3 =0,
| 22 )2+ 52+ U, & + usy + ug=o.

Posons
D=u(2y + us) — us (22 + w,),
R=—(2y + us) + 222z + u,),
S —uy—Auy;

on trouve, par un calcul facile,

oz, 0y R dz s dy S
dul dul - D, dllk dll@ o ])’
dr . dy R ox . dy 8
p PR S LI Rt et 1k
dx dy _ R oz dy _ 8
on TP T D duw T lowT D

Le systéme adjoint s’obtient, par suite, en éliminant @, y entre les rela-

tions

T, T,
T, T
T, Ty
- T, T,

224 Y- (U X+ Uy 4 Us) - U X+ U Y - Ug= O,
On a trouvé, pour une expression de la forme fondamentale,
M(u|du)=Q(u|N)=N2- N2+ (2;N;+ Ny + N;)? + «,N; Ny + usNyN; + wgNZ,

en y faisant k& =1 et posant

N, (u|du) =N, = du; dus— du, dus,
Ny (u |du) =Ny==du, dus— duz du,,
N;(u | du) = Ny= du, dus— du, dus.
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Les équations du systéme adjoint de premiére espéce apparaissent donc
sous la forme suivénte :

Ni(z|T)=o,
N, (u|T)=o,
Ns(w|T)=o,
Q(u|T)=o.

Les trois premiéres équivalent 4 deux équations.

III. — Les surfaces de singularités.

On connait 'importance qu’il y a, dans la théorie des systémes de droites,
a associer a chaque systéme une surface qui, pour le complexe, est la sur-
face de singularités et, pour la congruence, la surface focale.

Lorsqu’on aborde la théorie des systémes de courbes construits avec un
élément donné, on est amené a chercher s’il n’est pas possible d’associer a
chaque systéme une surface jouant le réle des surfaces précédentes.

La question a été résolue depuis longtemps par M. Darboux en ce qui
concerne les congruences, c’est-a-dire les systémes de courbes dépendant
de deux parameétres @ et b (). M. Darboux, considérant les équations

f(x,y,z, a,b)=o,

o(x,y,5,a,b)—=o0

d’un systéme de’ courbes dépendant de deux paramétres @ et b, remarque
que, si I'on exprime que 'une des courbes du systéme passe par un point M,
a et b seront, en général, déterminés. La condition que le plan tangent en
M & une surface soit tangent a I'une des courbes qui y passent conduit a
une équation aux dérivées partielles qui se décompose en équations linéaires.
L'intégrale générale est formée des courbes pour lesquelles b est une fonc-
tion de a.
Si, entre les équations

a

. o da _ db

(“) j—O, ¢ — 0, % — Q?’
Jda a6

(1) DarBoux, Mémoire sur les solutions singuli¢res des équations aux dérivées par-
tielles du premier ordre et Lecons sur la théorie genérale des surfaces.
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on élimine @ et b, on obtient une surface qui est la surface Jocale du
systéme de courbes: c’est la solution singuli¢re. Cette surface focale est 1’en-
veloppe de toutes les intégrales générales et peut étre considérée comme
lieu des intersections successives de deux courbes infiniment voisines du
systtme; toutes ces courbes lui sont tangentes en un nombre limité de
points; les points de contact de 1'une des courbes avec la surface focale s’ob-
tiennent en résolvant les équations (2) dans lesquelles @ et b ont recu les
valeurs qui correspondent & la courbe considérée; ces points portent le nom
de points focauzx.

Ce point rappelé, supposons qu’on adopte comme élément une courbe
dépendant de (n + 1) parameétres u,, u,, ..., u,,, et dont nous prendrons,
comme précédemment, les équations sous la forme
(| 2=J(3u usy ooy Upyy) = f(5] ),

(1) {
[ y=9(s]u).

Désignons par S,, S, _,, ..., S, 4ty .., S,, S, les systémes de courbes
que I'on peut former avec I'élément considéré, l'indice indiquant U'indéter-
mination du systeme. Nous avons vu qu’a chacun des systemes S,,, S,_,, ...,
S, on pouvait faire correspondre un systéme adjoint de la forme fonda-
mentale; c’est par 'interprétation géométrique des équations qui conduisent
a ces systémes adjoints que nous parviendrons aux surfaces de singularités
des différents systémes de courbes.

Considérons le systeme S,_,,, défini par les k relations
(2) 0, (ty, Usy o ooy Upiy) =0, RN Op(uyy tyy ooy Upyyy) =0

entre les paramétres u,, uy, ..., u,.,, et supposons que k& soit inférieur &
(n—1). A ce systéme correspond le systéme adjoint de k™ espece com-
posé des (n — k — 1) formes que nous avons représentées par les symboles

Ny (u

T, T2 0, TR, oo, O,y (u| T T, ..., TF).

Eliminons z, A, g, ,, ..., g4 cntre les équations

9%, o 99 9 o, s O
) P TP T g M e, T g, T G
LI s iy, 0 ;

du, du, 0y Ol yiy
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nous obtenons les (r — k — 1) équations

09, 9,
du du’9u’ """ ou

29,
(4) o (uld_u’ ou’ " u

Les courbes du systéme S,_;,, qui satisfont & ces relations sont les courbes
singuliéres.

Si 'on élimine les paramétres A, ty, oy -y Mgy &y, -+ .y Upy, entre les
équations (1), (2), (3), on obtient généralement une seule équation

=o, oens N ry <u % % @? =o0

S(x,y,5)=o0

entre z, y, z. La surface représentée par cette équation est la surface de
singularités, et I'on peut énoncer la proposition suivante :

Les courbes singuliéres forment une congruence et sont tangentes &
la surface de singularités qui est une des nappes de la surface focale de
la congruence.

Il suffit, pour s’en convaincre, de considérer le mode de formation des
équations (4) et de remarquer que, si

f(wuy:zaa, b):Oa
o(x,y,3,a,b)=o0

sont les équations d’une courbe dépendant de deux paramétres a et b, les
points focaux s’obtiennent en adjoignant a ces deux équations celle qu’on
forme en annulant le déterminant fonctionnel des deux fonctions JSetopar
rapport aux variables a et b.

Nous avons défini les courbes singuli¢res et la surface de singularités de
'un quelconque des systémes S,, S, ,, ..., S;; pour le systéme général
Sp-k+1, il nous a suffi d’adjoindre aux équations (1) et (2)les équations (3).

Que deviennent ces notions lorsqu’on considére le systéme S,? Dans ce
cas, on a k = n—r1, et les équations (3) constituent la condition nécessaire
et suffisante pour que le déterminant fonctionnel des (7 -+ 1) fonctions S
9, 0,5 05, ..., B,y par rapport aux (n + 1) variables u,, u,, ..., u,,, soit
nul; I'élimination des paramétres z, X, @,, ..., Wpeiy Uyy oy Uy,,, entre les
équations (1), (2), (3) conduit done, dans ce cas, 4 la surface focale de Ia
congruence.

Ainsi la surface focale apparait comme la surface de singularités de la
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congruence pour laquelle on peut dire que tous les cercles sont singu-
1ers.

Revenons a la surface de singularités du systeme général S, ;. ,, 'indice
k pouvant prendre maintenant les valeurs 1,2, 3,...,(n —1), et cherchons
le plan tangent en un point de cette surface. L’équation de la surface de sin-
gularités s’obtient en éliminant A, w,, ..., U, &, ..., &,,, entre les équa-
tions (1), (2), (3); on peut se dispenser d’effectuer cette élimination en
convenant de conserver toutes ces équations et d’y regarder A, @, ..., W,
Uyy ey Uy, comme des fonctions & déterminer; le plan tangent a la surface
- de singularités s’obtiendra alors en différentiant les équations (1), (2), (3),
dans lesquelles on considérera A,y ..., gy Uy, - -+, Uy, comme des va-
riables; or différentions les équations (1), et formons la combinaison

En vertu des équations (2), (3), il vient
dx + kdy = <df + AT PP > ds.

Cette équation qui définit le plan tangent conduit naturellement aux pro-
priétés générales des surfaces de singularités.
Considérons un systeme S,_; défini par les équations

f,=o, H,—=o, e, 6,=o, Oprr=o0
et le systeme S, ., défini par les k premiéres de ces équations

6,=o, 6,=o, e Op=o0; V
envisageons une courbe singuliére de S,_;.,, vérifiant 6., = o; il apparait
immédiatement que ce sera aussi une courbe singuliére du systéme S,,_; de
plus, le point de contact avec la surface de singularités et le plan tangent en
ce point serontidentiques pour les deux systémes ; ceci est applicable & toutes
les courbes singuli¢res de S, ;. , qui vérifient I'équation 0,,, = o et qui for-
ment une surface; on a donc la proposition suivante :

La surface de singularités d’un systéme S,_; contenu dans le sys-
teme S,_s., est circonscrite & la surface de singularités de S, ...



SUR LE CERCLE CONSIDERE COMME ELEMENT GENERATEUR DE L'ESPACE. E.23

On peut donner & cette proposition d’autres formes, par exemple, la sui-
vante, qui nous sera utile :

La surface de singularités d’un systéme S,_, est une enveloppe des
surfaces de singularités des systémes S,_,., qui coniiennent ce sys-
leme Sll—k‘

Considérons maintenant un systeme S,_, défini par les équations
61:07 62:()’ RS 9/;‘: o, 9k+1:_0’

et le systéme S,_;,,, défini par les (£ — 1) premicres dé ces équations

91:20, 92: o, ey @/c__,:().

Une courbe singuliére de S,_4. ., qui vérifie les équations 0, = o, 0,,,= o, sera
aussi une courbe singuliére de S,_;. De plus, le point de contact avec la
surface de singularités et le plan tangent en ce point seront identiques pour
les deux systémes. Ceci est applicable a toutes les courbes singuliéres de
S, kee, qui vérifient les équations 0,= o, 0,,, = o et qui sont en nombre
limité. On a donc la proposition suivante, qui peut d’ailleurs étre considérée
comme une conséquence du théoréme précédent :

La surface de singularités d’un systéme S,_;, contenu dans le sys-
teme S, i, est tangenie en un nombre limité de points a la surface de
singularités de S, ;..

Ou encore :

. e 5 < . .
La surface de singularités d’un systéme S,_, est une enveloppe des
surfaces de singularités des systémes S,_;., qui contiennent S,,_.

Les théorémes précédents s’appliquent au systéme S,, si I'on prend pour
surface de singularités de S, la surface sur laquelle sont réparties toutes les
courbes de S, ; il suffit, pour s’en convaincre, de répéter les mémes raison-
nements. On a ainsi les théorémes suivants qui, lorsqu’on prend comme
¢lément la droite, deviennent les théorémes connus relatifs aux systémes de
droites :

La surface de singularités d’un complexe (ou systeme triplement
indéterminé) de courbes est circonscrite & la surface focale de toute con-
gruence de ce complexe.
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La surface de singularités d’un complexe de courbes touche en un
nombre limité de points toute surface du complexe.

La surface focale d’une congruence est circonscrile & toute surface
de la congruence.

On connait la proposition qui établit un lien entre la surface de singula-
rités du complexe de droites et les cones du complexe. Nous devons mon-
trer qu’elle n’est qu’un cas particulier d'une proposition générale relative
aux systemes de courbes.

Considérons d’abord une congruence, une courbe C de cette congruence,
et soit P un point de contact de C avec la surface focale ; les courbes de la
congruence passant par un point de I'espace forment un systéme S,. Si le
point de l'espace tend vers le point P, deux courbes de S, tendent a se con-
fondre avec C; on peut dire que C est une ligne double du systeme S, cor-
respondant & P et 'on a la proposition suivante :

n > - - ] ’ -
Les courbes d’une congruence passant par un point P de Uespace for
ment un systéme S, ; le lieu du point P, tel que Uune des courbes pas-

sant par ce point soit une ligne double de S,, est la surface focale de la
congruence.

Si 'on considére maintenant un complexe, il résulte immédiatement de
la définition de la surface de singularités la proposition suivante :

Les courbes du complexe, passant par un point P de Uespace, for-
ment un sysiecme S, de courbes réparties sur une surface & point co-
nique X5 le lieu du point P, tel que Uune des courbes passant par ce
point soit une ligne double de la surface X,, est la surface de singula-
rités du complexe. La courbe qui forme la ligne double est une courbe
singulicre. Les surfaces X, a point conique, qui dépendent de trois pa-
rametres, onl néanmoins une enveloppe qui est la surface de singula-
rités du complexe.

Il n’y a aucune difficulté & étendre ce théoréme aux systémes généraux
de courbes : il suffit de généraliser les notions bien connues relatives aux
droites doubles des congruences et complexes de droites.

Soit un systéme S,_;,,, défini par les k& équations

6, = o, 0,=o, . Or—o.
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Une courbe (# + du), infiniment voisine d’une courbe (#) du systeme et
appartenant a ce systéme, vérific les ¢quations

fodd=o, [fndd]=o0, ... [ndd=o

La courbe (u) sera une courbe double du systéme S, ., si ce systéme
d’équations est indéterminé. '
Cette définition posée, on a la proposition suivante :

Les courbes d’un systéme S,_;.,, passant par un point P de Uespace,
Jorment un systéme S,_;_,; le lieu du point P, tel qué Uune des courbes
passant par ce point soit une courbe double du systéme S,_;_,, est la sur-
Sface de singularités de S,_;.,. La courbe double est une courbe singu-
licre de S,_;,,.

Si 'on considére une courbe double d’un systéme, pour tous les systémes
compris dans le premier et contenant cette courbe, elle sera ¢galement une
courbe double.

“n particulier, les surfaces a point conique, relatives & tous les points
d’unc courbe double d'un complexe, admettront toutes cette courbe pour
ligne double.

IV. — Les systémes de cercles.

Surfaces cerclées.
Une surface cerclée est représentée par les cinq équations

Gi(uy, Uy ooy Ug) =0, Oy (g, gy « . .y Ug) =0, O;(uyy o ..y ug) =o,

0, (uyy ..., 1) =0, 05 (2tyy o .., ug) =o.

Un cercle (# + du), infiniment voisin d'un cercle («) de la surface et ap-
partenant a cette surface, vérifie les équations

i =o [di]=o [ud]=o [Ld]=o [Gd]-o

Appelons A, le déterminant obtenu en retranchant la colonne d'indice «
Ill. — Fac. de T. E.4
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dans le Tableau :

#

06, 00, db, a9, 46, 90,
Ou; Ou, Oduy du, Ou; du,
6, 0,
o e e e e g
6,

- )

0,

-

00, » 905
e

On déduit des équations précédentes

du, _(Ltﬁ .

