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HYPERBOLIC MANIFOLDS

ACCORDING TO THURSTON AND JØRGENSEN

by Michael GROMOV
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o. Preliminaries

Surfaces of constant negative curvature

Consider a complete connected orientable 2-dimensional Riemannian manifold V

with curvature - 1 . The most important single invariant of V is its volume (or

area) Vol(V) . We are interested now in the case when this volume is finite.

According to the Gauss-Bonnet theorem the condition Vol(V)  °o implies that

Vol(V) = -2’rnC(V) , where x denotes the Euler characteristic.

It follows that the possible values of Vol (V ) are 2 ~r , 4 ’~ , ...

It is also well known that there are only finitely many topologically different

V’s with a given volume. More precisely, when Vol(V) = 203C0k and k is odd there

possibilities. When k is even there are k 2 + 2 topological types of

V’s with Vol ( V ) - 2nk .

Examples



Notice that each surface (with the only exeption of the sphere minus three

points) supports a continuum of complete metrics with curvature -1 . The following

picture exhibits a typical deformation of a hyperbolic metric on the closed surface

of genus two

For the manifolds V with dim(V) ~ 4 the volume function V ’2014~ Vol(V) has

the same essential properties as for dim = 2 , but, as it was discovered by Thurston

and Jørgensen, the manifolds of dimension three display quite different amazing

features.

Manifolds of dimensions 4 , 5 , ...

We use the words hyperbolic manifold for a complete Riemannian manifold with

constant sectional curvature -

Wang’s Finiteness Theorem.- If n ~ 4 then for each real x there are only finitely

many isometry classes of n-dimensional hyperbolic manifolds V with Vol(V) , x .

(see [W]).

Remarks.- Wang’s result in [W] is applicable to almost all locally symmetric spaces.
The number of V’s with Vol(V) ~ x can be effectively estimated (by something

like x exp(exp(exp(n + x))) ) but one has no realistic upper bound.

Wang’s theorem implies that for a fixed n ~ 3 the values of Vol(V) form a

discrete set on the real line. When n is even the Gauss-Bonnet theorem says more

Vol(V) = C X(V) ,
n

where C is a universal constant.
n

1. Three dimensional manifolds

Thurston’s theorem.- The values of the function V ~ Vol(V) , where V runs over

all 3-dimensional hyperbolic manifolds with Vol(V)  °° , form a closed non-discrete
uu

set on the real line. This set is well ordered and its ordinal type is . The

function is finite to one, i.e. there are only finitely many V’s with

a given volume

Here is a schematic picture of the values x = Vol(V) .



Thurston’s theorem says that there is a manifold with the smallest volume x~ .
Then there is the next smallest volume x , and so forth. The sequence

x1  x2 
 x3 

 
... has a limit point x . We shall see that the number x

represents the smallest volume of a complete non-compact manifold. The next smallest

volume of a complete non-compact manifold is . The point x 2 corresponds to

the first manifold with two cusps (see the definition in section 2) and so forth.

The second statement of Thurston’s theorem says that for each x = x. ,
j = 1 , 2 , ... , f ... the number N = N(x) of different V’s with

Vol(V) = x is finite. (It is clear that the function N(x.) is unbounded, because
J

each V has many non-isometric finite coverings of a fixed degree).

We shall present below only the basic ideas of Thurston’s proof. The details

can be found in chapters 5 and 6 of his lectures [T].
Let us mention two unresolved problems.

Is the function N(x,) locally bounded ?

Can some of the numbers x,/x, be irrational.
1 J

2. The Margulis-J~rgensen decomposition

Let V be a hyperbolic manifold. Denote by ,~ (v ) , v C V , the length of the

shortest geodesic loop based at v .

Fix a positive number e and look at the £-ball around v E V . When

c 2 1 .~(v) , the geometry of this ball is standard ; this ball is isometric to the

e-ball in the hyperbolic space Hn , n = dim(V) . (Recall, that Hn is the complete

simply connected manifold with curvature -1 . The universal covering of every

hyperbolic manifold is isometric to Hn ).
The Kazhdan-Margulis theorem (see [K-M]) implies the existence of an universal

constant w - w > 0 , I such that each E-ball in V with ~ ~ ~ has more or less
n

standard geometry, even at a point v ~ V with .~(v} ~ 2e . We shall discuss here

only the 3-dimensional case.

