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ON THE CONJECTURES OF BIRCH AND SWINNERTON-DYER

AND A GEOMETRIC ANALOG

by John TATE

Séminaire BOURBAKI
18e 1965/66, no 306 Fevrier 1966

§ 1. The conjectures

They grew out of the attempt to apply to elliptic curves the methods used by

Siegel in his work on the arithmetic of quadratic forms, these methods having been

reworked and fruitfully applied to linear algebraic groups in recent years by

Tamagawa, Kneser, Weil, et al., [22], (11~. Much has been written about the

motivation for, and the historical development of, these conjectures ( 6 ~, [2 ],

[7], [3], (4 ~, [18], mostly in terms of the special case of elliptic curves

over Q. We content ourselves here with the bare statements, but give these in

the most general case.

Let A be an abelian variety over a number field K. Let S be a finite

set of primes of K containing the archimedean ones and large enough so that A

has non-degenerate reduction outside S, that is, such that A comes from an

abelian scheme AS over the ring Ks of elements of K which are integral

outside S. For each prime v/S, let A denote the abelian variety over the

residue field k(v) obtained by reducing AS mod v. Let Nv = Card k(v),
and let d = dim A = dim A . According to well known results of Weil, there is

a polynomial of the form

of degree 2d, with coefficients in Z, and with complex "reciprocal roots"



03B1i,v of absolute value these roots, and hence P (T), being character-

ized by the fact that for all m )1 1

The Euler product

converges for Rs >’~’ because it is dominated by the product for (S (s ~))2d.
It is generally conjectured that LS has an analytic continuation throughout

the s-plane. This general conjecture, which in principle underlies those of

Birch and Swinnerton-Dyer, has been verified in some special cases, notably for

A of C.M.-type (Weil, Deuring, Shimura), in which case L,. can be identified

as a product of Hecke L-series, and for some elliptic curves related to modular

function fields, when L5 can be related to modular forms (Eichler, Shimura).

Let r be the rank of the group A(K) of K-rational points on A, which

is finitely generated by the Mordell-Weil Theorem. Birch and Swinnerton-Byer’s

first conjecture was

(A) The function LS(8) has a zero of order r at s = 1.

As explained in [19], this conjecture fits beautifully with conjectures I have

made concerning the rank of the Neron-Severi group of a variety V defined over

any field K of finite type over the prime field. But in this report I wish to

concentrate on a refinement of (A), concerning the value of the constant C

such that C(s-1)r as s -~ 1, While (A ) is trivially independent of



our chosen set of primes S, the value of C is not. Helped by prodding from

Cassels, Birch and Swinnerton-Dyer overcame this difficulty by following the

Tanagawa method, which we now briefly recall.

For each prime v of K, the completion K of K at v is a locally
v

compact field. Ve choose for each v a Haar measure v on Kv, such that

for almost all v the ring of integers 0 gets measure I . (In other words ,
v

we choose a Haar measure on the adèle ring of K. ) For each v let ( x( v
denote the normed absolute value on K , the norming being such that

v

p (XU) = l x( j (U) for XEK and U C K . The group A(K) of points of A
V v v v v

with coordinates in K is a compact analytic group over K . Choose a non-zero
v v

invariant exterior differential from w of degree d on A defined over K.

Then w and p determine a Haar-measure (w( dv on A(K) in a well-known
v v v v

way, 122].

Let Us call V good for W and p if v is non-archimedean and satisfies

the two conditions

(I) lb~(0~) x I

(it) W iS v-regular with non-zero reduction I for Néron’s minimal model
v

A for A over 0 , [14].
V v

For such good v we have

where n is the number of k(v)-rational points on the fiber A of Neron’s

minimal model ; and if v is not so good, but still non-archimedean, the value

given in (1.4) has only to be corrected by multiplication by the factor



where u~e is some v-regular form with 0. For archimedean v, the

value of the integral (1.4) can presumably be expressed in terms of a Riemann

matrix f or A .

