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SIMULATED ANNEALING

par Robert AZENCOTT

1. LARGE SCALE OPTIMIZATION PROBLEMS AND SPIN-GLASS MODELS

Consider a finite set S of indices and for each s € S a variable Xy
taking its values in a finite set L . Call E = L® the set of all "configurations"
X = (Xs)sES . Now let H : E— R be an arbitrary function ; the problem we
consider here is to evaluate Hm.in = l;[{%.g H(x) , and to find at least one configur-
ation x minimizing H(X) .

When the cardinal of S is small, a simple enumeration of the x € E would
be a feasible algorithm, but minimization problems for which the set S of
variables has very Large cardinal are quite common in statistical mechanics,
cambinatorial optimization, image analysis, etc.

One instance of such large scale optimization problems was provided by the
spin-glass models in statistical mechanics ; in this context, X represents the
physical state of the vertex s in a crystal lattice S of very large cardinal
N = car(S) . The lattice is imbedded in a two or three dimensional euclidean space,
and H(x) represents the energy of the configuration x .

For the spin-glass model, the energy will typically be of the form

Hx) = Z UK(x) ,
KEC
where C , the set of "cliques", is the family of all subsets K in the lattice S
such that diameter (K) < p , and where each action potential UK (x) depends only
on the (Xs)SEK .

No direct evaluation of Hmin is feasible since, in the spin-glass situation,
which is supposed to modelize crystals mixed with randamly scattered impurities,
the map K — U, is assumed to assign "at random" to each clique K an action

K

potential UK belonging to a fixed vector space of real valued functions.

For particularly simple interactions, the asymptotic behaviour of Average (Hmi )
as N — o has been obtained by the replica method (Parisi, Mezard) in the

physics literature, which gave also rough descriptions of the "ground states"
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(minimizing configurations) for large N . Due to the large part of heuristics
in these camputations, the empirical verification of the results was crucial, so
that spin-glass specialists such as Kirkpatrick, Toulouse, Mezard, Gutfreund,
Amit and many others have been natural custamers for feasible minimization algo-
rithms such as the now celebrated "simulated annealing" method.

One of the tricky features in typical spin-glass models is that the number
of "local minima" for H(x) is huge for large N , so that any kind of determin-
istic gradient algorithm is useless in such situations. Here the notion of local
minima refers to the so-called Hamming distance, two configurations x and vy
being neighbours if and only if they differ at most at a single site.

2. THE GIBBS DISTRIBUTION

In the context of statistical mechanics, it makes sense to consider on any
given configuration space E = LS , the set Ma of probability distributions P
for which the average energy is constrained by
(2.1) 2 P(x) Hx) = a .

X€EE

Within the set Ma , the so-called "most disorderly" distribution P must

maximize the entropy

- Z P(x) log P(x)
X€EE

and hence, using Lagrange multipliers, one readily sees that the most disorderly
distributions in M_ = are the Gibbs distributions

1 [ Hx)
Gplx) =g e |~ —T_]

where 7, = xEE - H(TX)] is the "partition function" and the positive para-
meter T , determined by (2.1) is usually identified with a "Zemperature".

An obvious feature of GT which is crucial here is that, as T — 0 , the
distribution G‘I‘ becames more and more concentrated on the set
(2.2) Eviy = {x € E|H(x) =min H(y)} .

yEE
More precisely, we have
Tl—J;II(l) GT(x) = Go(x) for all x € E ,

where G, is the unigorm probability distribution on Emn Thus, if one could
select effectively a random configuration x € E with probability distribution
Gp v and T small enough, such a configuration should be, in an overwhelming
proportion of cases, an almost minimizing configuration for the energy H .

However, for large cardinal(S) , building up an effective method of random

sampling in E with respect to the probability GT turns out to be a serious
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camputational problem, which was initially solved by Glauber, Metropolis and
altri.