Kazhdan-Margulis theorem (special case).- There exists a positive number  such that
for each orientable hyperbolic manifold V and each v f V the loops based at v

of length ~ 2~ generate in a free Abelian subgroup of rank at most two.

(See [K-M], [T]).
This theorem shows that each £-ball £  ~ in V is isometric to an £-ball

in a hyperbolic space H 3 or in a hyperbolic manifold with fundamental group S

These manifolds can be explicitely described as follows.

Cusps
Take a flat two torus T and let ds~ denote its (flat) metric. The product

T x ~~ with the metric e-rds2 + dr2 is called the double infinite cusp C = C



based on T .

It is easy to see that C is a hyperbolic manifold with and that

every hyperbolic 3-manifold with n 
= 7L + ~ is isometric to a double infinite cusp.

The manifold C = T x [0,°o) C C is called the cusp based on T . This manifold

has the boundary T = T x 0 and the isometry type of C is uniquely determined by

(the isometry type of) T .

Here is the picture of a cusp for n = 2

Notice, that the double infinite cusps have infinite volume but the cusps have

finite volumes.

Tubes

Consider a 3-dimensional hyperbolic manifold with n - ~ . It is not hard to

see that there are only two possibilities.

a) Our manifold has no closed geodesics. In this case it is isometric to an infinite

cyclic covering of a double infinite cusp.

b) The manifold has a closed geodesic. In this case we call this manifold an

infinite tube.

An infinite tube ~ , clearly, has a unique simple closed geodesic Y 

which is called the axial geodesic.

Let us introduce a (finite) tube r ~ 0 , as the set of the points

v ~ 2~ with dist(v,y)  r .

The boundary T = is the topological torus and the induced metric in T

is, clearly, flat. The torus T containes a simple closed geodesic T E T which is

contractible in . This geodesic is uniquely determined, up to rotations of T ,

by the homomorphism 03C01 (T) ~ 03C01(Dr) = Z . Notice that the length of T

is equal to the length of the radius r circle in the hyperbolic plane. It follows

that r ~ log(length(T)) when this length is large.

It is not hard to see that the isometry type of Dr is uniquely determined by

(T,T) . one can also show that for each flat torus T and a simple closed geodesic
T C T there exists a tube D with ~D ~ T such that T is contractible in

r r .

~9 . This tube is contracted as follows. Take a geodesic Y £ H3 and the

r-neighbourhood o~ 
r 

around Y . . The number r is chosen such that the length of



the hyperbolic radius r circle equals length(T) . The boundary T = is the

flat cylinder S x JR with length(S ) = length(03C4) . It follows that there is an

isometric %-action on T such that T/S = T . This action uniquely extends to

and we get o&#x26; as 
r 

- 

r r

We call such a Dr a tube based on (T,T).

When a manifold is isometric to a tube or a cusp, the function £ = l(v)

( = length of the shortest non-contractible loop at v ) has a very simple structure.

When V is a cusp T x ]R 
1 

the value ~(v) = ~(t,r) depends only on r ~ 
1 

and

~ is a strictly increasing function of -r . When r 2014~ -°° the function ~(r)

is about |2r| t and when r ~~ we have 

When V is an infinite tube with the axial geodesic Y the function ~(v)

depends only on r(v) = dist(v,y) and £ is a strictly increasing function of

r ~ [0,°°) . When r = 0 we have = length(Y) and for r we have

2r .

In the case of a cusp the function £ has no critical values and all levels

~ (x) are tori. When V is a tube there is one critical value X = length(Y) and

all levels 1 (x) , x > X are tori.

Using these remarks and the Kazhdan-Margulis theorem we obtain a rather complete

picture of the geometry of V at the points where £ is small.

Decomposition theorem.- Let V be an orientable three dimensional hyperbolic

manifold of finite volume and let 0  e  1 2  , where  denotes the

Kazhdan-Margulis constant. Then the V consists of finitely many

(if any) components and each of these components is isometric to a cusp or to a tube.

