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1. LARGE SCALE OPTIMIZATION PROBLEMS AND SPIN-GLASS MODELS

Consider a finite set S of indices and for each s E S a variable x
s

taking its values in a finite set L . Call E = L the set of all "configurations"
x = (x ) . Now let H : E --~ ~ be an arbitrary function ; the problem we

consider here is to evaluate H. = min H(x) , and to find at least one configur-min xEE
ation x minimizing H(x) .

When the cardinal of S is small, a simple enumeration of the x E E would

be a feasible algorithm, but minimization problems for which the set S of

variables has ueAy large cardinal are quite common in statistical mechanics,
canbinatorial optimization, image analysis, etc.

One instance of such large scale optimization problems was provided by the

models in mechanics ; in this context, xs represents the

physical state of the vertex s in a crystal lattice S of very large cardinal

N = car(S) . The lattice is imbedded in a two or three dimensional euclidean space,
and H(x) represents the energy of the configuration x .

For the spin-glass model, the energy will typically be of the form

H (x) _ E UK (x) rKEC

where C , the set of , is the family of all subsets K in the lattice S

such that diameter (K) ~ p , and where each action potential UK (x) depends only
on the 

sEK . 
°

No direct evaluation of Hmin is feasible since, in the spin-glass situation,
which is supposed to modelize crystals mixed with randmly scattered impurities,
the map K ---~ UK is assumed to assign "at randan" to each clique K an action

potential U belonging to a fixed vector space of real valued functions.
For particularly simple interactions,. the asymptotic behaviour of Average (H . )

as N ~ ~ has been obtained by the replica method (Parisi, Mezard) in the

physics literature, which gave also rough descriptions of the "ground states"
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(minimizing configurations) for large N . Due to the large part of heuristics

in these computations, the empirical verification of the results was crucial, so

that spin-glass specialists such as Kirkpatrick, Toulouse, Mezard, Gutfreund,
Amit and many others have been natural customers for feasible minimization algo-
rithms such as the now celebrated "simulated annealing" method.

One of the tricky features in typical spin-glass models is that the number

of "local minima" for H(x) is huge for large N , so that any kind of determin-

istic gradient algorithm is useless in such situations. Here the notion of local

minima refers to the so-called Hamming two configurations x and y

being neighbours if and only if they differ at most at a single site.

2. THE GIBBS DISTRIBUTION

In the context of statistical mechanics, it makes sense to consider on any

given configuration space E = L , the set M 
a 

of probability distributions P

for which the average energy is constrained by

Within the set , the so-called "most disorderly" distribution P must

maximize the entropy

and hence, using Lagrange multipliers, one readily sees that the most disorderly
distributions in M are the Gibbs distributions

a

where E is the and the positive para-
meter T , determined by (2.1) is usually identified with a 

An obvious feature of Q- which is crucial here is that, as T --~ 0 , the

distribution GT becanes more and more concentrated on the set

More precisely, we have

where Go is the on E~ . Thus, if one could
select a randcxn configuration x E E with probability distribution

GT , and T small enough, such a configuration should be, in an overwhelming

proportion of cases, an almost minimizing configuration for the energy H .

However, for large cardinal (S) , building up an effective method of random

sampling in E with respect to the probability GT turns out to be a serious



canputational problem, which was initially solved by Glauber, fletrqpolis and

altri.

3. THE GLAUBER DYNAMICS

We sketch the now classical stochastic algorithm suggested by Glauber, to

construct a random variable X with values in the space of configurations E and

with probability distribution close to G~, . Note that here the temperature T

is 

First we fix an arbitrary symetric Markov transition matrix Q = (c[) where

x,y E E . For instance, a typical choice for the spin-glass model is to set

where V x is a set of neighbours of x in E for the Hamming distance (cf.

§l),and (1 + r) is the common cardinal of all the V , x E E .

We want to construct a random sequence Xn of configurations. Assume the

configuration Xn already obtained. Select then a random configuration Yn such

that

(3.2) 

We then impose, with probability one,

(3.3) {either Xn+i = Yn or Xn+i = 

This (randan) choice is made according to the following rule

(3.4) ) P 1 
= Y n I Xo ... ~m Y _ _ n) 

[H (Yn) - T H ]+ 
r

where [v]+ = v if v >_ 0 and [v]+ - 0 if v _ 0 .

