SÉMINAIRE N. BOURBAKI

JACQUES TITS

Les « formes réelles » des groupes de type E_6

Séminaire N. Bourbaki, 1958, exp. nº 162, p. 351-365

http://www.numdam.org/item?id=SB_1956-1958_4_351_0

© Association des collaborateurs de Nicolas Bourbaki, 1958, tous droits réservés.

L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

1. PRÉLIMINAIRES

1.1 Notations, terminologie.

K = corps commutatif.

 K, n^P (ou simplement n^P) = espace projectif à n dimensions sur K. K, n^P (ou simplement n^P) = hyperquadrique non dégénérée et non défective de $K, n+1^P$; ν est la dimension (projective) maximum des variétés linéaires situées sur l'hyperquadrique. Lorsque $n=2\nu$, on écrira simplement n^Q au lieu de n^P Q.

 V_i = variété linéaire (projective) à i dimensions. Les V_{ν} d'une 2^{ν} forment deux famille irréductibles; on appellera V_{ν} , et V_{ν} , les V_{ν} appartenant respectivement à ces deux familles.

Une collinéation (une projectivité, ou collinéation linéaire) de ${}^{\nu}_{n}Q$ est la restriction à ${}^{\nu}_{n}Q$ d'une collinéation (d'une projectivité, i.e. une collinéation linéaire) du ${}_{n+1}P$ ambiant, qui la conserve. A toute collinéation correspond un automorphisme de K (cf. [3]). Une involution de ${}^{\nu}_{n}Q$ est une collinéation involutive. Les involutions considérées plus loin seront toujours supposées non linéaires; on désignera invariablement par σ (\neq identité) l'automorphisme involutif de K correspondant, et par L le corps des éléments fixes de σ . Une involution de ${}^{\nu}_{n}Q$ est dite de première espèce si son extension à ${}^{\nu}_{n+1}P$ possède des points fixes.

Un point $p \in {}^{\nu}_{n}Q$ est appelé un <u>centre</u> d'une projectivité φ si $\psi(p) = p$ et si l'extension de φ à ${}_{n+1}P$ laisse invariante chaque V_1 de ${}_{n+1}P$ passant par p et tangente à ${}_{n}Q$. Une projectivité de ${}^{\nu}_{n}Q$ possèdant un et un seul centre est un glissement.

(une projectivité laissant invariante chaque famille irréductible de V_{ν}). Une permutation α de A est dite équivalente à une permutation α' de l'ensemble standard s'il existe une bijection permise φ telle que $\alpha' = \varphi^{-1} \circ \alpha \circ \varphi$. Etant donnés deux ensembles A et B munis de structures de même espèce, on définit de façon évidente les bijections permises (i.e. compatibles avec les structures données) de A sur B, et l'équivalence d'une permutation de A et d'une permutation de B.

1.2. Un lemme.

Soit $p \in {}^{\nu}Q$ $(\nu \geqslant 1)$. L'ensemble Q_p des V_1 de ${}^{\nu}Q$ qui contiennent p est une ${}^{\nu-1}Q$. Soit α_p une involution de celle-ci. Pour qu'il existe une involution α de ${}^{\nu}Q$ conservant p et induisant sur Q_p l'involution α_p , il faut et il suffit que α_p soit de première espèce. Si α et α' sont deux involutions de ${}^{\nu}Q$ conservant p et induisant sur Q_p la même involution, il existe une projectivité p de p0, ayant p0 pour centre, et telle que $q'=q^{-1}\circ q\circ q$.

1.3. Trialité.

Une V_i a et une V_j b de $\stackrel{\nu}{n}Q$ sont <u>incidentes</u> si l'une des trois conditions suivantes est remplie : $a \le b$; $b \le a$; $i = j = \nu = n/2$ et $a \land b$ est une $V_{\nu-1}$.

Soit $A^{(i)}$ (i = 0 , 1 , 3' , 3") l'ensemble des V_i d'une ${}^{\dagger}Q$ donnée ($A^{(0)}$ est l'ensemble des points). $A^{(3')}$ possède deux structures naturelles de ${}^{\dagger}Q$; on choisira toujours celle de ces structures telle qu'une bijection permise de $A^{(0)}$ sur $A^{(3')}$ applique l'ensemble des points d'une $V_{3!}$ sur l'ensemble des $V_{3!}$ contenant un point.

Soient ${}_6^{\dagger Q}_i$ (i = 1 , 2) deux ${}_6^{\dagger Q}$, et soit ${}_1^{(j)}$ l'ensemble des ${}_j^{\dagger Q}$ de ${}_6^{\dagger Q}_i$. Toute apphication permise de ${}_1^{A_1^{(0)}}$ sur ${}_2^{A_2^{(3')}}$ s'étend de façon unique en une application

$$\varphi: A_1^{(0)} \cup A_1^{(3')} \cup A_1^{(3'')} \cup A_1^{(1)} \rightarrow A_2^{(3')} \cup A_2^{(0)} \cup A_2^{(3'')} \cup A_2^{(1)}$$

respectant l'incidence.

