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NEW RESULTS ON THE CLASSICAL PROBLEM OF PLATEAU

ON THE EXISTENCE OF MANY SOLUTIONS

by Reinhold BÖHME

Seminaire BOURBAKI

34e annee, 1981/82, n° 579 Novembre 1981

§ 1 THE PROBLEM OF PLATEAU

The notion of a classical minimal surface is not exactly defined. Generally

one understands a classical minimal surface to be a two-dimensional surface of

mean curvature-zero in Euclidean N-space. These "classical" surfaces need not

to be embedded or immersed. However there is only one type of singularities

admitted, the so called "branch points". This notion excludes certain singulari-

ties, where different pieces of minimal surfaces build up a system of surfaces inter-

secting "minimally" at angles of 120°, their edges possibly meeting at angles
of 109 ,(as discussed and classified in [47] ).

One reason for the choice of this class of surfaces is its link to the theory of

analytic functions of one complex variable. Namely, it is easy to show that a

minimal surface as above allows a conformal parametrization, i.e. for

such F there exists a Riemann surface R (or possibly a subset 03C6 ~ R) with

a fixed conformal structure and a conformal parametrization f : ~ - .

The equation "mean curvature = 0 in all regular points of F" implies that

"f : ~ -~ is harmonic".

If N = 2 and f is harmonic and conformal,then f is complex analytic. Therefore,

the existence theorems for minimal surfaces can be understood as a generalization

of the Riemann mapping theorem. Many conjectures about minimal surfaces (on boundary

behavior, on singularities, on their Jacobi fields) have arisen from the examples

in the case N = 2. The recent work of A. Fisher and A.J. Tromba on conformal struc-

tures indicates that the methods of minimal surfaces theory will shed a new light

on the classical Teichmu11er theory.



R. BOHME

The second reason for the above choice of the definition of a minimal surface

are the existing existence theorems. They have their origin in the fact that

the equation "mean curvature E 0" is the Euler-Lagrange equation for the area

function on the space of 2-surfaces with fixed boundary. Therefore, one can

construct minimal surfaces with a minimizing procedure. Even if today there

exist more general existence theorems (due to Reiffenberg, de Giorgi, Federer,Fleming,

Almgren) the subsequent approach is the one where the topological type can be

prescribed in advance. We refer to [3], too, for the limitations of this approach.

Theorem 1.1 (J. Douglas [12]): If r c !R N is a Jordan curve, then r bounds a

classical minimal surface of the type of the disc, i.e. there exists a continuous

parametrization g : sl 7 IR such that r and that the harmonic extension

x : D ~ from g to the unit disc D in IR 2 is harmonic and conformal on D

and continuous on D, i.e. x(D) c ]R is a classical minimal surface.

There exists a more general theorem (J. Douglas [13]) proving the existence of

minimal surfaces of higher connectivity k (k > 1) and of higher genus g, when

the boundary set r consists of (k+1) Jordan curves and the parameter domain is

of genus g > 1. Such an existence theorem makes assumptions about r so that the

infimum of the area on all surfaces bounded by r and of genus g is smaller

then the infimum on all surfaces of a genus bounded by gl  g. (See [10] ,[ 34],[ 45] ).

Theorem 1.2: A major achievement was the proof that - exactly as in the case of

linear elliptic systems - the solutions of the Plateau problem are regular up

to the boundary, i.e. the surface is smooth up to the boundary, if the boundary

is smooth (Hk, (H. Lewy, St. Hildebrandt, J.C.C. Nitsche, R. Hardt

and L. Simon). [25, 22, 41, 19] .
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§ 2 BRANCH POINTS OF CLASSICAL SURFACES

The notion of a classical minimal surface ist not completely satisfactory from

the point of view of differential geometry. So, a lot of work went into under-

standing where branch points are possible for solutions of Plateau’s problem under

various circumstances. A major success was a theorem of Osserman [42], with later

improvements due to H.W. Alt, R. Gulliver,and Gulliver and L.D. Leslie [1, 16, 17].

We summarize

Theorem 2.1: Let r c be a Jordan curve and F = x(D) be one of the solutions

of the classical Plateau problem, i.e. x minimizes Dirichlet’s integral

f D (x2 u + x ) du dv among all mappings in IR 3) n C°(D, IR 3); a para-

metrization of r}. Then x has no interior branch points.