It is quite easy to prove that the. Markov chain Xn unique equilibrium

distribution, coinciding with the Gibbs distribution GT , provided the "selection"
matrix Q is symmetric and irreducible. In other words, one has then

Here irreducibility of Q means that any two configurations can be connected by
a finite chain of configurations xi such that . Of course, the

actual canputation of Xn+1 given Xn becmes lengthier when the cardinal of

(y qxy > 0~ increases.



4. SIMULATED ANNEALING : HEURISTICS

The result (3.5) and the fact that, for law temperature T , the distribution

GT concentrates on minimizing configurations suggest the use of Glauber randan

dynamics where the temperature T is no longer constant but decreases to 0 as

n --~ +00 . If we fix a decreasing sequence Tn such that lim Tn = 0 , and if

we replace T by Tn in the conditional distribution (3.4), we obtain a new

Markov chain Xn, for which one should hopefully have

This new algorithm was called annealing by Kirkpatrick, Gelatt,
Vecchi who introduced the idea.

Their (heuristic) arguments were based on a formal analogy with progressive
and very slow physical cooling, which had long been used to bring actual physical

systems into stable low-energy states, while fast cooling would freeze the system
in undesirable high energy metastable states.

Actually not all cooling schedules (Tn) will exhibit the crucial minimizing
feature (3.6). The first sufficient condition for (3.6) was obtained by D. and

S. Geman, who proved rigorously that if

with R > 0 laJtge enough, then the minimizing property (3.6) would hold for the

simulated annealing algorithm.

Easily built counterexamples were quickly exhibited (by Bretagnolle for

instance) to shew that when lim Tn log n = 0 , the minimizing property (3.6)
n++oo

cannot hold in general. Then Hajek computed the value of the best constant R in

(3.7) , and several mathematical papers have since refined the asymptotic study of

these algorithms, and of their continuous time analogues. Let us mention a few

names : Holley - Stroock, Follmer, Gidas, Hwang - Sheu, Chiang - Chow, Catoni, Trouve

and many more.

Simultaneously, practical uses of simulated annealing for large scale minimiz-

ation problems have been explored by a very large community of physicists and/or

ccxnputer science specialists such as Sherrington, Toulouse, Dreyfus, Aarts -

Laarhoven, Bonani - Lutton, Uhry, D. and S. Geman, etc.

5. SIMULATED ANNEALING : THE ABSTRACT SETUP

Consider an abstract finite set E , which will still be called the 

ation space. Let H : E ~ 1R be an arbitrary function, still called the energy



Fix a symmetric stochastic matrix Q = (ct__) , x E E, y E E such that

any two configurations x and y can be connected by a finite chain xk E E
with . The matrix Q will be called the exploration matrix.

Fix a decreasing sequence Tn of "temperatures" tending to zero as n -- +~.

This sequence will be called a cooling schedule.
On the state space E define a (non hanogeneous) Markov chain Xn , with

arbitrary initial state Xn , and transition matrix

Before stating the main asymptotic results concerning the simulated annealing

algorithm (Xn) y we need a few more definitions.

For each x E E , let V x be the set of all points y E E such that

qxy > 0 , which will be called ,the..6 et of neighbours of x.

A point x E E is said to be a minimum of H if H (x) S H (y) for

all y E V. It is called a global minimum of H if H (x) _ H (y) for all y E E .

We denote by the set of global minima and ELOCMIN the set of local minima

of H .

Introduce new several notions used by Hajek.
Two states x and y in E are said to communicate at height h if

either y = x and H (x) ~ h , or if there is a sequence , k ~ 2 with

xl = x , xx 
= y and such that {H(Xj) S h , E V ) for all j = 1 ... k .

Note that this property is symmetric in (x, y) .
The depth d of a local minimum x E E will be the smallest number D > 0

for which there exists a y E E such that x and y communicate at height
H (x) + D , and H (y)  H (x) .

Note that X = +00 whenever x is a global minimum.

5.2. THEOREM (Hajek).- Consider an arbitrary energy function H : E ~ R and

the. algorithm (5.1). Then one has

~,~ and onty ~.~

whene ;the. constant D is given by



This elegant result clearly implies that sequences Tn such that

lim Tn log n = c will be "minimizing" cooling schedules if and only if c ~ D ,

a result which seriously improved on previous sufficient conditions given by D.
and S. Geman, as well as Gidas.