3. THE GLAUBER DYNAMICS

We sketch the now classical stochastic algorithm suggested by Glauber, to
construct a random variable X with values in the space of configurations E and
with probability distribution close to GT . Note that here the temperature T
is f4xed.

First we fix an arbitrary symetric Markov transition matrix Q = (qu) where
X,y € E . For instance, a typical choice for the spin-glass model is to set

Ly = 0 if y £ {VX - x3

(3.1) 1 '
Ly =T if ye v, -x
where VX is a set of neighbours of x in E for the Haming distance (c{.
§ 1), and (1+r) is the cammon cardinal of all the Vx’ X€E.

We want to construct a ftandom sequence Xn of configurations. Assume the
configuration Xn already obtained. Select then a random configuration ¥n such
that

(3.2) P(Yn =y| Xoy--+,%n) = dg.y
We then impose, with probability one,
(3.3) {either Xn+1 = Yn or Xn4+1 = Xn} .

This (randam) choice is made according to the following rule

H(Yn) -H(Xa) 1*
(3.4) P (Xn+1 =Yn|Xo--—Xn,Yn) =exP‘£—n')—‘T'i)‘]—“r
where [vit=v if v20 and [v1¥=0 if vs<o.

It is quite easy to prove that the Markov chain Xn has a unique equilibrium
distribution, coinciding with the Gibbs distribution Gp » provided the "selection"
matrix Q is symmetric and irreducible. In other words, one has then
(3.5) lim P(Xn=x) = GT(x) , XEE.

n-++o
Here irreducibility of Q means that any two configurations can be connected by
a finite chain of configurations Xi such that qx_x‘_‘_1 > 0 . Of course, the
174
actual computation of Xn+1 given Xn becames lengthier when the cardinal of
€E > 0} in .
13 [ Ay } creases
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4. SIMULATED ANNEALING : HEURISTICS

The result (3.5) and the fact that, for low temperature T , the distribution
G‘I‘ concentrates on minimizing configurations suggest the use of Glauber random
dynamics where the temperature T is no longer constant but decreases to 0 as
n— +w . If we fix a decreasing sequence Tn such that n:E*iI_'I_Ian =0, and if
we replace T by Tn in the conditional distribution (3.4), we cbtain a new
Markov chain Xn , for which one should hopefully have
(3.6) lim P(Xn € EMIN) =1.

n-++o

This new algorithm was called simwlated anneafing by Kirkpatrick, Gelatt,
Vecchi who introduced the idea.

Their (heuristic) arguments were based on a formal analogy with progressive
and very sfow physical cooling, which had long been used to bring actual physical
systems into stable low-energy states, while fast cooling would freeze the system
in undesirable high energy metastable states.

Actually not all cooling schedufes (Tn) will exhibit the crucial minimizing
feature (3.6). The first sufficient condition for (3.6) was obtained by D. and
S. Geman, who proved rigorously that if
(3.7) lim Th logn>R,

n-++eo
with R > 0 ALarge enough, then the minimizing property (3.6) would hold for the
simulated annealing algorithm.

Easily built counterexamples were quickly exhibited (by Brétagnolle for
instance) to show that when nJ;j.rBw Tn log n = 0 , the minimizing property (3.6)
cannot hold in general. Then Hajek computed the value of the best constant R in
(3.7), and several mathematical papers have since refined the asymptotic study of
these algorithms, and of their continuous time analogues. Let us mention a few
names : Holley - Stroock, Follmer, Gidas, Hwang - Sheu, Chiang - Chow, Catoni, Trouvé
and many more.

Simultaneously, practical uses of simulated annealing for large scale minimiz-
ation problems have been explored by a very large cammunity of physicists and/or
camputer science specialists such as Sherrington, Toulouse, Dreyfus, Aarts-
Laarhoven, Bonomi - Lutton, Uhry, D. and S. Geman, etc.