A,

- dus.

A, T A,

On peut considérer les A comme les coordonnées homogénes de la corré-
lation relative au cercle (), c’est-a-dire de la corrélation anharmonique
que la surface définit sur ce cercle, en vertu du théoréme sur la distribution
des spheéres tangentes.

Posons I = M(A) et considérons les cercles de la surface pour lesquels la
quantité I est nulle. On a I =o quand tous les A sont nuls, et alors le
cercle () est une ligne double de la surface. Ecartant ce cas, I'équa-
tion 1 = o exprime qu’autour du cercle () la surface cerclée se comporte
comme une surface de la deuxiéme classe : les normales le long du cercle
rencontrent, outre 'axe de ce cercle, une droite fixe, etc.

On voit, de plus, que la condition nécessaire et suffisante pour qu’une
surface cerclée soit une surface de la deuxiéme classe, c’est que 'équation

I—o

soit vérifiée par tous ses cercles, sans que les déterminants A soient tous et
toujours nuls.

Posons
J1:N,(A), J‘z:Nz(A)’ J3:N3(A)'

Pour certaines surfaces, il existera des cercles de la surface pour lesquels
les deux conditions obtenues en écrivant

Ji=o, Jy,—o, J;=o
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seront vérifiées. Ces équations expriment qu’autour du cercle («) la surface
se comporte comme une surface cerclée de la troisitme classe. Ainsi, les
normales correspondant aux points de la génératrice forment un cone de
révolution, et cette génératrice est une ligne de courbure de la surface.

Si, de plus, la condition P(A) = o est vérifiée, la surface se comporte
comme une surface de la quatriéme classe, ou comme une surface de la cin-
quieme classe.

Nous voyons en méme temps que les conditions nécessaires et suffisantes
pour que toutes les génératrices soient des lignes de courbure s’obtiennent
en écrivant que les deux conditions qui résultent de

sont vérifiées par tous les cercles, sans que les déterminants A soient tous
ct toujours nuls.

Deux surfaces cerclées qui, sur un cercle, définissent la méme corré-
lation, se raccordent suivant ce cercle. Parmi les surfaces qui, suivant un
cercle, se raccordent avec une surface cerclée donnée, on peut distinguer
les cyclides de raccordement. Voici comment on les obtient :

Soient (a, a), (b,8), (¢,v) trois couples de la corrélation relative & un
cercle (u) d’une surface cerclée; soient A, B, C trois cercles appartenant
respectivement a ces couples. La cyclide engendrée, suivant le mode de
génération de M. Casey, en prenant les trois cercles A, B, C pour direc-
trices, est de raccordement.

On voit ainsi que ces cyclides sont triplement indéterminées. On peut,
en effet, les envisager comme des cyclides passant par deux cercles () et
(u + du) infiniment voisins.

On pourrait définir les cyclides de raccordement en les considérant
comme des anallagmatiques. Ce point a ¢té traité par M. Demartres.

Congruences de cercles.
Une congruence est définie par quatre équations

0, (tyy ..y us) =0, Oy (uyy ..., us) =o,

Os(uyy ...y ug) = o, 0, (uyy ..., ug) =o.

Si (u) et (u + du) sont deux cercles infiniment voisins de la congruence,
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on a v
l@,,dul:o, :0, :0, I@L,du|:0

ou, en introduisant les coordonnées ¢ d'une corrélation

9,,7[:0, |92,6_J:0, 0,,¢ ] =o, |e,,,t|:o.

Les corrélations sur un cercle d’une congruence qui appartiennent
a la congruence forment donc un systéme M,.

Le licu des points P correspondant aux corrélations d'un systéme M, est
une conique : les coordonnées du point P correspondant a l'une de ces cor-
rélations sont, en effet, des fractions rationnelles d'un paramétre A pour
lesquelles les numeérateurs et les dénominateurs sont du second degre.
On a donc la conclusion suivante :

Les corrélations qui appartiennent ¢ une congruence sur un de ses
cercles admetlent quatre couples simples fixes (a,,S),), (a,, S,), (a;,S,),
(Cl,a, S'i )

L’existence de ces quatre couples montre que, parmi les corrélations
(ui appartiennent & la congruence, il y en a quatre singuliéres; cela ré-
sulte aussi d’ailleurs de la considération de la forme fondamentale; de la ce
théoréme analogue au théoréeme de Monge, relatif aux congruences de
droites :

Etant donné un cercle d’une congruence, il existe quatre cercles de la
congruence infiniment voisins du premier et le rencontrant.

(a,, S)), (as, S,), (a,, S,), (ai, S,) sont manifestement les couples sin-
guliers des corrélations singuliéres, en considérant a,, a,, a;, @, comme des
doubles points; les points @, a,, a,, a, sont les points focaux et les spheres
Sy Sy, S, S, les sphéres focales de la congruence.

Les points focaux ne dépendent que de deux paramétres ainsi que les
sphéres focales. Les points focaux engendrent donc des surfaces, les sphéres
focales enveloppent des surfaces.

Soient A, A,, A;, A, les quatre surfaces lieux des points a,, a,, a,, a,;
clles pourront constituer, soit quatre surfaces distinctes, soit plus habituelle-
ment quatre nappes d’une seule et méme surface qui est la surface focale.

Envisageons une surface cerclée de la deuxi¢me classe de la congruence,
une de ses génératrices («) et I'aréte de rebroussement (¢) de la surface,
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courbe a laquelle cette génératrice reste constamment tangente; le point «,
de contact de () avec (¢), considéré comme double point, et la sphére X,
correspondant a «, forment un couple singulier de ce cercle; d’ailleurs,
puisqu’il correspond quatre couples singuliers a chaque cercle d'une con-
gruence, tout cercle de la congruence appartient 4 quatre surfaces de la
deuxieme classe de cette congruence; les quatre points tels que o, sont
identiques & a,, a,, a,, @, et les quatre sphéres, telles que X, 4 S,, S,, S,,
S,. On en conclut que les quatre surfaces A,, A,, A;, A, sont respective-
ment le lieu des quatre séries d’arétes de rebroussement (¢) des surfaces de

la deuxiéme classe de la congruence, et par suite que :

Les cercles de la congruence sont tangents en qualre poinls a la sur-

JSace focale.

Si nous considérons la corrélation singuliére dans laquelle (a,, S,) est le
couple singulier, (a,, S,), (a,, S;), (a,, S,) seront trois couples simples.
Une surface de la deuxieme classe a son aréte de rebroussement C,, sur la
surface A, par exemple, ct est circonscrite aux surfaces A,, A,;, A, suivant
des courbes C,, C,,, C,,. La sphére S, ¢tant tangente cn a, & la surface de
la deuxiéme classe est donc tangente en a, a la surface A,; de méme S, est
tangente en @, a A; et S, est tangente en @, a A,; par conséquent :

Les spheres focales sont tangentes a la surface focale.
De ce qui précéde, résulte encore la proposition suivante :

Les surfaces cerclées d’une congruence qui ont une génératrice (u)
commune se raccordent toutes suivant les couples (a,, S)), (a,, S,),

(ay, S3>7 (@uy Sy)-

Nous avons retrouvé, dans le cas du cercle, la surface focale considérée
par M. Darboux dans le cas général et rattachée, comme nous I'avons rap-
pelé, a la théorie des solutions singuliéres des équations aux dérivées par-
tielles du premier ordre.

La surface focale se présente également, ainsi que I'a montré M. Lie,
lorsque I'on considére les transformations de contact (*).

(1) Lie (S)), Over en Classe geometriske Transformationer (1. Christiana Videns-
kabsselskabs Forhandlinger, 1871, p. 67-109). — Ueber Complexe insbesondere Linien-
und Kugelcomplexe, mit Anwendung auf die Theorie partieller Differentialgle:-
chungen (Mathematische Annalen, t. V).
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Soient
bi(z, ¥, 5, X, Y, Z) =0,
Yo(, ¥, 5, X, Y, Z)=0

les équations d’un cercle, ou X, Y, Z sont les coordonnées courantes, et x,
¥, 3 trois parametres.

Nous définirons une congruence de cercles en adjoignant a ces équations
une relation entre z, y, z

F(z, y, z) =o.

Sil'on considére x, ¥, z comme les coordonnées d'un point, nous faisons
correspondre & un point de la surface F(x, y, z) = o un cercle. A la sur-
face correspond la congruence de cercles.

Considérons sur chaque cercle I'un des points (X, Y, Z) de contact avee
la surface focale et la transformation qui permet de passer du point (z, y, )
au point (X, Y, Z); on apercoit immédiatement qu’elle jouit des propriétés
des transformations de contact. On est ainsi amené & poser la question
suivante.

Proposons-nous de résoudre I'identité connue

dZ—PdX—QdY:p(dz_de_qd},)
en partant des deux relations
q’i(x7 NEET) X, Y, Z) —o,
"1)2('27’ Y % X, Y, Z) —o.
L’équation

My ob b
P T 9z a:P s
I T N
dzq+d} 'Bz_q_’_dy

jointe a ces deux relations, détermine X, Y, Z en fonction de z, x, v, p, ¢.
On peut interpréter ceci de la fagon suivante.
Etant donnée une surface par I’équation

F(x, y, 3) =o,

on en tire z en fonction de x et y; on porte cette valeur dans ¢, = o,
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{, = o, qui deviennent, en posant x = a, y = b,
r(X,Y, Z, a, b) =0,
(X, Y, Z, a, b)=o.

On cherche la surface enveloppe des cercles ainsi obtenus en éliminant
a et b entre les équations

f:O, o= o,
de 9
da _ 9b
9 99
da db

On obtient ainsi la surface correspondant & la surface F(x, y, z) = o.
Ainsi, quand le point (x,y, z) décrit une surface F(z,y,z)=o0, la
congruence correspondante enveloppe une surface qui est la surface
JSocale.

L’équation aux dérivées partielles

WX, Y, Z)=o

aura ici la signification suivante : trouver une surface telle que la con-
gruence qui se déduit de cette surface par les équations

Yy(z, ¥, 5, X, Y, Z)=o,
\Pg(.’l?, Ys 3 X, Y, Z)y=o

ait pour surface focale
(X, Y, Z)=o.

La solution singuliére sera la véritable solution du probléme.
Inversement, sil'on considére z, v, z comme fonctions de X, Y, Z, P, Q,
I’équation aux dérivées partielles

1(x, ¥, 5)=o0

aura la signification suivante : trouver la surface focale correspondant
a y(x, y, z) = o. La solution singuliére sera encore la véritable solution
du probléme. \

Un cas particuliérement remarquable est celui ou les équations du cercle
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sont
Xz+Yy+Zz=o,

X2+ V24 Z2= 2%+ y?+ 3.

On arrive 4 la transformation apsidale considérée par M. Darboux ().
Lorsque le point («, y, z) décrit une surface

F(.Z‘, Y Z) =0,
la congruence de cercles enveloppe la surface focale
q’(xy Yy Z) =0,

(ui est I'apsidale de la surface F(z, y, z) =o.
Inversement, la surface F(x,y, s) = o étant I'apsidale de la surface
L(X,Y,Z) = o, sil'on considére I'équation aux dérivées partielles

Y(X,Y,Z)=o,
la solution singulicre est la surface apsidale de
d(x,y,5)=o.

Complexes de cercles.

[rois équations,
(2) O (uy, gy « .y Ug) =0, Oa(teyy v vy ), Os(uy, ...y ug) =o0,
définissent un complexe de cercles.

Si (u) et (v + du) sont deux cercles infiniment voisins, les équations

suivantes
|8,,dul:o, :0, :0

doivent étre vérifiées.
L’introduction des coordonnées des corrélations anharmoniques donne

les relations
04, t =0, L@g,tlzo, 0,,t | =o

(1) DarBoux, Mémoire sur les solutions singuliéres des équations aux dérivées par-
tielles du premier ordre, p. 211.
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qui expriment que :

Toutes les corrélations anharmoniques sur un cercle d’un complexe,
q ut appartiennent & ce complexe, forment un systéme linéaire M,.

Parmi les corrélations, il y en a trois doublement singuliéres; donc :

Etant donné un cercle du complexe, il existe trois cercles du com-
plexe infiniment voisins du premier et le rencontrant en deux points.

On a trois couples doublement singuliers; ces couples dépendent de trois
parameétres.

Considérons une surface cerclée de la troisiéme classe du complexe, une
de ses génératrices (u) et la courbe (C) & laquelle toutes les génératrices
sont tangentes en deux points. Le double point de contact de (%) et de (C)
forme avec la sphére correspondante un couple doublement singulier de ce
cercle; et, puisque a chaque cercle du complexe correspondent trois couples
doublement singuliers, tout cercle du complexe appartient a trois surfaces
de la troisiéme classe du complexe.

Si 'on considére les arétes de rebroussement de ces trois surfaces, elles
constituent trois systémes de courbes a trois parameétres; les cercles du
complexe sont tangents en deux points a chacune de ces courbes.

Soient

z=f(s|u),
(1) _
y=9(z|u)
les équations du cercle.’
Eliminons z, A, [y (g, [ entre les équations

{ 96, 00, 00, 26, 20, 00,
P gu, TP gu, Thigy, Mgy, TG, TG,
9 9% I 392
(3) du, du, du, du,
‘ 9%, 9% 99,
_ M Gu, Ty, T ga,
I ;9 ’
dus—i—)\dus

nous obtenons I'équation

a6 6, a6
s
Il .— Fac. de T. E.

C
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Les cercles du complexe qui satisfont & cette équation sont les cercles
singuliers; ils forment une congruence, et I'une des nappes de la surface
focale de cette congruence est constituée par la surface de singularités dont
on obtient I'équation en éliminant A, (x,, o, (3, &y, Uy, ..., U entre les
équations (1), (2) et (3).

Lorsque les équations d'un cercle du complexe seront données sous une
autre forme, on obtiendra facilement la surface de singularités en utilisant
la propriété que nous avons signalée de cette surface.

Supposons, par exemple, que les équations d'un cercle du complexe
soient données sous la forme

‘ f(x,,)’,Z,X,Y,Z)ZO,

(@) l 9(x, 5,5 X,Y,Z)=o0,

X, Y, Z étant des paramétres variables.

