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Séminaire BOURBAKI

33e année, 1980/81, n° 563 Novembre 1980

SMOOTH TRANSFORMATIONS OF INTERVALS

par

Oscar E. LANFORD III

§ 1. Introduction

The theory of differentiable dynamical systems investigates the orbit struc-

tures of one parameter groups - discrete or continuous - of diffeomorphisms.
For many applications, the principal questions are :

What is the asymptotic behavior of typical orbits ? (theory of attractors)
How does this behavior change as the generator of the group changes conti-

nuously ? (bifurcation theory)

This report is an introduction to what is known about these questions in

the case, which ought to be the simplest possible, where the space on which the

transformations act is a compact interval. Even in this simple context, compli-
cated behavior is not only possible but inevitable.There is, however, relatively

simple theory which accounts for much of the complexity. This is a subject with the

charm of concreteness ; all the phenomena to be described occur in the one-

parameter family of mappings

on [--1,1] , where the parameter p is in [0,2] . Although limits of time and

space prevent elaboration on this point, it should be mentioned that much of what

has been learned about one-dimensional transformations has direct application to

higher dimensional dynamical systems.

We will be discussing mappings of a compact interval (not a circle) to it-

self which are continuously differentiable everywhere (not just piecewise conti-

nuously differentiable). This rules out immediately the interesting subject of

expanding mappings. Monotone mappings generate uninteresting dynamical systems ;

every orbit converges either to a fixed point or to a periodic orbit of

period two. We will therefore discuss mappings which are not monotone and hence

not invertible. In fact, we will concentrate exclusively on iterates of mappings.

~ with a single critical point x . By reversing the orientation of the inter-
val if necessary, we can assume that x is a maximum. A mapping of an interval



into itself with a single maximum and no other critical point will be said to be
unimodal. If  x~ , then the range of ~ is contained in the subinterval

where ~ is increasing, which effectively puts us back in the uninteresting
monotone case ; we will therefore usually assume that lJJ(x) > x . The example
mentioned above, x ~ 1- x2 ,  E (0,2] , has all the desired properties.

As already indicated, we want to study the behavior of typical orbits for
these mappings. This is not the same as determining the structure of all orbits.
An example may clarify the distinction. It is not diff icult to analyze completely
the orbit structure of the mapping x .-----~ 1 - 1. 76x2 of [-1,1] into itself.

It has a closed invariant Cantor set on which it is conjugate to a Markov shift,
has periodic orbits of all periods, etc. All this sounds intimidatingly compli-
cated. On the other hand, it can be checked by direct computation that this map-
ping has an attracting periodic orbit of period 3, and it then follows from a

general theorem to be stated shortly that all orbits save only a set of Lebesgue
measure zero converge asymptotically to this periodic attractor. (The invariant
Cantor set is contained in the Lebesgue null set of exceptional orbits). For
applications, what is relevant is that essentially all orbits are asymptotically
periodic ; not the existence of exceptional orbits which are more complicated.

This report will be organized around a certain number,of phenomena which
have mostly been discovered by numerical experiments. The next section will be
devoted to a description of the principal phenomena ; the announcement of the

plan for the remainder of the report will be postponed until af ter this descrip-
tion.

Bibliographic Note : The literature on smooth transformations of intervals is
vast and heterogeneous. It would be entirely beyond my capacity to prepare either
a comprehensive bibliography or a carefully selective one. The references provi-
ded for specif ic results are intended only as indications of a few places to look
for more details.

There are two general references which are particularly useful. A monograph
on transformations of intervals by P. Collet and J.-P. Eckmann j2] has just
appeared. This monograph gives a systematic discussion, with detailed proofs, of
most of the results discussed in this report (and a great deal

more) ; it is certainly the best general source available on the theory. The
second reference is a review by the biologist R. May [8] . This article was

enormously inf luential in bringing the subject of smooth transformations of inter-
vals to the attention of a wide audience. It is recommended as an excellent and



colorful description of the phenomena, but is now out of date on a number of theo-

retical issues.

§ 2. Phenomenology

The methods used to study smooth transformations of intervals are by and large,

elementary, and the theory could have been developed long ago if anyone had suspected
that there was anything worth studying. In actual fact, the main phenomena were dis-

covered through numerical experimentation,and the theory has been developed to

account for the observations. In this respect, computers have played a crucial role

in its development.