5. SIMULATED ANNEALING : THE ABSTRACT SETUP

Consider an abstract finite set E , which will still be called the configur-

ation space. et H : E— R be an arbitrary function, still called the energy
function.
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Fix a symmetric stochastic matrix Q = (qu) , X€E, y€E such that
any two configurations x and y can be connected by a finite chain X €EE
with Qg ., > 0 . The matrix Q will be called the exploration matrix.

Fix a decreasing sequence Tn o0of "temperatures”" tending to zero as n — +o.
This sequence will be called a cooling schedufe.

On the state space E define a (non hamogeneous) Markov chain Xn , with
arbitrary initial state Xn , and transition matrix

p(X,y) = P41 =y | ¥n = %)

given by

1]

<+
_[H(y) -Hx)]
Pn(%,y) = qy, exp ™ for y #x

(5.1)

Pn (X,X) 1- 2 pnx,y) .
#x

¥

Before stating the main asymptotic results concerning the simulated annealing
algorithm (Xn) , we need a few more definitions.

For each x € E , let VX be the set of all points y € E such that
Ly > 0 , which will be called the set of neighbours of x .

A point x € E is said to be a Local minimum o4 H if H(x) < H(y) for
all y € V. - It is called a global minimum of H if H(x) < H(y) for all y € E.
We denote by EMIN the set of global minima and EI.OCMIN the set of local minima
of H.

Introduce now several notions used by Hajek.

Two states x and y in E are said to communicate at height h if
either y=x and H(X) < h , or if there is a sequence Xy oo Xy k22 with
X=X, X =y and such that {H(xj) <h, Xj+1 EVXj} forall j=1...k.
Note that this property is 4ymmetric in (x,y) .

The depth d, of a local minimum x € E will be the smallest number D > 0
for which there exists a y € E such that x and y camunicate at height
H(x)+D , and H(y) < H(x) .

Note that dX =+ whenever x is a global minimum.

5.2. THEOREM (Hajek).- Consider an arbitrnany enerngy function H : E — R and
the simulated annealing algorithm (5.1). Then one has

(5.3) n]:*:i.l_'r_lmP(Xn € EM]I\I) =1
L§ and only L4
+00 D
5.4 z - =) = 4o
( ) n=1 P ( Tn) *
whene the constant D A5 given by
(5.5) D=sup {d |x€ B pomy ~ B -
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This elegant result clearly implies that sequences Tn such that

lim Tnlogn = c will be "minimizing" cooling schedules if and only if ¢ =D ,

n-++o
a result which seriously improved on previous sufficient conditions given by D.
and S. Geman, as well as Gidas.

A recent theorem of Chiang and Chow completes nicely Hajek's result.

5.6. THEOREM (Chiang and Chow).- Consider the annealing algornithm (5.1). For any
two distinet global minima x,y € Evin Let hxy be the smallest height at which
x and y communicate. Degine the constants

(5.7) R=sup{hxy|x,yeE_Mm,x¢y}

R = max(R,D) ,
where D 48 given by (5.5).
Then the propenty

n];ul\m P(Xn =x) =0 for all x £ EMIN
(5.8)
lim PXn =%x) >0 for all x €
n-+>+o ) EMIIZN
holds Aif and only A4
53 (

(5.9) z

R
exp | = =) =+ .
n \ I'n

1

The methods of proof used by Hajek, Chiang and Chow, and more recently by
Catoni who obtained technically better estimates, all rely implicitly or explicitly
on large deviations ideas introduced by Freidlin and Wentzell in the study of
invariant measures for small diffusions. The same source of inspiration underlies
the approach of Hwang and Sheu for the asymptotics of the so-called Langevin
equation.

Due to lack of space, instead of reporting on the quite technical proofs of
all these authors, we prefer to propose a much quicker approach which wiff be Less
general but gives pertinent and easily reached clues ; these camputations will be
sketched informally but can be formalized at very low cost and do provide a

useful tool to understand quickly new variants of the simulated annealing algo-
rithms.