Si l'on considére les cercles passant par un point (,, y,, 3,) de l'espace,
ils forment une surface a point conique, dont on obtiendra 1’équation en
éliminant X, Y, Z entre les équations (&) et les relations

fozf(x%.}/mzo’ X, Y; Z):O,
CPO:<P($07y0)50, X,Y, Z) =o.

Considérons un cercle (X, Y, Z) de la surface et le cercle infiniment voi-
sin (X +dX,Y + dY,Z + dZ). Ce dernier est déterminé par les équa-
tions

af af, o
d—X-dX—l— JY dy + o dl = o,

9%0 9%0 990 47
d_XdX+ 5Y dyY + 7 dl =o,

qui définissent en général les rapports dX : Y : dZ.
Ces équations forment un systéme indéterminé dans le cas ot I'on a

% U
X _ oY _ L
990~ 09y 09

oX oY dZ

Il y a alors deux valeurs pour le systéme des rapports dX : dY : dZ et,
par suite, deux nappes de la surface se coupant suivant le cercle corres-
pondant.

(
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Sil’on élimine X, Y, Z entre les équations (@) et les équations

of of of
oX _ oY _ di
do 99 T 09
X oY IZ

(b) =2

on obtient ’équation
S(x,y,5)=o0

de la surface de singularites. :
Le plan tangent en un point de cette surface sera déterminé par I'équa-
tion

A S gy + % s — (ﬁ’ i 99 42\ —
0xdx+0yd‘y+dsd” A dxdx+dyd'y+0zdz =o,

qu’on obtient en différentiant les équations (@) et tenant compte des équa-
tions (b). Cette équation conduirait facilement aux propriétés de la surface
de singularités.

Systémes de cercles quadruplement indéterminés.

Deux équations,
(2) 91(“1’ uz:-'-’uﬁ):O’ ez(ul,u‘h"-’us):o’

définissent un pareil systéme.
Si (u) et (u + du) sont deux cercles infiniment voisins du systéme, les

équations suivantes
S

doivent étre vérifiées.

L’introduction des coordonnées des corrélations anharmoniques donne
les relations

61: tl=o, 9y t | =0,
qui expriment que :

Toutes les corrélations anharmoniques sur un cercle du systéme qui
appartiennent a ce systéme forment un systéme linéaire M,.
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Adjoignons 4 6, = o, 0, = o les deux conditions

xz = f(z|u),

o y =9¢(s]u),

qu’on obtient en exprimant que les cercles passent par un point P(z, y, z)
de I'espace. On définit ainsi une congruence de cercles & laquelle on pourra
faire correspondre une congruence de droites en transformant par inversion
et prenant pour pdle le point P. Les surfaces focales se correspondront. A
une droite double de la congruence de droites correspondra un cercle
double de la congruence de cercles.

Si 'on exprime que 'un des cercles () passant par le point P est un
cercle double de la congruence, on a a éliminer z, A, @,, (-, entre les équa-
tions

R R R ) 5, 0
(3) gy, T du - MG, T du o %1 59u, P2 9u,

i =0 ==

du, + e du1 due, 7\ 0u2 dug + dug

et 'on obtient ainsi les deux relations

29, a9 . 29, 99,
< | !, 2) o, Jlb2<u|—5-j,dT;>:

Les cercles du systéme qui satisfont a ces relations sont les cercles singu-
liers; ils forment une congruence, et I'une des nappes de la surface focale
de cette congruence est constituée par la surface de singularités dont on
obtient 'équation en éliminant A, g, ty, &, Us, ..., Us entre les équations (1),

(2) et (3).

Lorsque les equatlons d’un cercle du systéme seront données sous une
autre forme, il n’y aura aucune difficulté & obtenir la surface de singula-
rités, en utilisant la propriété que nous avons signalée de cette surface.

Systémes de cercles quintuplement indéterminés.
Soit I'équation d'un systéme quintuplement indéterminé
(2) 6y (uyy Uy, .., Ug) = 0.

Si () et (u + du) sont deux cercles infiniment voisins du systéeme, 'équa-
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| el,dll =0
doit étre vérifiée.

L’introduction des coordonnées des corrélations anharmoniques donne

(5, 1] =0

tion

qul exprime que :

Toutes les corrélations anharmoniques sur un cercle du systéme, qui
appartiennent & ce systéme, forment un systéme linéairé M,.

Adjoignons a 0, = o les deux conditions

= f(s]u),

W Ly =9(s]u),

qu’on obtient en exprimant que les cercles passent par un point P(z,y, z)
de I'espace. On définit ainsi un complexe de cercles auquel on peut faire
correspondre un complexe de droites en transformant par inversion et pre-
nant pour péle le point P. Aux droites singuliéres et & la surface de singu-
larités de ce complexe de droites correspondront les cercles singuliers et la
surface de singularités du complexe de cercles.

Exprimons que I'un des cercles (%) passant par le point P est un cercle
double du complexe de cercles ou un cercle double de la surface a point co-
nique relative & un point quelconque de ce cercle ; nous avons a éliminer z,
~ A entre les équations

o 5, 5,

(3) Jdu, . u,y L oug
L N Tl T A
du, + )\dul du, +)\du2 du, - )\m

et nous obtenons les trois relations

. d6 . a9 20
(4) JTL,(u 5j>—_—o, .)lbz<u 0—u'>:o, DK<3<u,—de>:o.

Les cercles du systéme qui satisfont a ces relations sont les cercles singu-
liers ; ils forment une congruence, et 'une des nappes de la surface focale de
cette congruence est constituée parla surface de singularités dont on obtient
'équation en éliminant A, «,, ..., u, entre les équations (1), (2), (3).

On peut se proposer de savoir si les équations (4) peuvent étre vérifiées
identiquement par tous les cercles du systéme de cercles.
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Les raisonnements que nous avons faits 4 I'égard de la surface de singu-
larités subsistent, et ’on voit que tous les cercles du systéme sont alors tan-
gents a cette surface.

Il est clair que ce que 'on vient de dire dans le cas du cercle s’applique
lorsqu’on considére une courbe dépendant de (n + 1) paramétres; si 'on
remarque que 1’élimination de A, u,, ..., u, entre les équations (1), (2),
(3) conduit dans certains cas particuliers & deux relations entre z, y, z, on
peut énoncer ce théoreme, dit 8 M. Keenigs (') :

Si la fonction 9, (u) vérifie les équations du systéme adjoint de pre-
miere espéce, soil identiquement, soit envertude U’équation 0, = o, cette
derniére exprime que les courbes qui la vérifient touchent une surface
fixe ou rencontrent une courbe fixe.

M. Keenigs a également démontré la réciproque :

Si équation ,= o est telle que les courbes qui la vérifient touchent
une surface fixe ou rencontrent une courbe fixe, les équations du sys-
teme adjoint de premiére espéce sont vérifies par la fonction 0,, soit
identiquement, soit en vertu de I’équation 9, = o.

Nous établirons cette réciproque dans le cas ot les courbes sont des cercles
de la maniére suivante :

Supposons, par exemple, que tous les cercles soient tangents a une sur-
face, et soit P le point de contact de 'un des cercles (C); tous les cercles
du systéme passant par le point P forment un complexe pourlequel (C) est
un cercle double; il résulte, en effet, de la théorie des complexes de droites
et des propriétés de I'inversion que la surface & point conique du complexe
de cercles relative a un point quelconque du cercle (C) admet ce cercle
comme ligne double.

Les relations (4) seront, par suite, vérifiées par le cercle (C).

Ajoutons que les équations des différents systémes adjoints conduisent a
des théorémes analogues a celui de M. Kcenigs; nous n’insisterons pas sur
ce point.

(1) G. KoENniGs, Sur une classe de formes de différentielles et sur la théorie des sys-
temes d’éléments (Comptes rendus de I’ Académie des Sciences, t. CIV, p. 673-675, 842-
844; Acta mathematica, t. X, p. 313-338).
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SECONDE PARTIE.

LES SYSTEMES LINEAIRES DE CERCLES.

1. — Les systémes de doubles points sur la sphére et en particulier
les systémes linéaires.

Etant donnée une sphére quelconque S;, on peut la considérer comme
faisant partie d’un systéme de cinq sphéres S,, S,, S;, S;, S; orthogonales
deux a deux.

Un point quelconque de I'espace est représenté par ses cinq coordonnées
pentasphériques z,, ,, x,, x,, x; liées par la relation

2 2 2 2 2 —
x}+ 2l + 2l +2F + 2 =o.

Les points de la sphére S, sont donc caractérisés par les quatre coordon-
nées x,, &,, Ty, x, liées par la relation

P+ i+ 2zl +xi=o.
L’équation d’une sphére quelconque étant
Lay+ Lzyg+ Lixs+ Lo, + Lyzey = o,
celle d’un cercle quelconque de la sphére S; sera
hoy+ bz + Las+ Lz, —o;

R,, R,, R;, R, étant les rayons des sphéres S,, S,, S;, S;, on aura un
grand cercle si la relation suivante est vérifiée :

Nous avons ainsi un systéme de coordonnées sur la sphére qui présente
la plus grande analogie avec le systéme de coordonnées pentasphériques.
Ce systéme de coordonnées s’applique d’ailleurs au plan ; les petits cercles
sont remplacés par des cercles, les grands cercles sont remplacés par des
droites. On peut dire aussi qu’on établit une correspondance entre les
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points d’une sphére et les points d'un plan ; & toute propriété du plan con-
cernant les droites et les cercles, on pourra faire correspondre une propriété
de la spheére relative aux grands cercles et aux petits cercles. Ajoutons que,
pour le cas du plan, ce systéme de coordonnées a déja été considéré, sous
une forme peu différente, par M. Gino Loria (*). :

Le systéme de coordonnées z,, x,, x;, x, sera déterminé par les quatre
traces C,, C,, C;, C, des sphéres S,, S,, S,, S, sur la sphére S, ; ces cer-
cles C,, C,, G;, C, seront les cercles coordonnés.

Considérons sur la sphére S, deux cercles définis par les équations

& &
E a;x; = o, E bx;=o0
1 1

et posons
pir=a;b, — a;b;,
en sorte qu’on a
Pii=0, Pri—=—PDPik-

Les quantités p;, au nombre de six seulement, si I’'on tient compte de ces
derniéres relations, peuvent étre considérées comme les coordonnées du ‘
faisceau de cercles déterminé par les deux cercles donnés ou comme les
coordonnées du double-point d’intersection de ces deux cercles.

Ces quantités interviennent dans Iéquation de chacun des cercles appar-
tenant au faisceau et orthogonal & chacun des cercles coordonnés. Par
exemple, le cercle du faisceau orthogonal a C; a pour équation

PinZy~ PiaZa—+ PisZs+ Piu Ty = 0.

Ces six quantités p; ne sont pas indépendantes ; il existe entre elles la re-
lation
Q=paps—+ P13Pra—+ PraPas = O-

On peut donner une autre interprétation des quantités p;; montrons
qu’elles peuvent étre considérées comme les coordonnées pluckériennes de
la droite du double point d’intersection des deux cercles.

En effet, dans le systéme de coordonnées pentasphériques, toute sphére

(1) GiNo Loria, Remarques sur la géométrie analytique des cercles du plan et sur
son application & la théorie des courbes bicirculaires du quatriéme ordre (Quarterly
Journal, t. XXII).
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est représentée par une équation linéaire

B
E lix;—o0;
1

les rapports mutuels des cinq quantités /; sont les coordonnées de la sphére.
La sphére se réduit a un plan, si 'on a

4
2=

en désignant par R, le rayon de la sphére coordonnée z; = o.
Les plans de I'espace sont, par suite, délerminés par cinq quantités /;, et

, . \ . .o, . [
ces coordonnées satisfont a la relation linéaire 2 ﬁ = 0.
i

On doit & M. Darboux la remarque suivante (') :

Le systéme actuel de coordonnées, quand il est employé a la détermina-
tion des plans, est un systéme de coordonnées tangentielles surabondantes ;
car les cinq coordonnées /; sont proportionnelles aux distances divisées
par R; des centres des cinq sphéres S; au plan considéré.

Les quantités /,, 1,, 1, [, pcuvent étre considérées comme les coordon-
nées tangentielles du plan rapporté au tétracdre des centres des sphéres
Sy, 3,5 8y, S,

Or, reportons-nous au double point d’intersection des cercles qui sont
situés sur S; et qui ont pour équations, lorsqu’on choisit C,, C,, C,; C,
comme cercles coordonneés,

AT+ A+ A3 X3+ Ay X, = 0,

byxi+ byxs + byzs+ b, 2, — 0.

Le plan du premier cercle a pour équation, dans le systéme de coordon-
nées pentasphériques,

Ay &)+ Ay Xy + A3 25+ a,x, + hxs=— o,

olt A est une constante convenablement déterminée ; done a,, a,, a,, a,
peuvent étre considérées comme les coordonnées tangentielles du plan du

(1) DarBoux, Sur une classe remarquable de courbes et de surfaces algébriques,
p- 260.

1L — Fac. de T. E.6
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cercle rapporté au tétraédre des centres de S,, S,, S,, S, ; une conclusion
semblable existant a 'égard du second cercle, on voit que :

Les six quantités py, sont les coordonnées pluckériennes de la droite du
double point d’intersection des deux cercles, le tétraédre de référence
ayant pour sommets les centres des sphéeres S,, S,, S,, S,.

L’étude des doubles points situés sur une sphére S; pourra étre faite,
soit comme conséquence de I'étude des systémes de droites, soit d'une fagon
directe en appliquant des principes analogues & ceux utilisés par M. Kcenigs
dans I'étude des systémes de cercles.

On pourra calculer la distance des deux points et 'on aura cette consé-
quence que la distance est nulle lorsque la forme

E(p)=2p}
est nulle.

Nous dirons qu’un cercle et un double point (a,, @,) sont orthogonaux
lorsque le cercle sera orthogonal a tous les cercles passant par les deux
points @,, @,. Etant donnés deux cercles, si par I'un d’eux on peut mener
une sphere orthogonale a I'autre, réciproquement, on peut, par celui-ci,
mener unec sphére orthogonale au premier, et I'on dit alors que les deux
cercles sont en involution.

