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Séminaire BOURBAKI
(Février 1958)

SOME APPLICATIONS OF INVARIANT DIFFERENTIAL OPERATORS
ON A SEMISIMPLE LIE ALGEBRA

by HARISH-CHANDRA

Iet R and C be the fields of real and complex numbers respectively and Eo
a vector space of finite dimension over R . We assume that there is given on Eo
a real, non-degenerate, symmetric bilinear form <X, ¥) (X, Y€ EO) . Let
E denote the complexification of Eo and S(E) the symmetric algebra over E .
By means of theabove bilinear form, we can identify E with its dual. In this way
any element of S(E) becomes a polynomial function on E . Now let Coo(Eo)
denote the space of all indefinitely differentiable functions (with complex values)
on E .Forany X €E , we define a differential operator o(X) on E as
follows :

(3(2)£) (¥) ={§? £Y + t x)} o (EC®E), YEE , teR) .

Let & be the algebra of all differential operators on Eo . The mapping X —9o(X)
can obviously be extended uniquely to a homomorphism O of S(E) into & . Thus
for every p & S(E) s we get a difdrential operator on EO « Moreover p , being a
polynomial function on E , is also a differential operator of order zero. Thus
S(E) and O(S(E)) are both subalgebras of & . We denote by ,Z)(E) the subalgebra
of ‘& generated by S(E)US(3(E)). ,I](E) will be called the algebra of polyno-
mial differential operators on E .

For gny two elements p , q in S(E) , let {p, q) denote the value of the
polynomial function O(p)q at zero. It is easy to see that in this way we get an
extension of our original bilinear form to a non-degenerate bilinear form on S(E) .

We fix the following notation. For any open set U in E_, c®(U) denotes
the space of all indefinitely differentiable functions on U and COD(U) the
subspace of C @ (1) consisting of those functions which vanish outs:Lde some com-
pact subset of U . Moreover ( (U) is the space of those f & C%P(U) such that

vo(£) = sup [(£)(X)] < oo
XeUu

for every D& ED(E) . We topologise C(U) by means of the seminorms Yp
(0e DE) .
Now let 9 be a semisimple Lie algebra over R . Put X, ¥Y) = tr(ad X ad Y)
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X,Ye 2(0) , where X —>ad X is the adjoint representation of go « Then the
above prooedure is applicable to 30 . et G denote the connected component of 1
in the adjoint group of E{O « Naturally G operates on the algebra © of all
differential operators on go in the obvious way.Moreover since the fondamental
bilinear form is invariant under G , px is the function X ——)p(x'"l X) (Xe ao)
and d(p*) = (d(p))* (pesS (g), xe€G) . Itis clear thatd) (3) is stable
under the operations of G . Let :’:7’( ) denote the set of those elements of

D( ) which are invariant under G . Also let Im(go) denote the set of inva-
rignt functions in Coo(qo) (i.e. those f for which f(xX) = £(X) for all

x €G and X C-go) . Then IOO((_,TO) is stable under any operator in j’(fﬁ) .

Let ho be a Cartan subalgebra of (:{o . For any fe& I%( 90) , let T denote
the restriction of £ on ho . Then for a fixed D € Z’( S ) , we seek the relation
between the two functions T and Df (f e 100(3(0)) .

Let Y/ be the rank of « An element X Eg is called regular if ad X ‘tekes
the eigenvalue zero exactly with the multiplicity E . Let ’(j :) denote the set
of all regular elements in { = and put h, = (; 0 h, + Then 32’ and hio
are both open and dense subsets of _(_\(o and ho respectively.