6. ASYMPTOTIC RESULTS OF FREIDLIN - WENTZELL

On a finite state space E , consider a stochastic transition matrix,
depending on the parameter T > 0

’

(6.0) Pp [pXy

() ]XG_E,y€E
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where for x #y

1
.1 T) = - =0 .
(6.1) Py = 3y Exp[ T XY]
Here the U_ , a__ are arbitrary numbers in R" , and the parameter T will

tend to zero.

Assume PT to be irreducible, so that there is a unique invariant probability
measure H, on E verifying Hn PT = Un -

Let )"1‘ be the eigenvalue of PT which has the largest modulus, among all
eigenvalues distinct from 1 . Wentzell and Freidlin have proved two interesting
results concerning the asymptotic behaviour of M and )‘T as T— 0.

To state these results, introduce for any subset F of E a particular
set of graphs S(F) with vertices in E . By definition, a graph G € S(F) will
be a set of arrows f : x — y where x,y € E, x #y , and such that

(6.2) - G contains no cycle ;
- for each x € E-F , G containsaunique arrow starting at x;
for all x € F , the graph G contains no arrow starting at x.

For any arrow f : x — y , we let U(f) = ny , and one defines then the cost
U(G) 0f any graph G in S(F) by

(6.3) U@ = Z U(f) .
f€c

Following Wentzell, we now define, for 'k = 1,2,...,card(E) , the numbers
(6.4) Q= inf {U(G) |GE€SEF ,FcE, card(F) = k}
Wentzell proved that, if N = card(E)

(6.5) Cl C 2 .. CN

(6.6) Cl—C2 2-C ZCN_ CN
and that <n the generndic situation where the inequalities (6.6) are strict, then
for T small, the eigenvalues of P, are distinct and real, and the (1 +k)th

T
eigenvalue (in decreasing order) 6 (T) verifies

(6.7) lim Tlogl1-6, (M] = - [C - 1.
Lin GGt

In particular, one can improve slightly Wentzell's result to show that the
an eigenvalue >‘T verifies then
(6.7) 1—)\T~cacp(-%>

where A=C1—C2>0,and c>0.
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7. STEPWISE QOOLING

To gain some heuristic insights, we are going to study cooling schedules
where one keeps the temperature Tn fixed during a series of Kn consecutive

steps, before lowering it to Tn+1 . Such cooling schedules are quite common in
applications.

Let Pn be one-step transition matrix at temperature Tn defined by the
annealing scheme (5.1) associated with the energy function H(x) . Of course,

with the notations (6.0)-(6.1), we have Pn =B, with U, = [H(y) -H)1T .
n

Let Vo be the probability distribution of Xo . The probability distribution
v, of where

(7.1) In=Ki +...+ Ko
is given by the recurrence relation
(7.2) Vn = Vn-1 PnKn

Call An the set of distinct eigenvalues of Pn which are not equal to 1 . Then
the standard Jordan decamposition of Pn yields

(7.3) P_ = + Z XQ
n Mn AEAN A,n

where, since Pn is an irreducible stochastic matrix, all the rows of Mn must
coincdde with the invariant measure un of Pn , and

(7.4) My len =0 for all A € An .

In particular, the rows of Mn being identical, for any measure Y on E , we
have the implication

(7.5) {Z u(x) =0 implies p My = 0}
X€EE

Let >‘T be the eigenvalue with largest modulus in the set An ; the esti-
n
mates of § 6 show that, at least in the generic case,

(7.6) |>\|Sl—cexp(—%> for all A € An ,

where A=Cy-C2>0, c>0.

One can prove also that
(7.7) HQ}\,nH <a forall A€A,,all T,

where a isa fixed constant. Assume Pn diagonalisable, towrite a shorter proof.

Hence, for any measure u on E such that EE u(x) = 0 , we have
X!