I will describe in this section the observed behavior of the family 1 - px 2
as the parameter p is varied from 0 to 2 . Very similar behavior can be seen

in other families, such as x ~ --~ p sin(rx) on ~0,1] as p is varied from

2 1 to 1. To start with, one can imagine performing a very simple experiment : Fix

the transformation ; choose an initial point "at random" ; iterate ; ,; and see what

comes out. Then choose another initial point and see if something similar happens.
In the description which follows, no particular effort will be made to distinguish
between results of such experiments, plausible extrapolations therefrom, and theore-

tical results ; the objective is to present a picture. The remainder of this report
will be concerned, precisely, with the extent to which this picture can be explained

mathematically.

For small p (up to 1/2) the mapping 1-px is contractive on [-1,1]

and hence every orbit converges to the unique fixed point (whose location can easily
be computed explicitly). The fixed point continues to attract all orbits until

p = 

p =.75 when it ceases to be attracting : the slope of the mapping at the

fixed point passes through -1 . At this value of p an attracting orbit of period
2 appears through the occurrence of a period doubling bifurcation. As long as the

period 2 orbit remains attracting, it attracts essentially all orbits, but at

p = p- = 1.25 it ceases to be attracting and undergoes a period doubling bifurca-

tion producing an attracting orbit of period 4 . The period 4 orbit in turn under-

goes a period doubling bifurcation at p = ~2 - 1.368..., and so on through periods

8, 16, 32,...

If we denote by p the parameter value at which the period 2n orbit loses

stability and bifurcates into an orbit of period 2 , the sequence of M n ’s
converges to a limit u~ - 1.401.... We will use the term periodic regime to



denote an interval in parameter space throughout which.a one parameter family
has an attracting periodic orbit of a given (fixed) period. Thus, the above descrip-

tion may be summarized by the statement that the parameter interval is com-

posed of a sequence of periodic regimes with periods 2 , n = 0,1,2,...

In one respect, the observed periodic behavior is unexpectedly simple. If, for

a particular parameter value p , , th.e orbit under 1 - px 2 of one randomly chosen

initial point is asymptotically periodic, then every randomly chosen initial point

gives an orbit converging asymptotically to that same periodic orbit. A parameter
value 11 thus gives unambiguously either periodic or aperiodic behavior, and, if

it is periodic, the period is uniquely determined.

What happens for 11 between p (the accumulation point of period doublings)
and 2 (the largest parameter value for wh.ich the interval is mapped into itself)

is complicated. The dominant feature is that, for most parameter values in this

range, 1- x2 seems to be aperiodic, i.e., typical orbits are not asymptotically

periodic. The word "most" is used here in an informal quantitative sense ; there are

definitely periodic regimes imbedded in the interval (p ,2) and occupying a non-

zerofraction of its length. For example, for 1.75  T-t  1. 7685 ... , has an

attracting orbit of period 3 , which at 11 = 1.7685... undergoes a period-doubling
bifurcation to an attracting orbit of period 6 which bifurcates to period 12 and

so on through all periods of the form 2n.3 . Close examination reveals a great many

of these imbedded periodic regimes, each accompanied by its cascade of period doubl-

ings, and it even appears that the periodic regimes, taken together, form a dense

subset of (p ,2) (Density of the periodic regimes is, however, one aspect of the

picture wh.ich has so far eluded proof.) Moreover, different families always seem to

display the same sequence of periodic regimes, i.e., the same periods in the same

order. Including only periods up to 7 , the observed universal sequence of periodic

regimes is

1,2,4,6,7,5,7,3,6,7,5,7,6,7,4,7,6,7,5,7,6,7 . °

(The 1,2,4 at the beginning comes from the initial sequence of period doublings.)

The universality of this sequence was discovered by Metropolis, Stein, and Stein 19]

In spite of the occurence of infinitely many periodic regimes, extensive and

careful computations performed by E.N. Lorenz [7] strongly suggest that the set of

l1’S for which 1- px 2 is aperiodic has Lebesgue measure which is not only non-zero

but even quite a large fraction of the total length of (u~,2) .