1
LEMMA 1. - For each D E—q( g ) there exists a unique differential operator
$'(D) on h'o such that

T=S8DF on h,

for every f€ 100(3,0)_ Moreover D — 8'(D) is a homomorphism of “’;I’(S) into

the algebra of all differential operators on h;

So now we have to determine the operator QI(D) . Let I( g) denote the algebra
of invariant elements in S(g) so :c.hat I(y) = s( )ﬂg'(q) « Then I(q) and
b(ll(g)) are both subalgebras of T(q) . Denote by 4 ( g) the subalgebra of

(9&) generated by I(q) U b(I(g)) . We intend to give an explicit formula for
g(D) in case D € Zl'( ) « First of all notice that if pe I(%) , then
PE=p T . Hence S'(p) =P « In view of the fact that 8’ is a homomorphism and
‘Z(’(c ) 1is generated by I(g) and A(I( g)) , it is sufficient to determine
5(3lp)) for pe1(q) -

The restriction of our fundamental bilinear form on ho is also non-degenerate.
Hence we can take E_ = ho in our earlier set up. Then for any gqe S(h) ,
o(q) is a differential operator on ho « Also ED (h) is the algebra of all

polynomial differential operators on ho « Let W denots the Weyl group
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INVARIANT DIFFERENTIAL OPERATORS

of with respect to. . Then W operates on h and therefore also on s(k)
and ,D( lh) «Moreover our bilinear form on h is invariant under W . Let Z’(h)
denote the set of those elements in EO( h) which are invariant under W . Also
put I( h) = S(k) N Z’( k) « Then CHEVALLEY has proved the following result

(see (1], p. 10).

LEMMA 2 (GHEVALLEY). - The mapping p —p (p & I( q)) is an isomorphism of
I(q) OntO I(\‘L) .

Now introduce some lexicographic order among the roots of (§y with fespect to h
and let 0(1 y Ro gy eeey % . be all the distinct positive roots under this order.
Put T = hy Ky oo Ry Then TT is a polynomial function on W .

LEMMA 3. - Let p be an element in I(g) « Then 8'( d(p)) =7 o(p) o1
(where o denotes the. product of two differential operators). See [4], p. 98, for

the proof.

Let (k) denote the subalgebra of j (W) generated by I(W)u A(I(W)) .
Then it is easy to obtain the following theorem from lemmas 1 , 2 and 3.,

THEOREM 1. - There exists a unique homomorphism S of Er(i) onto h) such
that

(1) () =p and §(3(p)) = 3() (p eI(.tZ[))
(11) @) =7 50) o (e F(g) .
We shall now derive some consequences of this theorem. First consider the case
when go is compact (i.e. the uadratic form <X , X) is negative definite on
go).Forany fe Coo(go) y put

$,) = n(n) JG £(aH) ax (€ W)

where dx is the normalized Haar measure on G . If follows from theorem 1 that

qSDi‘ = B(D)Qf for D€ g(g) « Hence in particular éé(p)f = 3(p) §3f

H
(p e I(g )) « Apply this in particiiler to the function f = e ° where H isa
fixed element in h » (We recall that Ho is a linear function on go and
X>

<H,
(therefore f(X) = e

PE S (,?) « Hence
0@ By = Py = p(H) &, ® eI(q)) .

for X e go). Obviously o(p)f = p(Ho)f for any
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Hence by Chevalleys'theorem (Lemma 2), d(q) §f = q(Ho) éf for every q€ I(h) «
Let ¥ be any homomorphism of I(h) into C , We consider the system of dif=-
ferential equations d(q) ¢ = %(q)‘{’ (g € I(\W)) on a non-empty connected open
set U of HO o First of all, one sees easily that this system always contains
equations of the elliptic type-Hence every solution ® of this system is analytic.
Let w be the order of the group W . It follows from a result of CHEVALLEY [2]
that S(h) is a free abelian module over I(l) of rank w . Hence we can
select Uy , ees , u € S(l) such that ;i:w I(hk) w = S(h) + Therefore

<

it is clear that if the derivatives a(ui)§> vanish simultanecusly at some point
H of U for some solution @ of our system, all derivatives O(u)® are zero
at H and therefore q(, , being analytic, is identically zero on U . Hence our
system can have at most w linearly independent solutigns. Now assume that Ho
is regular. Then sH #HO for s#1 in W . Then e ° (se W) are w
linearly independent solutions othhe system 0(q)® = q(Ho) $ (g€ I(h)) on
s
ho « Therefore §f = sze:w cy © °
it is known that Trze I(h) and therefore 7° = 4 (s)W (s e W) where