Kn Kn
= + X X ]
uP W [Mn rela Q>\’n ’
so that by (7.5)-(7.6)-(7.7), we get

7.8) e B0 < a{l-c exp (_ Tﬁn)]Kn [
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where a is a (new) constant).
To simplify the notations, let
tn = exp (— i%) inf H(x) = h
n. XEE
(7.9)
inf H(x) = B+h where B > 0 .

xEE—EMIN

Recall that the invariant measure un of Pn is the Gibbs measure

(7.10) %m=iﬁ®,
M) tE(Y)

€E
An elenentax%’/ camputation based on (7.9)-(7.10) shows that

where 7, =

(7.11) lin-tnerll_ < a ta ,

where a is a (new) constant.
Now let
(7.12) €n = H\’n'un”m .

Using (7.2) and the invariance of uyn yields

K;
Vn = Hn Vn-1 Pnn"Un Plén

K;
(Vn-1 = bn-1) PnKn + (un—1-n) Py",

which in view of (7.8) and (7.11) yields
(7.13) en <a(l-c tHM ¢ L +a tg .

Of course, (7.13) implies immediately

n mk-‘
(7.14) én < Un [ z —,
. . k=0 9]
with the notations
(7.15) um=atE for n21, wo=¢€5 , U =1,
o A Kk
(7.16) un = al J (l-c tk) for n=21.
k=1

We can now play around with the Kn and tn = exp - % Lo make sune that
en Ztends to zero a5 n — +o . Indeed, as soon as this is the case, the law
vn of Xn must have the same limit as un for n — +w , and this last limit
is obviously the uniform distribution wypy over the set Eypg 04 global minima.

The expression (7.14) shows that there is a wide choice of such minimizing
schedules, and that the bound obtained for en cannot tend to zero as n —» +o
unless one has n];i{?mun = 0 , which is equivalent to

(7.17) lim [— )rl! Kk tjA{ + nloga-| =-c ,
k=1 ]

n -+ oo
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o
R A _
In particular, kgl Kt =+e.
For instance, select Kk such that

Kk=(Ctﬁ)_1 (loga+bc) where b>0.
Then (7.16) yields, up to multiplicative constants

Un ~ e—bn .

1 .
! with o > 1, so that (7.15)-(7.14) yield successively

w1l _ .~ (b/B)n
tn We

Now impose

513

en"'lln"‘e_bn

Kn ~ rlOLA/Beb(A/B)n
(7.18) 1n=K1+--.+Kn~naA/Beb(A/B)n )

Coming back now to the computation time L = I1n , we can evaluate the error £

L]
and the temperature T[L] after L elementary steps of the algorithm

1B

b
-bn 1
(7.19) S~ A
1 B A
7.20 T, = - ~= ~ )
( (L] logtnh bn Log L

Thus we see that, for this particular minimizing cooling schedule, the temperature
should decrease like I_og T where L is the lcompu,ta,tion time, and the distance
between v;, and uypy 1is of the order of —LB_/X . Note that B 1is generally
smaller than A , and that the computation time Kn at Temperature Tn L4 0f
the ondern 0f cte x exp % .

Moreover, (7.18) shows that In ~ Kn so that the essential part of the
computation time L5 spent at the Lowest temperature reached duning that time. This

means that such annealing schedules actually are very close to Glauber dynamics

at fixed low temperature.

Of course, the features exhibited by this particular example do not necessarily
hold for all cooling schedules based on the bound (7.14) but the expressions (7.19)
(7.20) for L] and T[L] are likely to be the best "rough" lower bounds which
can be achieved by schedules based on (7.14).

We also point out that there is quite a bit of freedom in the selection of
the stagewise cooling schedule Tn ; as is easily checked, very fast cooling in

this setup simply has to be paid for by much longer stages at each fixed tempe-
rature.
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One interesting aspect of the camputations given in sections 6 and 7 is
that the comstant A = Cq1-Cz Antroduced in (7.6)-(6.6) has been rigorously
Ldentified (by Chiang and Chow) with the constant R of th. 5.6.