We come now to what is perhaps the most surprising discovery about one-parameter



families of smooth unimodal transformations. We have noted that, as  is increa-

sed from 0, the family of mappings undergoes a sequence of period-

doubling bifurcations, and we have denoted the parameter value where the bifurca-

tion from period 2~ to period 2 occurs by v 
n 

and the limit of the

v Precise computation of the v ’s shows that
noon

The multiplicative constant can be changed by a smooth reparametrization and so

is unlikely to have any special significance, but M. Feigenbaum [4] discovered

that the asymptotic ratio 4.6692... appears to be universal, i.e., is the same

for a number of families given by quite different formules* It is also the same

for different cascades of period doublings within a given family. For example,
if we temporarily let ua denote the parameter value at which 1-x2 undergoes
a period doubling bifurcation from period 3 to period 6 , p the value at

which the bifurcation from period 3.2n to 3*2 occurs in the subsequent

cascade, and u oo the limit of the p ’s then

The accumulation of period doubling bifurcations has other universal features as

well, but we will postpone their description until we discuss the theory of these

phenomena.

The plan is now the following : In Section 3 we discuss a technical condi-

tion which is very convenient in singling out well-behaved transformations and 
’

which accounts, in particular, for the unambiguous dichotomy between periodic
and aperiodic behavior in the family 1 - px In Section 4 we introduce briefly
the period doubling bifurcation. Section 5 contains a sketch of the combinatorial

theory which accounts for the universality of the sequence of periodic regimes.
In Section 6 we introduce some technical tools needed in the analysis of the

accumulation of period doublings, and, in Section 7 , we apply these tools to

explain the universality of the rate of accumulation.

It has not been possible to discuss in this report the prevalence of aperio-
dic behavior in the parameter range (p ,2) and the analysis of the behavior of

typical orbits in the aperiodic case. There are a number of important and deep
results bearing on these questions, for which we refer to Section 111.2 of the

monograph of Collet and Eckmann [2] .

* Universality of the rate of convergence of period doublings was also discovered
by P. Coullet and J. Tresser [12].



§ 3. Negative Schwarzian

A continuously differentiable function W of a real variable will be said

to have negative Schwarzian if is convex on each interval when

~’(x) does not vanish. The terminology comes from the fact that, if $ is three

times continuously differentiable, the condition is equivalent to negativity of

the Schwarzian derivative

The negative Schwarzian condition has had phenomenal success as an economical way
of singling out a class of well-behaved mappings. It was introduced into the sub-

ject by D. Singer [11] , who showed that a unimodal mapping with negative
Schwarzian can have no more than one attracting periodic orbit.

Most deep results about smooth transformations of intervals require that

the transformation in question have negative Schwarzian. Many simple examples,

including the mappings of the form 1-px , have this property. We will find it
convenient, therefore, to assume that all’mappings to be discussed henceforth

have negative Schwarzian.

The following theorem due to J. Guckenheimer [6] and M. Misiurewicz 110]

well illustrates the effectiveness of the negative Schwarzian condition :

Theorem : If a unimodal mapping with negative Schwarzian has an attracting pe-
riodic orbit, the set of orbits which do not converge to the attracting periodic
orbit has Lebesgue measure zero.

This explains why, for a mapping of the form 1 - px , one either always. sees

periodic behavior or always sees aperiodic behavior.

We will not develop the theory of the negative Schwarzian condition syste-

matically, but, in the hope of making it seem slightly less mysterious, we will

give a brief indication of how it is used. Its strength is that it is preserved

by composition : If ~1 and W2 have negative Schwarzian, then so does 

This can be proved in the C~ case by a computation which is straightforward if

not particularly illuminating. The most common use of the condition is via the
remark that, if ~ has negative Schwarzian, then for any n , since

1/ ~(~n)’(x)~ 
i 

is convex, it cannot have a local maximum, i.e., the only local
minima of ( are critical points of -



§ 4. The period doubling bifurcation

Consider a smooth function $ of a real variable x with a fixed point

x0 . We should think of $ and Xo as depending on a parameter which we can,

for this section, suppress from the notation. The fixed point will be attracting
if |03C8’(x0) f  1 ; repelling if the opposite inequality holds. What happens when

~’ {xC) passes through - 1 ?