€(s) = Z1 . Moreover gjo being compact, for every s €& W , we can choose
X GG such that sH = xH for all HE€ h . Hence it is obvious from its defini-
tion that Cff(sH) = & (s) éf(H) « Therefore

where ¢ g are constants. On the other hand

sH

‘Pf=c szc;lrl e(s)e ©

where c¢ is a constant. On the other hand, it is obvious that

(Mg = T, £(0) = <, 7>,

sH sHO
Rut d(m)s ° = (.,(s)TT(Hﬁo)e . Hence

LT1, T =¢ Tr(HO)W
and so we get the following result.

THEOREM 2. ~ Suppose G is compact. Then

(H_, _
TE)T®H) | ¢ ° >dX=w1 g(s) e
° G s%d

<H,,sH >

for H , Hé h « (Here dx is_the normalized Haar measure on G).

We actually proved this result for H_€ R! and me h, - But since both sides
are holomorphic in HO , H the more general case follows immediately.

For later use we also note the formula
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INVARIANT DIFFERENTIAL OPERATORS

(1) ©(M)P o= <7, T £(0) (fec®(q,)) -
The proof is trivial.

Now we take up the more difficult case when ﬂo is not compact so that the
quadratic form <X , X) 4is indefinite on ’qo « Let A be the Cartan subgroup
of G corresponding to '10 . (By definition, A 1is the centralizer of h‘o
in G). We denote by x —x* the natural mapping of G on ¢* = G/A . Put
x*H =xH (x¢G s, He "\o) and let dx* denote the invariant measure on G*

(normalized in some fixed but arbitrary way). For any fe C ( 30) s put

$p(H) = 7 (H) 5 £(x*H) ax™ He l"\;)

=

Then it can be shown without difficulty that the integral converges for H € h'o'
and that ¥ is of class C° on h‘o » Again, we can conclude from theorem 1
that §Df = S(D)§f for all De X (¢q) eand so in particular cPa(p)f = b(ﬁ)?f
for p € I(g ) o Now an important consequence of this relation is the following
result (see [5], theorem 3, p. 225).

LEMA 4, - For any f e C (30) ’ qu lies in C (h(')) « Moreover f—)‘-{’f
is a continuous mapping of C( go) into (h‘o) .

The main point of interest here is the fact that a(q);P £ remains bounded on
"\’o for every q€& & (lh) « The proof of this fact in the general case is rather
complicated. So, as an illustration, let us consider the following example. Take
go to be the Lie algebra of all 2 x 2 real matrices with trace zgro imd ho
the Cartan subalgebra of go spanned over R by the matrix H = 10/

Then A is compact and zero is the only singular point in ho « Hence we can
write

T _ oo}
Pp(0 H)) = 216 JG £(exH ) dx (fe 0 (g,), 0 €Rr, 070)
because TT(HO) =2i . Put
Ff(0)=ej £(ex ) ax ©£0) .
G o
dk
We have to show that - Ff remains bounded around © = 0 for every k 30 .
doe

This is done as follows. Consider the polynomial 4, on g given by
w(X) = tr(xz) Xe G ) .Then co€ I(g) and c.o(eHo) = -20° Therefore
since c‘%(m)f = 6(5)§f s We conclude “that
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d2

:{@FFf = =2 Fa(w)f .
Now first ome proves by a crude estimate that there exists an integer n > 0 with
the property that c(f) = sup |e® Ff(e)l { o for every fe C?(g{o) o Assume
now that n is the least possible such integer. We:iclaim n = O . For otherwise

suppose n 3 1 . Then
2
l:—egFfl < 2 5y el € 2 81 a((w)t)