This theorem works as follows. Fix a positive e  2014 (jL such that V containes

no closed geodesic of length E . In this case V 
j 

and V.- L ~ ) are bounded by

tori.

The £-neighbourhoods (in V ) of the points v C V- are isometric to the

hyperbolic balls. It follows that V,- !E,oo) . can be covered by * N = const E Vol(V)
balls of radius e .

We assume,.as usual, that V is connected. Clearly, the set is also

connected and hence, its diameter is bounded from above by 2N = 2 

The manifold V. 
(0,~] -, 

has a more complicated local geometry than V- [E,oo) . ~ but,

globally, it is a rather standard object. In particular, one can see that the number

of the components of V 
. 

does not exceed const Vol(V) , where "const" is of

the order n .

It follows that V containes at most const Vol(V) of closed geodesics of

length ~ " ~ 2 (they serve as the axial geodesics of the tubes in V (0, E j -. ) and

when E is less than the length of the shortest of these geodesics, the manifold



V 
(O~~j -. 

consists only of cusps and their number does not depend on E °

Here is a schematic picture

One of the immediate corollaries of the decomposition theorem is the following

V is diffeomorphic to the interior of a compact manifold bounded by tori and

hence, there are only countably many topologically different V’s .

By the Mostow theorem (see [M]) the fundamental group Ti (V) determines V

uniquely, up to isometry. Thus, there are only countably many isometry types of V’s .

3. Convergence of manifolds

. For two metric spaces X , Y and a map f : X ~ Y we set

Consider a sequence of metric spaces X1 , i = 1 , 2 , ... , with base points

xi E X . We say that the sequence converges to (Y,y) if for arbitrary

numbers e > o , r > 0 , there is a number j , such that for each i ~ j there

exists a map f from the radius r ball B c Xl around x into Y such that
1

a) f(x.) = Y
b) the image f(B) C Y contains the ball of radius r- E around y E Y

c) L(f) ~ e .

Example

Look at the following sequence of compact hyperbolic surfaces of genus two



In this limit process we have lost one half of our surface. This happend because

the set V,- L~~°°) . was disconnected, and there is a more refined notion of convergence,

which takes into accent all components of VC~~~) . . On the other hand, for the

3-dimensional hyperbolic manifolds this complication does not show up.

(J~rgensen).- Let (Vl,vi) , i - 1 , 2 , ... , be a convergent sequence of

3-dimensional hyperbolic manifolds with sup Val(Vl)  Then the limit space V
i i

is a hyperbolic 3-manifold with Vol(V) = lim Vol(V ) .

Proof.- The decomposition theorem implies that for a sufficiently small £ > 0 the

sets V are connected and V- , . Using the decomposition theorem
one can also see that if E. 

-L 
~ Q , then -.) --~ 0 . Since

const, we have lim Vol(V) .

Recall a simple general fact

(Chabauty). - Let (Vl,vi) , i=1,2,..., be a sequence of hyperbolic

manifolds of a fixed dimensions. If the geodesic loops at v. satisfy inf L(vi) > 0 ,

then our sequence has a convergent subsequence. (See ~W~).

Remark.- This compactness criterion holds for a sequence of arbitrary complete



Riemannian manifolds with sectional curvatures pinched between two constants.

Corollary (J~rgensen).- The values of Vol(V) form a closed set in ~t~ when V

runs over all 3-dimensional hyperbolic manifolds of finite volume.

Proof.- According to the decomposition theorem each V has a point v f V with

,~(v) > W . . It follows that each sequence of V’s has a convergent subsequence and

by the Jqsrgensen theorem the function is continuous. Q.E.D.

4. Opening and closing the cusps

Let V be a convergent sequence (relative to some choices of the base points)

of hyperbolic 3-manifolds with sup VOl(Vi)  ~ , and let V denote the limit
i

manifold.