Let us look at what happens to when is exactly equal to
- 1 . Then (~o~)’ {xC) - + 1 , and a simple calculation shows that (~o~)"(x.)=0.
The third derivative, on the other hand, has no special tendancy to vanish, and

we will assume that it does not do so. In general, the third derivative can have

either sign, but it must be negative has negative Schwarzian. Thus, the

graph of ~ o~ , near ,~ 
looks like

, )

Now perturb ~ slightly so that becomes less than -1 . Then

becomes greater than +1 and the picture becomes :

~o~ has acquired a new pair of attracting fixed points, indicated by the dark

dots in the sketch. Since ~ itself has negative derivative at x~ , it must

interchange these two points, i.e., they must constitute an attracting orbit of

period 2 for ~ .

Appearance of an attracting orbit of period 2 will thus occur when an

attracting fixed point of a mapping with negative Schwarzian loses attractivity

by having the derivative at the fixed point pass through - 1. Applying this

argument to (which again has negative Schwarzian) shows that an analogous

period doubling will occur when an attracting orbit of period p becomes repel-

ling provided that ~p is orientation reversing at the points of the orbit.



The period doubling bifurcation is a simple and illuminating construct and

provides the basis for understanding quite a lot about the sequence of periodic

regimes for one-parameter families of transformations. (See, e.g., Guckenheimer

[5] ) . Nevertheless, more global considerations are needed at some points in the

analysis. We will develop in the next section a slightly different approach,

emphasizing these global considerations, which leads very quickly to a general

understanding of the necessary occurrence of the various periodic regimes but

gives less information about how the transition from one to another takes place.

§ 5. The universal sequence of periodic regimes

The proof that rather general one parameter families of smooth unimodal

mappings have many periodic regimes proceeds by combining a topological argument
to prove the existence of periodic orbits with the simple remark that a periodic orbit

which passes sufficiently near to a critical point must be attracting. We will

first give a precise version of this latter remark.

Let W be a smooth mapping of an interval into itself and xG a periodic

point for ~ with period p . The orbit of xC will be attracting if

I  1 . If the orbit of xG contains a critical point for 03C8 , then

xG is a critical point of ~rp and the criterion for attractivity is certainly
satisfied. A smooth mapping of an interval to itself which has a critical point
which is periodic with period p will be said to be superstable of period p .

If ~~ is a family of mappings depending on a parameter, and if ~uC is super-

stable of period p , then p lies in a periodic regime of period p . To

prove the existence of periodic regimes in a family, it suffices therefore to

find superstable elements.

A complete analysis of the occurrence of superstable elements in one-

parameter families requires a long and laborious combinatorial argument. Rather

than try to outline this argument, we will prove some simple partial results

to illustrate the reasoning ; then summarize schematically one version of the

main result. Complete details may be found in Collet and Eckmann [2] .

To prove the existence of superstable elements in a family, it is necessary

to assume something about the family. We will say that a one parameter family of

unimodal mappings is full if it contains both

. a member which sends the whole interval to the right of the critical point

. a member which maps the interval onto itself in a 2-to-l fashion.



Our standard example 1 - px , mapping [-1,1] into itself for 0 _ p j 2 , is

a full family ; for p  1 , every point is mapped to the right of the critical

point 0 , while for p = 2 the mapping is 2-to-l and surjective.

We are going to show that each full family has infinitely many superstable
members. The notation will be as follows : the interval on which our mappings are

defined will be denoted by [x . mm ,x max ] and the critical point ’ by x 
c

(which may vary - continuously - with p ). We assume, as always, that

03C8 (x ) > x . The parameter interval will be taken to be [0,1] and we will assume

03C80(x) > xc for all x ~[xmin,xmax ]

03C81 is 2-to-l and surjective.

We introduce the sequence of functions

fp(p) = ~(x,) .

Finding a value of p at which is superstable of period p is equivalent
to finding a solution of the equation

~p(p) = ~ ’

which is not simultaneously a solution of

~ (.) - 
= 

~

for any divisor ~ of p . The following sequence of simple remarks proves the

existence of many solutions :

1. f (0) > x for all p since f (0) = .and > x for all x.