De méme, étant donnés deux doubles points, si par 'un d’eux on peut
mener un cercle orthogonal a l'autre, réciproquement, on peut par celui-
ci mener un cercle orthogonal au premier, et 'on dira alors que les dou-
bles points sont en involution.

La condition d’'involution sera d’ailleurs

E(P,P') =0,

en désignant par E( p, p') la forme polaire de E(p).

La position d’un double point sur S; dépend de quatre parametres; on
peut concevoir des systémes de doubles points définis par des équations
homogénes entre les coordonnées py; ; les droites des doubles points forme-
ront des systémes correspondants. Si les équations sont linéaires, on a des
systémes linéaires que I'on peut représenter par les symboles K;, K,,
K,, K,, I'indice indiquant I'indétermination du systéme.
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Systéme K;.
Soit
2aypir=o0

équation qui définit ce systéme K,.

Considérons d’abord I'étude de K, comme conséquence de celle du com-
plexe linéaire de droites.

Si I'on cherche la distribution des doubles points du systéme sur un
cercle C, on trouve que :

Toutes les droites des doubles points situés sur un cercle C passent
par un méme point O.

Le point O est le foyer du plan du cercle C par rapport au complexe
linéaire formé par les droites des doubles points.

Sil'on considére le cercle C’ d'intersection de la sphére et du plan polaire
du point O par rapport & cette sphére, on peut dire que :

Tous les doubles points d’un systéme K, qui sont situés sur un cercle sont
orthogonaux & un second cercle C’ qui est lui-méme orthogonal 4 C.

Aux propriéiés des droites conjuguées, on pourra faire correspondre des
propriétés des doubles points déterminés par ces droites.

Nous pouvons, en partant des propriétés du complexe linéaire, parvenir,
par des considérations géométriques, a la réduction a la forme canonique

ogg Big+ Nogy Bas,

de la forme bilinéaire

zaikpi/v
ou
t:172’3)~/’n k:l7273)4 et Pir =ZiYpr— ZrYis

au moyen d'une méme substitution orthogonale effectuée sur les x et sur

les y.

En effet, considérons sur la sphere S; un cercle ayant pour équation

E a;xi=— 0.

1

Si 'on rapporte les points de la sphére & de nouveaux cercles coordonnés,
les formules qui lient les coordonnées x; aux nouvelles coordonnées con-
stituent une substitution orthogonale; les formules liant les coefficients «;
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aux nouveaux coefficients dans I'équation du cercle constitueront par con-
séquent une substitution orthogonale.

Cherchons donc une transformation de coordonnées telle que ’équation
qui définit le systéme devienne

cﬁo,g@lz—l— CRDS!G @u: O.

Tout revient manifestement & déterminer deux droites qui soient conju-
guées a la fois par rapport a la sphére et par rapport au complexe linéaire.
On peut se rendre compte de I'existence de ces deux droites CC,, C’'C, de
la facon suivante :

Considérons leurs points d’'intersection C, C,, ¢!, C, avec la sphere. Les
cOtés du quadrilatere CC/ G, C), doivent étre quatre génératrices de la spheére
et quatre droites appartenant au complexe; I'existence des deux droites CC,,
(' C, résultera donc de la démonstration de la proposition suivante :

Le nombre des génératrices d’une quadrique qui appartiennent a un
complexe linéaire est égal a quatre; ces quatre droiles forment un qua-
drilatére gauche.

Or, si l'on considére un systéme de génératrices de la quadrique, il est
I'intersection de trois complexes linéaires; adjoignant le complexe consi-
déré, on a deux génératrices du systéme faisant partie de ce complexe; le
méme raisonnement s’applique au second systéme de génératrices.

Remarquons en passant cette conséquence du théoréme : si l'on envisage
une quadrique et sa polaire réciproque par rapport a un complexe linéaire,
ces deux quadriques se coupent suivant quatre droites.

Le théoréme que nous avons établi n’est d’ailleurs qu'un cas particulicr
d’un théoréme plus général.

M. Halphen a énoncé, a I'égard des surfaces réglées, le théoréme sui-
vant (') :

-Le nombre des génératrices rectilignes d’une surface réglée qui satisfont
a une seule condition est égal au produit du degré de la surface par le degré
de la condition.

On entend par degré de la conditionle nombre des droites, satisfaisant a

(1) HaLpugx, Sur les droites qui satisfont @ des conditions données ( Comptes rendus
de I’ Académie des Sciences, t. LXXIII, p. 1441).
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cette condition, qui passent par un point donné et sont situées dans un plan
contenant ce point.

La démonstration donnée par M. Halphen suppose essentiellement que
par un point quelconque de la surface ne passe qu'une seule génératrice;
clle ne s'applique donc pas aux quadriques. En se servant des principes qui
ont guidé M. Halphen dans le cas général, on arrive facilement au théoréme
suivant :

Lec nombre des génératrices rectilignes d’une quadrique qui satisfont &
une scule condition est égal au produit du degré de lasurface par le double
du degré de la condition.

On a étudié le systeme K; en supposant connue la théorie des complexes
linéaires de droites; mais on peut opérer directement, en répétant les rai-
sonnements faits par M. Kcenigs dans le cas des systémes de cercles.

Etudions la distribution sur le cercle C,

lx;— o,

des doubles points du systéme K, défini par I'équation

2airpir=o.

’
4 :2 aiplis
k

et considérons le cercle C’ orthogonal a C et défini par I'équation

Posons

El}xi: 0.

E l,-x;: o,
i

Soit un cercle X

coupant C suivant un double point faisant partie du systéme K, ; on devra
avoir la condition
SUh=o,

qui exprime que les cercles C’ et X sont orthogonaux; donc :

Tous les doubles points d’un systeme K qui se trouvent sur un cercle C
sont orthogonaux a un second cercle C' qui est lui-méme orthogonal

a C.
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Cherchons les cercles C qui coincident avec le cercle C’ qui leur corres-
pond; les rayons de ces cercles seront nuls et I'on aura, pour I'un de ces
cercles,

N A
LR LT

s étant un paramétre & déterminer; d’ailleurs on a

L :Zaik Uy
k

L’inconnue s sera, par suite, déterminée par ’équation

S Qg Q3 Ay,

. $ =4+ Is24+-J=o,

en posant
I1=23 aj;,

J = (anau+ aja,+ anas)

Représentons par £(a) la forme adjointe de E(p) et pér w(a) la forme
adjointe de Q(p); on voit que I’'on a

1=¢(a),
J=lw(a)]*

Les quantités I et J sont les invariants du systéme K.
Désignons par ¢, — o, ¢/, — o’ les racines de I’équation

s+ Iss+J=o.

A chacune répond un cercle de rayon nul, ce qui donne les quatre cercles
3, %,, Y, , dont nous désignerons les centres par G, C,, ¢/, C;; ces quatre
points sont les mémes que ceux que nous avons considérés précédemment.

On apercoit immédiatement que les cercles X et X, sont orthogonaux aux
cercles ¥’ et X, : les droites CC’, CC,, C,C’, C,C; sont donc quatre droites
isotropes et les droites CC,, C’C;, sont conjuguées par rapport a la sphére.

Prenons pour cercles coordonnés C, et C, deux cercles orthogonaux
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passant par les deux points C et C,, pour cercles C; et C, deux cercles or-
thogonaux passant par C’ et C; ce systéeme de quatre cercles sera quadru-
plement orthogonal, et I'équation du systeme K, deviendra

oy Bpy 4 oz, By = 0.

Nous retrouvons encore la réduction de la forme bilinéaire a la forme
canonique. ‘

A T'égard de cette derniére question, faisons en passant quelques remar-
ques.

MM. Jordan et Kronecker ont considéré le probléme général suivant :

tant donné un polynéme bilinéaire

P=2Z2aupz,yp (e=1,2,...,n; B=1,2,...,n).
on propose de le ramener a la forme canonique
P= ;‘lgln1+ )\2£2ﬂ2+- <o+ )\ngnnn

par des substitutions orthogonales opérées'une surles variables z, .. ., z,,
Pautre sur les variables y,, ¥a, ..., ¥,

Le résultat de M. Jordan peut étre présenté sous une forme qui en rend
la démonstration presque intuitive et qui facilite I'étude des cas particu-
liers; c’est la suivante :

Le probléme revient a déterminer deux substitutions orthogonales qui,
appliquées respectivement aux deux formes quadratiques

JoP \? oP \?
S(2) w3,
dyi 0"1/'[
les réduisent & des sommes de carrés.
Dans le cas ou I'on a, pour toutes les valeurs des indices 7 et J,
a;=o, Aij=—qji,
le polynéme bilinéaire considéré est de la forme
P=32a;pu,

en pOS&Il[
Pik=Z:iYr— ZrYi.

. 2 2 . .
Les formes quadratiques 2<(%§-> et E(—‘?) sont identiques, ct la
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réduction & la forme canonique peut étre opérée au moyen d'une méme
substitution orthogonale effectuée sur les et sur les y.
On peut, de plus, énoncer la proposition suivante :

Le premier membre de Iéquation en s relative a la forme bilinéaire
X aypas considérée comme forme quadratique des 2n variables z,, ...,
Luy Viy «y ¥y €St un carré parfait. Cette équation ne contient que des

. . . , : , N
puissances paires de la variable, et Uéquation transformée en — s* est

I’équation en s relative & la forme quadratique 2 <gt—)> des n va-

riables x,, ..., x,.

Considérons le cas ot 'on a n = 4. L’équation en s relative a la forme
bilinéaire est alors
(s*—1Is2+J)*=o,

ot I et J ont la méme signification que précédemment.

. . N . 2
I’équation en s relative ala forme quadratique 2 <g—§> sera
S
(s2+TIs+J)*=o.

Revenons au systéme K; de doubles points : nous avons étudié jusqu’ici le
cas général; supposons maintenant que l'on ait J = o, c’est-a-dire que le
complexe linéaire de droites soit spécial.

L’axe du complexe linéaire spécial sera ou ne sera pas une génératrice de
la sphere.

Dans la premiere hypothése, I'un des points du double point sera situé
sur une droite isotrope déterminée.

Placons-nous maintenant dans la seconde hypothése, et appelons foyers
d'un double point situé sur une sphére les deux points cercles de cette
sphere qui passent par le double point.

La condition J = o exprimera que tous les doubles points du systeme K,
peuvent étre réunis par un cercle 4 un double point fixe (a,, @,) ou, si l'on
veut, que les doubles points sont en involution avec un double point fixe
(b, by); by, by sont les foyers de (a,, a,), et a,, a, les foyers de (0,,0,).
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Systénie K,.

Les doubles points sont en involution avec deux doubles points fixes, ou
encore les doubles points peuvent étre réunis par des cercles a deux doubles
points fixes.

Les foyers des doubles points du systéme forment également un sys-
teme K.

Systéme K.

Les doubles points sont distribués sur une courbe; nous avons deux d¢é-
finitions de cette courbe : on peut considérer et d'une infinité de maniéres
le systéme comme en involution avec trois doubles points fixes; on peut dire
aussi : les doubles points peuvent étre réunis par des cercles a trois doubles
points fixes. La méme conclusion a lieu pour les foyers des doubles points.

Si nous considérons maintenant les droites des doubles points, elles ap-
partiennent a trois complexes linéaires et sont réparties sur une quadrique;
la courbe est donc une cyclique. ‘

La premiére définition de la courbe nous donne pour la cyclique une con-
struction par points qui a été signalée par M. Saltel (*).

La génération de la cyclique apparait comme 1’analogue de la génération
de I’hyperboloide & une nappe; d’ailleurs, ce n’est qu'une confirmation de
cette remarque de M. Darboux (*):

Puisque les cycliques sphériques sont I'intersection d'une sphere et d'un
cone du second degré, leurs propriétés pourront se déduire de celles des
surfaces du second degré.

Etablissons, en effet, cette génération des cycliques en partant de leur
définition. Considérons une surface du second degré passant par la courbe;
celle-ci est rencontrée par chacune des génératrices de la surface en deux
points; soient trois génératrices de méme systéme rencontrant la courbe
respectivement en m’, n'; m”, n”; m", n”, et concevons la quadrique comme
engendrée par le mouvement d’une droite qui s’appuie sur m/'n’, m’n’,
m"n”. Les extrémités m, n de cette droite, situées sur la cyclique, seront
sur un méme cercle avee m/, n'; de méme, avec m”, n” et m", n"; la géné-
“ration de la cyclique apparait clairement.

(1) SALTEL, Bulletin de la Société mathématique de France, t. I11.
(2) DarBoOUX, Sur une classe remarquable de courbes et de sur,faces algébriques, p.33.

1. — Fac. de T- E.7
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Pour déterminer la quadrique, il suffit de se donner une génératrice mn
de cette surface; m et n seront deux points quelconques de la cyclique; le
plan passant par le centre de la sphére et par une génératrice mn sera tan-
gent & la quadrique et enveloppera un cone circonserit 4 la surface; donc :

Dans un des modes de génération, tous les grands cercles mn sont
langents & une conique sphérique; tous les grands cercles m'n’, ... sont
tangents a la méme conique sphérigue.

Considérons les foyers du double point (m,n); ils sont situés sur un
méme cercle avec les foyers de (m/, n'); le lieu de ces foyers est done une
cyclique; de plus :

Les arcs de grand cercle, tels que celui qui est perpendiculaire ¢ mn
en son milieu, enveloppent une conique.

Ces derniers théorémes sont dus a Laguerre ().

Systeme K,.

Les doubles points de ce systéme sont déterminés par 'intersection de
deux cycliques; sil’on exclut les points étrangers a la question, au nombre
de douze, il reste quatre points, ¢’est-a-dire deux doubles points; cette con-
clusion résulte, d'ailleurs, des formules algébriques.

Remarquons cette conséquence, qui nous sera utile :

Le nombre des doubles points qui peuvent étre réunis par des cercles
a quatre doubles points est égal a deux.

II. — Les dix coordonnées p;; du cercle.

Soit un systéme de coordonnées pentasphériques déterminé par cing
spheres orthogonales deux a deux S, S,, S;, S,, S;; en désignant par x,,
Xy, Xy, X,, X5 les coordonnées d'un point de 'espace, toute sphére est re-
présentée par une équation linéaire

Xa;x;—o,

(1) LAGUERRE, Mémoire sur {’emplot des imaginaires dans la Géométrie de l’espace
(Nouvelles Annales de Mathematiques, 2° série, t. XI, 1872).
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et un cercle sera défini comme 'intersection de deux sphéres

Sa;x;=o, 3b,x;—o.
Posons
Pir=a;b,— a;b;,
en sorte qu’on a
Pii=0, Pik=—Pri.

