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POSITIVE ENERGY IN GENERAL RELATIVITY

by Jerry L. KAZDAN*

Seminaire BOURBAKI

34e annee, 1981/82, n° 593 Juin 1982

Most classical field theories in physics express energy as a sum

of squares. Hence the energy is zero only if the field is zero. For

gravitational fields, one is given a space-time (N,y) with a metric

y of signature (-+++) . This metric satisfies Einstein’s equations

where R 
uv 

is the Ricci curvature tensor and R is the scalar

curvature of (N,y) , while T is the energy-momentum tensor and G

is a physical constant. One can think of T as describing the

physical distribution of matter. (We use the convention that Greek

indices run from 0 to 3 , Latin ones go from 1 to 3 , and we sum

on repeated indices).

Physical considerations [G,p.408] and [H-E, §4.3]) suggest that

in Q orthonormal frame field {e0,el,e2,e3} , ’ with e0 a time-like

vector, then

so TOO dominates the other components of Tu~ and the vector TOV
is non-spacelike. The (local) inequalities (A.2) are called the

dominant energy condition.

In the special case where there is a space-like hypersurface

M (i.e. a choice of space at one instant of time) which is asymptotically

Euclidean, physical considerations have also suggested a definition of the

* Supported in part by an N.S.F. Grant.
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total energy of the system. To be precise, we are assuming there is an

oriented spacelike hypersurface (M,g) (N,y) with induced metric g ij
and second fundamental form h... (M,g) is assumed to be

asymptotically Euclidean in the sense that for some compact set K c M ,

the remainder, M - K , consists of a finite number of subsets

M ,...,M (called the ends of M) , each of which is diffeomorphic to the

exterior of a ball in TR (see figure). Moreover, under this

diffeomorphism, in standard coordinates on ~t3 , g and h have the

asymptotic behavior
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Then the total energy and total momentum of M are defined by the

limiting expressions [A-D-M,1,2]

One can think of E and P., j = 1,2,3, as the four components

of an energy-momentum vector associated to the a th end. The goal

is to prove the following.

Positive Energy Theorem. Let be an asymptotically

Euclidean space-like hypersurface, where the metric y satisfies

Einstein’s equations (A.l) and the dominant energy condition (A.2).

Then E a Z IP I for each end M. Moreover, if E - 0 for some

a , then M is flat and has only one end.

Because the integrals (A.4) - (A.5) are evaluated at spatial

infinity, and since no signal can travel faster than light, the value

of the integrals (A.4) and (A.5) are conserved in time, and hence, so

is the energy inequality E z ~P~ .

The first complete proof of this result was by Schoen-Yau [S-Y,

2,3,4] (see these papers as well as [G], [W] for a discussion of earlier

work by others), who used minimal surfaces in a manner similar to the

traditional use of geodesics. Subsequently, E. Witten [W] found a

different proof using harmonic spinors (some mathematical considerations

were clarified in [P-T] and, independently, in [C]).
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The Schoen-Yau proof procedes by contradiction, while Witten exhibits

E - Ipl explicitly as a sum of squares. Both proofs, and indeed the

whole problem, are closely related to similar ones concerning the

existence of positive scalar curvature metrics on Riemannian manifolds,

for instance, on the torus T3 . Mathematicians became aware of both

problems, and of their close relationship, from the lecture of Geroch [G]

and Kazdan [K-W] at a 1973 symposium on differential geometry. Schoen-Yau

[S-Y,l], using minimal surfaces, then resolved some of the questions

concerning scalar curvature. Their work on the positive energy theorem

is a direct outgrowth of that work. Independently, Gromov-Lawson [G-L,1,2],

using harmonic spinors obtained other results on positive scalar curvature

(see also the important earlier work of Lichnerowicz [Li] and Hitchin [H],

as well as the survey [BB]).

B. First Proof (Schoen-Yau)

1. The idea. Geodesics minimizing arc length are a standard tool

in geometry. If y : . TR -~ M is a curve and L(y) the arc length

functional, then the first variation, 6L(y) = 0 , gives the equation

of geodesics, which are, by definition, the critical points of L . If

y actually minimizes arc length, then the second variation yields the

inequality

(B.1) 0  6~L(y) .

This inequality yields the Jacobi equation, and has been a rich source

of seeing the effect of curvature on geodesics, and hence on many

geometric phenomena.

. The two dimensional analogue of a geodesic is a minimal surface. In

this case one seeks the critical points of the surface area functional, A(S) .

Once one knows the existence of minimal surfaces (these existence proofs are



POSITIVE ENERGY

not trivial), it is natural to use the second variation, analogously

to (B.I), for a surface S that is actually a minimum, not just a

critical point. For SM with dim M = 3 this second variation

inequality (see [L, §9]) asserts that for all functions f E C2(S) with

compact support

where dx is the element of area on S, while b = (bij) , i,j = 1,2

is the second fundamental form of the embedding with

bi. , and RicM(v) is the Ricci curvature of M in the

direction v normal to S. (A minimal surface S is called stable

if ~2A(S) >_ 0 for all variations with compact support).