Soient ${}_8^+Q_i$ (i = 1 , 2) , deux ${}_8^+Q$, $p_i \in {}_8^+Q_i$, et $B_i^{(j)}$ (j = 1 , 2 , 4' , 4"' l'ensemble des V_j de ${}_8^+Q_i$ qui contiennent p_i . L'ensemble $B_i^{(1)}$ a une structure naturelle de ${}_6^+Q$, et l'ensemble des V_3 ! (des V_3 !; des V_1) de cette ${}_6^+Q$

peut être identifié canoniquement avec l'ensemble $B_{i}^{(4')}$ ($B_{i}^{(4'')}$; $B_{i}^{(2)}$). On donnera le nom de $T(_{8}^{\dagger Q}_{1}$, p_{1} , $_{8}^{\dagger Q}_{2}$, p_{2})-application (ou simplement, T-application) à toute application

$$\varphi : B_1^{(1)} \cup B_1^{(4')} \cup B_1^{(4'')} \cup B_1^{(2)} \longrightarrow B_2^{(4'')} \cup B_2^{(1)} \cup B_2^{(4'')} \cup B_2^{(2)}$$

du type décrit plus haut, c'est-à-dire extension respectant l'incidence d'une application permise de la ${}^{+}_{6}Q$ ${}^{(1)}_{1}$ sur la ${}^{+}_{6}Q$ ${}^{(4')}_{2}$. Une T-correspondance sera un couple de T-applications réciproques

2. LE PLAN Π_{K} (1)

2.1. Définition de Π_K .

Le <u>plan</u> \mathcal{N}_K (ou simplement \mathcal{N}) est constitué par un <u>ensemble de points</u> \mathcal{E} , et un ensemble \mathcal{N} de parties de \mathcal{E} dont chaque élément, appelé <u>droite</u>, est muni d'une strucutre de \mathcal{N}_{80} . Les axiomes (2.1.1), (2.1.2) et (2.1.3) le caractérisent (à un isomorphisme près).

(2.1.1). - L'intersection de deux droites d et d' est soit un point, soit une V_4 , de chacune des deux droites. Dans le dernier cas, les deux structures de $_4$ P définies sur $d \cap d'$ par restrictions à partir de d et de d' coı̈ncident.

DÉFINITION. - On appelle V_i (i = 0 , 1 , 2 , 3 , 4' , 4") de Π , les V_i des droites de Π .

(2.1.2). - Toute V_4 , de TT est l'intersection de deux droites (au moins).

(2.1.3). - Il existe des permutations ϕ de E \cup D , appelées <u>corrélations</u> de T , qui satisfont aux conditions suivantes : $\phi(E) = D$; $\phi(D) = E$; pour tout $p \in E$ et toute $d \in D$, $p \in d \Longrightarrow \phi(d) \in \phi(p)$.

2.2. Définitions.

Deux points sont <u>alignés</u> s'ils sont contenus dans une même V_1 . Deux droites sont <u>transversales</u> (<u>latérales</u>) si leur intersection est un point (une $V_{A'}$).

 $[\]binom{1}{}$ Des démonstrations des résultats énoncés dans ce paragraphe peuvent être trouvées en s'appuyant sur les indications données dans [4] et [5].

Un point p et une droite d sont <u>liés</u>, s'il existe un point $q \in d$ aligné avec p.

2.3. <u>Les</u> V₅ .

- (2.3.1). Soit a une partie maximale de E telle que deux points quelconques de a soient alignés. Deux cas sont possibles : ou bien a est une V_4 , ou bien a possède une structure naturelle de $_5^P$ dont les V_1 , V_2 , V_3 , V_4 sont respectivement les V_1 , V_2 , V_3 et V_4 , de TT qui y sont contenues. Les ensembles a du second type sont appelés les V_5 de TT.
- (2.3.2). Soient a une V_5 et b une droite (une V_4). Si a \land b n'est pas vide, c'est une V_1 ou une V_4 (une V_3). Dans ce dernier cas, a et b sont dites incidentes.
- (2.3.3). Soient a une V_1 , $p \in E$ et $d \in D$. Si p et d sont liés (resp. si $a \cap d$ n'est pas vide), il existe une V_5 b et une seule contenant p (resp. a) et incidente a d; l'ensemble de tous les points de d alignés avec p (avec un point quelconque de a) est la V_{A} " $b \cap d$.

2.4. La T-correspondance canonique entre deux droites transversales.

Soient d_1 et d_2 deux droites transversales, $p = d_1 \cap d_2$, et $B_1^{(j)}$ (j = 1 , 2 , 4' , 4'') l'ensemble de V_j de d_i qui contiennent p. Pour tout $a \in B_1^{(1)}$, il existe une et une scule $V_{4''}$ $\varphi(a) \in B_2^{(4'')}$ telle que a et $\varphi(a)$ soient contenues dans une même V_5 . L'application $\varphi: B_1^{(1)} \longrightarrow B_2^{(4'')}$ s'étend de façon univoque en une $T(d_1, p, d_2, p)$ -application qu'on désignera par $\varphi < d_1, d_2 > 0$. Les T-applications $\varphi < d_1, d_2 > 0$ et $\varphi < d_2, d_1 > 0$ sont réciproques l'une de l'autre et constituent donc une T-correspondance qu'on appelera la T-correspondance canonique relative à (d_1, d_2) .