We now suppose that S contains all primes which are not good for our chosen

w and ~ , in addition to the primes where A has degenerate reduction, and we

put .

where denotes the measure of the compact quotient of the adele ring of K

by the discrete subfield K, relative to the measure ~ = * For example
r n

where cL. is the absolute discriminant of K, and r2 is the number of complex

primes of K. For our "sufficiently large" S, the function LS is independent

of the choice of ~ and w, by homogeneity and the product formula (Tamagawa

principle ! ). By (1.1), (1.2), and (1.4) we have

and consequently, the asymptotic behavior of L*(s) as s - 1~ is independent

of S. Since it is this behavior which interests us, we shall from now on write

simply L*(s) for any such function, or more generally for any Euler product L*,



all but a finite number of whose factors coincide with those of y and such

that the elementary function takes the value 1 at s = 1. Presumably

there is a best such L*, satisfying an especially simple functional equation

relating L*(s) and L*(2-s), but we do not enter into this question here.

The second conjecture of Birch and Swinnerton-Dyer, which refines the first,

is

where the quantities on the right are now to be explained.

We write [X] for the cardinal number of a set X , and Xtors for the

torsion subgroup of an abelian group X. The dual abelian variety to A is

~ 

denoted by A’. The groups A’(K) and A(K) have the same rank r, because

A’ is isogenous to A over K, and (ai)1  i  r , , resp. (a! )1 .... is
a base for A(K), resp. A’(K), mod torsion.

The symbol  a’,a > has to do with canonical heights on abelian varieties.

If x = (x~,...,xm) is a point of projective m-space with coordinates in K,

its "logarithmic height" is defined by

Let f be a K-morphism of A into a projective space, and let D be the

inverse image under f of a hyperplanedefined over K. We call f symmetric

if D is linearly equivalent to D-. Let denote the point on A’

representing the divisor D - D. Then  a’,a > is the wique biadditive real-

valued function on A’(K) x A(K) such that for every symmetric f the function

 > + 2h(f(a)) is bounded for a~A(K). The existence of such a function



is due to Neron [15]. I have given a simpler construction, y based solely on the

functorial properties of heights and of divisors on abelian varieties due to Weil

(cf. ~12 ~, and ~13~~, but the approach of Neron through the local symbols (X,a)v
is undoubtedly essential both for the finer theory, and also for computational

purposes.

It remains to discuss the Safarevic group, ~ . This can be defined by the

exactness of the sequence

where the cohomology in the Galois cohomology of commutative algebraic groups,

cf. (16~. It is known that ,~ is a torsion group whose p-primary component

is of finite corank for each prime p. Another deep conjecture underlying

(B) is that ~ is finite. As far as I know, this has not been proved for a

single A ~ 0, although the finiteness of )j~(2) or has been shown for

hundreds of elliptic curves over Q. Cassels [5 ,IV] for d = 1 and I in

general [20] have constructed a canonical pairing ~ X y ’ -~ Q/Z .which is non-

degenerate if ill. is finite and is alternating in case ~ ’ I can be identified

with [~ by means of an isomorphism A ~ A’ coming from a polarization of

degree 1. Hence in this latter case, and in particular if A is a Jacobian,

is a square. In general ( assuming finiteness) we so

the right hand side of (B) is invariant when A and A’ are interchanged.



The numerical evidence for the conjectures is very impressive. Most of it

is contained in [4 ], nhere Birch and Swinnerton-Dyer discuss the case K.= Q ,

and A an elliptic curve of the form y 2 = ~’- Dx. In that case, , as Weil [22]

has shown, the function L*(s) = 14t(s) is, essentially, a Hecke L-series

associated with the Gaussian field Q(i) of complex multiplications of A, and

Birch and Swinnerton-Dyer were able to find a finite expression for L~(~1). This
expression is a sum of A terms, where A is the product of the odd primes

dividing D , each term involving a quartic residue symbol and a division value

of a Weierstrass %-function associated with A . Their electronic computer

could compute for all D’s corresponding to a given A (D is fourth-

power free) in about 03942/20 seconds. It computed the quantity

for 1348 values of D (all those for (  108 and a few more). For each of

these D’s it also tried to compute the rank r , together with the order of

}~(2), succeeding in all but .about 200 cases. Now, according to conjecture (D),

one should have y = 0 if r > 0, and y = ~~~ if r = 0. In each of the

more than 1000 cases where r was detennined, the machine found y = 0 whenever

r > 0, and found y to be a non-zero square whose 2-component was equal to

C~(2)~ whenever r = 0. Moreover even in the cases where r and ~(2) were

not determined by the given program, there were various consistencies ; in

particular, y was always a square. The non-zero values of y which turned up,

i.e. the various conjectural orders of ££ for r = 0, were 1, 4, 9, 16, 25,

36, 49, and 81.