Hence if n > 2 ,it follows easily by integration that
2=
[Fol < lo]"™ er(s)

where c'(f) is a positivecenstant depending on f . As this contradicts the

choice of n , we must have n =1 . But since log IG' is locally summeble around
@ =0, it follows by the same argument that IFfI € e (f) where ° (f) is another
constant depending on f . Thus we again get a contradiction. Hence fFfl remains

bounded and therefore

d2k

_ k
R S R TR O

also remains bounded for every k > 0 . But then by integration we can conclude

the same for

d21(—1
F P (k >1)

deZk-l

The reasoning in the general case,althrough more complicated, is essentially the

same «

Let dX and dH denote the Euclidean measures on ¢ and h, -respectively.
For any f€ C((ﬂo) and g C—C(h’o) , put

t¥) =5 o STV ) ax (red,)

2() =S SECHLHEY  oy) g e h) .

g‘hen, in the compact case, theorem 2 can be interpreted to mean that {’2; and

i ¢ ore the same except for a constant factor which is independent of £ . Similar
but more complicated results hold when (ﬂo is not compact (see [5], lemma 24).
We give only one such result here (see [5] theorem 4, p. 247). Let K be a maximal
compact subgroup of G and let dk denote the normalized Haar measure of K .
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THEOREM 3. ~ Suppose ho is contained in the Iie algebra of K . Then it
follows easily that sh = Ho for every s€ W . For any fé& € ( h,) , put

vy 1€ XD — 1\ -
£(X) —ijh e 7w (H) SZC__; f(sH) dk dH (x Cﬁo) .

Then the integral

%n(H) = TT(H)J'* g'(x*ﬂ) dx*
b G

converges for H & ho . Moreover thers exists a complex number ¢ #£ 0 such that

z 8(s)‘§§ (sBt) = CJ% . c6) ot <H'ySH> r(m) () an
s €¢ s €

forall H'€ h and fe C(h) .

The main object of this theory is to obtain the analogue of (1) in the non-compact
case. Fix a connected component "\1 of l’l(; and put

T(£f) = lim a(rr)ﬂf'f He h)
H90

for £e (¢,) + It follows from lemma 4 that this limit exists and that T is

a distribution on go « The main task now is to show that T is a constant mul-
tiple of the § ~distribution corresponding to the unit mass at the origin. Let

"I\“ denote the Fourier transform of T . Then we have to prove that T is a cons-
tant. As before, let ;) be the set of all regular elements of o and

3 19 ‘g' 53 eeey ﬁ y &1l the distinct connected components of %’o .«.It follows
without much difficulty (again by using theorem 1) that on each T coincides
with a constant Cy ¢ The main remaining difficulty is to show that Cy g eee y Cy
are all equal (see [5], paragraphe 7). This however requires considerable  work
and a rather detailed investigation [6] . The final result can be stated as follows.

THEOREM 4. - There exists a real number c¢ such that

Lin  3(m) P, = ¢ £(0) (HE k)
H=0

for every f&C (30) .

Actually it turns out that ¢ = O most of the time. Put w(X) =<¢(X ,X> .
Then < is a quadratic form on go and its restriction & on \'\o is a
quadratic form on \10 . Lot Z_ denote the number of negative eigen-values of
& (taking into ascounttheir multiplicity). Then we say that \10 is a fundamental
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Cartan subalgebra of 90 if 8_ has the maximum possible value. Any two funda-
mental Cartan subalgebras are conjugate under G . Moreover, the constant ¢ of
theorem 4 is different from zero, if and only if, h_o is fundamental. In view of
the arbitrary normalization of the measure dx* on G* , it is only the sign of
¢ which is of interest (in case ho is fundamental). Let K be a maximal
compact subgroup of G . Then c¢ has the sign (-1)@ where

q= %(dim G/ - rank G + rank K)
(see the remark at the end of [7]).

Theorem 4 had been announced by GELFAND and GRAEV [3] in the case of the Lie
algebra H o of all n x n real matrices with trace zero. However the reasoning
sketched by them appears to me to be incorrect because they seem to assume (or
to assert) that § £ (or rather IEI% f) can always be extended to a function
of class €% on he (see the lir‘xes between equations (4) and (5) on p. 462
of [3])e This is false even in the case of the algebra of all 2 x 2 real matrices
with trace zero.
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