2. f (1) = x .  x for all p = 2,3,4,.... To see this, recall that 03C81 is
p jam c 

" ’ ’1
2-to-l and onto, from which it follows readily that 03C81(xc) = x 

max 
;

03C81(xmax) = 03C81(xmin) = xmin ° Thus, 03C8p1(xc) = f (1) = = 2,3,.... °

Remarks 1. and 2. already imply that each equation

= 

~c

has at least one solution and thus that there is a superstable element of each

prime period

3. If f (p) = x~ then f (p) > x~ , since f (p) = ~ (~i~D "~u~c~ ~ ~c*



4. The largest solution of fp(u) - xc is larger than any solution of

fp-1 (u) - xc and hence (by induction) than any solution of fa (u) - xc for any

q  p . This follows from 2. and 3. ; if ~T is the largest solution of

fp_1(u) - x then, by 3. f (p) > xc , whereas, by 2., f (1)  xc ; hence,

f (p) == x has a solution between u and 1 .

From 4. it follows that there is at least one superstable element of each period

p > 2 .

5. If f 2 (u)  xc and 2fp-2 ( u ) - xc , then fp ( u )  xc , since

f P (u) - ~2 u (f p -2 Cu) ) - ~V u (xc)  ~

6. If fp-1(ul) - xc and f P"~- ~(p~) - = x , c and if u2 is larger than the lar-

gest solution of f2(u) - x , then there is a solution of f (p) = x between

u 1 and 2 . This follows at once from 3. and 5. 
’

Repeated application of 4. and 6. shows that every full family contains at

least one superstable element of period 2,3, and 4 ; at least 2 of period 5 , at

least 3 of periodic 6 , etc., in the order 2,3,5,6,4,6,5,6 . It does not,

however, give all of the superstable elements which can be shown to be exist in

all full families ; we have missed, for example, one period 4 , one period 5 ,
two period 6’s, etc.

Starting from another point of view, it is possible to aive a more compre-
hensive description of the sequence of unavoidable periodic regimes, although it

remains difficult to enumerate them explicitly. We associate with any superstable

~ of period p a sequence of p-1 symbols "L" or "R" ; the i-th symbol is

L or R according as ~1(xc) is to the left or the right of x . We will

say that the sequence represents ~ , and that a finite sequence of L’s and

R’s is realizable if it represents some superstable unimodal $ . Under our

assumptions, realizable sequences begin with R , but not all sequences begin-

ning with R are realizable. (For example, no sequence beginning RR is realiz-

able).

It turns out to be possible to give

- a combinatorial criterion which is necessary and sufficient for realizability
- an explicit linear ordering on the set of realizable sequences such that any
continuous one-parameter family moves through the ordered set of possible super-
stable behaviors without jumps, or, more precisely, such that

is a continuous family of unimodal mappings, if and 
2



are superstable, and if A is a realizable sequence lying between, in the order-

ing on realizable sequences, the sequences representing 03C8
11 1 and 03C8 2 , then there

is a 3 between u and u2 such that $ 13 is superstable and represented by

A .

Thus, the order in which kinds of superstable behavior occur in continuous

families is strongly constrained, rather in the way that the order in which a

continuous real-valued function takes on rational values is constrained. Further-

more, any full family traverses the full range of kinds of superstable behavior,

i.e., every sequence which is realizable at all is realized in every full family

(and in particular in the family 1 - px 2 ). Numerical computations suggest that

the family 1 - px 2 traverses the ordered set of kinds of superstable behavior

monotonically, but this has not been proved for this (or any other) family.

Since the criterion for realizability and the definition of the ordering
can easily be stated explicitly, we give them here. We first define a linear

ordering on the set of all finite sequences of L’s and R’s which, restricted to

the subset of realizable sequences, gives the desired ordering. The criterion

for realizability will then be stated in terms of the ordering.

The order is a twisted lexicographic order. Let A = (al,...,a) and

B = (bl,...,b) be two distinct finite sequences of L’s and R’s, and let

i-1 be the length of their longest common initial segment. Thus 

b. , and either A or B has length i-1 or b.. We define A  B to

mean either

i) a. = L or b. = R or both, if there are an even number of R’s in

al,...,ai-l
or

ii) a. = R or b. = L or both, if there are an odd number of R’s. in

Then :

A sequence is realizable if and only if it majorizes, in this order, each.

of its terminal sequences.

Thus, for example, to check whether RLRLL is realizable or not, it is only

necessary to check the four relations :

LRLL  RLRLL ; RLL  RLRLL ; LL  RLRLL ; L  RLRLL .

(As it happens, the second is false so the sequence is not realizable).