A recent theorem of Chiang and Chow completes nicely Hajek’s result.

5.6. THEOREM (Chiang and Chow).- Consider the annealing algorithm (5.1). For any

x,y E E. let hxy be the 

x and y the 

where D is given by (5.5).

Then the property

and only ~. ~

The methods of proof used by Hajek, Chiang and Chow, and more recently by
Catoni who obtained technically better estimates, all rely implicitly or explicitly
on large deviations ideas introduced by Freidlin and Wentzell in the study of

invariant measures for small diffusions. The same source of inspiration underlies

the approach of Hwang and Sheu for the asymptotics of the so-called Langevin

equation.
Due to lack of space, instead of reporting on the quite technical proofs of

all these authors, we prefer to propose a much quicker approach which will be 

general but gives pertinent and easily reached clues ; these computations will be
sketched informally but can be formalized at very low cost and do provide a

useful tool to understand quickly new variants of the simulated annealing algo-
rithms.

6. ASYMPTOTIC RESULTS OF FREIDLIN - WENTZELL

On a finite state space E , consider a stochastic transition matrix,

depending on the parameter T > 0 , _



where for x ~ y

Here the U , a are arbitrary numbers in and the parameter T will

tend to zero.

Assume PT to be irreducible, so that there is a unique invariant probability

measure ~ on E 

Let J~ be the eigenvalue of PT which has the largest modulus, among all

eigenvalues distinct from 1 . Wentzell and Freidlin have proved two interesting
results concerning the asymptotic behaviour of 1JT and % as T --~ 0 .

To state these results, introduce for any subset F of E a particular
set of graphs S(F) with vertices in E . By definition, a graph G E S(F) will

be a set of arrows f : x - y where x,y E E, x ~ y , and such that

(6.2) - G contains no cycle ;
- for each x E E - F , G contains a unique arrow starting at x ;

- for all x E F , the graph G contains no arrow starting at x .

For any arrow f : x ---~ y , we let U (f) = U 
xy , 

and one defines then the 

U (G) 06 an y graph G in S (F) by

Following Wentzell, we now define, for k = 1,2,...,card(E) , , the numbers

Wentzell proved that, if N = card(E)

and that in the genenlc where the (6.6) then

for T small, the eigenvalues of P T are distinct and real, and the (1 + k)~
eigenvalue (in decreasing order) 8k (T) verifies

In particular, one can improve slightly Wentzell’s result to show that the
2~ eigenvalue verifies then



7. STEPWISE COOLING

To gain some heuristic insights, we are going to study cooling schedules
where one keeps the temperature Tn fixed during a series of Kn consecutive

steps, before lowering it to Tn+1 . Such cooling schedules are quite common in

applications.
Let Pn be one-step transition matrix at temperature Tn defined by the

annealing scheme (5.1) associated with the energy function H (x) . Of course,
with the notations ( 6 . 0 ) - ( 6 .1 ) , we have Pn = PT with U = [ H (y) - H (x) ] + .

n xy
Let vo be the probability distribution of Xo . The probability distribution

vn of where

(7.1) Ln = K~ +... + Kn

is given by the recurrence relation

(7.2) Vn = Vn-1 i 

Call An the set of distinct eigenvalues of Pn which are not equal to 1 . Then

the standard Jordan decomposition of Pn yields

(7.3) Pn = Mn + 03A3 03BB Q03BB,n

where, since Pn is an irreducible stochastic matrix, all the rows of Mn must

with the measure n of Pn, and

(7.4) p n Q, A,n =0 °

In particular, the rows of FK being identical, for any measure p on E , we

have the implication

(7.5) (2 p(x) = 0 implies p FK = 0) .

Let be the eigenvalue with largest modulus in the set An ; the esti-

mates of § 6 shaw that, at least in the generic case,

(7.6) ~1~ -1-cexp(- A1 for all 

where c > 0 .

One can prove also that

(7.7) for all A E lln , all Tn ,

where a is a fixed constant. Assume Pn diagonalisable, to write a shorter proof.

Hence, for any measure 11 on E -6uc.h p(x) = 0 , we have
xEE

so that by (7.5)-(7.6)-(7.7), we get



where a is a (new) constant).

To simplify the notations, let

Recall that the invariant measure pn of Pn is the Gibbs measure

where Zn = 03A3tHn(y) .
An elementary computation based on (7.9)-(7.10) shows that

where a is a (new) constant.

Now let

Using (7.2) and the invariance of yields

which in view of (7.8) and (7.11) yields

Of course, (7.13) implies immediately

with the notations

We can now play around with the Kn and tn = exp - T to mahe sure that
n

En tends to zero as n ~ +00 . Indeed, as soon as this is the case, the law

vn of Xn must have the same limit as pn for n ~ +~ , and this last limit

is obviously the uniform distribution MIN over the set EMIN of global minima.
The expression (7.14) shows that there is a wide choice of such minimizing

schedules, and that the bound obtained for en cannot tend to zero as n 

unless one has lim = 0 , which is equivalent to



00 ~
In particular, X 1 K t = +00 .

For instance, select K such that

Then (7.16) yields, up to multiplicative constants

-bn
Un ~ e .

Now impose = £ with a > 1 , so that (7.15)-(7.14) yield successively
un n

Coming back now to the L = Ln , we can evaluate the error Er -.
and the temperature after L elementary steps of the algorithm

Thus we see that, for this particular minimizing cooling schedule, the temperature
should decrease like A log L 

where L is the computation time, and the distance

between vL and is of the order of B A . Note that B is generally
smaller than A, and that the time Kn at temperature Tn is of
the order of cte x exp A Tn .

Moreover, (7.18) shows that Ln N Kn so that the part of the

computation time is spent at the lowest temperature reached during that time. This

means that such annealing schedules actually are very close to Glauber dynamics
at fixed low temperature.

Of course, the features exhibited by this particular example do not necessarily

hold for all cooling schedules based on the bound (7.14) but the expressions (7.19)

(7.20) for and are likely to be the best "rough" lower bounds which

can be achieved by schedules based on (7.14).

We also point out that there is quite a bit of freedom in the selection of

the stagewise cooling schedule Tn ; as is easily checked, very fast cooling in

this setup simply has to be paid for by much longer stages at each fixed tempe-
rature.



One interesting aspect of the utations given in sections 6 and 7 is

that the constant A = C2 introduced in (7.6)- (6.6) has been rigorously
and Chow) with the constant R of th. 5.6.

We may also interpret the other basic constant D introduced by Hajek (c~.

5.5). Indeed assume we are only interested in the speed at which, in the preceding

annealing schedules, tends to zero as n -~ +~ . Then, letting v

be the column vector corresponding to the indicator function of E - Er~ , we will
be concerned with the behaviour of PKnnv where p is a measure on E having a

total mass equal to 0 . Thus we write, using (7.3)-(7.5),

where Wn is a iubiet of the set An of all eigenvalues of Pn

which are not equal to 1. Namely, we may very well have Q. v 
= 0 for several

À E An , and such A. will not appear in Wn . Hence if the eigenvalue with highest
modulus in Wn is the ( 1 + k) 

~ 
in decreasing order, the constant A = Ci-Cs

of the preceding computations will be replaced by the constant A = C - Ck+1
with the notations (6.4)-(6.6).

It is then natural to expect the following conjecture to hold :

(7.21) The constant D introduced by Hajek to characterize the minimizing cooling
schedules (see 5.5) coincides withg Ck- Ck+1 , for some integer k ~ 1 , where

the Ck are the "costs" introduced by Wentzell (see (6.4)).

New a few simple examples show that when card E~~~ = r , it seems quite
possible to have D = Ck - Ck+1 with k ~ r + 1 .

8. PARALLELIZATION OF ANNEALING ALGORITHMS

As the preceding asymptotic results indicate, annealing algorithms tend to be

fairly slow, and for large scale optimization problems, most of the applied work

relies on "fast" cooling schedules of the type Tn = To an where a = .95 or

a = .99 . Needless to say that the minimizing property does not mathematically
hold for these cooling schedules, which does not prevent them to have useful

performances when suitably taylored to fit a given application (see for instance

Bonani - Lutton, Dreyfus, Uhry among many other specialists).
Another approach, much more recent, is to try to use computing to

accelerate the algorithm. This raises,fairly complicated mathematical questions,
and opens a wide field of experimentations for parallel canputing experts. I am

currently involved in the investigation of these questions with the collaboration

of Trouve, Graffigne, Lutton, Bouge, Virot, Roussel, Tourangeau, Uhry and others,
within the framework of a CNET - University Paris-Sud project.



In this brief survey, I will select on1.y one aspect of the parallelization

problem for simulated annealing.
We come back to the microscopic description of the configuration space E

as E = L , where S is a finite set of indices or "sites" ; configurations
are noted x = (xs) sES and the energy function H (x) to be minimized is of the

form (see § 1)

where C is the set of all in S associated to a neighborhood system

W , s E S . Recall that the only restriction on the Ws E S is that s’ E Ws
if and only if s E W , .

Cliques are precisely the subsets K of S such that any two sites in K

are neighbours in S . The action potentials UK : E --> R depend only on the xs ,
sEK.

Call PT(x) the Gibbs measure (see 2.2) associated to the energy H(x) .

Given the form (8.1) of H(x) , the conditional distribution of xs given all

the xt , t E E - s depends only on the xt , t E Ws - s . This is the so-called
Manf2au property ; if we write W s. = Ws - s and note the restriction

of any configuration x to F c S , this conditional distribution

also called of PT can be computed easily.
Define first the function

where a E L and y are any configurations such that ys = À , and yt 
= 

xt
for all t E W . We then set

s.

to obtain directly

In this context, the elementary steps used to build a (sequential) simulated

annealing algorithm consist in first selecting a sequence (sn) of sites, which

one generally constrains to be periodic and to eveg of S . One fixes

a cooling schedule Tn ~ 0 . At time n , call X(n) the current configuration,

and let Fn be the a-algebra generated by the X(k) , k ~ n .

In the sequential annealing algorithm, the X(n) form a Markov chain, such

that X(n + 1) coincides with X(n) at all sites s 7~ sn , and such that

Zn+~ - X~(n+ 1) verifies :



where in formulas (8.4)-(8.5), T has been replaced by Tn .

Asymptotic results similar to those quoted earlier in this text show that

for lim Tn log n >_ D > 0 where D is a suitable constant, then the law of
n -)-+oo

X(n) concentrates on the set of configurations minimizing H .

Strictly speaking, these algorithms do not fit the abstract scheme described

earlier. However, for small T > 0 , we obviously have (c. 6. (8.4))

where s is ang poInt Xo E L minimizing :the [unetlon X - U X , xWs).
One can then use asymptotic results described earlier to analyze the optimal

cooling rates, and show that indeed the constant D coincides with the Hajek
constant D associated to H(x) . The key point here is that (8.7) shows that

at ature T, and when the a local minimum of H (x) ,
then the transition matrix for a single annealing step in configuration

space E still verifies

although ho2d for arbitrary x E F .

Now a natural idea, if one has access to computers allowing simultaneous

parallel computations, is to refresh the values of large sets of sites simulta-

by synchronous random choices at all such sites ; at time n , we may

for instance decide to change simultaneously all the x s (n) , the simultaneous
choices being independent, while, for each s E S , the choice of Xs (n + 1 )
given X(n) is still made according to the conditional distribution (8.6).

It is easy to write explicitly the transition matrix a (T) of this new

Markov chain in configuration space, at temperature T ; indeed one proves
easily that

where the coit ~unc~:o~ u is given by

(the notations are those of (8.7)).
Now the Freidlin - Wentzell theory of stochastic matrices with exponentially

vanishing terms can be applied to obtain optimal cooling rates and to understand
the nature of the limiting equilibrium distribution. Indeed, if ~ is the

equilibrium distribution for a stochastic matrix q(T) given by (8.8), Freidlin -
Wentzell showed that u and El3 concentrated on Eo 06

TB0 ’’’



which can be characterized as follows.

With the notations of (6.3), recall that the cost function Uxy associates

to each graph G over E a cost U(G) . Let

(8.10) u (X) - inf {U (G) ~ G E S ( {X} ) } ,

where S(F) has been defined in (6.2) for FcE.

Then the set Eo of is given by

Given the 
, 

explicit but two-links remote relation between H(x) and U ,
there is a priori no reason why Eo should coincide with EMIN . It is in fact
reasonably easy, using (8.10)- (8.11) , to construct many examples where Eo contains

configurations x wh.cch are not minima.

For recent results in this direction, we refer to Trouve’s note, where he

proves by direct methods the existence of limit distribution in synchronous
simulated annealing. The same question can also be handled with the help of

results of Follmer and altri on general non hanogeneous Markov chains, in the

spirit of Dobrushin’s ideas.

We will expand on the subject in forthcming papers as well as in the

extended version of this text.
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