We may also interpret the other basic constant D introduced by Hajek (cf.
5.5). Indeed assume we are only interested in the speed at which, in the preceding
annealing schedules, \Jn[E—EMm] tends to zero as n — +e« . Then, letting v
be the column vector corresponding to the indicator function of E—EMIN , we will
be concerned with the behaviour of uPﬁnv where u 1is a measure on E having a
total mass equal to 0 . Thus we write, using (7.3)-(7.5),

uPnKnv = Z )\Kn

AEWn
where Wn is a (generally strnict) subset of the set An of all eigenvalues of Pn
which are not equal to 1 . Namely, we may very well have Qk,n v = 0 for several

UQ}\,nV ’

A€ An , and such A will not appear in Wn . Hence if the eigenvalue with highest
modulus in Wn 1is the (1 +k)JCh in decreasing order, the constant A = Cq-C2
of the preceding computations will be replaced by the constant Ak = ck— Ck 1
with the notations (6.4)-(6.6).
It is then natural to expect the following conjecture to hold :

(7.21) The constant D dintroduced by Hajek to characterize the minimizing cooling
schedules (see 5.5) codincides with Cr = Cryr 7 forn some Anteger k = 1 , where
the C, e the "costs" introduced by Wentzell (see (6.4)).

Now a few simple examples show that when card EMIN =r , it seems quite
possible to have D = Ck—Ck+l with k2r+1.

8. PARALLELIZATION OF ANNEALING ALGORITHMS

As the preceding asymptotic results indicate, annealing algorithms tend to be
fairly slow, and for large scale optimization problems, most of the applied work
relies on "fast" cooling schedules of the type Tn = To a® where a = .95 or
a = .99 . Needless to say that the minimizing property does not mathematically
hold for these cooling schedules, which does not prevent them to have useful
performances when suitably taylored to fit a given application (see for instance
Bonami - Lutton, Dreyfus, Uhry among many other specialists).

Another approach, much more recent, is to try to use parallel computing to
accelerate the algorithm. This raises fairly complicated mathematical questions,
and opens a wide field of experimentations for parallel camputing experts. I am
currently involved in the investigation of these questions with the collaboration
of Trouvé, Graffigne, Lutton, Bougé, Virot, Roussel, Tourangeau, Uhry and others,
within the framework of a CNET - University Paris-Sud project.
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In this brief survey, I will select only one aspect of the parallelization
problem for simulated annealing.

We came back to the microscopic description of the configuration space E
as E = LS , where S is a finite set of indices or "sites" ; configurations
are noted x = (xs) S€S and the energy function H(x) to be minimized is of the
form (see § 1)

(8.1) Hx) = Z UK(x) ,
KEC

where C is the set of all cliques in S associated to a neighborhood system
Ws , S €S . Recall that the only restriction on the Ws €S is that s' € Ws
if and only if s € Ws' .

Cliques are precisely the subsets K of S such that any two sites in K
are neighbours in S . The action potentials U t E— R depend only on the X0
s €EK.

Call PT(x) the Gibbs measure (see 2.2) associated to the energy H(x) .
Given the form (8.1) of H(x) , the conditional distribution of Xy given all
the Xy t € E-s depends only on the Xy oy t € Wo-s . This is the so-called
Markov f§ield property ; if we write W, =W,-s and note x the restriction
of any configuration x to F < S, this conditional distribution

T s

also called Local specification of P, can be computed easily.

(8.2) ps(xlxt,tews.)=9(x =>\|xt,t€Ws.)

Define first the function
(s, )
Ui, = Z U,y ,
MM, T sekec K
where A € L and y are any configurations such that Y = A, and Ve = X
for all t € Ws. . We then set

(8.3)

o) 5w A0 ()]
1(:;) gl)otain directlyp ()\ | S-> = L [— . ()\s. ;
. s st. a (XWS.> S S ! st.” .