§ 6. The doubling operator

In this section we develop yet another approach to period doubling adapted
to the analysis of the accumulation of repeated doublings. We assume, in this and

the following section, that co-ordinates can be and have been chosen so that

The interval on which our transformations act is I-I,l];each transformation

has its critical point at zero, which it.maps to one ; each transformation is even.

Consider, now, such a transformation which is supers table of period 2,

i. e. , such that w2(0) = 0 . Since 0 is a critical point for , w2 is con-

tractive at 0 and so it is possible to find a small closed interval J~ about

0 which is mapped into its own interior. If we let J-. = ~(-J~) ~ so Jl
is a small closed interval ending at 1, then ~ sends JC onto J1 and Jl
back into J0 . Because 03C82(J0) is contained in the interior of this pic-

ture persists if W is perturbed slightly.

We will examine what happens when ~ is perturbed in such.a way that

~ 2 (0) moves to the left of zero, i.e., so that a = -~(1) becomes slightly posi-
smallest interval symmetric about 0 which could be mapped into itself

is then I-a,a] , and a slightly more careful version of the argument in

the preceding paragraph shows that this interval is indeed mapped to itself pro-
vided that W is sufficiently near to a fixed supers table mapping. The corres-

ponding J1 is the interval [b,l] where b = ~(a) . As ~ has a single maxi-

mum in J and is monotonically decreasing on J1 , ~o~ has a single criti-

cal point in J~ which is a minimum. In other words : Except for a reversal of

orientation and a change of scale, ~o~ restricted to [-a,a] looks just
like one of the transformation we have been studying. To bring it into standard

form we make the change of variables x ---~ -ax ; in terms of the new variable

the restricted ~o~ becomes

- 1 a 03C8o03C8(-ax)

which is unimodal, maps [-1,1] to itself, and is correctly normalized. We

denote the rescaled by T~ , and we call T the doubling operator.
The idea to be developed in this and the following section is that the investi-

gation of the doubling operator as a nonlinear mapping of the space of transfor-

mations into itself is a powerful way to obtain information about one parameter
families of transformations.

A careful definition of the domain of the doubling operator includes the



specification that the intervals I-a,a] and Ib,l] which are interchanged by

~ are non-overlapping. Since T~ is simply WOW restricted to [-a,a] , re-

expressed in more convenient coordinates, it is easy to deduce properties of $
from properties of T~ . For example : If T~ has an attracting orbit of period

p , then ~a~ has an attracting orbit of period p in I-a,a] which consti-

tutes half of an attracting orbit of period 2p for W itself, the other half

lying in [b,l] . Similarly, as T~ undergoes a bifurcation from period p to

period 2p , ~ itself undergoes a bifurcation from period 2p to period 4p .

The first important fact about the doubling transformation is : Let $ be

a full family of unimodal transformations defined for p in the parameter inter-

val Then there is a subinterval MI such that the family , u E MI
is again full. The proof of this result is quite simple and most of the ingre-
dients have already been given.The details may be found in Section 3 of Collet,

Eckmann, Lanford [3] . It has, as a consequence, that the full sequence of

unavoidable periodic regimes occurs for 03C8  as  runs through th.e parameter

subinterval M I and hence occurs for 03C8  itself with all periods doubled.

Furthermore, the above result can be applied recursively : there is a decreasing

sequence of parameter intervals M2 ~ M3 ~ .., such that the family

03C8  , p E M. is full. As p runs through M. ; each family W 11 runs through

a sequence of periodic regimes with periods 2 times the periods of the sequen-
ce of periodic regimes unavoidable in full families. Since every full family con-

tains, in particular, a periodic regime of period 2, this shows immediately that

every full family has a sequence of periodic regimes of periods 2,4,8,16,32,...

It is also easy to see that, once due allowance is made for the possibility that

the family is not monotone, this sequence of regimes occurs essentially in order

and essentially at the beginning of the sequence of unavoidable periodic regimes.

(These facts can also be proved combinatorially, using the machinery described in

the preceding section).