It follows from the decomposition theorem that for each E > o and for each

sufficiently large i (i.e. i ~ j(E) ) the sets are diffeomorphic to

vC~ . ~) .
When E is small (and i is large) the sets V 

(0,~j -. 
have the same number of

components as ° We can also assume (by making E smaller if necessary) that

all components in are 

cusps " 
It follows, that the only possible change , in

topology, when we pass to the limit v, 1 ~ V is the turning of the tubes of 

into cusps in V -..

The formal statement is the following

The cusp opening theorem (J~rgensen).- Take a sequence of hyperbolic orientable

3-manifolds with uniformely bounded volumes. Then there is a subsequence V1 , which

converges to a V, and a positive sequence E. ~ O such that each V1 has p

cusps and q simple closed geodesics of length ~ Ei with p and q independent

of i , The manifold V has p + q cusps and it is diffeomorphic to each of the

’s minus these q geodesics.

In the picture above we had p = 0 , q = 1 .

It is worth mentioning that a tube minus the axial geodesic is diffeomorphic



to a cusp. Moreover, one can easily see that if C is the cusp based on a flat torus

T and T. C T is a sequence of simple closed geodesics with length(T. ) ~ ~ 
i --~ ~n

then the sequence of tubes based on (T,03C4i) converges to C. (The base points

are taken at the boundaries of these tubes).

It is not clear, however, why the limit process Di ~ C can occur whithin

complete (i.e. without boundary) manifolds with Vol  " . In other words it could

have happend that in theorem above q is always zero, and hence all Vl are them-

selves diffeomorphic (and by Mostow’s theorem isometric) to V.

The second problem is the behaviour of the volumes Vol(Vi) when V -~ V .
Even when V is a non-trivial limit of (i.e. are not isometric to V )

the volumes Vol (Vi) and Vol(V) can be, a priori, equal. In such a case we would

have a discrete set of the volumes.

Both problem are resolved by the following remarkable theorems of Thurston.

A. Closing the cusps.- Let V be a complete orientable manifold’with Vol(V)  m

which has p + q cusps. Then there is a sequence as above, such that each
--[201420142014201420142014 
’ 

..- 

2014201420142014201420142014 201420142014201420142014201420142014201420142014

V~ has exactly p cusps and q short geodesics.

This theorem implies that V is a " (p+q)-fold" limit. In particular, V can

be represented by a limit of compact manifolds.

B. The volume limit theorem.- Let Vi ~ V be a sequence as in the cusp opening
theorem and let q > 0 . Then Vol(V) > i = 1 , 2 , ... , .

This theorem implies that the set of the values Vol(V) is well ordered, because

each convergent sequence V with Vol(V2) z ... must stabilize. This

also shows that the function V’2014~ Vol(V) is finite to one, and by using theorem A

we see that the set of the values Vol(V) is of the type . Thus Thurston’s

theorem of section 1 is reduced to A and B.

Theorem B is a special case of the following.

B’. Thurston’s rigidity theorem.- Let V be a hyperbolic manifold with Vol (V)  *

and let V’ denotes the manifold which is obtained from a complete hyperbolic

manifold of finite volume by deleting some disjoint simple closed geodesics. Let

f : V --~ V’ be a proper map of positive degree d . Then d Vol(V’) and

the equality holds iff f is homotopic to an isometric covering of degree d (i.e.

V is isometric to a d-sheeted covering of V’ ). In particular the equality

Vol(V) = d Vol(V’) implies that V’ was complete (and no geodesics were deleted).

Let us explain how B’ = B . We take for V’ a manifold Vl minus q short

geodesics. We know that V’ is diffeomorphic to V , and so we have our f of

degree 1 . If q > 0 theorem B’ implies that Vol(V) > Vol(V’) - 

Let us show that B’ implies the Mostow rigidity theorem.

If V and V’ are complete hyperbolic manifolds with isomorphic fundamental



groups one has proper maps V -~ V’ and V’ ---; V of degree i . We can assume that

Vol (V)  Vol(V’) (otherweise, we interplace V and V’ ), and B’ says that the map

V --~ V’ is homotopic to an isometry.

5. The cusp closing theorem

We shall discuss only the simplest case of a V with one cusp, when the cusp

closing theorem simply says that V is a limit of compact hyperbolic manifold.