Now S being minimal means that 0 = trace b = bll + b , so

by standard formulas one has

where ~ is the scalar curvature of M and KS is the Gaussian

curvature of S . The stability inequality (B.2) may thus be rewritten

as

for all functions f E C2(S) with compact support.

If S is compact, we may let f = 1 to conclude, by Gauss-Bonnet,

that
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This proves half of the following

Theorem B.5 [S-Y,l] On the torus, M = T3 there is no Riemannian

metric g having positive scalar curvature, R . Moreover, if

RM ? 0 , then g is flat and RM = 0 .

Proof As is proved in [S-Y,l] (see also [Sa-U,1,2]) given (T3,g)
one can find a compact stable minimal torus, T2 . Since X(T2) - 0 ,
by using the stability inequality (B.4) we conclude that the scalar

curvature R of (T3,g) must be negative somewhere - unless it is

identically zero. However, if R = 0 but Ric ~ 0 , then ([Bo], see

also [K-W]) there is a new metric gl with positive scalar curvature,

a contradiction. Consequently Ric E 0 . But on a three manifold this

implies the sectional curvature is everywhere zero. Thus, g is flat.

Q.E.D.

This theorem has been improved by Schoen-Yau, and Gromov-Lawson to

give quite detailed information on which compact manifolds admit metrics

of positive scalar curvature. In particular, for all n the torus Tn

has no metric of non-negative curvature except the flat metric (see

[G-L,1]). Gromov-Lawson [G-L,3] have recently found much more information

on complete (non-compact) manifolds having metrics with positive scalar

curvature.

One easy corollary of Theorem B.5 is the following, which, as we shall

see shortly, is a special case of the positive energy theorem.

Corollary B.6 Let g be a metric on with the properties

(i) g = standard metric 6.. outside a compact set, (ii) the scalar

curvature of g is non-negative. Then g is the standard metric

everywhere.
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Proof Place the compact set in a large cube. Continue this cube

periodically to obtain a torus to which the previous result applies.

Q.E.D.

To relate this corollary to the positive energy theorem, we restate

the dominant energy condition (A.2) in terms of the intrinsic geometry

of the space-like hypersurface with second fundamental

form hij and scalar curvature RM (see [G,p.408]). Let

Then the dominant energy condition (A.2) is replaced by

Note that in the special case where h’ = 0, the condition (B.7)

implies that 0 , while assumption (i) of Corollary B.6 may be

viewed as a strong version of the asymptotic Euclidean condition.

Consequently, the corollary is indeed a special case of the positive

energy theorem. Next, we relax the stringent assumption (i) of

Corollary B.6.

2. A special case. To extend the above proof to cover the

situation of interest in general relativity, one must replace the

portions where compactness of M was used by corresponding statements

for non-compact but asymptotically flat manifolds. The compactness

entered in two places ; (i) constructing the stable minimal submanifold,

and (ii) via the Gauss-Bonnet theorem.
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Schoen-Yau first treat a special case, making the assumption - just

as above - that Eh = 0 . To repeat, in this situation the dominant

energy condition (B.7) then implies that the scalar curvature 0 .

The positive energy theorem is then a consequence of

Theorem (B.8) Let (M,g) be an asymptotically flat oriented three

manifold. If 0 , then |P03B1| for each end M . Moreover,

if E = 0 for some end M , then (M,g) is isometric to IR3 with

its standard flat metric.

Reasoning by contradiction, Schoen-Yau reduce to the situation where

the metric satisfies

on each end M , with P = 0 (see [S-Y,3]), with 0 and

R M > 0 outside of a compact set. By a computation, Ea = m G

Again by contradiction, assume m  0 for some end M .

Using this assumption, one proves the existence of an appropriate

area minimizing surface S in M . The area minimizing property gives

the stability inequality (B.2). A geometric argument, which substitutes

for the Gauss-Bonnet theorem in the proof of Theorem B.5 gives a

contradiction, thus establishing that 0 (and hence Ea >_ 0)

for each end M .
a

To complete the proof, one must show that if R - 0 and some

m = 0 then (M,g) is just JR3 with its standard flat metric.
a

Because dim M = 3 and M is asymptotically flat, it is enough to

show that Ric M (g) 5 0 . One first shows that, under these assumptions,

R = 0 (if not, one can find a conformal asymptotically flat metric with
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zero scalar curvature and negative total energy, which contradicts

the first part of this proof). Then by a perturbation analysis

(as in [K-W, Lemma 5.2], see also [K]) one shows that if

RicM(g) f 0 the new metric gt = g - t RicM(g) has scalar curvature

Rt ? 0 for all small t > 0 , but has negative total energy.

This again contradicts the first part of the proof. Thus Ric M (g) = 0 .

3. The general case. Up to now, we have made the restrictive

assumption that the second fundamental form h of M satisfies

0 . The general case of the theorem is proved by deforming

both the metric g and the embedding to the situation of the special

case discussed above. It involves a difficult and technical existence

proof of the existence of a solution f to the mean curvature equation

(first proposed by P.S. Jang)

where Di is the covariant derivative on (M,g) , and gl~ is

the inverse of gij = gij + fX,£X, , . Since any adequate summary

would be too long, we just refer the reader to the paper [S-Y,4].
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C. Second Proof (Witten)

1. The idea. Witten’s procedure is similar to that used to prove

most "vanishing theorems" in geometry. To describe the procedure, let

(M,g) be a Riemannian manifold, possibly with boundary, and let L be

a differential operator of the form

*

(C.I) Lu = V Vu + Qu ,

where u is a section of some bundle with covariant derivative V,

, 
* 

,

having V as its formal adjoint, and Q is a self-adjoint

endomorphism of the bundle. If Lu = 0 , then, taking the inner

product of (C.I) with u and integrating over M , we have

where the boundary integral results from the integration by parts.

In practice, the operator L is a natural operator - such as the

Hodge Laplacian on differential forms, or the square of the Dirac

operator on spinors - and Q is expressed in terms of the curvature of

(M,g) . Equation (C.I) is often called a "Weitzenböck formula". If

one assumes that Q > 0 and M is compact without boundary, then (C.2)

implies that u = 0 , that is, ker L = 0 . If M is not compact or

has a boundary, then one must impose either growth conditions or boundary

conditions on u to control the boundary integral in (C.2).

To be brief, for this proof of the positive energy theorem, the

operator L will be V2, where P is the Dirac operator on spinors,

the endomorphism Q will be positive because of the dominant energy

condition, while, by choosing the spinor u appropriately, the boundary
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integral will exactly be the integrals (A.4) - (A.5) for the difference

E - Thus, the identity (C.2) will be the desired expression of

E - IP) as a sum of squares.

With hindsight, one should anticipate that Clifford algebras

(and spinors) play a significant role in Riemannian diffe-

rential geometry, perhaps evern more so than the exterior algebra of

differential forms. The reason is that the exterior algebra does not

utilize the metric, while the inner product itself is directly used as

the basic quadratic form in the construction of the Clifford algebra.

Thus, the Clifford algebra, with its differential operators, inherently

embodies more information concerning the inner product and metric than the

exterior algebra does.

2. Some details. We will consider the Dirac operator P acting

on the spinor fields, S , of the space-like hypersurface M . To

define 0 , Witten does not use the intrinsic spinor covariant

derivative on (M,g) , but rather uses the full space-time covariant

, 

derivative on (N,y) restricted to M . Thus if {e} is an

adapted orthonormal frame field for N , with e0 normal to M and

el,e2,e3 tangent to M , then, in terms of the corresponding coframe

{el} , the Dirac operator is

where . is Clifford multiplication and u e r(S) .

Step 1 (Weitzenbock formula) One computes V2 and the formal

adjoint operators P and V . It turns out that P = P and

*

V = - V + (correction). These give
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(C.3) V2 = V*" + Q ,

where

The key observation relating Q to the physical assumptions is that

by using Einstein’s equations (A.I) we may rewrite Q as

Thus the dominant energy condition (A.2) gives Q ? 0 . One can not

help but be impressed at how well this fits V2 in (C.3). (In contrast,

if one uses the intrinsic covariant derivative on M , then, as

Lichnerowicz first observed [Li], Q = ~ (scalar curvature of M) ,

which is less helpful here - but obviously useful in discussing scalar

curvature) .

Step 2. Next one must solve the Dirac equation Vu = 0 on M

in such a way that one has control of the asymptotic behavior of u on

each end M , in order to evaluate the right side of (C.2). So far,

there is no adequate theory of linear elliptic operators on complete,

noncompact manifolds. Fortunately, there is a good theory in the

special case of with its flat metric, as long as the given elliptic

operator is asymptotic to one with constant coefficients. This work

was first carried out by Nirenberg-Walker [N-W], and developed further

in [Ca], [CS-CB], [CB-C], and [P-T].

In our application, the asymptotic Euclidean assumption

on (M,g) enables us to use the above theory to show that given any

constant spinor field u~ (it may be a different constant in each end,
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Uo 
= 

uDa in Ma) , there is a unique spinor field u such that

Step 3. For this solution u of (C.5), compute the boundary

integral in (C.2). Of course, now the boundary integrals are the

limits of boundary integrals taken over large spheres at each end, M ,

just as in (A.4) - (A.5). The result is

where, for any constant spinor v , we let

with {dx~} the standard basis for T*(~’~) . Note that

P e End(S) is self-adjoint with = ~P (here

!? ! =P203B11 + P203B12+P203B13) . ° Thus, the of P are

± !p ! ( so for each end M 
a 

there is a constant spinor u-. a of length

one so that P u. = -!p !u- (no sum on a here). With this choice
a Oa ’ a’ Oa

of u , equation (C.6) and the positivity of Q , make obvious the

desired positivity :

Step 4. It remains to show that if some Ea = 0, then there is

only one end and the metric on M is flat. As in [P-T], the key

observations are that (i) if a spinor field u satisfies Vu = 0 in M
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and u(x) + 0 as Ixl I + 00 in one end, then u = 0 , and the

related fact that (ii) if {ui} are smooth spinor fields with Vu. = 0

and with the {ui} linearly independent in one end, then they are

linearly independent everywhere.
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