§ 7. Feigenbaum theory

We are now prepared to take up the questions of the universality of the

rate of accumulation of period doubling bifurcations. A unimodal transformation

sending the critical point 0 to 1 has a unique fixed point in 10,1] ; we

will denote this fixed point by x~ . Let E- denote the set of unimodal

transformations such that ~t{xC) - -1 ; EC is a smooth surface of codimension

one in the space of all unimodal transformations. As we have seen, a one-



parameter family of mappings which crosses this surface in the right direction

undergoes a period-doubling bifurcation from period 1 to period 2 , i.e. E
is the bifurcation surface for this period-doubling bifurcation. If T~ E 
then T~ is undergoing a bifurcation from period 1 to period 2 , so $ is

undergoing a bifurcation from period 2 to period 4 . In other words, the pre-

image of E- under T , which we denote by Ll’ , is the bifurcation surface

for the bifurcation from period 2 to period 4 . In general, we write

then En is the bifurcation surface for the bifurcation from period 2n to

period 2n+1 . To understand the accumulation of period doubling bifurcations,
we want to see what the surfaces E do for large n .

M. Feigenbaum, who discovered the universal rate of accumulation of period

doublings, also proposed a very elegant explanation for this phenomenon* His

explanation took the form of a set of conjectures about the doubling operator

together with a simple geometrical argument deriving the universality of the

rate of accumulation of period doublings from these conjectures. Feigenbaum did

not prove his conjectures, although he did perform extensive and careful nume-

rical verifications which strongly supported them. We will take up later the

status of their proof, but first we state the conjectures (stripped of technical

qualifications) and discuss their consequences.

The conjectures are :

1. T has a fixed point ~ .

2. The derivative D~‘1~(~) of T at § is hyperbolic with one-dimensional un-

stable subspace. (In other words, DT(~) has a simple eigenvalue 6 with.

modulus greater than one and the remainder of its spectrum is contained in

the open unit disk.) Moreover, the large eigenvalue 6 is real and positive.

It follows from 2. and standard invariant manifold theory that T has, at ,

a stable manifold W of codimension one and an unstable manifold W of dimen-
s u

sion one.

3. The unstable manifold crosses the codimension-one surface E- (the bifur-

cation surface for the bifurcation from period 1 to period 2) transver-
*

sally. The crossing point will be denoted by § .

The geometry of the space of transformations can thus be represented by the

following sketch :

* A similar proposal was made by P. Coullet and J. Tresser [12].



We now add to the sketch the surfaces ~ *"’ ~ which are given recur-

sively by E 
n+1 

= T S 
n 

. Since T contracts in the W 
s 

direction and expands

in the W direction, these surfaces must look like :
u

The surfaces E converge to W . Furthermore, it is not hard to see that the

separation between E and W is asymptotic for large n to 6 times an

n-independent function of position on W 
s 

(where 6 still denotes the expanding

eigenvalue of DT(~)).) What is essential here is that the rate of convergence of

E 
n 

to W 
s 

is independent of position on Ill s .

In terms of this geometry, the universal rate of accumulation of period

doublings is easy to understand. A parametrized family 03C8  of transformations

may be regarded as a curve in the above sketch. Assume that this curve crosses

W with non-zero transverse velocity. (As the stable manifold has codimension

one, crossing it is at least not exceptional. How likely crossing is will depend
on how far the stable manifold extends). The curve must then cross the E

n

for all sufficiently large n, in order. Since we have already argued that E
is the bifurcation surface for bifurcation from period 2 to 2 , the para-

meter value at which ~ 
p 

crosses E 
n 

is p 
n 

(and the parameter value at

which ~ 
P 

crosses W 
s 

is p oo ). In view of the way the E 
n 

converge to W , s
it is immediate that



~ -  ~ const. 6 .

Thus, any one-parameter family of mappings which crosses W with non-zero
s

transverse velocity undergoes a cascade of period doublings with asymptotic ra-

tio

The empirical asymptotic ratio 4.6692... found by calculating for the

family or another similar family is thereby identified with the large
eigenvalue of the derivative of T at the fixed point § . Both the empirical

asymptotic ratio and the eigenvalue 6 can be computed numerically, and agree
to at least twelve digits.

Feigenbaum’s argument implies a number of other regularities in the accu-

mulation of period doublings. For example, let E denote the codimension-one
~

surface of transformations ~ which are superstable of period 3 . If E also

intersects W transversally then the surfaces 03A3n = also converge geo-

metrically with asymptotic ratio 6 . If p 
n 

is the value of  near p ~ where 03C8
crosses E 

n 
(defined for sufficiently large n), then, again

To interpret this result, note that, as 03C8 n E E , T Wlln E EO i.e. is

supers table of period 3,i.e. 03C8 n is superstable of period 2n. 3. Thus, ~, which is ap-

approached_on one side by a sequence of periodic regimes of period 2 , is approached on the
other by a sequence of periodic regimes of period’ 3.2 .There are in fact inf initely many
other such "descending cascades" of periodic regimes with periods of the form

2n. p , all converging to p geometrically with asymptotic ratio 6 . .