By the decomposition theorem V 

can be divided into 
a compact piece V = V~ ~ .°° ) )

bounded by the flat torus T = V E = L (E) and the cusp C = V 
(O.c~j ~ 

based on T.

We know that C is a limit of tubes based on (T,T ) with length(T,) i i 

If we replace the cusp C by a tube based on we get a sequence V

of compact manifolds such that i~ V . The manifolds Vl are not hyperbolic :
~ 

the natural metrics in Vl have curvature -1 outside of T but at T these

metrics are singular, as in the following picture.

Since -c this singularity is getting "smaller and smaller" as i ~ ~ .

In order to eliminate this singularity and to make V and some of Di fit at T
o i

one must construct appropriate deformations of the hyperbolic metrics in Vo and in

Di.
It is not difficult to visualize all possible hyperbolic deformations of a tube

because we have an explicit description of all hyperbolic tubes. Thus we are left

with a (much more serious) problem of constructing a non-trivial deformation of V .
o

The hyperbolic metric in V is essentially determined by the holonomy represen-

tation of the fundamental group T - in the group of the isometries

of the hyperbolic space covering V . observe, that this representation (and hence,

the underlying hyperbolic manifold) may have no non-trivial deformations. For example,

there is no deformations when V is compact and dim(V) ? 3 or when V has finite

volume and 4 . The last rigidity property (this is a special case of

A. Weil’s rigidity theorem) plays the crucial role in Wang’s finiteness theorem

stated in § o.

Let us return to our 3-dimensional case. Notice first that the group of the



orientation preserving isometries of H3 is identical with the group of the conformal

transformations of the sphere S2 i.e. with the group that is a complex

algebraic group of the complex dimension 3 , and the representations r --~ 

form a complex algebraic variety.

When r admits a presentation with k generators and 1 relations the space

of the representations r -~-~ is of complex dimension at least 3 ( k - .~ ) and

the space of small non-trivial deformations of a given representation is of dimension

at least ~(k -.~- 1) , because we have to factor out only the trivial deformations,

i.e. the conjugations in PSL(2,C) .

When V is a non-compact hyperbolic 3-manifold with finite volume its Euler

characteristic is zero and the minimal cell decomposition has k cells of dimension

1 and k - 1 of 2-cells. It follows that F = ’~~ (V) can be presented by k

generators with k- 1 relations and the crude estimate from above gives no defor-

mations. However, by using a rearrangement of the relations in F , Thurston shows

that the space of the non-trivial deformations of the representation r ~ 

has positive dimension (in general, this dimension is not less than the number of

the cusps of V ).

In the case of only one cusp, the Mostow rigidity theorem implies that the

restriction of the deformed representation of the group ~ ® ~ - can not be

injective and discrete.

It follows, that there exist arbitrary small deformed representations

ZZ+ZZ ~ PSL(2,C) which factor as ZZ~ZZ ~ 2Z ~ PSL(2,C) where the last represen-

tation is generated by a fixed point free isometry of H~ , which has an invariant
geodesic. It is not hard to see that the image r’ of the corresponding represen-

tation r ---~ is a discrete cocompact group without torsion and the

corresponding manifold V’ = H3/T’ is obtained from V by replacing C by a tube.

A slightly more careful argument allows us to represent each V from above ( i is

assumed to be sufficiently large) in this form, i.e. to equip it with a hyperbolic

structure which is, automatically, close to the original singular metric in Vl .
The details, and the generalization to several cusps can be found in chapter

5 of Thurston’s lectures [T].

6. Thurston’s rigidity theorem

Recall, that the hyperbolic space Hn is projectively isomorphic to the open

Euclidean ball i.e. there is a diffeomorphism Hn --~ Bn which sends

geodesics from Hn onto straight segments. A set E C Hn is called a straight

simplex if the corresponding 1 C B is a usual Euclidean simplex.

The following elementary fact plays the crucial role in Thurston’s argument.