In this context, the elementary steps used to build a (sequential) simulated
annealing algorithm consist in first selecting a sequence (sn) of sites, which
one generally constrains to be periodic and to visit evey site of S . One fixes
a cooling schedule Tn V 0 . At time n , call X(n) the current configuration,
and let Fn be the o-algebra generated by the X(k) , k<n.

In the sequential annealing algorithm, the X(n) form a Markov chain, such
that X(n+1) coincides with X(n) at all sites s # s, , and such that

Znpq = Xsn(n+ 1) verifies :
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(8.6) P(Znys = M| Fn) =p, (V[ X (), £ €W, -sn) ,

where in formulas (8.4)-(8.5), T has been replaced by T, .

Asymptotic results similar to those quoted earlier in this text show that
for 1lim Tnlogn 2D > 0 where D is a suitable constant, then the law of
X(n) nc;);goentrates on the set EMIN of configurations minimizing H .

Strictly speaking, these algorithms do not fit the abstract scheme described
earlier. However, for small T > 0 , we obviously have (c4. (8.4))

wn nfin ) e dfo(n ol )
Se Se Ss
where §<S 48 any point Lo € L minimizing the function A\ — U<}\ ’ st.) .

One can then use asymptotic results described earlier to analyze the optimal
cooling rates, and show that indeed the constant D coincides with the Hajek
constant D associated to H(x) . The key point here is that (8.7) shows that
at temperature T , and when the configuation x 45 a Local minimum of H(x) ,
then the transition matrix pxy (T) for a single annealing step in configuration
space E still verifies

Pxy

although this Last statement does not hold for arbitrary x € F .

Now a natural idea, if one has access to camputers allowing simultaneous
parallel computations, is to #efresh the values of Large sets of sites simulta-
neously, by synchronous random choices at all such s4ites ; at time n , we may

(D) ~exp - £ [Hy) -HE©

for instance decide to change simultaneously all the Xs (n) , the simultaneous
choices being independent, while, for each s € S , the choice of XS n+1)
given X(n) is still made according to the conditional distribution (8.6).

It is easy to write explicitly the transition matrix qu(T) of this new
Markov chain in configuration space, at temperature T ; indeed one proves
easily that

(8.8) Q) ~ exp [— z ny} ,

where the cost function ny is given by

8.9 = 3 Jx ) - <A \]
( ) UXY SES [U (Ys XWSO/ ’ s’ st.}

(the notations are those of (8.7)).

Now the Freidlin- Wentzell theory of stochastic matrices with exponentially
vanishing terms can be applied to cbtain optimal cooling rates and to understand
the nature of the limiting equilibrium distribution. Indeed, if Mo is the
equilibrium distribution for a stochastic matrix q(T) given by (8.8), Freidlin-

Wentzell showed that l\j_m Mp = Ho exists and L8 concentrated on a set E, 0f
TNVO
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congigurations which can be characternized as follows.

With the notations of (6.3), recall that the cost function U

associates
to each graph G over E a cost U(G) . Let
(8.10) u(x) = inf {UG) | G € S({x})} ,
where S(F) has been defined in (6.2) for FcE .
Then the set Eo of teuninal configurations is given by
(8.11) Eo = {y € E]uly) = inf u(x)} .

X€EE
Given the explicit but two-links remote relation between H(x) and U_ ,

there is a prlond no reason why Eo should coincide with E It is in fact

reasonably easy, using (8.10)-(8.11), to construct many examﬁlzb where Eo contains
configunations x which are not global minima.

For recent results in this direction, we refer to Trouvé's note, where he
proves by direct methods the existence of limit distribution in synchronous
simulated annealing. The same question can also be handled with the help of
results of Follmer and altri on general non hamogeneous Markov chains, in the
spirit of Dobrushin's ideas.

We will expand on the subject in forthcaming papers as well as in the
extended version of this text.
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