Les quantités p;, au nombre de dix seulement, si I'on tient comple de ces
derniéres relations, seront les coordonnées du cercle consideéré. Ces quan-
tités vérifient les relations

Q,=o4 Q,— o, Q,=o, Q,=o, Q;=—o,

en convenant de la notation suivante employée par M. Keenigs. Soient «,

B, v, 8, ¢ les cinq premiers nombres écrits dans I'ordre de permutation na-

turelle 1, 2,3, 4,5 é partir de 'un d’eux que nous appelons a; nous posons
VT Sy Yy Ay P ! P

Qi (p)= Qa:l’ﬁypﬁs —+ PBPey + PB:Pyi.

Réciproquement, si des quantités p,; vérifient 4 la fois les relations Pii=o0,
Pir=—pretQ =0,Q,=0, Q;=0, Q, =0, Q,=o0, ces quantités sont
les coordonnées d’un cercle dans I'espace.

Lorsque le cercle sera rapporté 4 un systéme de coordonnées cartésiennes,
la formation des quantités p,, n’offrira aucune difficulté, en tenant complte
des formules qui permettent de passer des coordonnées pentasphériques aux
coordonnées cartésiennes; on aura souvent avantage & employer le systéme
bien connu (*) de coordonnées pentasphériques qu’on obtient en considé-
rant les trois faces d'un triedre trirectangle et deux sphéres orthogonales
entre elles et ayant pour centre commun le sommet du triédre. Les formules
de transformation sont alors

pr, =z, pra=y, pry=3,

202, = 2+ Y24 31—, 2oL, = 2P+ yi 4 5241,
et, si I'on considére un cercle défini par les équations

ax+Py+y—z=0, X+y+Ptar+by+c=o,

(1) DarBoux, Sur une classe remarquable de courbes et de surfaces algébriques,
p. 137.
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on aura
Prn=o0b—a, Pis—a,
Pu—=a—(ac—ya), Pis=1i[a+ (ac—ya)],
P2s=0b, Pu:ﬁ—(ﬁc'-‘/b)a
Pu=1[B+ (Bc—1yb)], Pu=—c—1I,
Pss=—1i(c+1), Pis—=— 21Y.

Si 'on envisage le Tableau

les quantités p;; sont des combinaisons linéaires des ¢léments de ce Tableau
ct des déterminants que I'on peut en déduire.

Les dix quantités p; doivent satisfaire a trois relations distinctes; les cing
équations

Q,:O, 92: o, 93: o, 95: o, 95:0

ne sont donc pas distinctes.

Etudions ce systéme d’équations.

Etant données dix quantités quelconques p,; vérifiant les relations p;; =
Pix= — Pri» on a les identités qu'on obtient en faisant ¢ =1, 2, 3, 4,
dans la suivante :

0

’
5

Pt P&+ pinQy + i 2y + pis ;= o.

Cela posé, désignons par o, t,, ty5, 0,4, 055 cing quantités arbitraires et
considérons le systeme d’équations

Oy &y = PraTs+ Pra®s+ P&y PysT3=0,
P21y = Olgg g = Pag Iy + Pas Ly~ Pas Ly — 0,
() P31%1 = P3aZs—t O3 Ly~ P3y Ly == P35 L5 —= 0,
Piut X1+ PuaXa = Prg Ty~ Ay Ly~ Pus L= 0,
P51 X1~ P52 X2~ P53 L3~ Piy Ly = 05 Ty— O.

Le déterminant de ce systéme est égal a

QF oty + L otge + Q3 atys + Q2 oy + Q% oty
2
Pl %1 Haa X3zt ..

= Otyy Olag O3 OLyy Asse
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Supposons p,;3 o et établissons entre les py les trois relations
9,: o, 92: o, 93: 0.

Envisageons le systéme d’équations que 'on déduit du systéme (1) en fai-
sant les hypothéses suivantes :

Oy, == 0, G55 =0, Otyq Otgp Ot33 2 O.
On a une solution de ce nouveau systéme en posant
=8, Zy=8,, 23 =, x,= 8, x5 = ;.
Le déterminant du systéme étant égal a
st g App 033
n’est pas nul; donc on a nécessairement
Q,=o, Q,=—o, Q,—o, Q,=o, Qs—o.
Ainsi, si p,s West pas nul, on a
Q,=o, Q,—o, Q,=o, Q,—o, Q;=o0
comme conséquences de
Q,=o, Q,— o, Q,—o.

Nous pouvons déduire de cette proposition la démonstration du théo-
réme suivant, énoncé par M. Stéphanos (*).

L’ordre du systéme d’équations qui relient entre eux les diz détermi-
nants py = x;yx— xy; du Tableau

Ty Ty &Iy X, Xy

., . Yi Y2 Vs Vi Vs
est égal a cing.

En effet, nous avons entre les dix quantités p; les cinq relations
Q =o, Q,—o, Q,—o, Q,—o, Q;—o,

qui se réduisent a trois.

(1) Crearissos STEPHANOS, Sur une configuration remarquable de cercles dans Les-
pace (Comptes rendus de I’ Académie des Sciences, t. XCIII, p. 578; 1881).
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4

Adjoignons six relations linéaires homogénes
P,—=o, P,—o, ce Pi=o.

Nous pouvons supposer que, pour chacun des systémes de solutions, on ait
Pas# 0. Les py seront alors déterminés par les équations

Q =0, =0, =0, P,=0, Py=o, P;=o, ..., Pg—o.

Le nombre des solutions de ce systéme d’équations est égal a huit.
Parmi ces solutions, il en existe trois qui ne conviennent pas a la question ;
en effet, on a des solutions particuliéres de ce systéme données par les
équations

Pis=—0, P2 Pss+ P2s P3 =0, P3s Ps1+ Pas Pra =0, Pit Pas+ Pra P51t — 0,

P,=o, P,=o, P,=o, R P,=o.

Cela résulte de ce que la deuxieme, la troisiéme et la quatriéme de ces
derniéres équations ne sont pas distinctes.

Le nombre de ces solutions particuliéres est égal  trois; on a donc trois
solutions étrangeres : ce sont, d’ailleurs, les seules solutions étrangéres et
le théoréeme est démontreé.

On connait la propriété du systeme de coordonnées pentasphériques par
rapport a l'inversion : on peut dire que les coordonnées pentasphériques x;
demeurent invariables, pourvu que l'on rapporte la nouvelle figure aux
spheéres orthogonales qui sont les figures inverses des sphéres coordonnées
primitives. Il est clair que le systéme de coordonnées p,; jouira de la méme
propriété. Les formules permettant de passer des coordonnées d'un cercle
aux coordonnées du cercle inverse, ou, plus généralement, les formules de
transformation des coordonnées seront linéaires et constitueront une sub-
stitution orthogonale. On concoit donc tout I'avantage qui s’attache a défi-
nir les systeémes de cercles par des équations homogenes entre les coordon-
nées pj.

Si toutes les équations sont linéaires, on aura des systémes linéaires de
cercles que nous pourrons représenter, avec M. Keenigs, par les symboles
As, Ay, Ay, Asy Ay, Ay, lindice indiquant 'indétermination du systéme.

La figure inverse d’un systeme linéaire A;, par rapport a un point quel-
conque de 'espace, sera un nouveau systéme linéaire A;.
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Du théoréme de M. Stéphanos, que nous venons de démontrer, résulte
la proposition suivante :

Le systéme A, se compose de cing cercles :

Clest le pentacycle de M. Stéphanos.

III. — Le roéle du complexe linéaire de droites dans 1’étude
des systémes linéaires de cercles.
Systeme A;.

Nous avons indiqué comment on pouvait, par une méme substitution or-
thogonale effectuée sur les a; et sur les b;, ramener a une forme canonique
le polynome bilinéaire

2ag(abr— apb;) (t=1,2, ...,n;k=1,2, ..., n).

Lorsque le nombre n est impair, I'équation en s relative & la forme bili-
néaire, considérée comme forme quadratique des variables a; et b;, admel
la racine s = o3 cela résulte de ce que tout déterminant gauche de degré
impair est nul. On peut donc déterminer, a priori, une substitution ortho-
gonale telle que, pour le nouveau polynéme bilinéaire,

2A(AB—ALB)),

les indices 7 et k ne prennent que les valeurs 1, 2, 3, ..., (n —1).
Sinous donnons a 7 la valeur » = 5 pour toute substitution orthogonale
telle que I'on ait

5 5
As—_—ESZi(a)ai, BS:ZQi(a)a,',
1 1
la nouvelle forme bilinéaire ne contiendra pas les variables A et B;; cette

propriété de la forme bilinéaire peut s’énoncer géométriquement.
Soit un systéme Ay, défini par I'équation linéaire

Eai/cpik: O.

Plagons-nous dans le cas général et considérons la sphére
5
.
Z Q;(a)x;=o;
1

c’est la sphére centrale K de M. Keenigs.
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Rapportons la figure & un nouveau systéme de coordonnées dans lequel
la sphére S, scra la sphére centrale. Le systéme A, sera défini par une nou-
velle équation linéaire

2A;P=o,
et 'on aura

Aj;;=o, Ay;=o0, Ay=o, Ai=o.

Interprétons géométriquement le fait algébrique de I'évanouissement
des coefficients A5, Ay, Ags, Ays.

Considérons un cercle (p) dont les coordonnées sont p,a, pisy - -5 Pasy €t
le double point d’intersection de ce cercle avec 'une des sphéres coordon-
nées, par exemple avec x; = o. Si I'on rapporte les points de cette sphere S;
aux quatre cercles coordonnés C,, C,, Gy, C,, qui sont les cercles d'inter-
section de S; avec les spheres S,, S,, S,, S,, les coordonnées du double
point considéré sont ' '

P12y P135 Piws P23s Paus Psue

L’équation EA,P ;=0 ne contient pas Py, Py, Pys, Puss c'est donc
une relation linéaire et homogéne entre les coordonnées du double point
d’intersection du cercle ( p) avec la sphére K, et nous pouvons énoncer la
proposition suivante :

Etant donné le systeme A le plus général, il existe une sphere K et
un complexe linéaire de droites L qui jouissent de la propriété suivante :
la droite du double point d’intersection d’un quelconque des cercles du
systéeme avec la sphére K engendre un complexe, et ce complexe est 1.

‘La réciproque est évidemment vraie :

Les cercles qui coupent une sphére fize K en un double point dont la
droite engendre un complere linéaire constituent un systéme A; de
cercles.

Afin d’étudier les cas particuliers qui peuvent se présenter, nous repren-
drons la démonstration du théoréme précédent en suivant une autre voie.
Déterminons un systéme de coordonnées pentasphériques en posant

px,=x, pIy=Y, pry=7s, 20X, =24 Y4+ 51—1,

2ipars= &+ Y+ 2+ 1.
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Soit une sphére K
kix,+ kyxs+ kyxs+ k2, 4+ ksxs=o0,

et supposons que l'on ait k,— tk;5% 0, c’'est-a-dire que la sphére que nous
considérons ne soit pas un plan.
Envisageons un cercle déterminé par les équations

X+ QX+ A3 X3+ A, X, + asxrs— o,

byx,+ byxy+ by + b, 2, + byxs—= o0,

et cherchons les équations de la droite qui joint les points d’intersection de
ce cercle avec la sphére K; ce sont

[(ky, — ths) a,— ky(a, — iag)] @ + [(k, — ik;) ay — ky(a,— ias)]y
+ [(ky — tks) ay — ky(a, — ias)]z + i(ksa,— k,a5) = o,

[(ky—thks) by, — ky (b, — ib) ]z +. ..+ i(ks b, — k,bs) = o.

Sil'on pose py = a;b; — a;b;, les coordonnées pluckériennes @ de cette
droite sont données par les formules

Ew = (ki — iks) pra— ki(paa— ips2) — ka(Pre — ip1s),
Ewis= (ks — ihks) prs— ki (Pos— ipss) — ks (Pru— ip1s),
Ewas= (ks — tks) pas— Ka(Pas— iPss) — ks (Par— ipas);
tou=i(ks pru— ki pis—+ ki pus)s
Ewa = U(k; pay— Ky Pas + ka Pus),
Ewy = i(ks pau— ki pys+ ks pus)-

Exprimons que cette droite fait partie du complexe linéaire représenté
par I'équation
20y ®i=0;
on trouve que le cercle qui détermine cette droite fait partie du systéme Aj,

défini par I'équation
. 2a;pir=o,
ou I'on pose

Aayy = oy (ky — Uks5), hay, = — gy ky—+ Loty ks + otgp ks
hagy = a3 (ky — iky), hags = logyky— Loy ky— faya ky,
hay, =—oapky—ayky+ioy ks, hag, = oy ky+ oy by + Loy, ks,
hays = toyg ko + oy ky—ioy, &y, Aayy = — fog ky— Tay kg — fotg ks,
Aagy = oy (ky— i k), Nays =do ky+ fotg, ky+ Loy, ks

1l .— Fac. de T. E.8
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Ce que l'on peut écrire, puisque k, — ik; n’est pas nul,

ayky+ aphks—+ ap ko +aghy=o,

az k + ay ky+ ay ko ay ks —=o,

(1 ¢ gk agk, + ag ko agshy =0,
y ky+ apky+agky + as ks = o,

ag kg4 asa b+ ag by + as by =03

[ oty = Ay,
s POy = Q34

P2yg = Qa3 5

(2 .
oy == — (ay—tas),
oty == (g — (@ys),

L oty = (@ {ay).

Ceci posé, soit inversement un systéme A; de cercles défini par I'équation
Zai/‘]),-k = 0.

Distinguons deux cas suivant que I'un des Q;(@) n’est pasnul, ou suivant
(que tous les Q;(a) sont nuls.

I. — Undes Q;(a) n’est pas nul.

Les équations (1) donnent une solution et une seule pour les quantités
proportionnelles & k,, k,, ..., k;,

k=9, ky =98, ..., k

—vQ

3

Supposons d’abord que l'on ait Q, — iQ; =< o il existe une sphere K et
un complexe linéaire de droites qui déterminent le systéme A; de cercles.
1.’ invariant du complexe est % (Q,—iQ;); le complexe n’est donc jamais
special.