For each k, 2 ~ k ~ n , the hyperbolic volume of a k-dimensional straight



simplex 0394 ~ Hn is bounded by a constant Ck .
When k = 2 the maximal simplex Hn has all three vertices at infinity,

i,e. the corresponding 11 C Bn has the vertices at the boundary Sn-~ - The

volume (i.e. area) of A is ’n , i . e . C2 - n . . Notice that all straight 2-dimensional

simplices with vertices at infinity are isometric.

The maximal 3-dimensional simplex A also has the vertices at infinity. Milnor

showed (see chapter 7 in [T]) that this simplex is regular, i.e. the corresponding

is projectively equivalent to a regular Euclidean simplex with vertices at Sn-1 .

The volume C3 of this simplex is given by C3 =3 203A3 1 2sin(203C0i 3) ~ 1.0149 (see

[T]). 
When k ~ 4 the maximal simplices are also regular simplices with vertices at

infinity. This is a recent result of Haagerup and Mankholm (see [H-M]).
Let us emphasize that there is a principal difference between the cases k = 2

and k ~ 3 . All ideal (i.e. with the vertices at infinity) 2-simplices are regular

and have the same volume, but when k ? 3 the volumes of the ideal simplices vary

between 0 and C . The last fact is intimately related to the rigidity phenomena
in dimensions ¿ 3 .

Notice also that C~ have the following asymptotics when k 

(see [H-M]).
A map from an Euclidean simplex s into Hn is called straight if it sends

this simplex homeomorphically onto a straight simplex in H
A map from s into a hyperbolic manifold V is called straight if its lifting

to the universal covering ( = Hn ) is straight.
A map from a simplicial polyhedron into V is called straight if the restriction

of this map to each simplex is straight.

The following fact is obvious.

Let K be an m-dimensional simplicial polyhedron and let V be an n-dimen-

sional hyperbolic manifold with n ~ m . Then every continuous map K --~ V is

homotopic to a straight map.

The following result can be viewed as a crude version of Thurston’s rigidity

theorem.

Thurston’s mapping theorem.- Let M be a closed oriented n-dimensional manifold.

There exists a constant C = C(M) such that for an arbitrary oriented n-dimensional

hyperbolic manifold and for an arbitrary continuous map f : M -~ V one has

Proof.- Fix a triangulation of M and assume that f is straight relative to this



triangulation. Let s~,...,s~ denote the n-dimensional simplices of this triangu-

lation. We have

Corollary.- Let V be a compact orientable hyperbolic manifold. Then an arbitrary

continuous map f : V ~--~ V satisfies

Proof.- If 2 then the iterates of f have arbitrary large degrees.

Let us explain how these ideas can be applied to Thurston’s rigidity theorem.

Take two compact oriented hyperbolic manifolds V and V’ and triangulate V

into straight simplices. Let s ,...,s. 7 
be the n-dimensional simplices of this

triangulation and let v. =C (1 - ~ ) , i= 1,...,j, denote the volumes of these
in i

simplices.

For a straight map f : V ---~ V’ we have

Let E = rnax E.. . Then we have
i ~-

Vol(V)
If we could make E - ~ we would get deg(f) s Vol(V’)

Unfortunately, there is no usual triangulation consisting of infinite regular

simplices (they are the only ones with volume Cn ), but one can use instead some

ideal triangulations.

Denote by S the set of all ideal (i.e. with the vertices at infinity)

n-dimensional simplices in the universal covering V = Hn and let R C S denote

the set of the regular simplices. One views the set R as an ideal triangulation

of V .

Denote by S’ and R’ the corresponding sets of simplices associated to V’ .

One can show by using Furstenberg’s boundary construction (see [F]) or by a

direct geometric argument as in [T], that the map f induces a measurable (i.e, the

pullbacks of the Borel sets are measurable) map f : R --~ S’ . Using the inequality

C = Vol(s), s E R , one can show that Vol(V’) S d Vol(V) ,
n

d = deg(f) , and that the equality holds iff f sends almost all R into R’ C S’ .

When n ~ 3 (and hence S’ ~ R’ ) this property of f implies that the map f is

homotopic to an isometric covering. See chapter 6 of [T] for the actual proof which
,

is valid for the noncompact manifolds with finite volume.
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