To end this - nonexhaustive - list of universal features of one-parameter

families at period-doubling accumulation points implied by the Feigenbaum con-

jectures, note that, since T is contracting in the W direction, we have

In particular, the limits on the left are independent of the choice of one-



parameter family 03C8  provided only that this family crosses Ws transversally.

The Feigenbaum conjectures are, then, completely successful in accounting
for a number of phenomena which have not been explained otherwise. To what ex-

tent can they be proved ? It is in fact not hard to see that they cannot be true

without some qualifications about the regularity of the mappings involved. If,

for example, ~~~ is smooth except at 0 but has the form

+ near 0 , then has this same form near 0

for all n and so cannot be expected to converge to a fixed point § with a

different behavior at 0 . This heuristic argument is borne out by numerical

investigations which show that the rate of accumulation of period doublings for

the families varies with ~ . Universality can hold only within

classes of unimodal transformations with the same regularity at the critical

point. There is not a single set of Feigenbaum conjectures, but many, depending
on choice of function space.

One way to proceed is to consider the space of all unimodal mappings
which can be written in the form

~ (x) - 

with f analytic in a complex neighborhood of [0,1] and with f’(0)  0 .

The spaces for different e’s are disjoint, and each is mapped into itself by
the doubling operator T . The Feigenbaum conjectures can hence be investigated
in any one of these spaces. Evidently, the value e = 1 is of particular im-

portance as each corresponding 1P is analytic and has a non-degenerate criti-

cal point. The case which has proved to be easiest to treat, however, is that

of small positive e . In that limit, a complete proof has been given by Collet

Eckmann, and myself [3] using a perturbation analysis.

The situation for e = 1 is less satisfactory, although there is not much

question about the correctness of the conjectures. A proof of the first of them

has been given by Campanino, Epstein and Ruelle [1] , and I have now essential-

ly completed a programm which, unless something unexpectedly goes wrong in the

verification of the last estimates, should prove the second conjecture and a

weakened but adequate version of the third. The proofs - especially my own -

are however laborious and not very enlightening ; it really seems as though some-

thing crucial is being overlooked.

Let us discuss only the first conjecture. What is asserted is the existen-

ce of a solution § to the functional equation



~(x) -- ~ ~(t)(Xx)) , À = -~(1) .

The solution ~ is to be defined, unimodal, even, and fairly smooth on [-1,1] ,
and to satisfy :

~(4) - 1 ; ~(1)  0 ; ~t~) > x 1 ~"Co)  0 .

Almost nothing is known - or even plausibly conjectured - about uniqueness,except
that it is comparatively easy to produce a great many (irrelevant) solutions

which are once but not twice continuously differentiable. It is quite possible
that there is only one twice differentiable solution. The solution which has been

found is actually analytic in quite a large domain in the complex plane, contain-

ing the whole real and imaginary axes ; its MacLaurin expansion is

~ (x) - 1 - 1.5276 ... x2 + ,1048 ... x~ +, 0267x6 + ...

It turns out to be remarkably easy to find, with the aid of a computer,

polynomials which are excellent approximate solutions to the functional equation.

My investigation uses a completely straightforward approach : The computer is used

to verify, with strict error estimates, enough detailed properties of T and DT

in an extremely small neighborhood of an explicit approximate solution to show

that a variant of Newton’s method converges to a nearby exact solution.

Campanino, Epstein, and Ruelle use a much more sophisticated scheme to

search for a solution, but still need to make extensive numerical and algebraic
computations to localize the solution in a small region of function space before

they can apply their procedure. In both cases, the proofs rest on long and rela-

tively blind computations which could perfectly well, so far as one can see with-

out actually doing them, have come out differently. It think it is fair to say

that, although we know that a solution exists, we don’t at all understand why it

must exist. In view of the simplicity of the functional equation, this seems a

most unsatisfactory state of affairs.
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