2.5. Collinéations, projectivités, le groupe E6.

(2.5.1). – Une collinéation de Π est une permutation de E qui applique toute droite sur une droite. Une collinéation φ est dite <u>linéaire</u>, et appelée une <u>projectivité</u>, si sa restriction $\varphi_d: d \to \varphi(d)$ à une droite d est compatible avec les structures de ${}^+Q$ de d et de $\varphi(d)$. Il existe un homomorphisme naturel du groupe des collinéations de Π sur le groupe des automorphismes de K, dont le noyau est le groupe des projectivités de Π ; on peut donc parler de l'automorphisme de K correspondant à une collinéation donnée.

- Le groupe des projectivités de $\mathbb T$ est isomorphe au groupe $\mathbb E_6$ sur $\mathbb K$ du "type Tohoku" (cf. [2]).
- (2.5.2). Une <u>involution</u> de TT est une collinéation involutive. Toutes les involutions considérées plus loin seront supposées non linéaires.
- (2.5.3). Un lemme. Soient (d_1, d_2) et (d_1', d_2') deux couples de droites transversales, $p = d_1 \cap d_2$, $p' = d_1' \cap d_2'$, et soient $\psi_i : d_i \rightarrow d_i'$ (i = 1, 2) deux bijections telles que $\psi_i(p) = p'$. Supposons en outre que $\psi_i = \psi_i' \circ \psi_i$ soit la composée d'une collinéation ψ_i de d_i laissant invariante chaque famille de V_4 , et d'une bijection $\psi_i' : d_i \rightarrow d_i'$ compatible avec les structures de $d_1' = d_1' = d_1'$
- (2.5.4). Soit φ une projectivité de $\mathbb T$. Un point p est un centre de φ si φ laisse invariantes toutes les droites contenant p. Une droite q est un axe de φ si φ laisse fixes tous les points de q . Une projectivité différente de l'identité possède au maximum un centre et un axe. Toute projectivité φ possédant un axe q possède aussi un centre q, et réciproquement. Lorsque q est appelée un glissement ; sa restriction à toute droite contenant q est un glissement de la structure de q de cette droite. Lorsque q et q ne sont pas liés, le groupe des projectivités de centre q et q est canoniquement isomorphe au groupe multiplicatif q de q .

2.6. Corrélations, polarités, le dual de TT.

- (2.6.1). Soient φ une corrélation de $\mathcal T$ et d, d' deux droites telles que $\varphi(d)$ et d' ne soient pas liés. L'application φ : $d \to d'$ définie par $\psi(p) = d' \cap \varphi(p)$ est la composée d'une application permise et d'une collinéation de d' (qui échange les deux familles de V_4). L'automorphisme de K correspondant à cette collinéation ne dépend que de φ et non du choix de d et d'; on l'appelle <u>l'automorphisme de</u> K correspondant à φ . Une corrélation est <u>linéaire</u> si l'automorphisme qui lui correspond est l'identité.
- (2.6.2). Une polarité est une corrélation involutive. Toutes les polarités considérées plus loin seront supposées non linéaires.

(2.6.3). - Action d'une corrélation sur les V de T.

Soit $E^{(i)}$ l'ensemble des V_i de T. Posons

$$\mathscr{E} = E \cup E^{(1)} \cup E^{(2)} \cup E^{(4!)} \cup E^{(5)} \cup D$$
.

Deux éléments a , b \in $\mathscr E$ sont dits <u>incidents</u> si $a \subseteq b$, ou $b \subseteq a$, ou si a et b sont incidents au sens de (2.3.2). Toute corrélation ψ s'étend de façon unique en une permutation de $\mathscr E$ qui respecte l'incidence ; cette permutation sera encore désignée par ψ . On a

En particulier, l'ensemble des droites incidentes à une V_5 donnée a est appliqué par ϕ sur une V_5 $\phi(a)$.

(2.6.4). — Le <u>dual</u> de \mathbb{T} est le plan \mathbb{T}' , isomorphe à \mathbb{T} , défini comme suit : l'ensemble E' des points de \mathbb{T}' est l'ensemble D. Une droite de \mathbb{T}' est l'ensemble des droites de \mathbb{T} contenant un point donné de \mathbb{T} ; cela permet d'identifier canoniquement l'ensemble D' des droites de \mathbb{T}' avec E. Les structures de \mathbb{T}' 0 des droites de \mathbb{T}' 1 sont définies de telle façon que les corrélations linéaires de \mathbb{T} 1 soient des isomorphismes de \mathbb{T} 1 sur \mathbb{T}' 1.

2.7. Les automorphismes de E6.

Tout automorphisme Ψ du groupe des projectivités de T est de la forme $\Psi(\phi) = \phi^{-1} \circ \phi \circ \phi \text{ , où } \Psi \text{ est une collinéation ou une corrélation de } T \text{ .}$

3. LES INVOLUTIONS DE TT.

3.1. - On désignera par γ une involution (non linéaire) de γ .

3.2. - γ possède au moins un point fixe.

En effet, soit d une droite telle que d' = $\tau(d) \neq d$. Si d \wedge d' est un point, il est fixe. Sinon, d \wedge d' est une V_4 , invariante pour τ et la restriction de τ à celle-ci possède au moins un point fixe.

Par dualité: 7 laisse au moins une droite invariante.

Des raisonnements du même type permettent encore de montrer que toute droite invariante contient au moins deux points fixes non alignés, et que tout point fixe appartient au moins à deux droites invariantes transversales.

