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REPORT ON THE FIXED POINT FORMULA

by Raoul BOTT (1)

Seminaire BOURBAKI
18e annee, 1965/66, nO 295

Novembre 1965

The work to be reported on concerns a generalization of the Lefschetz

theorem for elliptic complexes. As Michael Atiyah and I have - alas - already

reported on the applications of this extension in various places ([hl , [2], ...)

I will here principally discuss one of our methods of proof which by now has

become nearly embarrassingly transparent. It is also clear that special instances

of our procedure abound in the literature, and every lecture seems to uncover

new ones. As far as applications go, let me remark though that during the recent

visit of F. Hirzebruch at Oxford we seem to have been able to derive the recent

results of Langlands (~.5~) along a road suggested by Borel some time ago from

a generalized form of the fixed point theorem, and the proportionality principle
of Hirzebruch.

The question is the following one. We are given a compact smooth manifold X,
a sequence of smooth vector bundles E = {E.}, i = 0,...n, over X, together

with a differential operator d : 0393(Ei) ~ r(Ei+l), subject to the two conditions

is exact at each nonzero cot angent vector 03BE on X.

The ellipticity conditions (ii) then have as a consequence that the homology

groups

are finite dimensional, so that, in particular, the Euler number

~1~ This is a report on joint work with M.F. Atiyah..



x(E) = ~(-1)1 dim H (E) is a well-defined invariant of the complex E.
The determination of this number is the generalised R.R or "index" problem,
and was recently solved by Atiyah and Singer.

Suppose now that T = {T.} is a sequence of endomorphisms of r(E.),
for which doT. = Ti+lod so that they induce homomorphisms

-~ and define the Lefschetz number of T as the

expression

L(T) = Tr. 

The generalized "Lefschetz" Problem is now to evaluate L(T) when T

has suitable geometric properties.
For instance where E is the de Rham complex A = {A.} of differential

forms on X and T is induced by the differential of a smooth map,
t : X -. X, then the classical Lefschetz theorem evaluates L(T) as a

sum of certain indexes or "weights" attached to the fixed point sets of

t, and in the special case when the graph of t is transversal to the

diagonal these weights are all + 1.
In general, this leads.one to define T to be a eometric endomorphism

of E, if there is a smooth map t : X -~ X, together with vector bundle

map 03C6i : E.) ~ r(E.), so that

Finally, such a T is called transversal if the graph of t is transversal

to the identity map, and our first problem is to compute L(T) for a

geometric and transversal endomorphism T in terms of the fixed point set
of t. This is then the question most removed from the index theorem and
as one would expect, it is a more elementary one.

2. The solution of this problem which we like best at the moment is based

on the observation that although the space of C~ sections r(E.) is

~-dimensional, T. has a trace on 0393(Ei) in a certain very natural sense

- precisely because it is so far removed from the identity. Suppose for a
moment that T : E -)- E (we suppress the suffix i here and will act as if E

were a trivial bundle. The general case introduces only technical complications)
were a transformation given by a smooth kernel KT :



Then clearly the trace of T should be taken to be j 
X 
KT(X’ x) dx.

Interpreted differently, this trace is the value of the diagonal distribution A

in X x X on the smooth kernel K(x, y). Now suppose an in a sequence of smooth

distributions on X x X which tend to A in the distribution topology. Such a sequen-

ce serves to extend this notion of trace to a possibly larger class of endomorphisms T.

Indeed by the Schvartz Kernel Theorem every continuous map T : r(E) -~ r(E) defines

a distribution kT on X x X, which on product functions t(x) . x(y) is given by

This "kernel of T" has a definite value on A , and one can say that T has a

"trace relative to (A }", if lim exists. Of course this is a rather ad hoc

extension for a general sequence A . However the geometry of the situation suggests a
method of approximating the diagonal by squeezing down on it along the normal direc-

tions in a C fashion. More precisely, let (u, v) be a set of coordinates on the

open set U in X X X, with u normal to A in U so that ~ ~ U ~ u-1 ( 0 ) . Also let
S be a sequence of values in the u-variables tending to the 6 function at 0, and

whose supports also tend to zero; then a sequence of the type 6 n x g where g is C

on X x X and g(o, v) = 1 on U is called an element ary flat approximation to A

on U. A sequence tending to A is called flat if for sufficiently small U,

the restriction of A to n is a finite linear combination of flat approximations.