Supposons maintenant que l'on ait Q, —iQ; =o; les équations (1)

donnent encore
by =vQ, = vQ, ..., k

mais on a k, — ik; = o et 'équation k,x, + k,x, +...+ k;x; = o repré-
sente un plan ; dans ce cas, la sphere centrale est un plan ; ou bien ce plan
est quelconque, ou bien c'est le plan de I'infini.

Si le plan est quelconque, il résulte de ce qui précéde que les doubles
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points d’intersection des cercles avec ce plan forment un systéme linéaire
K, de doubles points dans ce plan. Le complexe défini par les équations (2)
est singulier et son axe est dans le plan.

Si le plan est le plan de I'infini, les axes des cercles forment un complexe
linéaire de droites ; cela résultera d’un calcul que nous ferons plus loin.

Ces deux cas singuliers, qui correspondent & '’hypothese Q, — iQ, = o,
peuvent étre présentés de la facon suivante :

Prenons la figure inverse du systéme A; général, le pole d’inversion étant
un point de la sphére centrale ; le nouveau systéme est encore un systéme
A; et la sphere centrale correspondante se réduit au plan qui est la figure
inverse de la sphére centrale primitive.

Considérons maintenant un systéme A, pour lequel on a 2Q? = o, c’esl-
a-dire pour lequel la sphére centrale est de rayon nul; si I'on prend la
figure inverse de ce systéme, le pole d'inversion étant le centre de la sphere
centrale, on obtient le systéme pour lequel les axes des cercles forment un
complexe linéaire.

II. — Tous les Q,(a) sont nuls.

Les équations (1) donnent alors pour k,, k,, ..., k; un systéme triple-
ment indéterminé de solutions; il existera une infinité de sphéres K pou-
vant servir a définir Ay, et ces sphéres seront associées 4 un méme complexe
linéaire spécial, si 'une des quantités oy, qui sont déterminées par les for-
mules (2), n’est pas nulle ; nous avons donc deux cas a distinguer :

1° Un des a;, n’est pas nul.

Ou bien les cercles Ay pourront étre réunis a deux points fixes par des
spheéres, ou bien ils rencontreront une droite isotrope déterminée.

Ce résultat peut étre établi directement ; M. Keenigs a montré que, si
deux cercles (p) et (p') sont en involution, on a '

zpl./P’l/ = 0.

Lorsque tous les Q;(a) sont nuls, les coefficients a4 sont les coordonnées
d’un cercle.

Si ce cercle n’est pas une droite isotrope, tous les cercles du systéme A,
sont en involution avec un cercle fixe ; ' et I étant les foyers de ce cercle
fixe, chacun des cercles du systéme A; peut étre relié par une sphére aux
deux points fixes F et I".
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Si les quantités a;; définissent une droite isotrope, les cercles du systéme
A; rencontrent cette droite isotrope.

2° Tous les oy sont nuls.

Le systéme considéré contient toutes les droites de 'espace ; les plans de
ces cercles passent tous par un point fixe.

La théorie des complexes linéaires de droites permet de déduire du
théoréme que nous avons établi diverses conséquences.

Remarquons tout d’abord la conclusion suivante :

Les cercles d’un systéme A; qui sont des droites forment un complexe
linéaire de drottes.

Cette proposition pourra étre utilisée lorsqu’on considérera les cercles
d’un systéme linéaire qui passent par un point fixe de I'espace ; car, sil'on
effectue une inversion, en prenant le point pour péle, les cercles considérés
se transformeront dans les droites du systéeme linéaire qui est I'inverse du
systéme primitif.

Nous pouvons ainsi énoncer la proposition suivante :

Les cercles de Ay qui passent par deux points sont situés sur une
sphere. '

Comme conséquence de la théorie des complexes linéaires, nous avons
encore le théoréme de M. Keenigs, que nous énoncerons sous la forme sui-
vante :

Les plans de tous les cercles du systéme A;, qui coupent en deur
points un cercle X de la sphére centrale, passent par un méme point O
du plan de ce cercle X.

Le point O est le foyer du plan du cercle X par rapport au complexe
linéaire ; c’est le centre de la sphére que M. Keenigs appelle sphére con-
Jugude des sphéres passant par le cercle X.

Si le cercle X varie en passant par deux points fixes a, b, le point O qui
lui correspond décrit une droite, conjuguée de ab par rapport au complexe
linéaire.

Si le cercle X varie en passant par un point fixe a, le point O qui lui cor-
respond décrit un plan qui a pour foyer le point a.

Considérons les sphéres passant par un cercle quelconque C de I'espace ;
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a chacune d’elles correspond un point O, centre de la sphére conjuguée. Le
cercle C coupe la sphére centrale K en deux points a, b. Le lieu du point O
est la droite conjuguée de ab par rapport au complexe linéaire. A chacune
des sphéres considérées correspond homographiquement un point O ; le
rapport anharmonique de quatre des sphéres est égal au rapport anharmo-
nique des quatre points O correspondants. La droite, lieu du point O,
coupe le plan du cercle en un point qui correspond a ce plan.

Il n’y a aucune difficulté a étudier la position du complexe linéaire par
rapport a la sphére centrale; ils auront, en général, quatre droites com-
munes ; les cas particuliers sont manifestes ; ils correspondent & certaines
relations entre les invariants I et J que M. Koenigs a découverts dans la
recherche des sphéres qui coincident avec leurs conjuguées. Ces invariants
s'introduisent également dans le probléme, identique au fond au préce-
dent, de la réduction de la forme bilinéaire Za;(a;by— a,b,) a la forme
canonique, au moyen d'une méme substitution orthogonale effectuée sur
les variables a; et b;. L’équation en s relative a cette forme bilinéaire, consi-
dérée comme forme quadratique des a; et des by, est

si(s*—1Is2+J)2=o0
I= E(a))
J :2 [w:(a)]?.

en pOSHl’lt

£(a) est la forme adjointe de la forme E(p) =2Xp;; et v, (a), w,(a),
wy(a), wy(a), v;(a) sont les formes adjointes de Q,(p), Q.(p), ...,

La condition J = o exprime, en général, que la sphére centrale est de
rayon nul ; si de nouvelles relations sont adjointes, elle peut exprimer que
la sphére centrale est le plan de !'infini.

Cherchons une interprétation de la condition I = o; I étant un invariant,
nous prendrons pour sphére S; la sphére centrale K ; 'équation du systéme
A, est

2APy—o0
et 'on a
A=A —=Ap=A,;=o.
L’équation

2Au®i = ApPr+ AuPis+ Aupu+ Appas+ Appa+ Asgips = o,
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ol les & sont les coordonnées pluckériennes d’une droite, est celle du com-
plexe linéaire L associé a la sphere k.

La sphére centrale ayant pour équation z*+ y*+ 5°+1 =0, le com-
plexe polaire réciproque de L, par rapport a cette sphére, a pour équation

Agpia+ Anpis+ Appri+ A Pas+ A pua+ A ps, = o.
Scrivons que les deux complexes linéaires sont en involution ; il vient
ZA?/C =0,
et 'on a cette conclusion :

La condition 1 = o exprime que le complexe linéaire L et son polaire
réciproque par rapport a la sphere centrale K sont en involution.

Arrivons a la recherche des cercles singuliers et de la surface de singula-
rités du systéme A;.

D’une fagon générale, si I'on prend pour les six coordonnées u,, u,, ..., u;
du cercle les coefficients a, 8, v, @, b, ¢ dans les équations

ax+By+y—s=o,
22+ yi*+ st +axr + by +c=o,

les cercles singuliers et la surface de singularités d’un systéme quintuple-
ment indéterminé, défini par I'équation

6(e, B, 7y, a, b,c)=o,

seront déterminés par I'adjonction du systéme d’équations

00 d6

Jde 03 99
— —_— — 5
x Y dy
9 09

da __ db _ 09
7-7 Jc

Cela résulte d’un calcul fait dans la recherche du systéme adjoint de pre-
miére espece.

Si 'on se place dans le cas du systéme A; général et si 'on prend son
équation sous la forme canonique, le systeme de coordonnées pentasphé-
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riques étant déterminé en posant
pxr, =, px, =y, ooy =3,
2px, = 22+ Y451 —1, 2lprs =2+ ¥y + 2 +1,
on arrive immédiatement aux conclusions suivantes :

La surface de singularités d’un systéme A, est la sphere centrale.

Les cercles singuliers sont les cercles de la sphére centrale dont les
plans ont pour pdle, par rapport aw complexe linéaire L, un point de la
sphére centrale.

Ou encore, si I'on considére la quadrique X polaire réciproque de la
sphere K par rapport au complexe linéaire L :

Les cercles singuliers sont les cercles de la sphére centrale qui sont
déterminés par les plans tangents a la quadrique X.

Signalons une interprétation géomeétrique de la forme quadratique
2 aP\?
0.)/l' ?
que 'on déduit de la forme bilinéaire P = { Za,(x, vy — x1y:).

Les spheres qui passent par les cercles singuliers forment un complexe, ct
ce complexe est défini par I'équation

>( gaz>:

i

en prenant pour équation d'une sphére

5
E l,wZ‘i —= 0.
1

Si I'on considére un systéme Aj satisfaisant aux conditions renfermées
dans I'énoncé du théoréeme de M. Keenigs, c’est-a-dire pour lequel les
¢quations du systéme adjoint de premiére espéce sont vérifices, on a la
conclusion suivante :

Tous les cercles de ce systeme rencontrent une droite isotrope.
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Systéme A,.
Soit un systéme A, défini par deux équations linéaires

Py=2Zaypir=o,

P2: Zbik])ik‘—_— O.

Les cercles situés sur une sphére passent tous par deux points A et B
de cette sphere.

En effet, en vertu de P, = o, les plans des cercles de A,, situés sur la
sphére S, passent par un méme point O,. En vertu de P, = o, ils passent
par un méme point O,; donc les cercles passent par les deux points d’in-
tersection A et B de S avec la droite O, O,.

Les cercles de A, qui sont des droites forment une congruence linéaire
de droites.

Il en résulte que :

Tous les cercles de A, qui passent par un point P de I'espace rencontrent,
chacun en un second point, deux cercles passant par le point P.

Il n’y a qu'un cercle de A, passant par deux points quelconques.

Soit un cercle quelconque Cj; établissons la proposition suivante :

Tous les cercles de A, qui rencontrent C en deux points renconirent
également en deux points une cyclique qui passe par deux points de C.

En effet, considérons une sphére quelconque S passant par le cercle C.
A cette sphére correspondent, dans les deux systémes P, =o et P,=o,
deux sphéres conjuguées. Soient O, et O, leurs centres. Si I'on fait varier
la spheére S, O, et O, décrivent deux droites D, et D, et tracent sur ces deux
droites des divisions homographiques; les droites O,,O, sont donc les gé-
nératrices d'une méme syst¢me d’une quadrique X. Il existe une des gé-
nératrices a8 de ce systéme, qui est située dans le plan du cercle C.

Tous les cercles du systeme A, appartiennent au systéme A;, défini par
I’équation

P,+APy=o,

ot X peut prendre une valeur quelconque. Le lieu des centres des spheéres
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conjuguées des différentes sphéres passant par C est une génératrice de la
quadrique X de méme systéme que D, et D,. On peut déterminer une va-
leur de 2, telle que I'équation P, + AP, = o soit vérifiée par les coordon-
nées du cercle C. A cette valeur de A correspond la seconde génératrice de
la quadrique X, située dans le plan du cercle C, et qui rencontre ce cercle
en a, et a,.

A chaque sphére S correspond homographiquement une droite O, O,.
Soient v,, w, les points d’intersection de S et de O, O,. Si I'on remarque
qu’au plan du cercle correspond la droite 3, on a immédiatement cette
conclusion : le lieu des points ®,, , est une cyclique qui passe par les
points @,, a,, et le théoréme est démontré.

De ce qui précéde résulte également que :

L’enveloppe des plans des cercles de A, qui rencontrent C en deux points
est la quadrique déterminée par la cyclique etla droite a, a,.

Si I'on suppose que le cercle C varie en passant par deux points fixes, le
lieu des cycliques que 'on associe & chaque cercle sera la surface de singu-
larités du complexe de cercles défini par les équations 0, = o, 0, = o, et par
la condition que les cercles soient réunis par des sphéres & deux points
fixes.

Ce qui précéde ne s’applique pas lorsque C est un cerele de A,. Dans ce
cas, toutes les droites, telles que D,, D,, sont situées dans le plan de ce
cercle; O, et O, tracent sur D, et D, des divisions homographiques et la
droite O, O, enveloppe une conique tangente a toutes les droites, telles que
D, et D,.

Le systéme A, étant déterminé par I'intersection de deux systémes Aj,
considérons un systéme A; du faisceau

aP, —+ ppg.—__ 0.
La sphére centrale correspondante a pour équation
5
(k) Zfzi(aa—l—ﬁb)xi:o.
1
a

Lorsque le rapport 5 varie, elle enveloppe la surface de singularités de A,.

L’équation de cette derniére s'obtient donc en égalant & zéro le discrimi-
nant de la forme quadratique des deux variables « et 3, constituée par le
1. — Fac. de T. E.g
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premier membre de I'équation (k)j; il vient ainsi

[2Q;(a, b)x:]*— 4 [Ea S!i(a)xi] [i Qi(b)xi] —o,

en posant

u(a,b) = (b, a) = . %3‘%‘:)

wp

biop-

C’est une cyclide a deux points doubles.

A chacune des sphéres centrales correspond un complexe linéaire de
droites. Il résulte des formules que nous avons établies que ces complexes
forment un faisceau; cela résulte aussi, d’ailleurs, de cette considération
que, si 'on envisage les cercles de A, qui sont des droites, ce sont des
droites de la congruence linéaire commune a deux quelconques des com-
plexes linéaires et réciproquement.

Il existe deux valeurs de A pour lesquelles le complexe linéaire de droites
est spécial; les systémes A, de cercles qui leur correspondent sont des sys-
témes pour lesquels la sphére centrale est un plan; donc :

Tout systéme A, peut étre défini comme Uensemble des cercles qui
rencontrent deux plans suivant des doubles points engendrant respective-
ment dans chacun des plans des systémes linéaires K, de doubles points.