I understand that more recently N.M.Stephens, in his as-yet-unpublished

1965 Manchester Ph. D. thesis has given a similar discussion of curves of the

form a3 + y3= D, but including some computations of the values of the higher
derivatives of L*(s) at s = 1, getting numerical evidence for (B) in

hundreds of cases with r = 0 and 1 for that type of curve, and also in

four cases with r = 2 and in one case with r = 3 ! t

In addition to all this numerical evidence, there are strong theoretical

indications that (B) is right. In [4] it is proved in general, i.e. for all

D, that is a rational number, whose denominator is explicitly bounded

(in the sense of divisibility) in terms of D.

It should be an easy job.to check that (B) is consistent with Weil’s

"restriction of the ground field" functor for a subfield Ko of K,

that is, that (B) holds for A over K if and only if it holds for 

over Ko . Indeed if this is not so, then I have presumably made a mistake in the

norrmalization of the measures, or of the height pairing  a’,a >.

For a given field K, the conjecture (B) is trivially compatible with

products ; indeed each individual quantity entering in (B) is easily seen to be

multiplicative.

Much more interesting in the question of compatibility with isogenies. It

is true, but not at all trivial, that

THEORBO 2.1.- The truth of conlecture (B) depends only on the K-isogeny class

of A.

For elliptic curves this was proved by Cassels [ 5,VIII]. In trying to

prove it in general I was led to the following basic theorem on global Euler-



Poincare characteristics of finite Galois modules over number fields :

THEOREM 2.2.- Let S be a finite set of primes of K and let M be a finite

module for the Galois group of the maximal unramified-outside-S extension of K,

whose order, [M], is invertible in the ring Y,S of K. Let

M’ = be the Cartier dual of M. Then

where H° is the reduced 0-dimensional cohomology group (which was denoted by

HO in the too-fancy notation of [20]). 
r m

Indeed using Theorems 2.1, 2.3, 2.5, and 3.1 of [20], one proves that,

assuming  finite, the compatibility of (B) with a K-isogeny f is equivalent

to Theorem 2.1 for M’ = Ker f and M = Ker f’ . Cassels lemma 6.1 of [5 ,VIII]

seems to be a variant of theorem 2.2 for the case M is of prime order. The

equality of the middle and right terms in (2.1) is a triviality, but both

expressions are useful. Defining x(KS,M) = left/middle, one checks the
multiplicativity of x by means of Theorem 3.1 (C) of [20 ]. But I was at a loss

in trying to prove X = 1 until Serre suggested I use his methods of [16, p.II-

34 to II-37], which work beautifully. One is reduced to proving (2.1) holds (in

the form extreme right = extreme left) in case M = p , M’ = Z/pZ, for a prime

p, but where [X] now denotes not the order of X, but the class of X in the

Grothendieck group of finite modules over the group algebra (Z/pZ) [G], where

G is a group of automorphisms of K of order prime to p, such that S is

stable under G. This can be done by considering the cohomology sequence of the



p
exact sequence 0 -~ ~p -~ m -~ G -~ 0, together with the knowledge of the

cohomology of G furnished by class field theory.

§ 3. Relation between  and Br

It was Mike Artin who first remarked that the finiteness of ~ was equi-

valent to the finiteness of a Brauer group in certain cases, and the rest of

this talk is a report on joint work with him.

In this section V will denote either (i) an open subset of the spectrum

of the ring of integers in a number field, o~ (ii) an irreducible curve-scheme

smooth over a perfect field k. We let K denote the field of rational functions

on V, and V° the set of closed points on V. For v~V° we let K denote

the completion of K with respect to the valuation associated to v, lf A

is an abelian variety defined over K, we denote the kernel of the

map

Notice that in the arithmetic case the L of § 1 (cf.(1.’~~~ is a subgroup of

and is not in general equal to it unless K is totally imaginary and

V the spectrum of the ring of integers of K.

THEORY 3.1.- Let f : X ~ V be a proper morphism with fibers o dimension 1

and X regular of dimension 2. Suppose that the geometric fibers of f are

connected, and the generic fiber smooth. If f "a,dmi.ts a section, then there is

an exact sequence



where A denotes the Jacobian of the generic fiber of f, and where Br denotes

Brauer group. Moreover if V is a complete curve. then Br(V) = o.

Concerning the definition and basic properties of Br we refer to Grothen-

dieck’s talks in the last two Bourbaki seminars [8]. Notice that since the

dimensions are $ 2 and X is regular, both Brauer groups in question are iso-

morphic to the cohomological Brauer groups. We do not prove Theorem 3. 1 here,

because of space limitations, and because of Grothendieck plans to give a third

expose [~ 9 ] on the Brauer group, which will contain a proof of a somewhat more

general statement. Suffice it to say that the proof is based on the Leray

spectral sequence of etale cohomology for the map f and the sheaf of

multiplicative groups on X, the starting point being

THEOREM 3.2 (Mike Artin).- If f : X -~ V is a proper morphism with fibers of

dimension 1 and X regular of dimension 2, then = 0 for q > 2.

It might be interesting to try to find a direct connection between 

and Azumaya algebras over X.

§ 4. The geometric analog

Let k be a finite field with q elements and V an irreducible algebraic

curve proper and smooth over k with function field K. If A is an abelian

variety defined over K, then the conjecture (B) of § 1 makes good sense for A

over K, by the usual analogies between number fields and function fields in one

variable over finite fields. Moreover, the ~ occurring in (B) is identical
with the of § 3, because V is complete. The proof of compatibility
with isogenies given in § 2 carries over to this geometric case, so long as the



degree of the isogeny is prime to the characteristic p. The proof of compatibi-

lity with p-isogenies looks like an interesting problem.

Let us now abandon our curve V temporarily and consider an algebraic

surface X projective and smooth over k such that X = k is connected.

By the etale Lefschetz fixed point theorem and Poincare duality [1 ], [10], the

zeta function of X is of the form.

where P.(X,T) = det (1-03C6i,l T) is the characteristic polynomial of the

endomorphism tpi,t of the etale induced by the Frobenius endomorphism

cp of X. From Weil’s work on abelian varieties and the relation between the

etale H1 and the Picard variety of X, it is known that P 1 has integral

coefficients and is independent of t, and it follows that the same is true for

P2. It is also known (Weil) that the complex "reciprocal roots" of P1 have

absolute value q~ ; it is conjectured, but not known, that those of P~ have

absolute value q.

Inspired by the work of Birch and Swinnerton-Dyer, in the way explained

below, Mike Artin and I conjecture :

(C) The Brauer group Br(X) is finite ’and

where the quantities on the right are defined as follows :



where 8(X) = dim N~(X,0 ) - dim (Pic Var(X)) is the "defect of smoothness" of

the Picard scheme of X. It is known that 0.

NS(X) denotes the Neron-Severi group of X, which we define to be the image

of Pic(x) in NS(X), where and NS(X) is the group of

algebraic equivalence classes of divisors on X.

p(X) denotes the rank of NS(X), and (D.) i 1 i p is a base for

NS(X) mod torsion. The symbol (D..D.) denotes the total intersection
I J

multiplicity of D. and D..
We also conjecture

(d) Suppose that f : X ~ V is a k-morphism of the surface X onto the curve

V, with connected geometric fibers and smooth generic fiber. Let A be the

Jacobian of the generic fiber. Then (B) holds for A over K if and only if

(C) holds for X.

This conjecture gets only a small letter (d) as label, because it is of a

much more elementary nature than (B) and (C). We have checked that (d) is true
in case f is smooth and has a section, and we are 99 ~o sure it is true in case
the generic fiber of f is an elliptic curve with a K-rational point. Indeed

it was in trying to translate (B) into a statement about the surface X in the

latter case that we arrived at (C).

We have not yet made a serious attempt to prove (d) in the general case, and
will here just briefly indicate the explicit and plausible equality to which it

reduces. For each v~V let X = f-1(v) be the fiber over v , and let m 
v



denote the number of irreducible components of X. Define P (T) by

(Concerning the general formalism of zeta functions of schemes, see Serre ~17~. )

For the good v , where f is smooth and A has non-degenerate reduction,

P (T) is the polynomial associated to A at v as in (1.1). We have

where L(s) = H 
v 
(Nv s~~~. Substituting the expression (4.~~ for

C(X,s) and the analogous formula for ,(V,s) in (4.3) one finds (ultimately)
that (d) is equivalent to the equality

(sauf erreur), where :

B = Coker (Pic Var(V) ~ Pic Var(x)) = (K/k)-trace of A .

S is a finite set of points of V outside of which f is smooth.

n is the number of k(v)-rational points on the fiber N Y of Nerons’s

minimum model for A.

c = deg 03C9 + (g-1 ) (d-1 ) - x(x,0x) ,
where

~ is the line-bundle on V whose fiber at v is the space of exterior

differential forms of degree d on A .
The abelian variety B enters because = P1(B,T), and



P 1 (B,1)P 1 (B,q 1) _ B. The constant c has several sources : (4.2),

with dim (Pic Var(X)) = g + dim B, the fact that | | = qg-1 if y (0 ) = 1
v v

for all v, and the use of a rational section w of the bundle w as in (1.4)

and the remarks following to get L*(s) in terms of L(s). The n v also arise

from (1.4).

In deriving (4.4) one also uses p = r + 2 + E(m -1), which results from

an unscrewing of NS(X) of the type

where (NS)v denotes the quotient of the free group generated by the irreducible

components of f 1(v) by the subgroup generated by the cycle f-1(v). This

unscrewing will lead to a factorization of det(D..D.) into factors detA and

det ’s, and in (4.4) the det ’s should be moved over into the product of localv 
m -1 

v

terms (note that divides and the A should essentially
cancel with det  >. Indeed, if ,D and E are divisors on X which

intersect every irreducible component of every fiber with multiplicity 0, and

if a and b are the points in A(K) representing the intersection cycles of

D and E on the general fiber, then we have  a,b >= (D.E) log q , cf. [15].
The factor log q appears here because log (Ixl ) = -(ord x)(deg v)(log q) ;
the source of log q in (4.4) is simply 1 - ( log q) ( s-1 ) as s ~ 1.

If f has a section, then Br by Theorem 3.1, and also c = 0, for

in that case, as Grothendieck explained to me, R1f*(0X) is a locally free

sheaf on V of rank d, the d-th exterior power of whose dual and on

the other hand, = X(V,0 ) _ now use Riemann-Roch on V.



If in addition f is smooth, then all individual quotients in (4.4) are equal

to 1. In the general case, there may be some spill-over from one quotient to

another, but it looks hopeful to reduce (d) to a purely local relationship

among n , P ), and the det mentioned above.

§ 5. The main theorem

We consider now a surface X of the type described in the second paragraph

of § 4, without reference to a fibration X -~ V. After proving a self-duality

theorem for Br(X) analogous to Cassels’ self-duality for the .liL of elliptic
curves, we prove our main theorem 5.2. If we grant (d), this theorem shows that,

for a Jacobian A over a function field K of a curve over k, the finiteness

of for one prime £ / p = char(k) is equivalent to conjecture (A) of

Birch and Swinnerton-Dyer for A over K, and implies the finiteness of the part

of ~ prime to p and the truth of their conjecture (B) up to a factor + p .
Our proof uses the etale cohomology theory over X = k , and therefore does

not offer much hope of adaptation to the number field case at the moment.

Let G denote the Galois group of k over k, and consider the following

exact commutative diagram of finite groups :



Here u. denotes the £tale sheaf of m-th roots of unity, m being a number
m

prime to the characteristic p. We use the symbol W 
m 

to denote the kernel of

multiplication by m in a commutative group W. The columns in (5J) come from

the £tale cohomology sequence associated with the exact sequence of sheaves

(cf. [8,I1, § 3]), over X and over X = X Xk k . The 0 in the northwest

corner comes from the fact that H°(X,G~) = 1~’ is divisible, and the replacement

of Pic by NS in the northeast corner is allowed by the divisibility of

Pic Var(X)(k). The group G = Z has a canonical topological

generator a = Frobenius automorphism, and for any topological G-module M we

denote by MG (resp. M ) the kernel (resp. cokernel) of the homomorphism

(c-1) : M -~ M. Thus = MG, and if M is a torsion module, then

H1(G,M) = M , and = 0 for i > 2 . If F is a finite sheaf killed

by m on Xét and F its restriction to Xet , then the spectral sequence of
Hochschild-Serre [1,VIII 8,4~ breaks up into exact sequences :

The middle row of (5.1) is this exact sequence for F = p m and i = 2. The top

and bottom rows have arrows omitted simply in order that we may say the diagram

is exact.

The Poincare duality theorem over X (cf. [1 ]) shows that the cup product

pairing

is a perfect duality of finite G-modules for all i, with G operating



trivially on Z/mZ. From (5.2) and (5.~) one derives an "arithmetic" Poincare

duality theorem over X, which asserts that the cup product pairing

is a perfect duality of finite groups, for all i.

i J
Now consider the exact sequence 0 ~ m ~ m2 m ~ 0. From the

functorality of arithmetic Poincare duality one finds that the two groups

are dual. On the other hand these. two groups are isomorphic via the connecting

homomorphism S: H-(X,~ ) -~ H~(X,~, ), and the first of them, i.e. the Coker, ism m

isomorphic to 
m 
~) = n mBr(X)), as one sees by

applying the serpent lemma to a diagram involving the middle column of (5.1) and

the same column with m replaced by m2. It follows that Br(X) 

is self-dual, its self-duality being induced by the pairing (x,y) F9 x,$y of

H2(X, m) with itself into H5(X, m) ~ Z/mZ. This latter pairing is skew-m m

symmetric because x.(Sy) + (bx).y = b(xy), and 8(~r) = 0 because

H5(X,~ ) -~ H5(X,~, ) is injective. The skew-symmetric form on Br(X)
m m m

which we have constructed is compatible with the inclusions

C Br(X) , if we view its values in Q/Z. Passage to the limit gives

THEOREM 5.1.- There is a canonical skew-symmetric form on Br(X) (non p) whose

kernel consists exactly of the divisible elements. In particular. if Br(X) (non p)

is finite, then it is self-dual and its order is a square or twice a square .

In the situation of ’Theorem 3.1, when Br(X) = this form ought to

correspond to the one of Cassels discussed after (1.7). We therefore suspect



that the form in theorem 5.1 is not only skew-symmetric, but alternating, and

that the order of Br(X) is a uare, if finite. The proof of alternatingness,

or equivalently of x.6x = 0 for in the notation of the preceding

paragraph, looks like an interesting cohomological problem. Comparison with the

methods of Cassels suggests that another description of the pairing, involving

divisors, might be useful. It would also be interesting to give a description

of it in terms of Azumaya algebras on X. On the other hand, the methods used

here suggest that there should exist a "truly arithmetic" Poincare duality

theorem for schemes of finite type over number fields, which in the case of

dimension 2 should yield a new construction of Cassels’ pairing.

In the proof of the main theorem below we use a counting process involving

homomorphisms f : A -~ B of Z -modules. We will call f a quasi-isomorphism

if Ker f and Coker f are finite, in which case we put

We list without proof the elementary properties of z(f) which we will need.

LEMMA z.1.- Suppose A and B are finitely generated Zl-modules of the same
rank and that (ai), resp.(b ) is a base for A y resp.B, mod torsion. Let

f : A ~ B, with t(a,) = Ez..b. mod torsion. Then f is a quasi-isomorphism

if and only if det(z) ~0, in which case
~-J ’"’"~

LEMMA z.2.- Suppose f:A~B and g : If any two of the three maps



f,g, and gf are quasi-isomorphisms the third is also, and z(gf) = z(g)z(f).

LEMMA z .3. - Let A* = HomZ (A,Q /Z ). Then f : A -~ B is a quasi-isomorphim

if and only if f~ : 1~’ -~ A~’ is. in which case = 1.

LEMMA z.4.- Suppose 8 is an endomorphism of a finitely generated Z -module A.

Let 03B8~1 denote the corresponding endomorphism of Let

f : Ker 03B8 ~ Coker 8 be the map induced by the identity A ~ A. Then f is a

quasi-isomorphism if and only if det(T - 03B8~1) = Tp R( T ) , with p = rkZl (Ker 8 )
and R(0) ~ 0, in which case z(f) = |R(0)|l .

To prove this last, let 81 denote the restriction of 0 to Im 6 , and

note that Ker f = Ker 0 n Im 6 = Ker 81 , and Coker f = A/(Ker 0 + Im 8) ~ Coker 0..
Now apply lemma z.1 to 0~ : Im 8 -~ Im 6.

Let £ be a prime number different from the characteristic p. Passing to

the inductive limit with in (5.1) we obtain an exact commutative diagram

of Zt torsion modules of finite corank :



The replacement of Pic by NS at the top of the middle column is justified

because Pic(X~ -~ NS(X) is surjective with finite kernel. Passing to the

projective limit with (5.1) we get an exact commutative diagram of finitely

generated 

0

where Tt(U) = = for an abelian group U. The isomorphism

in the northeast corner follows from the definition of NS(X) as the image of

Pic(X) in Pic(X)/(Pic the fact that Z is Z-flat, and

the surjectivity of the maps Pic(X) 9 Pic(X)G and Pic(X)G  these

surjectivities resulting from = 0 and H1(G,Pic Var(X)(k )) = 0 (Lang’s
theorem) . This last vanishing also shows that 

and consequently

because = for finite A.

We are now ready to prove



THEOREM 5.2.- The following statements are equivalent

(i) is finite.

(ii) The map h : NS(X) 0 Z ~ ~(X,T (~))G is biiective.

(iii) p(X) = rkz 

(iv) p(X) is the multiplicity of q as reciprocal root of the polynomial

P2(X,T).
If these statements are true for one ~ , then Br(X)(non p) = u 
is finite, and conjecture (C) is true up to a factor of . ± p ; in other words, t

putting R(T) = P2(X,T)/(1-qT)P(X), we have

for some integer v .

It is easy to see that (T,e(Pic(X)))G is isomorphic to the group of

k-rational points on Pic Var(X) and is therefore finite. Since 

is torsion-free, we get from (5.7) an exact sequence

which proves the equivalence of (i), and (iii), because is

finite if and only if = 0.

As explained in [19], we have

where 03C32,l denotes the automorphism of H2(X,Tl( )) ® Q which is induced

by the Frobenius automorphism a . Hence the multiplicity of q as reciprocal

root of P2 is the same as the multiplicity of 1 as eigenvalue of ~2~~ , or



of 0 as eigenvalue of cr~ . - 1. This multiplicity is clearly at least as

great as the Z -rank of (~,)) . Therefore (iv) implies (iii), in view

of the injectivity of h in (5.9).

Assume now that the equivalent conditions (i), (ii) and (iii) hold and

consider the diagram

Here h is the isomorphism of (ii). The map e is that induced by the inter-

section pairing NS(X) x Z. The non-degeneracy of this pairing over X

follows from that over X. By lemma z.1 we conclude that e is a quasi-isomorphism,
with

isomorphism in the top now of (5.12) is trivial, and the one on the
bottom row comes from Poincare duality on X. The map g* is the adjoint of the

map g in diagram (5.6). Prom the exactness of (5.6) and lemmas z.2 and z.3
we conclude using (5.8) that g* is a quasi-isomorphism with

The map f is that induced by the identity on By (5.11) and
lemma z.4 with e = o - 1, the map f is a quasi-isomorphism if and only if (iv)
holds, in which case



where R is as and is directly related to, but not the same as, the R

in lemma z.4.

The diagram (5.12) is commutative, i.e. e = g*fh. To see this just replace

the X’s in the upper row by X and remove the G’s in the bottom row, and use

the compatibility of intersection of cycles with cup products, on X .

By lemma z.2 we conclude that f is a quasi-isomorphism, hence (iv) holds,

and

But (iv) is independent of l (because P2(X,T) is, as explained at the

beginning of § 4), and consequently (5.1~) holds for all primes Since

NS(X)t ors is finite, it follows that Br(X)(non p) is finite, and (5.9) holds.

This concludes the proof of theorem 5.2.

The problem of proving the analogs of theorems 5.1 and 5.2 for should

furnish a good test for any p-adic cohomology theory, and might well serve as

a guide for sorting out and unifying the various constructions which have been

suggested and used ; Serre’s Witt vectors, Dwork’s banach spaces, the raisings

via special affines of Washnitzer-Monsky, and Grothendieck’s flat cohomology of

. In view of theorem 5.2 we have especial confidence in the "non-p" part of

Conjecture (C) ; nevertheless, some computations in the special case X a product

of elliptic curves have furnished fragmentary evidence for the p-part as well.
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