Now then, it is quite easy to show the following

THEOREM 2 .2 Let T be a geometric endomorphism of E, given by a lifting

E ) + r (E ) of a transversal map t : X + X.

Then for every flat approximation On of d, graph T(0394n) tends to a limit

which is independent of the flat approximation used and this limit which we will

call the flat trace of T, is given by the formula :

where P ranges over the fixed points of t, and dtp denotes the differential of



t at P~.
In view of this result one is naturally led to conjecture the following

FIXED POINT THEOREM. Let T be a transversal geometric endomorphism of the

elliptic complex E.

Then,

In view of the relation (2.3), the formula (2~~+) solves our problem.

Indeed we have evaluated L(T) in terms of a weighted sum over the fixed points :

the weights being given by :

The formula (2.4) expresses an additivity property of the flat trace. In

order to prove it,it is expedient t o compare this trace with the usual one fur-

nished by linear space theory. For this purpose let E again denote a single vec-

tor bundle over X and let T be an endomorphism of E. Assume further that E

is equipped with a hermitian structure, and X with a volume. Further, let V be

a positive definite selfadjoint operator relative to this structure. By the spectral

theorem, V then decomposes r(E) into finite dimensional eigenspaces rÀ(E).
where V has the real positive eigenvalues l~ ~ and the Hilbert space into which

r(E) may be completed is completely decomposed by these spaces :

For each A let ) beAthe composition r (E ) r (E ) -~ "~ r (E )

where is the orthogonal projection on E A (E), so that the trace of T in the

linear space sense should then be given by 03A3 trace Of course, this ex-

pression will in g eneral be meaningless. T~o remedy this, consider rather the
Zeta-series :

¶ Note that the transversality of t ensures the nonvanishing of the determinan-

tal factor on the right. The bars denote absolute value.



For large Re(s) this series is well known to represent a holomorphic function

of So o

Now the compatibility relation which will yield (2.~+) quite easily is the

following :

CONTINUATION THEOREM. The Zeta-series ((T,s) extends to a holomorphic function
on the entire s- lane and its value at 0 agrees with the flat trace ;

(2.8) ((TB 0) - Trace b (T).
To prove (2.4) from this last fact one proceeds as follows.

1ale choose hermitian structures on the vactor-bundles E. , and a volume pn X . 

The adjoint d~ of d is then well defined, and we may set

This operator preserves the bundles individually, is self adjoint and positive.
We therefore have a decomposition of each r(Ei) into eigenspaces of

0 , and the differential operator d then induces a differentiai operator

d~ : 
a a

because V commutes with d. Further, the Hodge Theory implies that this se-

quence is exact for ~ > 1 , while dl vanishes identically and rl(E.) may be

identified with H1(E) . Hence trace H1(T) may be identified with trace

Ti(1, 1)~
Consider now the alternating sum X(s) a ~(Ti; s) for large s.

The eigenspace of 1 contributes precisely L(T) to this expression as we have

just seen. Further for larger 03BB , the exactness of (2.9) implies that

Hence x(s) is in fact constant and equal to L(T) . Setting s = 0 one obtains

the result.

1. The proof which I have just sketched throws the burden of the work on the

continuation theorem. On may in turn deduce that result from the theorem that
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the sth powers of a positive definite self adjoint differential operator, D , form
an analytic family of pseudo-differantial operator, and from the quite straight-
forward fact that if P is an analytic family of such o rators and T is a

transversal geometric map. then trace (P ~ T) depends analytically on s ~

Indeed, once these facts are granted, it is clear that trace (D" T) agrees with

~(T; s) for large s , and therefore defines an anal ic extension of s)
to the whole plane.

The theorem that Ds can be realised as a pseudo-differential operator was,
so to speak, commissioned by us from Hormander and Seeley.
That the ~ function ((T, s) has a meromorphic extension when T is the iden-

tity, was proved in a special instance by Minakshi-Sundram and Plejel in [3] . a
Actually for our purposes one could get away with the weaker st atement of

Kotake and Narasimhan [4] to the effect that the kernel of DS is completely

regular. Also one could use a different method of smoothing - that is to say,

study the expression Traceb{fs (n), T} for suitable functions of the Laplacian -
for example when f s (t) = e .

Indeed if one wishes to minimise the number of things one assumes about

differential equations, then one may deduce our formula by quite straightforward

homological methods, using only that (1 + is given by a pseudo-differential

operator,
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