Les plans passent respectivement par les directrices de la congruence
linéaire commune aux complexes linéaires.
Systéme \,.
ILe complexe linéaire de cercles est défini par trois équations linéaires :
Ptzzaikpik_—_o, Pzzf.bikpik: o, P3: Zcikpik: o.
Il n’y a qu'un cercle de A, sur une sphére quelconque de I'espace.
v B

Les cercles du systéme A, qui sont des droites forment un systéeme de
génératrices d’une quadrique.

On en déduit la proposition suivante :

Les cercles du systéme A, qui passent par un point P sont répartis sur
une cyclide ayant pour point double le point P.
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Lorsque le point P varie, la cyclide correspondante, qui dépend de trois
parameétres, a néanmoins une enveloppe qui est la surface de singularités du
systéme A,.

En considérant cette surface de singularités comme l'enveloppe des
sphéres centrales des systémes A; du réseau

OCP1+ ﬁpg‘i— YP:;: 0,
on obtient immédiatement son équation : 1l suffit d’annuler le discriminant

de la forme quadratique 2 Q;(xa + Bb + yc)x; des trois variables a, f, v,

et il vient ainsi

23Q(a)x; 2Q;(a,b)x; 2Q;(a,c)x;
2Qi(b,a)z; 23ZQ;(b)x; 2Q:(b,c)x; | =o.
2Qi(c,a)x;  Z2LQ(c,b)z; 2ZQ;(c)z;

C’est une surface du sixiéme degré, admettant le cercle imaginaire de
I'infini comme ligne triple.

A chacune des sphéres centrales du réseau correspond un complexe
linéaire de droites; ces complexes linéaires forment une famille & trois
termes et ont en commun les droites qui appartiennent au systéme A,.

Systéme A,.
La congruence linéaire de cercles est définie par les équations linéaires
Py=2ayupu=o, Py,=Z2byupu=o, Py=2Zcypu=o, P, =Zdypu=—o.
M. Stephanos a énoncé le théoréme suivant : 4

Ily a dans Uespace cing couples de points pouvant étre réunis par des
sphéres a chacun des cercles C d’une congruence linéaire. Ces cing cou-
ples de poinis sont les foyers de cing cercles formant un pentacycle.

M. Keenigs en a donné la démonstration qui suit :
Tout cercle de la congruence vérifie I’équation

A pia=o,
en posal’lt
Aiv=DRhaux+ pby+ve—+pdi
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Les quantités A sont assujetties simplement 4 six équations linéaires, par
le fait de l'indétermination de 2, , v, . S1 l'on veut que les A, soient les
coordonnées d'un cercle, le probléme sera déterminé, et 'on aura cinq so-
lutions correspondant & cinq cercles formant un pentacycle; donc :

Les cercles d’une congruence linéaire sont en involution avec cing
cercles formant un pentacycle.

C’est un nouvel énoncé du théoréme précédent.

Réciprogquement, les cercles en involution avec quatre cercles forment
une congruence linéaire et sont en incolution avec un cinquiéme qui
Jforme avec les premiers un pentacycle.

1 3 . )

Sur une sphére quelconque de I'espace, il n'y a pas de cercle de la con-
gruence. Les sphéres qui passent par les cercles de la congruence forment
ainsi un complexe U de sphéres; cherchons I'équation qui détermine ce
complexe.

Exprimons que le cercle d’intersection des deux sphéres
Zli..’l?iZO, 2)\[@',”—:0

fait partie de la congruence.
Posons

U :2 aily, i :Z by, i :‘E Ciwliny It :E diplin,
k k k k
il vient
SN, —=o, 2, =o, il =o, Ik =o.

Considérons dans ces derniéres équations les A; comme des inconnues; elles
admettent, en général, la solution unique

)~i: l,‘.

Pour qu'’il y ait un cercle de la congruence sur la sphére X/;x;= o, il faut
donc que ce systéme d’équations soit indéterminé, c’est-a-dire qu’on puisse
déterminer A, w, v, o, tels que Pon ait

M+ pl+vl+pli=o

pour toutes les valeurs de 'indice i.
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Ceci exprime que la sphére X/;,x;= o est la sphére centrale du systéme
linéaire défini par I'équation

2(Aajp~+ pbu+ve+ pdix) pir=o.

Réciproquement, sur la sphére centrale d'un tel systéme, il y aura un
cercle faisant partie de la congruence linéaire.
L’équation d’une sphére du complexe U est donc

5
2 Q(aa+Bb+yc+ Sd)xi; o.

1

Il v’y a que deux sphéres de ce complexe U qui passent par un cercle
arbitraire C de lespace. '

En effet, soient O,, O,, O,, O, les centres des sphéres conjuguées d’une
sphére passant par le cercle C dans les quatre systémes A; :

P,—=o, P,—o, P,=o, P,—=o.

Lorsque la sphére varie, les points O,, O,, O,, O, décrivent quatre
droites et tracent sur ces droites des divisions homographiques. Ces quatre
points sont dans un méme plan pour deux positions du point O, et, par
suite, pour deux sphéres.

On déduit de cette proposition la suivante :

Les plans des cercles de la congruence linéaire enveloppent une qua-

drique.

En effet, le nombre des plans passant par une droite est le méme que
celui des cercles qui rencontrent cette droite en deux points. Ce dernier
nombre est égal a deux, comme on le voit en transformant par inversion.

Considérons les sphéres de rayon nul du complexe U. Leurs centres sont
les foyers des cercles de la congruence; le lieu de ces centres est la surface
S, de M. Stephanos. On a pour les coordonnées x; du centre d’une des
spheres de rayon nul I'expression suivante

;= (xa+3b+yc+dd);
les paramétres «, B3, v, ¢ sont liés par la relation

[ (aa+Pb+yc+dd)]?=o.
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On a vu que les cercles de la congruence linéaire sont en involulion avec
cinq cercles formant un pentacycle. La surface S pourra donc étre définie
comme le licu des couples de points qui peuvent étre réunis par des sphéres
a quatre des cercles de ce pentacycle. Il apparait immédiatement que cette
surface Sq est du sixiéme degré et admet le cercle imaginaire de I'infimi
comme ligne triple.

La surface S, est définie par quatre quelconques des cinq cercles :

ol 02 03 o4 05

du pentacycle associé a la congruence linéaire.
Considérons quatre de ces cercles, par exemple o1, 02, 03, 04, et déter-
minons les quatre cercles 15,25, 35, 45, dont chacun i5 rencontre, en

deux points, trois of, ok, ol des cercles donnés. Nous pourrons ainsi former
le tableau :

o1 02 03 o4 05
21 12 13 14 15
31 32 23 24 25
fu L2 43 34 35
51 52 53 54 45

qui comprend quinze cercles, en remarquant que i est identique a ji.

I1 est clair que ces quinze cercles sont situés sur la surface S,.

La configuration (C) des quinze cercles de I’espace dont nous venons
d’indiquer un mode de formation jouit de propriétés remarquables, énoncées
par M. Stéphanos, et que nous allons établir :

Deux de ces cercles sont situés sur une méme sphére toutes les fois
que leurs symboles n’ont pas d’indice commun. Ainsi ils sont situés,
trois a trois, sur quinze spheres.

Ces quinze cercles peuvent élre groupés en six pentacycles o, 1, 2,
3, &4, 5. Les cercles appartenant a un méme pentacycle ont des symboles
ayant un indice commun.

On peut former avec les cercles de la configuration (C) vingt triples ijk
renfermant trois cercles jk, ki, ij. Ces vingt triples se rangent a leur
tour en dix couples (ijk, lmn). Les cercles de deux triples associés (ijk,
lmn) sont orthogonaux & une méme sphére T. Les plans des quinze
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cercles se coupent donc par groupes de six suivant les centres des dix
sphéres T.

_Faisons d’abord quelques remarques :

M. Darboux a montré qu'en général il existe un cercle (K) et un seul qui
rencontre trois cercles (A), (B), (C) de I'espace, chacun en deux points (*).
Appelons centre radical de deux cercles le centre radical de toutes les
sphéres passant par ces deux cercles. Le plan du cercle (K) est le plan des
centres radicaux des trois cercles (A), (B), (C) pris deux a deux. Le probléme
est indéterminé dans le cas ou deux de ces centres radicaux, et par suite les
trois, sont confondus, et inversement, si le probleme admet plusieurs solu-
tions, les centres radicaux des trois cercles (A), (B), (C), pris deux a deux,
sont confondus; les trois cercles (A), (B), (C) sont alors orthogonaux a
une méme sphére. 1l est manifeste que les cercles (K) engendrent une sur-
face qui n’est autre qu’une cyclide, et qu'inversement toute cyclide peut
étre engendrée par le mouvement d’un cercle rencontrant, chacun en deux
points, trois cercles orthogonaux a4 une méme sphére. Nous retrouvons la
génération des cyclides due & M. Casey (?).

Revenons a la configuration (C); la spheére qui passe par les deux cer-
cles 05 et 12 coupe la surface S, suivant un cercle C; de la définition de S,
résulte qu’on peut trouver sur ce cercle C une infinité de couples de deux
points pouvant étre réunis par des spheres a o1, 02, 03, 04; je dis qu'il en
résulte que C u’est autre que le cercle 34.

En effet, C doit rencontrer en deux points deux des cercles o1, 02, 03,
04, et admettre avec les autres le méme centre radical; car, s'il n’en était
pas ainsi, on en conclurait que trois de ces quatre cercles ont méme centre
radical; démontrons que C doit rencontrer en deux points or et 02.

Car, s'il rencontrait en deux points o3 et o4, rencontrant o5 en deux
points, ce serait 12.

Si C rencontrait o1, o3 en deux points, rencontrant également o> en
deux points, ce serait 24; cette conclusion est également inadmissible; car
12 rencontre en deux points 03, 05 et 04; le cercle 24 rencontre en deux

(1) Darsoux, Sur une nouvelle définition de la surface des ondes (Comptes rendus
de I’Académie des Sciences, t. XCII, p. 4{6-448).

(2) Casky, On cyclides and sphero-quartics (Philosophical Transactions of the Royal
Society of London, t. CLXI, p. 585-721). '
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points 03, o5 et o1; par suite, 12 et 24 devant se rencontrer, on en conclu-
rait que o3 et o5 seraient sur la méme sphére.

Donc C rencontre en deux points o1, o2, 05, et admet méme centre
radical avec 03, 04 ; C est identique a 34.

Ainsi les trois cercles 05, 12, 34 sont sur une méme sphére, et les trois
cercles 03, o4, 34 ont méme centre radical.

Deux cercles sont, par conséquent, sur une méme sphére si leurs sym-
boles n’ont pas d’indice commun.

Si I'on considére trois cercles ij, jk, ki, il y a plusieurs cercles rencon-
trant ces trois cercles en deux points; il y en a donc une infinité, et ces trois
cercles ont méme centre radical.

Remarquons que 12 rencontre en deux points les trois cercles 04,05,03

23 » o4,05,01
_ 31 B 04,05 ,02

On en conclut que les six cercles 04, 05, 45, 12, 23, 31 ont méme centre
radical; c'est le centre d’'une spheére T.

Des résultats précédents résulte la construction donnée par M. Stéphanos
du cinquiéme cercle o5 d'un pentacycle déterminé par quatre cercles o1,
02, 03, o4 de 'espace. '

On construit d’abord les quatre cercles 15, 25, 35, 45, dont chacun (i5)
rencontre en deux points trois (of, ok, ol) des cercles donnés. Les sphéres oz,
j 5 qui joignent les cercles oi aux cercles j 5 sont au nombre de douze et se
rangent en six couples :

o1, 25 or, 35 o1, 45 02, 35 02, 45 03, 45
02, 15 03, 15 o, 15 03, 25 03, 25 o4, 35

Elles donnent ainsi six nouveaux cercles :
34 24 23 14 13 12

intersections des sphéres des couples respectifs.

Ces nouveaux cercles sont situés, par couples de deux, sur trois sphéres :
12.34, 13.24, 14.23. '

Ces trois derniéres sphéres se coupent suivant un méme cercle qui coin-
cide avec le cercle o5 cherché.

Revenons 4 la surface S, ; on I’a définie en partant d’un systéme de quatre
cercles C,, C,, G, C,; considérons la section de S, par une sphére S pas-
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sant par un de ces quatre cercles, C, par exemple; elle se compose de cc
cercle G, et d'une cyclique; d’ailleurs, si un foyer £ d’un cercle de la con-
gruence cst sur la sphére S, 'autre foyer /7 est aussi sur S; les traces des cer-
cles C,, G, C, sur la sphére S conslituent trois doubles points qui peuvent
¢tre réunis au double point ( ff*) par des cercles; nous retrouvons donc la
génération de la cyclique que nous avons établie directement.

La considération de cette surface S; conduit également & une génération
par points de la cyclide.

Supposons que, parmi les quatre cercles qui définissent la surface, deux
se rencontrent en deux points; la sphére qui contient ces deux cercles fait
partic de la surface, et I'on a cette génération de la cyclide :

Soient C,, C, deux cercles arbitraires dans ’espace; si par deux points,
P, Q, on mene un cercle arbitraire C, et que I'on considére les deux sphéres
passant respectivement par les cercles C,, C,, et coupant le cercle C aux
deux mémes points, M et N, ces deux derniers décrivent une cyclide con-
tenant les cercles C,, C,, et passant par les points P et Q.

Cette génération de la cyclide a été indiquée par M. Saltel (*).

La réciproque est vraie, et 'on peut trouver une infinité de systémes ser-
vant a la génération.

Arrivons a la surface focale de la congruence linéaire de cercles. Rappe-
lons d’abord la voic suivie par M. Stéphanos pour déterminer cette surface :

On a défini la surface S, comme le licu des couples de foyers des cercles
de la congruence.

Une sphére arbitraire de 'espace ne contient que deux pareils couples de
foyers.

“n effet, ces couples de points sont définis par la condition de pouvoir
¢tre réunis par des sphéres a quatre cercles. Si 'on considére les traces
(ai, b)), (as, b,),... des quatre cercles sur la sphére, les doubles points
cherchés pourront étre reliés aux quatre doubles points (a,, b,), (a,, b,), ...
par-des cercles; il existe donc deux pareils doubles points, ainsi que nous
I'avons démontré précédemment.