If r is a real analytic curve, then x has no branch points on the boundary

either,i.e. F = x(D) is a real analstic immersion of the closed disc.

The idea of the proof is easy to understand. In soap film experiments one never

can observe branch points. When looking at a branched surface F with boundary r

and with one branch point P of order m > 1 on F, then in the neighborhood of P

the surface F looks locally "like" a(m+1)-fold cover of the tangent plane to F

through P (which does exist). If looking for an absolutely area minimizing sur-

face with boundary r, then this (m+1)-fold cover obviously is not an economic

way of using the area, and with some "cutting and pasting" one can decrease the

area of the surface. The question is only whether one gets again a surface of

the type of the disc. These problems got resolved in the proof of theorem 2.1.

Surprisingly the theorem 2.1 depends heavily on the fact that the surface F is

situated in IR , i.e. has codimension 1; it is wrong in . Namely, H. Federer

[14] ovserved that a piece of a complex curve L in (( (or in ~n) is absolutely
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area minimizing when the boundary 3L is fixed, even if the surface L has branch

points. Namely:

An integral current (of even dimension) in qn (or in a Kahler manifold), which

has a complex tangent space almost everywhere is a minimal current.

Osserman’s theorem together with 1.2 gives a solution of the disc type for any

Plateau problem in IR (one boundary curve) which is immersed. If the boundary

curve is knotted, there is no hope for the disc type solution to be embedded. But

when giving up the condition of disc type there should be a better answer.It was given

by R. Hardt and L. Simon [19].

Theorem 2.2: There exists an a priori bound b(r) for the genus g depending only

on the geometry of a C2-curve r in 3, , such that any such r bounds an embedded

minimal surface (i.e. a minimal submanifold) of genus g  b(r) which is absolutely

area minimizing.

Theorem 2.2 is part of a much broader approach to the boundary regularity of minimal

surfaces of codimension 1 in R N where classical methods of minimal surface theory

and the methods of geometric measure theory meet. That such a bound on the genus

is not at all trivial follows from an example of W. Fleming [15 ], which describes

a Jordan curve r in R3-rectifiable but not smooth - such that the problem of

least area has no solution with a finite topological type. The estimate of Hardt

and Simon is not helpful for deciding whether a specific curve r bounds an embedded

(absolutely area minimizing) disc. But we now know a large class of curves which

bound a minimally embedded disc.

Definition: A smooth Jordan curve r in R is called extreme, if r is situated

on the boundary of a convex body (or more generally in a surface with everywhere

non negative mean curvature).
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Theorem 2.3: (Meeks-Yau, Almgren-Simon, Tromba-Tomi [2, 28, 51]):

Any extreme curve bounds at least one minimally embedded disc (which is absolutely

area minimizing).

There are three very different proofs, the proof [51] not showing that the

solution actually is an absolute minimum for the area.

The proof of Meeks and Yau is part of a general study of 3-manifolds, depending on

Dehn’s lemma and the tower construction of topology. The proof of Tomi and Tromba

gives a weaker result, but is very easy. They construct the Hilbert manifold of

"all" disc type immersions, use a homotopy argument in it and a closedness property

of minimal embeddings due to Gulliver and Spruck [18, 52].

Clearly the class of branched surfaces is much too small to cover all singularities

which are met with in soap film experiments. We only refer to the important work

of J. Taylor [47, 48] , and to recent work of F. Morgan [33].

§ 3 UNIQUENESS THEOREMS

Generally it is easier to prove existence (just by constructing a solution) than

to show its uniqueness (you would have to look for solutions anywhere in the

function space). There are two classical uniqueness theorems.

Theorem 3.1 (T. Rado): If the boundary curve r c R3 has a convex projection then
the solution of Plateau’s problem is unique (and a graph).

The proof depends on the maximum principle. (See e.g. [41]).

Theorem 3.2 (J.C.C. Nitsche [39]): If the boundary curve is real analytic

and the total curvature K of r satisfies K  then r bounds a unique

immersed disc. (Probably there are no solutions of higher genus.)
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Nitsche’s proof involves global methods of Morse theory. He excludes a second

minimum by using the fact that then there exists an "unstable" minimal surface,

which cannot exist for geometric reasons. If the total curvature is larger than

then the uniqueness theorem is false [5].

In the last years serveral authors have worked on the question of generic

uniqueness for the absolute minimum for Plateau’s problem, while generic uniqueness

in the class of all classical solutions of disc type does not hold.

Theorem 3.3 (F. Morgan - A.J. Tromba [30, 54]) : In the space A of all smooth

curves in IR N , N > 3, there exists an open and dense set A 0 such that for any

r E Ao there exists a unique area minimizing minimal disc. Moreover there exists

a subset A1 c A, with a complement set A2 = A B A1’ where the "measure of A2" is

zero, and any r E Al bounds a unique absolutely area minimizing minimal surface

of some finite genus.

The measure which is involved has to be defined using the measure induced by

Brownian motion of the space A. It was introduced by F. Morgan. He works in

the class of area minimizing integral currents. A boundary regularity theorem

is important. The proof of Tromba makes use of the index theorem which we will

discuss below. A result of interest related to 3.3 is due to L.P. de M. Jorge [23].

See also [32].

A non-existence theorem for a solution of genus 1 with a specific boundary con-

sisting of two circles was a announced by Nitsche [40].

§ 4 PLATEAU PROBLEMS WITH MANY SOLUTIONS

Geometric intuition as well as soap film experiments can convince anyone imme-

diately that curves r in 3 exist such that r bounds more than one minimal
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surface (which are even all locally area minimizing). The book of R. Courant

contains many beautiful examples 

The first rigorous treatment of such an example seems to be due to Nitsche

for a boundary curve lying in the Enneper surface [37, 38].

Am important means of constructing minimal surfaces bounding many solutions is

the so called bridge theorem.

Theorem 4.1: It states that if r 1 and r 2 are two disjoint curves in JR , and

if r results from r 1 and r2 by joining them with a thin "bridge", if F1 is

a local minimum for the area among the surfaces bounded by rl, F2 a local

minimum among the surfaces bounded by r2, then suitably connecting the surfaces

F1 and F2 by a thin "ribbon" along the bridge produces a surface F bounded

by r which is close to a minimal surface F~ bounded by r. The theorem goes

back to R. Courant, was in part proved by F. Kruskal [26]. Am complete proof in

the classical formulation appears not to exist.

The theorem is difficult in its classical form because conformal parameters are

used. The result looks much more natural in the setting of geometric meausure

theory. Here a related theorem was proved by F. Almgren.

Using the bridge theorem for constructing Plateau problems with infinitely many

solutions is technically difficult and apparently nobody worked it out (see [38]).
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H.C. Wente proved an existence theorem [58] for a Plateau problem where the

boundary curve r satisfies a finite symmetry group G:

Theorem 4.2: It can happen that the minimal surface F of minimal area with

boundary r is not G-invariant. Then there can exist up to IGI different, but

G-equivalent minimal surfaces, and in addition one of larger area which is

G-invariant. Another new existence theorem for many solutions was given by Böhme [6]

based on the index theorem [8] :

Theorem 4.3: If r is Jordan curve in IR , if r 2 denotes its double cover, then

for any there exists a real analytic Jordan curve r close to r2 which

bounds at least No minimal surfaces of the type of the disc. Taking r = S1 as
the standard circle one can show that for any e > 0 there exists a real analytic

Jordan curve in R of total curvature K  4Tr + E which bounds N minimal surfaces.

The proof depends on a careful bifurcation analysis where the Hilbert manifold

of minimal surfaces with exactly one branch point of order one has to be studied.

If the index theorem for minimal surfaces of higher genus (6.5) will be used in a

similar manner, one should be able to prove the same result as above for minimal

surfaces not of genus zero but of genus one.

Finally there are two striking ecamples of Plateau problems with infinitely many

solutions, due to F. Morgan [31].

Theorem 4.4: The curve r c ~ 4, , r = y(S 1 ), y : . S17 ]R 4 = ~ ? being defined by
:= (e’B M . e4~~) (M » 0)

bounds a continuum of (unoriented) distinct minimal surfaces.

Namely, the curve has an S1-symmetry and the minimizing solution has not.
Even more surprising is the following example. Let’s introduce cylinder coordinates

in ]R . Let the boundary r consist of 4 circles which can be described

by

rl = {r=19, z=0}, r2 = {r=21, z=0}, r3 = {r=20, z=l} and r4 = {r=20, z= -1}.
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Clearly r has an S1-symmetry. (The integer 20 is convenient, but arbitrary).

Theorem 4.5: There exists an increasing sequence of natural numbers,

such that for any gn in this sequence, the system r of these four curves

bounds infinitely many oriented minimal submanifolds of genus gn.

The proof needs the construction of one such surface, which is not Sl-invariant.

Define f5 as indicated below (for some gn). Solve the Plateau problem for

r* = f2 u r5 and for r = f4 u f5. They fit nicely together according a theorem

of H. Lewy [26]. This implies 4.5.

The major challenge here is the following conjecture which nobody can prove or

disprove.

Conjecture: If r is a real analytic Jordan curve in ]R then r bounds only

finitely many minimal surfaces (of the disc type ).
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The first result towards proving this conjecture was the following (Böhme and

Tomi i [ 9] ~ :

Theorem 5.1: If r c ]R is a real analytic curve, then there are only finitely

many critical values for the area among the surfaces of the type of the disc

bounded by r.

The idea is to show that the area is constant on any connected component cf

the solution set using the theory of analytic sets. Recent work of E. Heinz [20,21]

on the analycity of generalized minimal surfaces implies:

Theorem 5.2: If r c ]R N is a polygon then there are only finitely many critical

values for the area among all surfaces bounded by r and of the disc type.

The most important result is due to F. Tomi [49] :

Theorem 5.3: If r c is a real analytic curve then r bounds only finitely

many minimal surfaces which are absolutely area minimizing among disc type surfaces.

The idea of the proof is to use the theory of analytic sets and to show first

that the connected component of any absolute minimum in the space of minimal sur-

faces bounded is a one-dimensional or zero-dinensional analytic set. Then studying

not only the area of surfaces but also the volume between two such surfaces one

can exclude the first possibility. Then 5.1 implies 5.3. There are later improve-

ments made by Tomi and Beeson [50, 4]. One can use [19] in higher genus case

with a result analogous to 5.3. But the conjecture above remains open.

§ 6 TOWARDS A GENERAL MORSE THEORY

A fascinating problem seems the generalization of the classical Morse theory

which is by now well developped for variational integrals for functions of one
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independent variable to those for functions of at least two independent variables.

This is not possible today for really nonlinear variational problems, even as simple

as the Plateau problem. M. Morse, J. Tompkins and M. Shiffman made an enormous

effort in the early fourties in order to prove the Morse inequalities, established

for geodesics in [35], for the Plateau problem, too, [36, 59, 60, 61].

Their approach did not give a complete answer due to the fact, that the variational

integral of J. Douglas is not smooth, not even continuous, but only lower semicon-

tinuous on the naturally given space The only major result

of the theory is the so called wall theorem for the Plateau problem, assuring the

existence of one non-minimum type surface if two distinct isolated minima are known

to exist. A much simpler proof of this theorem was later given by R. Courant [10]

using a finite dimensional approximation to the Plateau problem, in the spirit of

the paper [35] of Morse on geodesics.

Again a different version of the wall theorem was proved by.F. Almgren. It appears

that a complete Morse theory modeled e.g. along the lines of Milnor’s book is not

feasible today. But several important steps were recently achieved.

There is an old paper of I. Marx (1955 [27]) (a former student of M. Shiffman)

who announced something like a Morse theory for minimal surfaces with a polygonal

boundary. His claims depend on analytic properties of a generalized Plateau

problem, which recently could be verified by results of E. Heinz [20, 21]. He can

embed the solutions of the classical Plateau problem for a fixed polygon r

in a finite dimensional real analytic manifold M of "generalized minimal

surfaces" such that the area is a real analytic function on M. But not all

critical points of the area function on M can be accepted as minimal surfaces

bounded by r, and one cannot see a suitable adjustment for this restriction.

Some time ago A.J. Tromba and the author started a systematic approach

to the Morse theory based on the regularity theory for minimal surfaces which

allows one to restrict the theory to a space of surfaces with smooth boundaries,[53).
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Our main result by now [8] is the following:

Theorem 6.1: Let A denote the space of C~-embedding of Sl into R . Then

there exists an open and dense subset Ac A such that for any r E Ao the classical

Plateau problem has a finite non-degenerate solution set of disc type surfaces,

which depends smoothly on r.

Locally, i.e. near any r, the C~-topology can be replaced by some H -topology.
The method is very different from all older work. We construct a fibre bundle n

with base space A, such that for any a E A we have ~(03B1) = 03C0-1 (a) as the

space of smooth disc type harmonic surfaces bounded by a. For any a let m(a) E n(a)

denote the set of minimal surfaces bounded by a. Instead of studying the mapping

a 7 m(a) we study the set M := u m(a). We had to make a partition
a E A

any m is a minimal surface which has exactly p interior branch points

with multiplicities in the interior, and exactly q boundary

branch points with multiplicities V1’...’v , v. > 2 and even. If the boundary

curve is smooth there cannot exist more than finitely many branch points. We

proved the subsequent theorem 6.2, from which 6.1 follows by a Sard theorem.

Theorem 6.2: If the bundle n is endowed with a suitable Hilbert space topology

then the set M03BB03BD is a Hilbert submanifold of n of infinite dimension and

codimension, and the natural projection q : n - A induces a projection

03C003BB03BD : M03BB03BD ~ A which is a nonlinear Fredholm operator of
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The different (connected) manifolds M~- fit together like the different

strata of an algebraic set.

In fact ideas from algebraic geometry are involved in this approach, since

we heavily rely on the fact that the minimal surface equation on the bundle n

can formally be written as a purely quadratic equation on n with values in

some Hilbert space. This makes it possible to study the zeros and the linearization

of this equation by methods from linear functional analysis.

The index theorem is helpful for problems in bifurcation analysis of minimal

surfaces and was used for existence theorems for embedded surfaces [52] as well

as for branched surfaces [5, 6]. It also makes clear a relation between the

branching type (a,v) of the surface and its stability against perturbation

of its boundary.

Theorem 6.3: [4, 8] Let x E n be a minimal surface of branching type (A,B~).

Then x cannot be stable against perturbation of the boundary in the class

M~ = 0, q = 0, or N = 3, q = 0, p arbitrary, but a =...= a = 1,

or N = 2 and p,q arbitrary.

Any branched minimal surface, even if it is stable against perturbations in

the sense above is a degenerate critical point for the variational integral.

This implies that any Morse theory for minimal surfaces in R3 must cope with
degenerate critical points even in a generic situation, due to the possible

branch points on the critical surfaces, but in things get much easier. This

seems strange, since absolute minima in R 3 do never have branch points,[42] ,
but they can have some if they are in R4, [14] .
I would like to announce some more recent developments.

Theorem 6.4: (Tromba [56]) If N > 4 and a is a generic curve as above,

such that there exist exactly m minimal surfaces (of disc type)
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u1’...,um spanning a having Morse index À1,...,Àm respectively then

The proof is based on the theory of Fredholm structures on Banach manifolds

(due to Elworthy and Tromba) and the theorem is essentially a degree theoretic

result. The formula above, however, is one of the Morse inequalities.

Theorem 6.5: Let R be an Riemannian surface of genus g, where k > 1 open

dises are removed. So R is a bordered (riemannian) 2-manifold with a conformal

structure. Let a 
= (a1,...,ak) denote an ordered k-tuple of smooth Jordan curves

in ]R , and let A denote the union of all such a. Let n(a) denote the space

of all harmonic surfaces defined on R, having as boundary in R the curves a,

and denote

Let denote the space of all minimal surfaces in n with p interior

branch points of multiplicities À1,..,Àp respectively, and no boundary branch

points. Then M- is a Hilbert submanifold of n and the projection map

TT : n - A induces a Fredholm map

reducing to the formula of 6.3 it g = 0 and k = 1.

The proof depends on the triviality of all line bundles on open surfaces and

on the Riemann Roch theorem for the Schottky double of R, [7] .

The formula 6.5 again can be used to prove existence theorems for surfaces

of higher genus very similar to 4.3.
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In order to achieve a complete index theorem for surfaces of higher genus

one has to discuss what Douglas and Courant call "the variation of the

conformal structure". One has to construct a smooth manifold of conformal

equivalence classes of surfaces such that one can differentiate the area

integral with respect to the parameters which describe the conformal structure.

(see also [ 46] ). Recent work of A. Fisher and A.J. Tromba indicatesthat this

may ultimately be possible. Ultimately one may hope to understand the properties

of the solution map for the Plateau problem with its topological properties, its

conformal and singularity type, and its bifurcations when varying the boundary.
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