3.3. Les restrictions τ_d et τ_d , de τ à deux droites invariantes d et d' sont équivalentes.

Soient p ϵ d \cap d' un point fixe de $\mathcal T$, et A (A') la $_6^{\dagger Q}$ des V_1 passant par p et contenues dans d (d'). Par passage au dual, on voit immédiatement que $\mathcal T$ induit des involutions équivalentes sur A et A', et il suffit alors d'appliquer le lemme 1.2.

3.4. L'involution τ est déterminée à une projectivité près, par la donnée de sa restriction τ_d à une droite invariante d .

3.5. — Soit α une involution de K,8 laissant invariantes les deux familles irréductibles de V₄. S'il existe une involution α de $\mathbb T$ dont la restriction à une droite invariante est équivalente à α , cette involution est définie à une projectivité près, d'après 3.4. Il résulte immédiatement des lemmes 1.2 et 2.5.3 que si on désigne par p ϵ 8 un point fixe de α ,

(3.5.1). — la condition nécessaire et suffisante pour que l'involution α_r existe, est que l'involution induite par α sur la 6^Q des V_4 , de 8^Q qui contiennent p soit de première espèce.

L'ensemble des points fixes de α est une $\sum_{i=0}^{y}Q_i$. On peut plonger celle-ci dans un $\sum_{i=0}^{y}P_i$ et choisir dans ce dernier un système de coordonnées (projectives) x_i , y_i (i=0, ..., 4) de façon qu'elle ait pour équation

$$x_0 y_0 + \sum_{i=1}^{4} c_i \cdot f(x_i, y_i) = 0$$

où $c_i \in L$ et f(x, y) est une forme quadratique à coefficients dans L telle que l'équation f(x, 1) = 0 définit l'extension K/L. Un calcul élémentaire montre que la condition (3.5.1) est équivalente à la suivante :

- (3.5.2). La condition nécessaire et suffisante pour que l'involution existe est que le produit c₁ c₂ c₃ c₄ soit une norme k.k⁶ de K/L.
- Si $\nu=4$, cette condition est toujours remplie, et l'ensemble des points fixes de $^{\alpha}\tau$ est un plan T_{T} .
 - Si $\nu = 2$, la condition (3.5.2) n'est jamais remplie.
- Si $\nu=0$, la condition (3.5.2) peut être remplie, auquel cas l'ensemble des points fixes de $^{\alpha}\nu$ est le plan projectif défini à partir d'une algèbre de Cayley-Dickson (octaves) sur L dont la norme est proportionnelle à la forme quadratique $\sum_{i=1}^{4} c_{i} f(x_{i}, y_{i})$.

4. LES POLARITÉS DE TT.

4.1. — Soient τ une polarité (non linéaire) de π et E_{τ} l'ensemble des points p tels que $p \in \tau(p)$. On ne considérera que le cas où E_{τ} n'est pas vide. Une droite d sera dite non singulière (par rapport à τ) si d et $\tau(d)$ ne sont pas liés, et sécante (par rapport à τ) si elle est non singulière et si, en outre, d \cap $E \neq \emptyset$. Soit d une droite non singulière ; la permutation τ_{d} : d \rightarrow d définie par $\tau_{d}(p) = d \cap \tau(p)$ est appelée la trace de τ sur d ; c'est une involution permutant les deux familles de τ_{d} . On désignera par τ_{d} l'automorphisme de τ_{d} correspondant à τ_{d} , et par τ_{d} le corps des éléments fixes de τ_{d} .

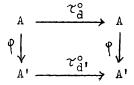
4.2. — Etant donnés deux points p, $q \in E_{\mathcal{T}}$, il existe un point $r \in E_{\mathcal{T}}$ qui n'est aligné ni avec p ni avec q, et tel que les droites pr et qr sont sécantes.

Soient $s \in \mathcal{T}(p)$ un point non aligné avec p et $e = \mathcal{T}(s)$. Sur la $_8Q.e$, l'ensemble A_1 des points alignés avec p est un cône de dimension 7, l'ensemble A_2 des points alignés avec q est un cône (si $q \in e$), une V_4 " (si q et e sont liés) ou l'ensemble vide, et l'ensemble $A_3 = e \cap E_{\mathcal{T}}$ est une C_1, C_2 (où C_2 est comme toujours un sous-corps d'indice C_2 de C_2 N). On ne peut avoir $C_3 \subseteq A_1 \cap A_2$, donc il existe un point $C_3 \subseteq A_3$ qui n'est aligné ni avec

p ni avec q. Considérons alors une droite e' contenant u et transversale à chacune des droites up , uq et $\mathcal{T}(u)$. Soient B_1 (B_2) l'ensemble des points de e' alignés avec $\mathcal{T}(p) \cap e'$ (avec $\mathcal{T}(q) \cap e'$), et $B_3 = e' \cap E_{\mathcal{T}} \cdot B_1$ et B_2 sont des cônes de dimension 7 , B_3 est une C_1, S_2 , donc, comme précédemment, on ne peut avoir $B_3 \subseteq B_1 \cup B_2$. Tout point $C_1 \subseteq B_3$ qui n'appartient pas à $B_1 \cup B_2$ satisfait aux conditions de l'énoncé.

4.3. – Les traces τ_d et τ_d , de τ sur deux droites sécantes quelconques det d'sont équivalentes.

Supposons tout d'abord que d \land d' \land $E_{\tau} \neq \emptyset$, et soit $p \in d \land d' \land E_{\tau}$. Soient A (A') la $_{0}^{+}Q$ des V_{1} contenues dans d (d') et contenant p, et $\mathcal{C}_{0}^{+}(\mathcal{C}_{0}^{+})$ l'application induite par $\mathcal{C}_{0}^{+}(\mathcal{C}_{0}^{+})$ sur A (A'). Pour tout $a \in A$ (tout $a' \in A'$), soit $\psi(a)$ ($\psi'(a')$) la V_{5} contenant a (a') et incidente à $\mathcal{C}(p)$. L'application $\psi = \psi'^{-1} \circ \psi : A \longrightarrow A'$ (qu'on peut aussi définir par la relation $\psi(a) = \psi(a) \land d'$) est compatible avec les strutures de $_{0}^{+}Q$ de A et A'. Soit $q \neq p$ un point quelconque de a. $\psi(a)$ contient q, donc la droite $\mathcal{C}(q)$ est incidente à la V_{5} $\mathcal{C}(\psi(a))$. Par conséquent, $\mathcal{C}(q)$ doit rencontrer la V_{1} d \land $\mathcal{C}(\psi(a))$ en un point qui ne peut être que $\mathcal{C}_{0}(q)$; ainsi $\mathcal{C}(\psi(a))$ contient $\mathcal{C}_{0}(q)$, donc aussi $\mathcal{C}_{0}(a)$, et on a $\mathcal{C}(\psi(a)) = \psi(\mathcal{C}_{0}(a))$. De même,, $\mathcal{C}(\psi'(a')) = \psi'(\mathcal{C}_{0}(a'))$. Il en résulte que le diagramme



est commutatif. La proposition résulte alors du lemme 1.2. Le cas où d \wedge d' \wedge E_{γ} = \emptyset se ramène immédiatement au précédent par application de la proposition 4.2 (où on choisit p ϵ d \wedge E $_{\tau}$ et q ϵ d' \wedge E $_{\tau}$).

4.4. — Soit α une involution de $_8^Q$, ayant des points fixes et permutant les deux familles de V_4 , de qui signifie que l'ensemble des points fixes de α est une $_{L.8}^{Q}$, avec ν = 1 ou 3.

Il existe une polarité α_{τ} de TT dont la trace sur une droite sécante quelconque est équivalente à α ; cette polarité est unique à une projectivité près.

Soient p et d un point et une droite non liés, $\alpha_d: d \rightarrow d$ une involution équivalente à α , et Θ l'ensemble des corrélations θ de T qui

permutent p et d et telles que $\theta(q) \land d = \alpha_d(q)$ pour tout $q \in d$. Si la polarité $\alpha_{\mathcal{T}}$ existe, on peut supposer, après transformation éventuelle par une projectivité de \mathcal{T} , qu'elle permute p et d et que sa trace sur d est α_d , c'est-à-dire que $\alpha_{\mathcal{T}} \in \Theta$. Nous devons montrer que Θ renferme des polarités et que celles-ci sont toutes conjuguées par rapport aux projectivités de \mathcal{T} .

Soient q et r deux points fixes de $^{\alpha}_{d}$ non alignés, $^{H}_{p}$ ($^{H}_{q}$) le groupe des projectivités de centre p et d'axe d (de centre q et d'axe pr), $^{\text{TI}}: \text{ H}_{p} \rightarrow \text{K}^{*}$ et $\text{\chi}: \text{ H}_{q} \rightarrow \text{K}^{*}$ les isomorphismes canoniques (cf. n° 2.5.4), et $^{\text{H}_{q}}_{q}$ le groupe formé par les éléments de $^{H}_{q}$ dont la restriction à d permute avec $^{\alpha}_{d}$. On a les relations suivantes pour tous $^{Q}_{q} \in ^{H}_{p}$, $^{Q}_{q} \in ^{H}_{q}$ et $^{Q}_{q}$, $^{Q}_{q} \in ^{H}_{q}$

$$\theta^{-1} \in \Theta ; \quad \theta \cdot \theta' \in H_p ;$$

$$\pi(\theta^{-1} \cdot \varphi \cdot \theta) = \left\{ \left[\pi(\varphi) \right]^{\sigma} \right\}^{-1} ;$$

$$\varphi \cdot \theta \cdot \varphi^{-1} \in \Theta ;$$

$$\pi(\varphi \cdot \theta \cdot \varphi^{-1} \cdot \theta^{-1}) = \varkappa(\psi) ;$$

$$\varphi \cdot \varphi = \psi \cdot \varphi .$$

Nous sommes à présent en mesure de démontrer les propriétés de 🔞 annoncées.

renferme des polarités. Soit $\theta \in \Theta$. Posons $\pi(\theta^2) = k \in K^{\bullet}$. Si k = 1, θ est une polarité; supposons donc que $k \neq 1$. On a

$$k = n(\theta^2) = n(\theta^{-1} \cdot \theta^2 \cdot \theta) = (k^{\sigma})^{-1}$$

d'où k.k° = 1 . Soit h' \in K un élément tel que h' \neq h'°, et posons h = (h' - h'°).(k° - 1) . On a

$$k.h = (h' - h'').(k.k'' - k) = (h'' - h').(k - 1) = h''$$
.

Posons enfin $\varphi = \pi^{-1}(h)$ et $\theta' = \theta \cdot \varphi$. On a

$$\pi(\theta^{12}) = \pi(\theta^{2}.\theta^{-1}.\phi.\theta.\phi) = \pi(\theta^{2}).\pi(\theta^{-1}.\phi.\theta).\pi(\phi) = k.(h\sigma)^{-1}.h = 1 ,$$
 donc θ' est une polarité.

Toutes les polarités contenues dans Θ sont conjuguées. Soient θ , θ ' $\in \Theta$ deux polarités. Posons $\phi = \theta' \cdot \theta^{-1}$ et $\pi(\phi) = k$. On a

$$1 = \pi(\phi.\theta.\phi.\theta) = \pi(\phi.\theta.\phi.\theta^{-1}.\theta^2) = \pi(\phi).\pi(\theta.\phi.\theta^{-1}).\pi(\theta^2) = \text{k.}(\text{k}^\sigma)^{-1} \quad ,$$

d'où
$$\mathbf{k}=\mathbf{k}^{\sigma}$$
 . Posons $\psi=\varkappa^{-1}(\mathbf{k})\in \mathbf{H}_q^o$. On a

$$\pi(\psi.\theta. \overline{\psi}^1.\theta^{-1}) = \kappa(\psi) = k$$
,

d'où

$$\psi \cdot \theta \cdot \psi^{-1} \cdot \theta^{-1} = \varphi$$
,

et

$$\psi \cdot \theta \cdot \psi^{-1} = \varphi \cdot \theta = \theta'$$
.

5. LE GROUPE G(τ) DES PROJECTIVITÉS DE π QUI PERMUTENT AVEC UNE POLARITÉ τ (2).

5.1. – Les notations τ et E_{τ} $(\neq \emptyset)$ du paragraphe 4 étant conservées, on désigne par $G(\tau)$ le groupe des projectivités de T qui permutent avec τ .

5.2. - Les glissements appartenant à $G(\tau)$.

Soient p \in E, , d une droite contenant p et transversale à $\tau(p)$, et τ_d la trace de τ sur d .

Pour qu'un glissement φ de centre p et d'axe $\gamma(p)$ appartienne à $G(\tau)$, il faut et il suffit que sa restriction à d permute avec τ_d .

La condition est évidemment nécessaire. D'autre part, si elle est remplie, les restrictions de τ et φ^{-1} . τ . φ à d et à τ (p) coincident, donc $\tau = \varphi^{-1}$. τ . φ en vertu du n° 2.5.3.

5.3. Le groupe $\Gamma(\tau)$.

On désignera par $\Gamma(t)$ (ou simplement par Γ) le sous-groupe invariant de $G(\tau)$ engendré par les glissements appartenant à $G(\tau)$. Si p est le centre d'un tel glissement, son axe est $\mathcal{T}(p)$, ce qui implique en particulier que $p \in E_{\Gamma}$.

5.4. Γ est transitif sur E_{τ} .

Soient p , q ϵ E . Supposons que p et q ne soient pas alignés et que la droite d = pq soit sécante. Soit r ϵ d \wedge E, un point qui n'est aligné ni

 $^(^2)$ Les résultats du paragraphe 3 montrent que le groupe des projectivités conservant une involution est, soit un groupe $\rm E_6$ du "type Tohoku", soit le groupe des projectivités d'un plan projectif sur une algèbre de Cayley-Dickson.

avec p ni avec q . La restriction à d du glissement ψ de centre r et d'axe $\mathcal{V}(r)$ qui applique p sur q est le glissement de d de centre r qui applique p sur q ; celui-ci permutant avec \mathcal{V}_d , $\psi \in \Gamma$. Les autres cas se ramènent à celui-là par application de la proposition 4.2.

5.5. — Soit d une droite sécante. Désignons par Γ_d le groupe des éléments de Γ qui laissent invariante d , et par Γ_d° le groupe induit par Γ_d° sur la Γ_d° d Γ_d° renferme tous les glissements de cette Γ_d° , donc aussi le groupe Γ_d° engendré par ces glissements. On sait (cf. [3]) que

(5.5.1). - Ω est simple et tout sous-groupe invariant d'un groupe de projectivités de L.8 Ω contenant Ω contient aussi Ω .

Notons une autre propriété, quasi évidente celle-là, de Ω . Soient p \in 1,8 Q , et Ω (p) le groupe des éléments de Ω qui laissent fixe p.

- $(5.5.2). \underline{\text{Les commutateurs de la forme}} \quad \phi. \psi. \phi^{-1}. \phi^{-1} \quad , \quad \underline{\text{où}} \quad \phi \in \Omega(p) \quad \underline{\text{et où}} \quad \psi \\ \underline{\text{est un glissement de centre}} \quad p \quad \underline{\text{de}} \quad \underline{\text{L}}_{,8}^{\nu Q}, \quad \underline{\text{engendrent le groupe de tous les glissements de centre}} \quad p \quad \underline{\text{de}} \quad \underline{\text{L}}_{,8}^{\nu Q}.$
- 5.6. Si $\chi \in \Gamma$ laisse invariante une droite sécante d , et si sa restriction à d n'est pas l'identité, Γ ne possède pas de sous-groupe invariant propre contenant χ .

Soient H un sous-groupe invariant de Γ contenant γ , $H_d = H \cap \Gamma_d$ (avec les notations du n° 5.5) et H_d^o le groupe induit par H_d sur la $L_{,8}^{\nu}Q$ d \cap E_{τ} . En vertu de (5.5.1), $H_d^o \geq \Omega$. Soient p, $\Omega(p)$, φ et φ définis comme au n° 5.5. Les commutateurs φ . φ . φ^{-1} . φ^{-1} appartiennent à H_d^o ; donc, d'après (5.5.2), H_d^o renferme tous les glissements de centre p de $L_{,8}^{\nu}Q$. La proposition énoncée résulte alors de la proposition du n° 5.2.

5.7. Γ est simple.

Soient H un sous-groupe invariant propre de Γ , $\chi \in H$ et $p \in E_{\tau}$. Nous allons supposer que $\chi(p) \neq p$ et montrer que cette hypothèse implique une contradiction; il en résultera que pour tout $\gamma \in H$ et tout $p \in E_{\tau}$, $\chi(p) = p$, c'est-à-dire que γ est l'identité. Commençons par démontrer le lemme suivant :

(5.7.1). - Aucune droite sécante ne contient simultanément p et $\gamma(p)$. En particulier, si p et $\gamma(p)$ sont alignés, $\gamma(p) \in \gamma(p)$.

En effet, le commutateur δ . χ . χ^{-1} . χ^{-1} de χ et d'un glissement χ , de centre p et ne laissant pas fixe χ (p), appartient à H, laisse invariante toute droite contenant p et χ (p), et ne laisse pas fixe χ (p). Puisque H $\neq \Gamma$, il résulte du n° 5.6 qu'aucune droite contenant p et χ (p) ne peut être sécante.

Soit $\S \in \Gamma$ un glissement de centre $\gamma(p)$. Le commutateur $\S : \gamma^{-1} : \S^{-1} : \gamma \in H$ applique p sur $\S(p)$. Si p et $\gamma(p)$ ne sont pas alignés (i.e. si $\gamma(p) \notin \gamma(p)$), on peut choisir δ de façon que $p \neq \delta(p)$ et que p et $\gamma(p)$ soient alignés. On peut donc toujours supposer que p et $\gamma(p)$ sont alignés, ce que nous ferons dorénavant. On aura, en particulier, $\gamma(p) \in \gamma(p)$ (d'après $\gamma(p)$).

Soient d une droite sécante contenant $\chi(p)$, a la V_1 contenant p et $\chi(p)$, et $p = \varphi(\tau(p))$, $p = \varphi(\tau(p))$, d> (a) (cf. n° 2.4; b est une V_{q^n}). Soit $p \in \Gamma$ une projectivité laissant invariants d et $\chi(p)$, et telle que l'intersection $p \in S(p)$ soit une $p = V_2$ non invariante pour $p = V_3$; l'existence d'une telle projectivité est une conséquence du fait que $p = V_3$ (avec les notations du n° 5.5). Le commutateur $p = V_3$. The transforme $p = V_3$ (avec les notations du n° 5.5). Le commutateur $p = V_3$ (avec les notations du n° 5.5). Le commutateur $p = V_3$ (avec les notations du n° 5.5). Le commutateur $p = V_3$ (b) sont alignés et que $p = V_3$ (ce qui contredit (5.7.1).

5.8. — La détermination du quotient $G(r)/\Gamma$ est plus longue. On ne fera ici qu'énoncer le résultat :

 $G(\tau)/\Gamma$ est isomorphe au quotient M/M^3 , où M désigne le groupe multiplicatif des éléments $k \in K$ tels que $k.k^{\sigma}=1$.

5.9. - Soient $D_{\mathbf{r}}^{(s)}$ l'ensemble des droites sécantes par rapport à $^{\mathcal{T}}$, d une telle droite, $G_{\mathbf{d}}$ le groupe des projectivités appartenant à $G(\mathcal{T})$ et laissant d invariante, $H_{\mathbf{d}}$ le groupe des projectivités d'axe d appartenant à $G(\mathcal{T})$, $G_{\mathbf{d}}^{\circ} \cong G_{\mathbf{d}}/H_{\mathbf{d}}$ le groupe induit par $G_{\mathbf{d}}$ sur la $_{\mathbf{L},8}^{\phantom{\mathsf{L}}}$ Q d \cap $E_{\mathbf{T}}$, et enfin $PGO_{\mathbf{g}}^{+}(\mathbf{L}, ^{\phantom{\mathsf{L}}}Q)$ le groupe de toutes les projectivités de cette $_{\mathbf{L},8}^{\phantom{\mathsf{L}}}$ Q dont l'extension à d conserve chaque famille de $V_{\mathbf{d}}$ (notation inspirée de celle de DIEUDONNÉ[3]). Alors

(5.9.1). -
$$G(\tau)$$
 est transitif sur $D^{(s)}$, i.e. $G(\tau)/G_d = D^{(s)}$.

(5.9.2). - $G_d^o = G_d/H_d$ est un sous-groupe distingué de $PGO_8^+(L, ^{\nu}Q)$ et $PGO_8^+(L, ^{\nu}Q)/G_d^o$ est isomorphe au quotient L^*/N du groupe multiplicatif de L

par le groupe des normes k.k de K/L.

(5.9.3). - H_d est isomorphe au groupe M <u>du</u> n° 5.8.

Ces propositions sont pratiquement démontrées au nº 4.4.

6. CAS D'UN CORPS FINI.

6.1. — Soient $K = GF(q^2)$, $\sigma(k) = k^q$ et L = GF(q). $_{K,8}^{\nu}Q$ possède deux involutions (projectivement distinctes) dont les ensembles de points fixes sont respectivement une $_{L,8}^{\nu}Q$ et une $_{L,8}^{\nu}Q$. A la première correspond un involution de $^{\text{T}}$ dont l'ensemble des points fixes est un plan $^{\text{T}}$; à la seconde correspond une polarité $^{\text{T}}$ qu'on va étudier.

6.2. — Soient $D_i \subset D$ et $E_i \subset E$ (i = 1, 2, 3) les ensembles définis comme suit : $D_1 = \left\{ d \middle| \mathcal{T}(d) \in d \right\}$, $D_2 = \left\{ d \middle| \mathcal{T}(d) \right\}$ est lié à $d \in \mathbb{N}$, $D_3 = D_{\mathcal{T}}^{(s)} = \left\{ d \middle| d \right\}$ est sécante par rapport à $\mathcal{T} \in \mathbb{N}$, $E_i = \left\{ p \middle| \mathcal{T}(p) \in D_i \right\}$ (en particulier, $E_i = E_i$). Toute droite non singulière par rapport à $\mathcal{T} \in \mathbb{N}$ est sécante (puisque toute involution de K, K0 possède des points fixes) donc K0 = K1 or K2 or K3, et de même, K3 possède des points fixes) donc K4 le nombre des éléments de K5 (ou K6), par K6 le nombre des éléments de K6 (ou K7), par K8 le nombre des éléments de K9 le nombre des éléments de K9 incidents à un élément donné de K9, de K9 et par

$$N = \frac{(q^{18} - 1)(q^{24} - 1)}{(q^2 - 1)(q^4 - 1)}$$

le nombre des points de \mathbb{T} (cf. [4]). La détermination des $n_{i,j}$ ne présente pas de grandes difficultés. On trouve notamment

$$n_{1,3} = \frac{(q^4 - 1)(q^5 + 1)}{q - 1}$$
; $n_{3,1} = q^{16}$

$$n_{2,3} = \frac{q(q^3 - 1)(q^5 + 1)(q^8 - 1)}{q^2 - 1}$$
; $n_{3,2} = \frac{q^{12}(q^5 + 1)}{q + 1}$.

On peut alors aisément calculer les n, à l'aide des formules évidentes :

$$n_i/n_j = n_{i,j}/n_{j,i}$$
 ; $\sum n_i = N$.

Il vient

$$n_{1} = \frac{(q^{12} - 1)(q^{9} + 1)(q^{5} + 1)}{q^{2} - 1};$$

$$n_{2} = \frac{q^{5}(q^{12} - 1)(q^{9} + 1)(q^{4} + 1)(q^{3} - 1)}{q^{2} - 1};$$

$$n_{3} = \frac{q^{16}(q^{12} - 1)(q^{9} + 1)}{(q^{4} - 1)(q + 1)}.$$

6.3. - Soient g, g' et g_1 les ordres des groupes $G(\tau)$, Γ et $PGO_8^+(L, ^3Q)$ (avec les notations du n° 5.9). On sait que

$$g_1 = q^{20}(q^8 - 1)(q^6 - 1)(q^5 + 1)(q^4 - 1)(q^2 - 1)$$

(cf. par exemple [3]). En vertu des propositions du ho 5.9,, on a

$$g = n_3 \cdot g_1 \cdot (q + 1) = q^{36}(q^{12} - 1)(q^9 + 1)(q^8 - 1)(q^6 - 1)(q^5 + 1)(q^2 - 1)$$
.

L'ordre g' du groupe simple Γ se déduit de la proposition (5.8):

$$g' = \frac{1}{(3, q+1)} \cdot g$$
.

La méthode d'ARTIN [1] permet de montrer que g' ne coïncide, pour aucune valeur de q, à l'ordre d'un autre groupe fini simple connu.

BIBLIOGRAPHIE

- [1] ARTIN (E.). The orders of the classical simple groups, Comm. on pure and appl. Math., t. 8, 1955, p. 455-472.
- [2] CHEVALLEY (Claude). Sur certains groupes simples, Tohoku math. J., t. 7, 1955, p. 14-66.
- [3] DIEUDONNÉ (Jean). La géométrie des groupes classiques. Berlin, Springer, 1955 (Ergebnisse der Mathematik, neue Folge, Heft 5).
- [4] TITS (Jacques). Sur la géométrie des R-espaces, J. Math. pures et appl., 9e série, t. 36, 1957, p. 17-38.
- [5] TITS (Jacques). Sur les analogues algébriques des groupes semi-simples complexes, Colloque d'Algèbre tenu à Bruxelles en décembre 1956 (à paraître) (Centre belge de Recherches mathématiques).