A I'égard de ces couples de foyers, M. Stéphanos énonce les propositions
suivantes :

Considérons les sphéres ¢, telles que les deux couples de foyers situés sur

(') SaLTEL, Sur les cyclides (Bulletin de la Société mathématique de France, t. I11).
1. — Fac. de T. _ E.to
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ces sphéres coincident; elles forment un complexe V; par chaque cercle de
I'espace passent quatre sphéres de ce complexe V; la surface Zq, lieu des
centres des sphéres de rayon nul contenues dans le complexe V est du hui-
ticme ordre; elle est touchée par chacune des dix sphéres T tout le long
d’une biquadratique; clle a le cercle imaginaire & l'infini pour ligne qua-
druple et admet pour points doubles les foyers des quinze cercles de la
configuration (C).

La surface X, est manifestement la surface focale de la congruence linéaire
de cercles.

Les théorémes généraux que nous avons ¢tablis a 'égard des surfaces de
singularités permettent d’écrire immédiatement I'équation de cette surface
focale 5 il suffit d’égaler a zéro le discriminant de la forme quadratique

3

2 Qi(aa+ b+ yec+dd)x;
1

des quatre variables o, 8, v, ¢ et I'on obtient ainsi

23Q;(a)x; 3Qi(a,b)x; 3Ii(a,c)x; 2Q(a,d)z;
3Q:(b,a)z; 232L:(b)x;, 2Q:(byc)x;  2Q;(b,d)x;
2Qi(c, a)x;  2i(c, b)x; 22Q(¢c)x; 3, (e, d)x;
3Q:(d,a)x; 2Q(d,b)x; Z2Q(d,c)x; 232;(x;)

== 0.

Systéme A, .
Les cercles de A, sont répartis sur une surface cerclée.

En général, cette surface est une surface du dixicme degré, admet-
tant le cercle imaginaire de Uinfini comme ligne quintuple.

Placons-nous dans le cas le plus général. La surface est engendrée par un
cercle dont le mouvement est défini en disant que ce cercle peut étre relié
par des sphéres & cing couples de points @,, b, ; as, b, 5 ...5 as, by. Si I'on
considére la surface inverse de la surface considérée en prenant pour pole
d’inversion un point quelconque de 'espace, la nouvelle surface est du
méme degré que la premiére, car elle est définie d’une facon identique.

Le degré de la surface est donc un nombre pair 27 et elle admet le cercle
imaginaire de l'infini comme ligne d’ordre de multiplicité égal a n.

Remarquons que le licu des foyers des cercles de A, est une courbe du
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‘dixiéme degré, intersection de deux surfaces S; de M. Stephanos qui ont
déja en commun trois cercles et le cercle rencontrant ces trois cercles ;
d’autre part, les cercles du systéme A, sont en involution avec unc infinité
de cercles constituant eux-mémes un systéme A, ; en sorte qu’il existe
une infinité de couples de points, tels que a,, b, ; @,, b,; ..., pouvant servir &
la génération ; tous ces points sont sur une courbe du dixieme degré : nous
verrons que cette courbe est une ligne double de la surface.

Ceci posé, nous établirons par des considérations géométriques que la
surface est du dixieme degré de la maniére suivante :

Considérons la figure inverse en prenant pour pdle d’'inversion le point
b, ; on obtient une nouvelle surface cerclée définie de la facon suivante :

Les plans des cercles passent par un point fixe A, et les cercles peuvent
étre reliés par des spheres & quatre couples de points A,, B,j A;, B,
A, Bis Aj B

Cherchons le degré de la section de cette nouvelle surface par le plan
A, A,B,; cette section comprend d’abord manifestement un cercle qu’on
obtient en menant le cercle orthogonal & trois cercles du plan A, A,B, ; les
points de la seconde branche de courbe peuvent étre associés deux a deux ;
la droite les joignant passe par A,. Soit une sécante issue de A, et cher-
chons le nombre des points d’intersection avec la courbe, c’est-a-dire
cherchons les cercles qui rencontrent cetle sécante en deux points ; si O est
le point d’intersection de la sécante avec A, B,, la puissance de ce point par
rapport a I'un des cercles considérés est OA,, OB,. Par suite, si 'on déter-
mine respectivement sur OA; et sur OB, des points A, et B} par les rela-
tions

OA;.0A; = OB;.0B; = 0A,.0B,,

les quatre points A, B;, A}, B} sont sur un cercle qui rencontre en deux
points I'un des cercles considérés. Opérant de méme sur A,, B, et A, B,
on voit que les cercles rencontrent en deux points trois cercles ayant méme
centre radical ; d’aprés le théoréme de M. Casey, ils sont situés sur unc cy-
clide qui est rencontrée par la sécante A, O en quatre points ; donc le degré
de la branche de courbe est égal au nombre quatre augmenté de ordre de
multiplicité du point A,.

Or il y a deux cercles passant par A, et faisant partic du systéme
linéaire ; donc la section par le plan considéré est une courbe du huitiéme
degré qui se compose d’un cercle et d’une courbe du sixitme degré ; le
point A, est un point double de cette derniére et de la surface.
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Rappelons les formules qui sont relatives & 'inversion et qui ont éi¢
données par M. Moutard (').

Soient m le degré d’une surface, p le degré de multiplicité du pole, ¢ le
degré de multiplicité du cercle de I'infini et soient m’, p’, ¢’ les nombres
analogues pour la surface inverse ; on a

m'—=a2m-— p—2q, m=am'— p'—aq,
p= m—agq, p= m—aq,
g= m— p—yq, q= m'— p'—¢q".

Dans le cas présent, nous avons

m-=2aq, p =2, m' = 8,
Par suite
)
m=m'+p=ro,

g=5.

La surface sur lagquelle sont répartis les cercles du systéme A, est
donc du dixiéme degré ; le cercle imaginaire de Uinfini est une ligne
dont ordre de multiplicité est égal a cing.

Les points a,, b,, ... sont situés sur une courbe du dwzemn degré qui
est une ligne double de la surface.

Le lieu des foyers des cercles, qui est également une courbe du dixieme
degré, est une focale de la surface.

La surface a ét¢ définie par le mouvement d’un cercle qui est en involu-
tion avec cinq cercles fixes ; il est facile de voir que les cercles d’'une méme
série de la cyclide sont aussi en involution avec cinef cercles.

En effet, considérons une cyclide et cing cercles d’une méme scérie; il
existe une seconde série, telle que tous les cercles de cette série rencontrent
les cinq cercles, chacun en deux points; sur chacun des cinq cercles, prenons
deux points; on voit que les cercles de la seconde série sont en involution
avec cinq cercles fixes; mais les cercles fixes ne sont pas arbitraires, comme
il est aisé de s’en rendre compte.

Ainst les cercles d’une méme série d’une cyclide font partie d’un
systéme A, particulier.

(1) Moutarp, Sur la transformation par rayons vecteurs réciproques (Nouvelles 4n-
nales de Mathématiques, 1864).
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La théorie des surfaces de singularités permet d’écrire immédiatement
Iéquation de la surface sur laquelle sont répartis les cercles du systéme A,
défini par les cingq ¢quations lindaires

Py =Z2appir=o, Py —=2bypir =o, Py —=Zcypi=o,

P, =2d;pi. =o, Py —=2Z2eypu=o;

il suffit d’égaler & zéro le discriminant de la forme quadratique

Eﬂi(aa+ﬁb+yc+8d+se)x,~

des cing variables o, B, v, 8, ¢, et 'on obtient ainsi :

23Q;(a)x; 2Qi(a, b)x;  2Qi(a,c)x;  2Qi(a,d)x;  XQi(a, e)xr;
22:(bya)x; 23Q;(b)x; 2Q;(byc)x;  2(b,d)x;  2Q(b,e)x;
3Qi(c, a)x;  ZQi(c, b)x; 23Q(c)x; 2Qi(e, dyr;  2Q(c,e)x; |—o.
2Qi(dya)x;  EQi(dyb)x;  EQ(d,c)x; 23Q(d)x; 2Q;(d, e)x;

. 2Q,(e, a)x; 2Qi(e, b)x;, ZQ(e, c)ax; 2Q;(e, d)yxr; 23Q;(e)r;

L’ équation
l[)1+ @Pz“l— yP3+ 8P4+8P5 =0,

qui représente un systéme A; passant par le systéme A, considéré, renferme
(quatre paramétres ; la sphére centrale correspondante peut done coincider
avec une sphére arbitraire de l'espace; étant donnée une sphére quelconque,
on voit immédiatement, en la prenant pour une des sphéres coordonnées,
qu'il n’existe qu'un systéme A,, passant par A,, pour lequel la sphére cen-
trale coincide avec cetle sphére 5 le complexe linéaire associé est déterminé
ct 'on a la proposition suivante :

Les cercles répartis sur la surface du divieme degré coupent une
sphéere quelconque en des doubles points dont les droites appartiennent
a un complexe linéaire.

Le systéme A, pourra étre défini par cing sphéres arbitraires de Pespace,
auxquelles on associera cinq complexes linéaires déterminés qui font partic
d'une famille de complexes linéaires & cing termes.

On peut, en particulier, choisir cing sphéres qui ne soient pas des plans
ct telles que les complexes associés soient spéciaux ; clest de cette propriété
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que nous avons déduit, par des considérations géométriques, le degré de la
surface.

Dans certains cas particuliers, on pourra considérer les cercles comme
assujettis & rencontrer une ou plusieurs droites isotropes.

Nous terminerons en établissant le théoréme suivant :

Les génératrices de la surface réglée, formée par les axes des cercles
ul font partie d’un systéme A,,appartiennent ¢ un complexe lindaire
qui, 1 P
de droites. .

Considérons un cercle et ses deux foyers dont les coordonnées pentasphé-
riques seront

’ 'I U U ’
Xy, Xy, Xy, X, I

5

cl

"

m”u Ty, Iy, I, xl.
Les équations du cercle seront

2\ )+ Xy o+ Xy 23+ &, 2+ Xy x5 =0,

Ty X+ Xy X+ Xy x4+ X 2+ T x5 = 0,
et I'on aura, pour déterminer les coordonnées du cercle,
hpir = & &) — X))

Supposons que le systéme de coordonnées pentasphériques soit déter-
miné, en posant
. pxy —x, P2 —=Y> pxy— %,

2px, = 2+ Y4+ 5 —1, 2ipxs =2+ yr4+ 21+,

Soient #’, y', 2’ et ”, ¥, 2" les coordonnées cartésiennes des deux foyers et

posons
ll’ — x12+y12+z12’ ull .___xl/2+')/ll2+ 5”3’
puis
oy =a' — ', ®y =y — ', ®y, =5 — 5’
©as :ylzl!__)llzl’ By = sl — ", o x/},//__ x”y',
x'u’ —x2" v =X, yu—yu =Y, su— 3" =1, w —u" =1U.

On peut alors prendre pour les coordonnées p; du cercle les valeurs
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déterminées par les relations

Pra =— By
P13 = O3 P23 — W3y
2 pu=X—mw,, 2 Py =Y — @y, 2psy =L — pa,
2ip;s = X + ®y,, 2/pys = Y + &y, 2 P55 = L + Py, 2ip,s = U.

Une équation linéaire
2aypir=o0

s’écrit, en vertu de ces relations,

2( @By + Ay Wag—+ Ay @y ) — (A, —+ 1015) B — (@, + 1s5) Ty — (@ + 1035) By,

“+ (@, — iays) X + (@ — ias;) Y + (@5, — iazs) 2 — a,s 71U = o.

On peut remarquer, en passant, cctle conséquence, que si la sphére cen-
trale d’un systéme A; est le plan de I'infini, les axes des cercles forment un
complexe linéaire de droites, et réciproquement.

Les six quantités @, ,, @,,, @y, @, Tasy &,, sont, en effet, les coordon-
nées pluckériennes de I'axe du cercle (p).

Supposons que l'on ait cing relations linéaires entre les coordonnées p, ;
en transformant ces relations comme on vient de I'indiquer, puis éliminant
X, Y, Z, U, il reste une relation linéaire et homogéne entre les coordon-
nées pluckériennes de I'axe du cercle, et le théoréme est démontré.
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NOTE.

On a vu que le systéme A; jouit de la propriété fondamentale suivante :

Les cercles d’un systéme Ay, qui sont des droites, forment un complexe linéaire de
droites.

Cette proposition devient intuitive, si 'on a égard aux considérations suivantes :

Considérons un cercle qui se réduit a une droite et cherchons les particularités qui
alfectent ses coordonnées. Si l'on se rappelle I'interprétation que nous avons donnée
des six coordonnées pjs, Pis; Puus Pass Paer P, dont les indices sont formés avec les
seuls nombres 1, 2, 3, 4, on a immédiatement cette conclusion :

Les dix coordonnées p;. d’un cercle qui se réduit a une droite sont des fonctions
linéaires des six coordonnées pluckériennes de cette droite.

(est sous une autre forme la propriété signalée du systéme A;. Posons

i
D
P,=

i

il

=
~.

-

Z

1

R; étant le rayon de la sphére ;= o.
Les conditions nécessaires et suffisantes pour qu’un cercle (p) se réduise a une
droite s'chtiennent en écrivant les cinq équations

P,=o, P,=—o, P,—o, P,=

qui équivalent a deux relations entre les p;;.
L’équation

Pj:O

représente un systéme A;, défini par cette condition que les plans de ses cercles pas-
sent par le centre de la sphére z;—=o, et I'on a les propositions suivantes :

L'espace réglé est formé par les cercles communs aux cing systémes linéaires
P,=o, P,—=o0, P,=o0, P,=o0, Py=o, tous ces cercles se réduisant a des droites.
‘ L’espacé l"é’:glé est une des parties constitutives d’un systéme A,, Uautre partie
étant formée par les cercles dont les plans passent par une droite fixe.
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FFaisons enfin la remarque suivante :
M. Keenigs a donné, pour déterminer le rayon o du cercle (p), la formule suivante

2
2r
==

2P

j =1
ot P; a la signification précédente.
Considérons le systéme quintuplement indéterminé de cercles, obtenu en écrivant

que p est infini; son équation est
j=5

EP}:O.

j=1

Ce systéme comprend toutes les droites de Uespace; les plans de ses cercles sont
tangents au cercle imaginaire de U'infini.

Remarquons d’ailleurs que, d’une facon générale, si un systéme quintuplement
indéterminé de cercles comprend toutes les droites de l'espace, il est défini par une
propriété du plan de son cercle, et réciproquement.

L. — Fac. de T. E.t:



