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METAPLECTIC FORMS
by D. A. KAZHDAN and S. J. PATTERSON

INTRODUCTION

The purpose of this work is to study automorphic forms on a class of groups known
as metaplectic groups. To give some idea of what these are, let k be an A-field (algebraic
number field or field of functions over a finite field) containing the full group of n-th roots
of i, denoted by ^(A), where n is coprime to the characteristic ofk. Let G ;== GLy.
and G^, GA be the group of rational points and the associated adelic group respectively.
Then there exists a non-trivial extension of groups

(i) —> ̂ ) ~i-> GA -^ GA —> (i)

which is constructed from analogous local extensions

(i) -^ t^)-^ &, -^> G,—>(i) .

In the case % = 2 these have been known implicitly for a long time but were first
made explicit in Well's memoir [49], although there it is symplectic groups which appear.
Theta functions are most naturally regarded in this context. The general case was
discovered independently and simultaneously as the result of two different lines of thought.
In [25] and [26] T. Kubota constructed quite explicitly the n-fold. extension in the
case r == 2. He had been led to this by the derivation of the law of quadratic reciprocity
from the theory oftheta functions, or, ultimately from the fact that the 2-fold extension
exists and splits over G^CG^. He showed instead how the reciprocity law led to the
existence of such an extension, and that this splits over G^ (this is generally true, not
just in the case n ==2) .

On the other hand R. Steinberg [47] and G. G. Moore [35] investigated the general
algebraic problem of determining the central extensions of simply-connected Chevalley
groups over arbitrary fields, and they also found metaplectic groups. The relation between
the two lines of thought was recognized quite quickly, c.f. the remarks in [2] where the
relation to the <( congruence subgroup problem" is also discussed. This direction of
investigation was completed by Matsumoto [32], who gave the general construction of
the metaplectic extension of a Chevalley group; recently a yet more general and intrinsic
construction has been given by P. Deligne [5].
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36 D . A . K A Z H D A N A N D S . J . P A T T E R S O N

Once these groups have been constructed and one has the splitting referred to above,
viz,

(i) -^ ^(k) -^ ̂  -^ G^ —^ (i),
Y ^

\
\

G,

one is naturally led to look at automorphic forms (in the sense of [23] § 10, although some
further explanation is needed). These we call metaplectic forms. In this respect there
are two features of the <( classical" theory which can guide us. One is the theory of
theta functions, which form a very exceptional class of automorphic forms. We can,
and do, seek analogues of these; the construction of such analogues is one of the principal
objectives of this work. This goal was first proposed by Kubota (cf. [26]). In a sense
it was achieved completely in one very special case (n == 3, r == 2, k = Q,(V— 3)) in [37].
A new and more conceptual treatment of the more general case {n == 3, r = 2) was
given by Deligne [6], who followed Gelbart, Piatetski-Shapiro et al. [9], [10], [n] in
taking the property of a representation being distinguished (i.e. having unique Whittaker
model) as the fundamental one which relates local and global representations. They
had used this concept to great effect in studying the classical theta-functions from a
representation-theoretic point of view. Deligne showed that in the special case (n == 3,
r == 2) there is one factor of a reducible principal series representation (locally) which
has a unique Whittaker model. He then constructed a global representation by means
of residues ofEisenstein series (as was originally proposed by Kubota [26]) and he showed
that the local factors of these were just the representations which he had considered
locally. The uniqueness of local Whittaker models then implied that the " Fourier
coefficients " of a global form have a product structure; indeed they turn out to be cubic
Gauss sums. This type of argument first appears in [23].

This is the problem which we shall study in general, and we shall extend the above
argument to as general a case as we can. It turns out that one can construct certain local
representations which have several interesting properties, as quotients of reducible prin-
cipal series representations. One can show that they have a unique Whittaker model
only when r == n — i or n; it is for this reason that we find ourselves compelled to look
at groups of higher rank.

In the case n == 3, r == 2, k == Q,(V— 3) considered in [37] the " L-series "
of the metaplectic form was equal to the <c Fourier coefficient " of an Eisenstein series.
The construction in [37] was carried out by making this identification and applying a
" converse theorem ". The same kind of identity still holds; that is, the (< L-series " of
the form with r = n — i is the <c Fourier-coefficient "ofan Eisenstein series for r = 2;
unfortunately our formalism does not allow us to state this so directly, but it is contained
in Theorems II. 2.3 and 1.4.2. In the case r == n analogous considerations suggest
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METAPLECTIC FORMS 37

that the metaplectic form is associated with a ^-function in the same way that S ^2mn'3

is associated with the Riemann ^-function. nez

The other <( classical " aspect of the theory of forms of half-integral weight is the
Shimura correspondence. This is a correspondence (both local and global) between
representations of Gp (F local) or automorphic representations of 6^ ^d those of Gp
or GA whose characters satisfy certain symmetry conditions. This has been much dis-
cussed in the case n == 2, r == 2, and it has been constructed for arbitrary n and r = 2
by Flicker [7]. One hopes that in view of the progress on the Selberg trace formula
made recently by J. Arthur and others it will be possible in the future to prove this in
general. In any case the formulation in [7] makes it quite clear what one should expect
and we hope to discuss this in detail in a separate publication. Such a result would be
significant for the theory of representations of metaplectic groups on three grounds.
Firstly, as described in § 1.5, one can use a knowledge of the characters of the local
representations considered here to understand their Whittaker models. Secondly,
similar considerations lead to a general and " universal" formula for the " number "
of Whittaker models of a general local cuspidal representation of a metaplectic group.
Finally, it suggests the existence of certain very special cuspidal representations, both
locally and globally, when r == n. In the special case r = n = 2 these would be the
cuspidal r^ of [n]; compare also the remarks in [7] §§ 2.2, 5.2.

This work is organized into three chapters. Chapter o contains essentially known
material—namely a discussion of the construction of the metaplectic group, both locally
and globally, and of the representation theory ofHeisenberg groups. Chapter I is devoted
to the local theory, mainly the construction of the representations alluded to above and
the investigation of their properties. The techniques are by now fairly standard (cf. [3],
[46]) but some of the results are unexpected. In the case r == 2 similar investigations
have been carried out by H. Aritiirk ([i], n = 3), C, Moen ([34], n general)—we have
not seen this work—and P. Deligne ([6]). We do not presume to undertake a full study
of the representation theory of metaplectic groups.

In Chapter II we develop the global theory. The local representations of Chapter I
are shown to be the local factors of certain automorphic representations. This is achieved
by an application of the theory of Eisenstein series. The final results are to be found
in § 11.2. The global considerations also allow us to complete the local theory in some
essential points. In § II. 3 we make our results more explicit in order to bring out their
arithmetical content.

In [39] the second author promised a work with the same title as this. The original
manuscript has now become obsolete. Most of the material referred to in [39] can be
found here, especially in § 11.3.

Finally we would like to thank P. Deligne and I. I. Piatetski-Shapiro for discussions
and advice on several points, and the referee who read the manuscript very carefully,
and whose criticisms led to several improvements. Both authors would also like to
thank the National Science Foundation for financial support.
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o. — PRELIMINARIES

i. The metaplectic group

For any field F let
^(F^^EF^: ^=i}.

In this paragraph we shall consider a local field F such that
Card(^(F)) = n.

We shall summarize here the construction of the metaplectic cover of GL,(F).
Let (., .) be the n-th order Hilbert symbol on F (see [2] or [50] XIII-5); it is a map

( . , . ) :F x xF X ^(A,(F) satisfying

{a,b).{a',b)=={aa',b},

{a,b){b,a) = i,

(a, i — a) = i

and {a: (a, x) = i for all x e Fx} = F^"

where F^^a": aeF X }.

The group which we would like to construct is a central extension

(i) —> ^(F) -^> GL,(F) -^> GL,(F) —> (i)

but there are several related but non-isomorphic such extensions which we shall later
have to examine. We shall first construct one such extension along with a sec"

So r^ ' ' ' ' ' '

don GL^(F) -> GL^(F), so that the extension will be described by a 2-cocycle <r. At
this point we should remark that the corresponding extension of SL^(F) is essentially
unique (cf. [33], [35] or [47]) but that this not true of GL^(F). Once we have described
the construction of GL^(F) we will construct various " twisted " forms of it.

^ ^/
To construct GLy(F) we shall adapt the construction of SLy(F) given by Milnor

m [33] Gh. 12. Note that GL/F) can be regarded as a subgroup of SLy^.i(F) by
/det(^)-1 o\ .

g^->{ |, which shows that, by restriction, one can construct GL/F) once
\ o g] ^

one has constructed SL^+i(F). We first set up some notations. Let G == GLy(F),
and let H be the subgroup of diagonal matrices. If h^ eF^i < i< r) let diag(A»)
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METAPLECTIC FORMS 39

be the diagonal matrix (8y A<). Let W be the group of permutation matrices; i.e. those
matrices such that each row or column has just one non-zero entry, which is i. Thus
W ^ S,, the symmetric group on r symbols. We let 0 be the set of roots of G, which
we shall often consider as the set of pairs (tj), i < i, j< r, i =f=j. If h = diag(A.),
a = {^J) we write

A01 = A,/A,;

and this definition can be extended to the lattice spanned by 0 (root lattice). Let now N
be the group of unipotent upper-triangular matrices, N_ the group of unipotent lower-
triangular matrices, and O4- the set of positive roots with respect to N+. We shall write
a > o if a e ̂ + and a < o if - a e ̂ +. We shall write < , > for the Killing form
on 0.

If a e 0 let N^ be the corresponding subgroup of unipotent matrices. So, if
n eN<,, n == I + ̂  where S eF and e, is the elementary matrix with i at the a-th
position and o elsewhere. Thus

^A-^I^-^^.

The group W acts on H by h^H° = w~1 hw, and on 0 by ah^wa where
(^)a^M clearly e,, = we^w-1.

We begin by constructing a central extension with a preferred section

^(F)-^fi^±H—>(i)

by the 2-cocycle

<r(M') = n (A,,A;) A = diag(Ai), A' == diag(^).

Note that, if A, A' e H and A, A'' e ft are such that p(h) == A, p^) == A', then

n'A'-1^-1 =z(n (A,, A,^l.(det(A), det(A'))).

One can verify that the cohomology class ofa is invariant under W (although the
cocycle a itself is not). We extend or now to the group M = HW by defining

o(w, w ' ) == i (w,w'eW)

CT(A,W) ==1 ( w e W , A e H )

o(^,A) -^.^(^.^-^(-^^(det^ (weW, AeH)

where 0(w) == {a e^ : a/(a) <o). Then

(r(Ai Wi, Ag ^2) === (r(Ai, A^1) ^i.Aa)

defines a 2-cocycle on M, and a corresponding extension M and a section Sp: M -> 'M..
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40 D . A . K A Z H D A N A N D S . J . P A T T E R S O N

The construction of G is now achieved by means of the beautiful technique of
Matsumoto. Let R : G -> M be such that R(m) = m (m e M) and R(n^') = R(g)
(n, n' e N^.); this exists and is unique, as one sees from the Bruhat decomposition. Let

X ={(^%) : g eG,m eM, R(g) == R{m)},
<^/

where j&: M -> M is the natural projection.
We shall construct two groups of automorphisms of X, LAut(X) and RAut(X),

which will be generated by certain elements which we now describe. First LAut(X)
will be generated by

^) (n e N+) where \(n) (g, m) = (ng, m)

X(A) (A e H) where \{K) {g, %) = (p{h) g, hfn)

and ^(J) {s a simple reflection in W), which we now specify. (Recall that s is simple if
there is just one a e O4' such that so. < o.) If m e M let m == Sp(m) e M. Then
\{s) is defined to be

^). ̂  m) = {sg, (R(^) R^FT %).

It is clear that LAut(X) acts transitively on X. Now define RAut(X) which is generated
by

W {n e N+) where (^ m) r{n) = (gn, m)

r{h) (h e H) where {g, fn) r(h) == {gp{h), fnh)

\\s) {s a simple reflection) where (^ m) X'M == (gs, !n{R(gs)-1 R(^))"-1); RAut(X) is
also a transitive group of transformations ofX. One must next verify that if g e LAut(X),
^eRAut(X), x eX then

(̂ ) g' == ̂ (^)-

Granted that this true, one sees that LAut(X), and RAut(X) act simply transitively
on X; for if ^ XQ == gz XQ for some XQ, g^, g^ then g^ g^) == g^o ̂ ), and as RAut(X)
acts transitively, this means that g^ == g^. Thus X is a principal homogenous space of
both LAut(X) and RAut(X), which are now seen to be isomorphic. Now as X -> G;
{g, T%) \-> g has fibre isomorphic to (JL^(F) and as LAut(X) acts transitively on X, it follows
that LAut(X) is an extension ofG by ^n(F). Moreover, by construction the subgroup
of LAut(X) preserving {(p{m),m) :m eM} contains M. So LAut(X) is the group
we are seeking; and we write G = LAut(X), and

(I)-^^(F)^>G-^>G—>(I).

Before going further we shall say a little about the structure of the proof that
g^g*) = {g^ g*9 ^ suffices to check it for g (resp. g") a generator of LAut(X)
(resp. RAut(X)). It is easy to check this in all cases except when g == j^, g* == jo
and J^ (resp. s^) is the simple reflection associated with the simple root a (resp. (3). This
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METAPLECTIC FORMS 41

one treats by considering x = (n^mn^,!n) ( ^ e N ^ W p e N p ) and computing; only
the cases a == ± m(3 are difficult, and one merely has to have the patience to check
these (cf. [33]). One should note that when a = — m(B one requires that {x, i — x) == i,
and only in this case.

When r == 2 one can supplement this construction by describing the cocycle or
/^

defining GL^F) explicitly; this was given by Kubota [26], and the following formula
is a simpler version of his. It is

^(gi 82) x(g^g^)\ I x{g^g^)\, '̂̂ nr '̂̂ n
where x { { } } {

\\c d ] ] \ = d if c == o.

Now we have described an extension

(i) —> ^(F) -^ (?4(F) ̂ ± GL,(F) —> (i)

where the section s is defined by
s(nmn') = \(n) w^(n') (n, n' e N+, w e M)

and M is considered as above as a subgroup ofLAut(X). With respect to s this extension
is described by a cocycle cr, which extends the or previously defined on M, and which
satisfies a{ng, g ' n') == c{g, g ' ) (n, n' e N+).

The " twisted " extensions, for c e Z/»Z,

(i) —^ (.„(?) —> GU^F) ^± GL,(F) —> (i)

are defined by a cocycle o^ where

^{gt, §2) -^ g2) (det(^), det{g,)Y.

We shall also write S^ for (^^(F).

Remarks. — It is apposite here to make a simple remark concerning a subtle dis-
tinction. Let e : ̂ (/) -> Cx be an embedding. In our applications we can distinguish
between two metaplectic coverings

( i)-^(F)->G,-^G-^(i) ( j = i , 2 )

only if the induced extensions
(i^c^e^G-^i)

are inequivalent. This does not depend on the choice of e. In our case G^ and G^ )

are indistinguishable in this sense if and only if
2{c — c ' ) = o (mod n).

It may or may not happen that the original extensions are equivalent.

41
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42 ^ A . K A Z H D A N A N D S . J . P A T T E R S O N

The reason for this is the following. Let ^: ̂ (F) -^C^ Then there exists
a function (cf. [49], p. 176)

Y : F^^C)

which factors through ' F X | ' F X 2 , so that

^.AF = YtoO/YW Y(j0.

Thus eo ( , )g F, as a 2-cocycle on F^ is trivial, whereas ( , )^p, with values in ^(F)
need not be.

In this connection it is worth remarking that J. Klose has shown that ( , )o p is
trivial in H^F^ ^(F)) if and only if

(— i, — i)^p === i.

Now let B = HN+ be the standard Borel subgroup ofG. S^ == (^^(B) the
group covering B in G^. Let also

Z^={^ I : x^^eF^}

and Z^ == (p^)-1^).

Proposition o. i. i. — ̂  ̂  ̂  ̂ r<? o/ 6^ W o/SK

Proo/. — Consider first the centre of B^; this consists of elements of the form
z = s(^I) i(^). Then if h e H, h == diag(^) and if ^ is such that ^(%) == h

Tizh-1 z-1 = i(n(A,, X)-1. (det(A), Xr)l+2c).

By considering the case when all h, but one are i one sees that the righthand side is
identically ijf and only if x^^-1 e F^. This shows that Z^ is the centre of K^.
If now zeZ^ and if g e G, geG^ with ^(^) == g then we define a homomor-
phism 6 : G -> ̂ (F) by jzg-1 z~1 == ?(6(^)). As it is trivial on B, 6 is trivial and
hence z is in the centre of S .̂

Now we begin the discussion of the topology on G^. If F is archimedean then there
are two cases. If F == C, (., •) is trivial and the cover is trivial. We shall not discuss
this case further. If F = R then n == 2 and we have constructed the double (spin)
cover of GL^(R); this shall presume known (cf. [33]).

Thus henceforth we shall take F to be non-archimedean. Let Rp be the ring of
integers in F, Pp the maximal ideal of Rp. Let j - j p be the normalized valuation (as
in [50] Gh. i) on F. Then one has

Proposition 0.1.2. — There exists an open subgroup KCGL^(Rp) on which c^ splits.
If \n[p == i we can take K == GL^(Rp).

Proof. — See [35] pp. 54-56.

Let us write a(g^ g^) == K(^ ̂ )/K(^) K(^) for a splitting with g^ ̂  e K (which
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METAPLECTIG FORMS 43

we take to be GL,(Rp) if Hp = i). Note that we can find K as above so that
(det(^), det(^)) = i {k^ k^ e K). Hence K also splits CT^.

In the case r == 2 Kubota ([26] p. 19) has shown that

K{g) = ( ,̂ dldet{g)) [g == r b} o < | c |p < i)
\ \c d] ]

==i (|^=o,i).

Let now K, K be as above and K* : K ->G^ g\^i{K{g)) s{g). Although K* is
not unique, if K^ is another such map then K* and K^ are equal on an open sub-
group K'CK, and K^ == (i.Q).K\ where 6 is a locally constant homomorphism
K -^ ^(F)- Thus ^e can define a topology on K*(K) C G^ by giving it the topology
ofK. Next, if g e G^, the uniqueness of the germ ofK* shows that there exists a neigh-
bourhood U of I in K so that g-1 K*(U) gC K*(K), and hence we can give G^ the struc-
ture of a topological group which agrees with the structure just described on K''(K) . With
this topology one sees in

(I)—>^(F)-^&C)^)>G—>(I)

that G^ is a Hausdorff group and p^ is a local homeomorphism.
The metaplectic extensions Ci^ can be defined as follows. Let r' > r and

let t^, ..., f^_^ be integers such that S <, == — i. Then we have an embedding of GL^
into SLy, by J

[ g o . . . o \
o (det^'i . . . o

\o o . . . (detgyr'-rj

By examining the restriction of a (on SL,.) to the image of H, we see that c pulls back
to CT^ with

c == - i + S ^ t.
i<3

and it is easy to realize every value of c by a suitable choice ofr', {t).
We can therefore construct K' on SL,, and pull it back to GL,. One can verify

that, if j n j p = i, there is no homomorphism
SL,,(Rp)-^(F)

and hence K* on SL,,(Rp) is uniquely defined by the condition that it should be a lifting.
Such a lift we call <c canonical ".

Before we proceed we observe that
N+-><>); nh>s(w)

is a homomorphism and a continuous section of p^. As such, it is unique. We denote
the image of this map in S^ by N^.
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44 D. A. K A Z H D A N A N D S. J. P A T T E R S O N

Proposition 0 .1.3 — Suppose that \n\p == i, and let

K* : G4(Rp) ̂  G^

^ a canonical lift. Then

i) K* | (H n K) == s | (H n K)
ii) K' | W == s | W
iii) K* | (N+ n K) = s | (N+ n K).

Remarks. — i) i) and ii) (resp. iii)) could have been combined to
K' | M = s | M (resp. K* | B == s | B).

2) Since the three groups generate GLy(Rp) one sees that K* is determined by
Proposition 0.1.3.

3) It is a consequence of this that the <c canonical" lift does not depend on the
choice of r', ^, .. .3 t ^ _ y .

Proof. — Consider the restriction of K* on SLy, to a copy of SLg(F). Since K* is
uniquely determined on SL^F), this restriction is determined. Moreover if SLg(F) is
that copy associated with a positive root a then one sees from an examination of ther^ t>^
construction ofSLy,(F) that a) the restriction of the covering to SLg(F) is SLg(F) and
b) the restriction of s to SLg(F) is the corresponding section for SL^F).

Thus if h e H n K one can write A as a product in SL^(F), Ft h, where each Al-
lies in such a copy of SLa(F). Thus as

K^n^^n^.)
3 3

the assertion follows. The same argument is valid on N^. n K. This proves (i) and (iii).
The same argument shows that it is only necessary to prove that K*(w) == s{w)

for w a simple reflection as s | W is a homomorphism. We write w as Sw^ where 8 e H,
82 = i and w^ belongs to the corresponding copy of SLg(F). As K*(w) == K^S) .K*(wi)
and as

^(8) == s(8) (by (i))
K*(w^) == s(o/i) (by Kubota's formula)

one has only to verify that
s(w) == s(8).s(wi)

and this follows from the construction of a on M which we have described above. This
proves the proposition.

Observe also that, as G is totally disconnected, there is a continuous section
G -» G^°\ but this is not unique. In particular we can choose a continuous 2-cocycle,
T ,̂ cohomologous to o^, so that T^ | K x K = {i}.
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METAPLECTIG FORMS 45

We shall conclude our investigation of the structure of G^ by considering its
conjugacy classes. Let then G C G be a conjugacy class. Then (^"^C) is a union
ofconjugacy classes in G^. IfC^ is one of these let p.(G) = { ^ e ̂ (F) : z'(^) £4 = Gj;
this is a subgroup of (A^(F) and

(^-^C) = U z(Q Ci.
!:(=Hn(F)Ax(C) v / 1

This can be characterized in another way. Let x e C and let Z^A:) be the centralizer
ofx in G. Let ^e O^)-1^). Define

6,: Z^)-^(F); ^i-1^-1)

where we use the fact that G acts on S^ by conjugation. Then 6^ is a homomorphism
and its image is {Jt(C).

We shall be interested in those classes G such that (^"^C) consists of n conjugacy
classes in G^, since in any application of the Selberg trace formula these are the only
ones that would contribute.

Proposition 0.1.4. — Suppose GCG is a conjugacy class of regular elements. Then
(Ji(C) = { 1 } if and only if for g e G, g e ̂ .{y" ^ Y e TJ where Tg is the maximal torus
to which g belongs.

Remarks. — If y is regular and g == y" then it does not necessarily follow that

^C?0)^1}- As an example let n be even, r = 2, y = ( ) where O e F ^
mn/2 ^ V \I 0;

e^F^. Then g == y" = .J and as (6^)2-1+2.0.2^?^ it follows that
^-MI}. vo 6 /

Proof. — The proof of this proposition depends on another proposition, which we
shall now formulate.

Let ACMy(F) be a commutative F-algebra of dimension r. Then we can rep-
resent A as © E .̂ where the Ej are fields and

S[E,:F]==r.

If u, v e Ax then choose M', v' e G^ so that

p(c\uf)=u,p^)^v.

Then M'.y'.M'-1.^-1

lies in z(^(F)), and does not depend on the choice oft/', y'. We can therefore define

[^L^-1^'^-1..'-1).

Let a : © E .̂ -> A be the isomorphism between © E. and A.
Let ( , )g be the w-th order Hilbert symbol in E-.
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46 D- A. K A Z H D A N A N D S. J. P A T T E R S O N

Proposition 0 .1 .5 .— With the notations above, let u == {u^), v = (̂ .) e © E.. Then

[a(«), a(o)]A == I! (a,, v,)^{det^{u)), de^o))^2".

Before we proceed to the proof of this proposition let us show how it leads to the
proof of Proposition 0.1.4. Let C be a regular conjugacy class as in the statement of
the proposition. Let g e G. Then the centralizer of g, T, say, is a maximal torus
in G. As such there exists a sub-F-algebra A of M,.(F) such that T == A". The
algebra A itself is isomorphic to © E,. for some fields E, with S[E-: F] 1 r, as above.
Suppose g == a (a). Then

(^(C)=={[a,^: z^eCE^}

by the second definition. Thus if (A(G) = {1} we must have
[a, v]^ == i

for all v e © E^. Let i be one of the indices and let v == (Vj) with v. == i(j + (•).
Then we demand that 3 '

("..^(det^),^^^^2') == i.

Equivalently, one has, by a functorial property of the Hilbert symbol ([33], p. 177)
(y^ l.det(a)x+2c,^.==I,

or, if X = det^)^2'

we demand that

i^eX-E.^".

But since det(a) = IIN^y,.)

we have ^i+2c)-i g p^.

This means that u is of the form u^.\ with xr(l+2c)-l eFX". Conversely, if u is of
this form then [a, 0]^ = i for all v e © E^. These statements are precisely the assertion
of the proposition.

Proof of Proposition o. 1.5. — The proof of this proposition is based on the use of the
transfer map in K-theory. We shall reduce the proof to the case that A is a field. To
do this we observe that from the definition of [•, -]^ one has that

[fuf-1, Yyr'JYAr-i = [«> »L
for any y e G. We shall then choose y so that yAr^C M(, ,,(F) where

^[E,; F],
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^ri....,^) is the subalgebra of M,(F) consisting of blocks of size ^ x r^ r^ X r^ ...
astride the diagonal and a(E^.) lies in thej-th block. Note that

^....^(F)' == GL^(.F) x GL^(F) x ... x G4/F).

Denote by p the partition (r^, r^ ..., r<) and by Gp

^...^(F)-.

Fix i, i*; i < i, i' < ,̂ z + i\ Suppose g, g* e Gp so that g = (^.), ^ == ( ;̂)
with g,==I ifj^i, and ^;=I i f j+ i* . Let ^F^G^ with

^W=^ p^g)-^
Define [̂  ̂ ] by

i^g^^grs-'r-1.
Again this does not depend on the choice ofg, g*. The map

GL^(F) x GL,,(F) ^ (X,(F) ; (^ g-) h> k, ̂ ]

(where we have identified GL^(F) as its realization as a subgroup ofGp), is a bilinear
map. As such it is a function only of det(,?) and det(^). Examining this function on
the diagonal subgroup we see that

[^^-(det^^det^))^26.

This permits us to compute the commutant of a(E,) and a(E^) (z =f= z"), where
we have made use of an evident abuse of language. It therefore remains to compute
the commutant of two elements of o^E^), and this is essentially the same problem as
when A is a field. We shall, however, proceed slightly differently, and take A to be of
the form E © E ® E where E is a field. We consider the subgroup

S={^,^ ,^) eE^ x E X x E X \ x x ' x" == 1}

ofA^. This maps into SL^p^F). By a simple observation made in [33] p. 95, to
know the commutator on a(S) determines the commutator we need (Hint: consider
the commutator of (x,x~\ i) and (j/, i,jT1)). We shall therefore explain how the
commutator can be determined. In doing this we shall use the concept of the functor Kg,
and we shall draw freely on the theory of this functor as developed in [33].

Recall that the Hilbert symbol induces

^p: K,(F)-^(F)

such that, if

{ , }p: F^F" ^Ka(F)

is the natural symbol map, then

^({^p) == (^jOn.F-
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Let E/F be a finite extension of fields. Then in [33] the transfer map

tr: K,(E)->K,(F)

is defined. It has the property (loc. cit.)

tr{^}E ={^NE/F(J)}? {x eF^ eE^)

where N^/p denotes the usual norm. Since

(^NE/p(jO)^p = {x^ {x eF^ eE^

it follows that the following diagram commutes

K,(E) -^ K,(F)

,̂E /»n,B-

^(E) = ^(F)

To see this, note that A^p o tr must be a power ofA^ by Moore's theorem ([33] p. 165,
[35] Theorem (3.1)). Moreover we need only to prove the assertion for E/F totally
ramified or unramified. But in these cases there exist .veF^j/eE" so that {x, N^p(^) )„ p
is a primitive n-th root of unity, as one can easily verify. From these facts the assertion
follows.

Now, as earlier in this section, we can construct metaplectic covers

(I) (i) -> K,(F) -^ SL^(F) -> SL^(F) -^ (i)

(II) (i) -> K,(E) -^ SL^(E) -> SL^(E) -^ (i)

which are the universal covers if r^r^s. Starting from an identification
F^pE ^ F^^l we embed

a: SL^(E)-^S4^(F)

from which we obtain the map tr : K^E) -> K2(F) as the map of fundamental groups.
On the other hand, if^, ̂  lie in the diagonal torus of SL^(E) then their com-

mutator in (II) is

n^.,,^1 (^K^(E))
and thus the commutator ofa(Ai) and 00(^2) in (I) with

ri = r,[E: F]

is, by definition oftr, II tr^ ̂ h^ Jj1.
»
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If we now apply h^ p we see that the commutator ofa(Ai) and a(Ag) in

(i) ->^(F) ->SL^(F) -^SL^(F) -^(i)

is 11 (A^A^E1-
*<!

This is (in the special case that r^ = 3) the result that we need. This completes the proof
of the proposition.

Remarks. — i) If^is not regular then the situation is more complicated. Suppose
that neC where n e ' N ^ . Then (Ji(C) == {i}. But if '>n e C, X e F " , w e N ^ , n + I
then a much more careful analysis is required. Similar questions arise ifg is semisimple
but not regular.

2) When r = 2 one can easily complete the description given above. One then
has that if \n e C, n eN+ -{1} then (A(G) =={1} if and only if X^14-4^ e F^, but
if XI eG then pi(G) ={1} if and only ifX^eF^.

2. The global metaplectic group

In this section we describe the construction of the adelic metaplectic groups associ-
ated with GLy over a global field k. This is fairly standard, but it will be useful to set
it down here for future reference.

We shall first fix some notation. Let k be a global field and for each place v of k
let ky be the corresponding closure. Let G == GL,., and G,, = G(AJ, G^ = G(k).
Let r,, be the ring of integers of A,,, m^ its maximal ideal and q^ === Card(rjw,,). Suppose
that

Card(^(A)) == n.

Let now

(i) —> ̂ ) -^ ̂ c) -^ G, —> (i)

be the extension constructed in § o. i. Here/\, is a local homeomorphism, a requirement
that determines the topology on G[°\ For a non-archimedean place v let K,, C G(rJ
be a subgroup over which this extension splits, and K,, == G(rJ for almost all places v,
We identify (An(AJ with (An(A). Let us also choose a lift K^ of K,,, which for almost all v
should be the canonical lift of Proposition 0.1.3. Let S be a finite set of places containing
all the archimedean places. We form

5^(s) = ( n G^ x n K;)/M
v£ S w ^ S

where M = <^ o i,̂ ) .̂  o ̂ )-i | ^ e ̂ (^), ̂ , ̂  e S>,

and, if &' 6 S,

J:,: cy -> ( n '̂ x n K;)
«es w^s
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r^

is the natural injection. Moreover j\y induces an injection
cy -> G^(S)

which we shall also denote by^,.. We give G^(S) the obvious topology. Let 0^(8)
be analogous group defined without the metaplectic coverings. Then one has a topo-
logical extension of groups

(i) -^ ̂ {k) -^ G^(S) p^ GA(S) -. (i).

Let jy : Gy -> GA(S) be the canonical injection. Then we have the following commuta-
tive diagram:

^nW -^ G',)(S)S G,(S)PA(S)(i) (I)

(I)

- (I)

(I)

h

(i) -^ ^{k) -^ GM —'•^ G,

Moreover if S' 3 S then we have an analogous diagram:
PA(S')

^nW G^(S') GA(S')(i)
Is'. 8

PAJSt
(I) ———> )̂ GSC'(S) GA(S)\ 1 ) r k-n\'"/ •r "A \<J} r '-•A^} " ^ 1 ^

where jy g and Yg^ g are the natural injections. We can thus form G^ = lim G^(S)
and GA == lim GA(S) with the appropriate topologies. Thus one has continuous injec-
tions Jg,yg and

(i) —^ ^{k) ^G'; GA (i)

's

PA(S)(i) -^ (x^) —> G^(S) —> GA(S) —> (i)G,)(S)

Here G^ is the usual adelic group and G^ is endowed with the finest topology with respect
to which all the ^g are continuous. Hence G^ -^ G^ is a local homeomorphism, a
stipulation which also determines the topology on G .̂ There is one further fact which
will be crucial to us. Let G^ -> G^ be the diagonal embedding. We shall show that
this lifts to G^ -> G^; thus

(i) -^ (̂ ) —> &^
Y

G. (I)
\

"0\

'G*
W
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Let, for any place v, s^: G^ -> G^ be the original section with respect to which a^
(over k,) was defined. We shall define a section So: G^ -. G^ such that SQ | B(A»)
is an injective homomorphism. From the theory of [33] it will then follow that the
restriction of the covering to G^ is trivial, and this will also imply that So is an injective
homomorphism.

We shall first define SQ on B(AQ and W( C G^). Let y belong to either of these two
groups. We let S be a finite set of places containing all the archimedean places (if there
are any) and such that if w ^ S then K^ is the canonical lift, and y e K^,. Then we
define So(y) to be the image of

n s,(y) X I! s,(y) (e II G^ X H K;)
v e s w ^ s i?es w ^ s

in G^(S). This is well-defined by Proposition o. i .3.
By construction

80 (Yi Y2) == So(Yi). So(Y2) (Yi > Y2 e W).

Let us verify this also for YI. Y2 e B(A). If we write y, as hj n^ with .̂ e H(A), n. e N^.(A)
then (with A, = diag(^J) '

s,(YiY2) = s,(Yi).s,(Y2).i,( B (^,,^,),(det(^),det(^)):).
a<6

Thus if S is choosen to be sufficiently large

Sw(YlY2) ==Sw(Yl)-Sw(Y2) ( W ^ S )

whereas 0( n (A^, ̂ ^..(det^i), det(^)):) == i by the reciprocity law. Hence
V £ S (X <^ u

in (5^(8) one has

^(Y^) ==So(Yi)-So(Y2)-

Now let geGk be arbitrary. We can write g as b.w.n (b eB(A), w e W ,
n eN^(A)) and can define s^g) by

80(5) = SoW-So(w).So^).

It is easy to see that this does not depend on the choice of b or n. This therefore defines
a section. Finally, either by the theory of [33], § n, or directly, one verifies that if
T : G^ x G^ -> ̂  is defined by

SQ Î ̂ 2) = ̂ ( î. ̂ )) So(^i). So(^)

then r(^,^) =i.

Remarks. — i) One can also use the method described by Kubota in [26] to prove
these results. In this approach one constructs an adelic 2-cocycle on G^. If one does
this, then it is again plain that the splitting of the restriction of the cover to G^ is equiv-
alent to the reciprocity law for the Hilbert symbol.
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2) We shall denote S()(G^) by G^ and So(y) by y* (y e ^k)9 That SQ is not unique
will cause us no problems.

To complete this section we must discuss the notion of a smooth function on 6^.
Let

£ : ^W-^C-

be an injective homomorphism. Let us assume that we are given, for each y, a smooth
function fy (i.e. smooth at the archimedean places and locally constant at the non-
archimedean places) such that

fW)S)=^)f.{g) G:e^)),

and such that the following condition holds: There exists a finite set of places S containing
all the archimedean places and such that if w f S then a) K^ is the canonical lift, and b)

Supp(/J = K,,

LW=Ug) (AeK^),

and /,(!) == i.

Then 0 f^ is defined to be the function on 5^(S') for any S' D S, such that on the class of

(&) x (&) e n G^ x n K,
i?es' w^s'

0^ has the value Ft fv{gv)» This is well-defined. We regard the tensor product as
»es'

being with respect to C[^(A)]. The space of smooth functions on G^ will then be the
space of finite linear combinations of such functions.

We note here that we shall also have to consider other spaces of functions on G^\
but we shall postpone their introduction until they are needed.

3. Heisenberg groups

In this section we summarize some of the basic facts about a certain type of group
extension, usually known as Heisenberg groups. Most of the material discussed here is
known, but again we have collected together those aspects which will be useful to us.
An account of much of the basic theory is given by Well in [49], Ch. I, but as he has a
different type of application in mind, it cannot be used here as it stands.

To define a Heisenberg group, we suppose we are given locally compact abelian
groups G, A and a bicharacter ( , ) : G x G -> A, i.e. a continuous function such that
(xx\y) == (x,y) (x^y) and ( x ^ y y ' ) == {x^y) {x,V). We shall also assume that A is cyclic
in the sense that there exists a continuous faithful unitary representation e : A -> C^
which we consider fixed. In our case A will generally be a finite group, G will be a torus
in GLy and ( , ) will be derived from some Hilbert symbol. In the case considered
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in [49], G was a vector space (or its adelization), A == {z eCX : \z\2 = 1} and
[x,jy) = ̂ x^ where B is a bilinear form.

Now, ( , ) is a 2-cocycle on G and hence there is a locally compact group G and
a central extension

( i ) — — A - ^ 6 ^ G — > ( i )

where G is set-theoretically G X A and endowed with the multiplication

(5^).(5'^')=(^(^^)^').

The group G takes the product topology, and all the maps are continuous, as are mul-
tiplication and inversion in G. Then G is called a Heisenberg group.

Let us note that G is abelian if and only if ( • , •) is symmetric; i.e. if (g-^, g^) = (g^, g^).
The extension is trivial if there is a continuous map 9 : G —>- A for which

(gi.gz) = 9(^2) Ptel)"1?^)"^

and which therefore satisfies for gi, g^^ gs e G

9(^1 &2^) 9(5l) 9(^2) 9(^3) = (?{glg2) 9(^3) 9C?3^l) 9(1)-

Let now, for g^ g^ e G,
f -\ •_•( /f\/ «V> ^/_1 <^/__1 \

{^1^2}=^ {glg2gl §2 )

where ^(^-) == ,?j. This is well-defined and one has

{gl.§2}== {g^g2){g2.gl)~1-

This is a skew-symmetric bicharacter. Let Go == {g e G : {g, g ^ } == i for all g ' e G}.
Now call a subgroup H C G isotropic if { A, A'} == i for A, h' e H, and maximal isotropic
if it is maximal with respect to this property. Otherwise expressed, H is such that
H = ̂ "^(H) is a maximal abelian subgroup of G. Observe that H is closed in G, since
its closure would have the same properties.

Examples. — i) An interesting example of a group formed in this way is Z/4Z as

o -> Z/sZ -> Z/4Z -> Z/sZ -> o.

Here G = Z/2Z, A == Z/2Z and {x,y) == o if x or y is o and (i, i) = i. In this
case G = Z/4Z is abelian, but is not isomorphic to Z/2Z X Z/2Z. Naturally { , }
is trivial and H = G.

2) Let F be a non-archimedean local field in which — i is not a square. Let ( , )
be the 2-Hilbert symbol; then ( 3 ) is a bicharacter as above ([50], XIII, § 5). In [49],
p. 176, Weil has shown that there exists a function ^ {a e ' F X ) with values in the fourth
roots of i so that

^o"1^"1- (^); ^= J-

63



54 D. A . K A Z H D A N A N D S . J . P A T T E R S O N

From this, ^ = (a, — i ) and so ^ does not only take the values ± i. In this case
Go = G. If, moreover, (— i, — i ) = = — i (which happens when F = Q^), (^-i)2 == — T

so that (^, &) cannot be written as (p(<zi)/<p(a) <p(&) for any <p : F^ -> ^(F)- Thus Go is
not a trivial covering of Go.

Let us now write, for any locally compact abelian group F, F^ for the group of
characters, with its usual topology, and let < , >p : F" X F ->CX; (%, A:) h> ^(^) be
the natural pairing between F^ and T. Let now H be maximal isotropic in G; then set

a: (H/Go) ->(G/Hr; h^e{{h, .})
P : (G/H)^(H/Gor; ^e({^-})

and one sees, by the conditions on H, that a(H/Go) separates points in G/H, and (3(G/H)
separates points in H/Go. Moreover

<aW,5>G/H==<P(iU>H/G.

so that a, (B are the transposes of one another, and are injective. Thus a, (3 are actually
isomorphisms, cf. [48], § 28.

Likewise one can identify G/Go and (G/Go)^.
Now let Cio=/rl(Go) (this need not be isomorphic to Go X A, although this is

frequently the case). Let co : &o "> ̂ x ^e a quasicharacter, such that co o i == e on A.
Then there exists a quasicharacter <o' : H -> Cx extending (Q, (an easy exercise). Ifco"
is another such extension of G) then co"/^' can be regarded as a quasicharacter on H/Go
and, in view of our assumption that A be finite, it is a character and hence of the
form s({^, •}). Thus if <*/ is as above, every extension can be written in the form
(o'.e({^, •}). We shall write Cg for e({^, •}) henceforth.

Now we turn to the representations of G. We have to bear some topological
considerations in mind. We shall assume now that A is a discrete group. Let us first
describe a construction of certain representations and then we shall indicate the relations
between them. Let H be as above and let co be a quasicharacter Go, and o/ an extension
of o) to H. Then we consider induce') which we denote by (TC^^H? VO.O'.H)—t^
process of induction we have to describe in rather more detail. To do this we recall that
if we consider all pairs of subgroups (L, L') with L' C L C G, and such that L' is compact,
L is generated by a compact neighbourhood of I, and L/L' is elementary then G can be
" exhausted" by all such pairs (cf. [49], No. n). We choose L' so that (L',^) = i
and {g, L') = i for all g e L and we assume also that <o is trivial on L' considered as a
subgroup of Go. Under our assumptions such L, L' exist exhausting G. We suppose
also that L n H exhausts H. Then we consider V^ ^. n(L, L') to be the space of the
functions f:L->C satisfying

f[hg) == ^'{h)f{g) ( A e H )

andyis a Schwarz function on L/L'. Then this is naturally endowed with the Schwarz
topology and the injective limit over the (L, L') yields a space V^ ^» n. Compare [49],
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No. ii. In most cases the construction can be carried out much more easily, but we shall
remark on this later. In particular, ifG is a^-adic group this coincides with the algebraic
induction; cf. [49]. For the sake of brevity, we consider V^ ^ ^ as a space of functions
and ignore the topological considerations from now on. As usual, TT^ ^ ^ acts on V^ ^ g
by right translation.

By an analogue of Mackey's criterion QT^^H, V^^a) ls irreducible. Its class
does not depend on the choice of (x)'. Indeed, let co" be another choice of extension
of co to H; then co" = e^ co' and the intertwining map V^ ^ ^ -> V^ ̂  g is given by

f^(g^f^g))'

Now we show that in fact it does not depend on the choice ofH. To this end let H^, Hg
be maximal isotropic subgroups and co^ (resp. co^) an extension of o> to H^ (resp. fig).
Then let H, = H^ n Hg. Again every character ofHJGo can be represented as £y | fi»;
thus for some y e G-

(x>i | Hi n fia == e^. 0)31 Hi n 62.

We shall replace (x)^ by e ,̂ co^ (making use of the intertwining operator above). Now
consider the map

F,,: V^,H,^V^,H,; f^ (g ̂ S^^^WAhg) dh)

where dh is a Haar measure on H^/Hi n Hg. This integral exists—this was the purpose
of the topological considerations above. Analogously one defines F^g: V^ ^ g ->• V^ ^ g .

,̂ , » 1 > ' 2' 2

These are both G-maps. We need only verify that these two maps are inverses to one
another, at least up to scalar multiple. But this is clear as the maps F^g and F^i are non-
trivial and the V^ ^. g. (j = J; 2) are irreducible.

We shall close this section by discussing two minor topics which can be most con-
veniently accomodated here.

For the first of these we shall show how to construct maximal isotropic subgroups
in the cases which will be of interest to us. Let F be any abelian group and ( , ):
r x r -^CX any skew-symmetric bicharacter. Let G = P" and, for c e Z, define
( , ) on G by

{§.&')- n(&,^).(n&,rw
» < J J k I

where g ==(&), g ' = ( '̂). Then

{g, g ' } == n (&, ̂ -^n^, n^)1-^.
»

Proposition 0.3.1. — Let notations be as above and suppose there are subgroups I\ C Fg C F
such that

I \ = { v e r : (Y,I\)=={i}}

and r a = { Y e r : (y, r^-^2" ={i}} n { v 6 F : (y, r,^-^2"' ={i}}.
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Then H=={(8^ . ) : <, e I\, 8 e F,}

t'j fl maximal isotropic subgroup of G.

Proof. — We shall first check that H is isotropic. As { , } is bimultiplicative we
have to check that {t, t ' } == i, {t, 8} = i and {8, 8'} = i where t = (^.), t' = (^'),
<, ,<;el\ , 8 ==(8, 8,. . .) , 8'= (8', 8',...), 8, 8' e I\. That 00=1 is clear
as (I\, I\) ={i}. Also

{^^(n^r-14-2-^!

as (I\, I^-^2^ == i. Likewise

{8, 8'}= (^y^-14-2^^ i

as (r^r^-14-2'^ i.
Conversely, suppose g e G, {g, h} == i for all A e H . Choose A to be

(i, ..., t, i, ..., i), t e FI in thej-th entry. Then, if g == (^)

i-^A}^^^^^)14-2^).

Hence g^^TIg^26 e r^. Thus we can write .̂ as T, A where T, e I\,
^r-i+2rc ^ F,. Also, if A = (8, 8, ...), 8 e I\

i ̂ {^^(A,^-14-2-).

The conditions on A show that

A e ( Y e r : (T,^l) r~ l+2^c=={I}}n{Ye^,: (y, r,)^^2-) = {i}} = F,.

Thus ^ e H, as required.
Finally we shall prove the following lemma.

Lemma 0.3.2, — LetF be a non-archimedean local field and let n' = Card (J^(F), where n
is a natural number. If Rp is the ring of integers of F then

rP x • "D xni *,' I ̂  1 — 1[Kp . Kp J = » | n Ip A

and [F^ : F^] =^' |w|F1 .

Proof. — The second assertion is clearly an immediate consequence of the first.
To prove the first let ^x .v be a Haar measure on R^. We shall compute the volume
of RF^. Let a: Rp -> Ri? be a{x) = x". This map is of degree n' and its Jacobian is
| n [p. Hence the measure of the image of a is

n'~1 j n i p meas(RF:),

which is equivalent to the first assertion. This proves the lemma.
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In this chapter we shall construct principal series representations of GL^F) where
F is a non-archimedean local field satisfying Gard(^(F)) = n. These are usually irre-
ducible, but our interest will centre on a certain quotient representation of a reducible
principal series representation. This representation we shall call <( exceptional ", for
it is closely related to the <c Ausnahmefall " ofHecke in [20], No. 42. In the case n == i
such representations are i-dimensional, and when n = 2 they are amongst those associ-
ated with theta functions. They are amongst those investigated by Serre and Stark
in [42] and Gelbart, Piatetski-Shapiro et al. [9], [10], [i i]. The nature of this condition
is most naturally expressed in terms of coinvariants (as in [6], 5.4), and by the " period-
icity theorem". Theorem 1.2.9 e). Note that this does not depend on the existence
and uniqueness of a Whittaker model of the representation in question.

As was intimated in the introduction, we shall have to understand the Whittaker
models of these exceptional representations in order to be able to draw global conse-
quences. They shall be classified in § 1.3.

In § 1.4 we give some more detailed information about the Whittaker models of
these representations and, in particular, we compute the " class-1 Whittaker functions "
associated with them.

In § 1.5 we establish a connection between the character of a representation and its
Whittaker models. In § 1.6 we consider briefly the case when F is an archimedean
field.

Our notations will be carried over from Chapter o, except that we shall suppress
the dependence of the metaplectic groups on the parameter c. Thus we shall write 6
for G^ but it should not be forgotten that the dependence on c is important.

In this chapter TC e F will be a uniformizer of F and q = | n |p1.

I.I. Principal Series Representations

Let G, H, N+, G, H, N'+ be as before, B == HN+, B = HN'+. We also let
H^A^AeH}, H^p-1^). ^NotethatH^Z is the centre of H. Welet ft.DH^Z
be a maximal abelian subgroup ofH. We fix an injective character e : (JL^(F) -> Cx.

Let 0 be the set of roots of G and let 0(Z) be the lattice spanned by $ in
Hom^(H,., Hi), where H,. is the diagonal sub-algebraic-group of GLy and H^ == GL^.
For any commutative ring R let 0(R) == 0(Z) ®z R. Let < , > be the Killing form
on <D(R).
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If « = S «(a)ae<D(C) and A e H then we define |A»|i, to be II |Ay.
ago a 6C>

We shall also consider the function A l-> [A")? as a function on

i) B which factors through B -> B/N^ ^ H,

ii) H which factors through H -> H, and

iii) § which factors through B 4. B -> B/N+ ^ H.

In particular let

p === - S a
2 ae^

and set (A (A) == [A^p,

which we also regard as a function on all of the groups listed above.
Let W be the group of permutation matrices and let s be the section ofp constructed

in § 0.1. One then has

s(^i w^ = s(z^i) s{w^) i((det(wi), det{w^))Y.

Thus s fails to be a homomorphism only in the case that c is odd and (— i, — i) === — i.
This last condition implies that n =. 2 (mod. 4) and so if we let c ' = c + ^2/2 then c ' is
even and 2c s 2^' (mod. n). We have already remarked in the discussion proceeding
Proposition 0.1.1 that we cannot distinguish representation-theoretically between G^
and G^'\ and so we can assume that when n s 2 (mod. 4) the parameter c will be taken to
be even. With this assumption s is always a homomorphism and we shall henceforth
identify s(W) and W.

Let (o be a quasicharacter of H^ Z such that co o i == e. Extend co to a quasi-
character (o' ofH,. Now let B, = H, N*(_ and extend o' to SB, by

CO'(ATI) = co'(A) (A e fi,, w e N*+).

Let V(co') be the space of functions f: G ->C such that

1) /(^)==(^^)W/(5) (^BJ;

2) there is an open subgroup K^CG such that f(gk) ==f(g) (k eK^), and let G act
on this space by right translations. This is an admissible representation of G and we
denote it by (^(co'), V(co')).

Observe that this can be constructed in several steps: first by inducing co' to H,
yielding ^(o/), then by extending this to B by pulling back via B ->B/N^. ^ H,
yielding n^ (<»>'), and finally inducing ^^^(co') to G. This shows that the
class (7i:((o'), V(o/)) depends only on co, since the class of7Tg((o') depends only on o>, as
we saw in § 0.3.
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Let us observe that <o~1 is a representation on fi^ and that (o^of = e. The
representation (^(co'-1), V(o/-1)) can be identified with the (algebraic) contragredient of
(7r(o/), V(co')) by means of the pairing

V(co') xV((o'-1) -^C

(/i 5/2) ̂  </i?/2> = S L/i(î o n)f^Wo n) dn,
7ieH»Z\H t/pl+

where WQ = (S^+i_,) eW.
The invariance of this pairing follows in the usual way.

Let now co be as above; then there exist real numbers CT^, ^235 • • •^r~i r? ^o so

that, if h efi^Z^(A) = diag(^) then

I ̂ ) | = I A^ |̂  | h,lh, |̂  ... [ ̂ _^^ |̂ -i.r [ ̂  ... h, l^o.

If we write cr, for ^^+1 if a is the simple root (i, ? + i), then writing
(y((o) == S <TQ( a

one has in a self-explanatory notation
|(o(A)|=:|^)°^|p|det^)^.

One thinks of 0(0)) as a kind of u real part " of co.
If co is a quasicharacter as above then for w e W, ^co, defined by

(^)(A)=O)(^)

is also of the same type. Note that
^(^o)) = wcr(co).

We say that co is dominant if (r(co) lies in the dominant Weyl chamber; that is, if
a > o then <a, (T(C>))> > o. This means that if we write ) co(A)| == Tl \h^ then

i
^ > t^ > t^ > ... > ^. We let c^ : H -> C" be the quasicharacter defined by

(^(A) == (0(8^)).

We call <x> unramified if co'1 is trivial on H n GLy(Rp).
We shall end this section with some considerations special to those F with [ n |p = i.

We first construct a special H^ which we will take as standard. In this case we apply
Proposition 0.3.1 with I\ = R^ F^, Fg = R^ F^^'*"-14-2^. These satisfy the
conditions of Proposition o. 3. i by [50] XIII-5, Prop. 6. Note that the corresponding fi,
is normalized by W. When | n |p = i we shall take K" to be the canonical lift of GL/Rp)
characterized by Proposition 0.1.3. We now make an observation which simplifies
much of our later work.

Lemma 1 .1 . i. — Let F be such that \ n |p = i and let <o be an unramified quasicharacter
ofH^Z. Then there exists a quasicharacter ^ of 'FX such that <o-(^odeto^) is trivial on
Z n K*.
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Proof. — Let for \ e R^, ^- i+2rcgpx^

^(X) = (o(x-(Xl)).

This is a character ofR^. As a) is unramified, c^ is trivial on R^. Now we can observe
(as ^(l+2c)-lgpxn)

^(X) = ^(detM)1^ (XeR^) .

We now let / be an extension of ̂ (l+ 2C) to Fx. Then

co(^odeto^)

is trivial on 2 n K*.

Corollary I.I. a. — With the notations above ^ can be chosen so that co. (% o det o/») u
unitary on Z.

Proo/. — Clear.

When | n |p == i we shall call <o normalized if <o is trivial on Z n K*. Suppose
that <o is an unramified, normalized quasicharacter ofH^ Z. If 9, is as above then there
exists a unique extension <x/ of co to fi, characterized by

< o ' | H , n K ' = i .

These extensions of H^ Z and co we shall also term canonical.

Lemma 1 .1 .3 . — Suppose that \n\y == i and that <o as above is unramified and nor'
malized. Let {n, V) = (TT((*)'), V((o')). TA^

d i m { y e V : n{k) v == y (AeK*)}= i.

Proo/'. — We may choose H^ and o>' to be canonical. Then as G == u S, 7]K*,
where T) runs through a set of representatives of fi,\H, a function / in V(c>)') which
satisfies -n:(k)f==f is determined by its values/(Y)). If h e9 n K* then there is a
consistency condition, namely that

fW =A^1^)
so that (<*>' (A) (•y]A7]~1) = i if /(T)) + o. But this condition is verified if T) eQ^ (by
construction) but not for any T) ^S, (by the maximality of fi^). This proves the
lemma.

Notation. — Under the assumptions of the lemma and supposing that Q,, <o' are
canonical we shall let VQ^) eV(o/) be that element which is K^-invariant and for
which ^0(00') (I) == i. If no confusion should arise we shall write VQ instead ofyo(co').
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1.2. Coinvariants and intertwining operators

In this section we shall use the general methods of [3] to investigate the principal
series representations introduced in § I. i. In particular, we shall investigate the
reducibility of these representations. Similar techniques can also be found in [46]
Chapters i and 2.

Let P C G be a standard parabolic subgroup of G. One has P = Mp Up where
Mp is the standard Levi component and Up is the unipotent radical of P. Then we
let Up C N^ be the lift of Up to G. Let Mp == /r^Mp). Then if (TT, V) be an admiss-
ible representation, we defined

<pp(V) = V/<7r(7i) v— y | y e V, ne Up>.

This is an admissible Mp-module (Jacquet's theorem, cf. [3] i .9 (e)), and <pp is an exact
functor from the category of admissible G-modules to that of admissible Mp-modules
(cf. [3] i.9 (a)). It is often called the Jacquet functor (e.g. in [46]), but in [3] it is called
the localization functor^ and in [6] it is called the functor of coinvariants.

We shall first make use of this in the case P = B, in which case we write <po for (pg.

Proposition I.a. i. — The H-module ^((^(ci/), V(c>/))) has a Jordan-Holder series whose
composition factors are

ind" .("V.^) (weW).
toHtW-l^ t / v /

If w^ + <o for all w e W, w + I then

9o(( '̂), V(o/))) ^ ̂ indfg (̂̂  pi).

Remark. — The representation ind5 (<x/. ̂ ) is the representation (TT^, V^) of § 0.4
(by definition).

Proof. — This is a variant of the Geometrical Lemma 2.12 of [3]. It follows at
once from [3] Theorem 5.2, which is proved in sufficient generality to cover our case
(cf. [3] 6.4). The last statement is then immediate.

Let us now call <o regular if w^ 4= <*> for all w e W, w =(= I.
As an immediate application Proposition 1.2. i one has:

Proposition 1.2.2. — Let co^, Og be two quasicharacters ofH.^ Z and let <x)^, cog be extensions
to H,. Then, if co^ is regular

dim Hom^CW), V^)) ^ i

with equality if and only if co^ = wu! f^ some w e ̂ '
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Proof. — This follows at once from Proposition 1.2. i and [3] i .9 (a), (b).

It is now our intention to construct a homomorphism V(o/) -> V^co') explicitly.
We do this by writing, for f e V(o/)

(^^-L^-1"^"
where N^(w) is the subgroup ofN^ corresponding to roots a > o such that w~1 a < o.
If this converges for all yeV(co') and is non-trivial then it is a generator of
Hom(V(co'), V^o/)). Here "V is a quasicharacter of (fi,)10"1, which is also a maximal
abelian subgroup of H.

Let s e 0(C) (for the notation see § I. i) and let co, be the quasicharacter h }-> \ h8 [p
ofH, H, B and B. Write s in the form S^a a, where the sum is over the positive simple
roots. Let, for any positive simple root a,

X«M==|7r | ;«,

where TT is a uniformizer of F.

We let ^ : G -> Cx be defined as

^Q?)=^(A)

if, in the Iwasawa decomposition G == N+ HK, g == nhk. This we also regard as a func-
tion on 6. Note that if fe V(co') then i2,/e V((o, o/); this can be regarded as triv-
ializing the vector bundle whose fibre over the quasicharacter <x> of H^ Z is V(co'),
when the maps 0(C) -> { Quasicharacters on H^ Z} : s \-> <0g co' are used to define the
structure of a (disconnected) complex manifold on the set of quasicharacters of H^ Z.
We shall write/, for QJ.

We now introduce the notion of the length, l(w) of w e W; this is the minimal
number of simple reflections s^, ..., ^ needed to write w as s^ s^ ... ^. There is in W
a unique longest element, which we shall denote by WQ\ it is characterized by WQ a < o
for all a > o. It is the same element as was introduced in § 1.1.

If <o is a quasicharacter of H^ Z and a is a root we let, for x e F^,

<(A;) == ^(diag^, . . . , i, x, i, ..., x~\ ..., i)),

where, if a = (i,j), the x is in the 2-th position and x~1 in thej-th position. This is a
quasicharacter o{FX. Moreover we recall that given any quasicharacter yofF^ we can
define the associated L-function L(/) as

L(^) = (i — x(^))~1 (x unramified, TT a uniformizer of F)
= i (^ ramified).

Proposition 1.2.3. — a) Suppose ^.w^eW, l{w^ w^) == l[w^) + l{w^). Suppose
also that

1^: v^co') -^VC^to'); 1^: V(co') ->V(^')
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are defined in the sense that the integral above is everywhere absolutely convergent. Then

1^: V^^VC^co')

is defined and
T __ T T
-̂ 1^2 ~~ -̂ 1 •l«»2•

b) If w e W then 1^ is defined/or co satisfying

<a, a((o) > > o /or a > o such that wv. < o.

Moreover if t e 0(C), <a, (T((O( <*))> > o for a > o J^A ̂  wa < o, then, for fe V(co'),

II U^O-1.!^/)
a>0

wa<0

ij a polynomial in {X^), X^)~1: a > o, wa < o}.

Proposition I. a. 4. — Let F be such that \n\y == i and suppose that G) is unramified and
normalized. Let Vo{^) be defined as in § I.I. Let m = meas(Rp) be the measure of Rp
with respect to the additive measure. Then if o satisfies the conditions of Proposition 1 . 2 . 3

I, ̂ ') = { n mW) L(| Ip O-1} v^).
a>0

wa<0

Proofs. — We have grouped these two propositions together since their proofs involve
the same techniques.

First of all. Proposition 1.2.3 is a simple application of Fubini's theorem.
Now let us assume we have proved Propositions 1.2.3 and 1.2.4 when w == j,

a simple reflection. Then one deduces the general case by induction on l(w}. More
specifically, assume that for some / that these have been proved for all w' e W with
l{w') < I. Suppose that l(w) = I. Then we can find a simple reflection s such that
/(w) = l(ws) + i. By Proposition 1 .2 .3

L=Ls.Is.

Moreover, if a is the simple root associated with s then

{(B : (B > o, w^ < 0} = {a} U {j[B' > o : |3' > o, zw(jB') < o},

the union being disjoint. From these two facts it is easy to derive the validity of the
two assertions for w from the corresponding ones for ws and s.

Thus we have reduced the general case to that when w == s, a simple reflection.
Recall that, if /eV(co') then

I^)=J^/<^-1^)^.

We have to verify that the integral is absolutely convergent. Consider now a fixed
function / e V(co') and let L be an open neighbourhood of I in 6 such that f{gl) ==/(.?)
(/ e L). Let T] run through a fixed set of representatives R ofH,\9. Then we can find
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a compact neighbourhood L^ of I in N^(^) such that if n e N^(J) — L^, s~1 ng can be
written as

s-1 ng = 6(7z) 7](^) ̂ ) (b(n) e B,, 73^) e R, /(n) G L).

Thus

UQO -f^ng) dn +^ (^^_^^^^^'(^(.)) ̂ )YM

(i)

Let a be the root associated with s. Then it is clear that, as L^ is compact, the first
term is a polynomial in X^), X^)~1. Thus we have to verify that the integral in the
second term is absolutely convergent and we must compute it. The computation involved
is very similar to the one involved in computing I^o/), so we shall discuss this and then
treat the two computations together. The integral above we shall call the " first case ".

Since VQ is unique (Lemma 1.1.3) I^o^') is a multiple of ^C^')- However,
as VQ^U') can be regarded as a function on G, and its value at I is i, we see that the
multiple is I^(co')(I). This is

f Va(sn) dn.
JNt(s) ov /

This integral is the sum of m.v^s} == m and

jNtO-NMnK.^)^

If n eN^) — N .̂(J) n K* we can write

s-1 n = b(n) 7)(n) k^n) (b(n) e g., i)(n) e R, k^n) e K*).

Then this second integral is

LeN:(s)-NMnK-:.(n)=l} (0/ ̂ b^ dn

which is the same type of integral as above. This we call the " second case ".
If we write n == s(I + SeJ then

.-1 n == h^) 7)o s(I - SeJ s(I + S-1 e_J

where A,(S) == s(diag(i, ..., i, ̂ -\ S, i, • . . , i)) (where, if a = (i, i + i), S~1 is in
the i-th place, S in the (i + i)-th), and 7]o = s(diag(i, i, ..., — i, i, ..., i)), where
the — i is in the i-ih position. In the first case, ifL^ is large enough s(I + ̂ ~1 e_ a) ^gLg~~1,
whereas in the second case s(I +^~le_^e K\ Thus in the first case we can consider
the integral split into classes modulo n-th powers, so that it is a sum of integrals of the form

^^^isi^c)^^^^^))!^^^^^
=7^"l^:|„>c)^<^-117^1^^•
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This is a familiar integral, convergent whenever

K^^MI-^i,
which is precisely the stated condition. Moreover this integral is o if co; is ramified
and is of the form mX^/^i - X^ <(7r)) if^ is unramified. This proves Prop^
osition 1.2.3 when w == s.

In the second case we write ^ == n-1 x where j == o (mod n), j> o and x ranges
over R^. The integral is then

jL ̂  Ahai{n~j x) 7]0) dx' •T C IFJ = Ji ̂ ^ ̂  - -1 T C i^)
J>0

==^(l - M) <(7T)/(l--<(7T)) (2)

Thus we have

S^s)^'1^ dn = m^ + (I - Mr) <(7C)/(I - <(^)))

^^(l-y-^S^/Cl-^Tr)),

as required. This completes the proofs of the propositions.
As a further application of the computations carried out above we can deduce a

rather technical result which will be needed later. Let a be a simple root, s the associated
reflection. We shall investigate the case that (x); = i, or, equivalently, ^ == co.

In this case W is an extension ofco to fi^. Thus V(co') and V(W) are equivalent
and we wish to make the relationship between them explicit, following the principles set
out in § 0.3.

First of all note that on fi, n Q^, co' and 8^ are extensions of <o. Thus
o'. (W)-1 is a character of H, n fi: trivial on fi^ Z. Since the quotient group is of
exponent n it follows that co'.(W)-1 is of order dividing n. Indeed,

^'(W)-1^) ^^(hs-^-^s)

=e(-i,A,det(A))W,)

where a == (zj) and ^) == «/ s(diag(i, ..., i, S;, r1, i, ..., i)), when this is defined
^ being in the i-th position.

One knows, as co'(W)-1 is a character trivial on fi^ Z, that c is a character on a
subgroup ofFX containing F^ and c is trivial on F^. As 6: can be extended to a character
ofFX we see that c(^) = e{x, S) for some x e F^ Thus, with the notations above,

o/(W)-1 (A) = e o i-\h^x) v]o)-1 A(A,M ^) A-1.

Hence we construct a map a,: V(W) -> V(co') such that

a,(/)Q?) -Jg^g^^' ̂ (^)-1 I^IF^^W ^)-^g)dy.

Here the integral is simply a finite sum; let AQ be the measure of ft, n Q:\ft, with respect
to the chosen measure. Then the lemma referred to above is the following:
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Lemma 1.2.5. — Let notations be as above. Then^for yeV(<x/) one has

a,q™ L(| I? (^ 0 L((Q), <o);)-1 V,) = A/

where A = 7Wi~11 n |p Ao.

pyoo .̂ — From the formulae (i), (2) encountered in the proof of Proposition 1.2.3
one has that

Um^L(| ̂ W^UWWS)

-̂ |̂S|p/(̂ )̂ )ii,mL(| Ip^)-1^,,^,^^^^)^))^

since L(i |p) = (i — Mp)""1-
The limit appearing here has in essence already been evaluated and the right-hand

side of the above equation becomes

mn-^n^ S \W[h^^g)
^en.

since [FX : F^] == n2\n\yl (Lemma 0.3.2). The result of applying o^ to this is

m^Mp s L -.i^iF(^^(^rv(Aa(s)VAaW^r1^)^
S 6 Ro * * N *

After carrying out the integration overj? the only non-zero summand is that arising from
i; === x. This yields the assertion.

Now we shall discuss the question of the " regularization " of the 1 ,̂ that is, the
definition of the intertwining operators V(c>)') -> V("W) for arbitrary o. This is done
by noting that for t such that co^co is dominant 1^: V((«)((x/) ->V(u'(o)< <*>')) is defined
and

n L^^)-1^/.)
a>0

wx<0

is a polynomial in {X^(f), X,(^)~1: a> o, wa < o}. This means that we can define
a homomorphism of G-modules

<( n Ho^v^vcco') ^VGW)
a>0

wa<0

by " n L«)-1L"/=[^ H^O-^^L.o-
a>0 a>0

was. < 0 wa < 0

This we shall use as a definition henceforth. Moreover, if L(<x>2) is finite for all a > o
we can speak of ly, as

, n no" n w)-1!^.
a>0 a>0

wa < 0 wa < 0
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There is another approach, due to I. N. Bernstein, which can be used to define
the 1̂  in general, and which, since we find it very illuminating, we discuss here. The
underlying idea is to remark that if we regard the X^) as indeterminates which we shall
now write as X^, the space V(c^c«/), which can be regarded as a vector space over
C(X^3 X^), . . . ,X^_ i^ ) and which we write as C(XJ, becomes a representation
space of 6 over this field.

Let us ask whether there exists a homomorphism of G-modules

V^o^^VC^co'))

where co, is regarded as a function of the X,. Clearly, for such a homomorphism to exist
is equivalent to the solubility of a countable set of equations. These equations are poly-
nomial in the X^ (a> o, simple), since only such functions arise. Thus either this set
of equations is identically satisfied, or there exists a countable collection of algebraic sets
in (C^'""1 such that (XJ must lie in one of these so that the equations may have a
solution. But we have already seen in Proposition 1.2.3 that for X^ lying in the open
set such that o, <o is dominant there is a solution. Hence this second possibility is
untenable, and so the equations have a solution for generic X^.

This means that there is a map V(((x)< co')) -^V^co, co')) in this generic sense.
However, by Proposition 1.2.2, this map is unique up to a scalar multiple. Moreover,
it coincides up to a scalar function of the X^ (a priori not necessarily rational) with
our ly,. But we have shown in Proposition 1.2.3 b) that our ly, do in fact induce a
homomorphism V((Q( <«/) -^V^c^ci/)) of the above type.

Now, for any quasicharacter / of F^ let P^ be its conductor. We set

1,== n (InlFi^m^Ld j^LK)-1).!,
a>0

wa<0

which is defined, as a G-homomorphism V((x/) -^V^co'), for all ci/.

Theorem I.a.6. — I^==I^I,..

Proof. — The proof, following [i 2], Ch. 3, § j. 6, depends on a preliminary reduction
to the case w^ === w^ == s, a simple reflection. To see this, notice that W is generated
by the simple reflections subject to the relations

a) s2 = i

b) ssls==slssl

where, in b), s and s1 are " neighbouring " reflections. To verify the relations of the
type b) is elementary as

l{ss^s)^l{ss1) + 1 ==/(,)+2= 3

1{S1 SS1) == 1{S1 S) + 1 == 1{S1) + 2 == 3
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and so b) follows by Proposition 1.2.3 (fl), since

Î S === ^S ^81 ^S? ^SS1 === ^ ^S1 ^S

where these are defined, and this is equivalent to the statement.
Thus we have to prove that I^2 is the identity. Let us show that this can be reduced

<^
to the corresponding question in GLg. Let V\(<o) be the space of locally constant func-
tions on G which satisfy

Abg)=W(b)f{g) (AeBJ .

Notice that ly, can be defined on V^((o) just as before. As H acts on the left on V^((o),
we obtain the different V((»/) by decomposing Vi(<o) with respect to characters ofH,.
Thus all statements about the ly, on V(co') are valid for V\(co) and conversely. We
shall study the 1̂  defined on V^co). Let us consider a copy of GLg in G, containing
the roots dL a, where a is associated with s. We can restrict to this (which would not have
been valid if we had used V(o/)), and thus it suffices to prove the equality in the case
r == 2. Note also that, by Proposition 1.2.2, 1[ 1̂  is a multiple of the identity. Our
problem is to determine which multiple. This we do by writing I, I, as an integral
transform and then using techniques from the theory of such transforms.

Let then r = 2 and let /e V^co). To this we ascribe a family [/] (A, •) (A e H)
of functions on F which are defined by

[/](^)=/(^(s(^ s))).

Thus [/] (A) is locally constant and as y -> oo

U}^W^{y}W

is ultimately constant (as/is constant near A', for A' eH). Note also that

E/](^)=<^)[/](^) (^eHJ.

For this reason we can regard [/] (A, •), as A runs through a set of representatives of
Q^\fi, as a finite family of functions satisfying the continuity and asymptotic properties
above. Conversely, given such a family we can reconstruct a corresponding/.

After a brief computation one verifies that

[ijms)
== s ^MF^M^J^m^Aw^s+^x^)^^

a;gFxn\Fx .̂

where A(x) == s(diag(A-, x~1)) and 7]o == s(diag(— i, i)). Iterating this yields

[I, I,/] (A, ^) = S n-2 | n \^ | x,lx, |p e(^, ^i)
a;i,a?2

^ (JpJ/l (AA(- ̂ ), E; + ̂  + ̂ ) <(̂ i) ̂ i) ̂ (^"^'^
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where the integrals are to be understood as their regularizations, and x^ x^ run through
a set of representatives of ¥xn\^x,

Since this is a multiple of [/] (A, S) it follows that we need only consider those terms
with — x^x^ eF^. Thus we can assume that x^ == — x^\ the integral is then, on
replacing^ byj^jy and writing Fx = U x^ F^,

rrl N^(1^^ ̂ +^n-I)x) <(^ ̂ 1^x9

This can be reformulated as saying that, if 9 is a Schwarz function on F, then

^'^^jF-fjF-^^--1))^^^^)^^

is a multiple of 9(0). Our problem is to determine which multiple.
By definition of the regularization, the integral above is equal to

^^^F^imJ^j^^^y-i))^^)^)!^^^.

The double integral is convergent for Re(X) large enough, and so we can write it as

n-^nlplmj^co^) |y-iJF^).J^<pM \ x ^ d x x .

However

vlm^SfMX)\x^dxx=m(l~-9~l)^g^l'<?{o)

and thus the multiple which we are trying to find is

mn-1!^! -q-^ilogq)-1^-1^^) \yn'-l\^dx^

We shall next express the final integral in more familiar terms. By means of the
exact sequence

(I)^^)--^-^^!)

we can regard co^, which is a quasicharacter ofFX trivial on (A^(F), as a quasicharacter
on 'Fxn. Let co be an extension ofco^ to F^ Let X^ be the group of characters ofF><

of order n, or, equivalently, of characters trivial on F^. Then as [FX : F^] == »2 \n\'p1

(cf. Lemma 0.3.2) we have

n-^nlpj^^^ly-ilF^x^

==^^-2|^pJ^(^)(^|I-^|FX^•

The integrals appearing on the right-hand side of this formula are beta-functions,
in the sense of [12] p. 145. By the analogue ofEuler's formula (loc. cit.) this is

^Mp s r(^)r(| |^)/r(coxl ^-x).
x e x^
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Since r(| |^) has a zero at ^ == i and, as < -> i,

r(| ^--(log^m^i-y-1)-1^-!)
it follows that the multiple which we are seeking is

^HF.m2. 2 r(^)/r((ox I Ir).
x£X^

It therefore remains to evaluate this sum.
By [12] p. 150 (18) and (18')

r(<o)/r(co | (p) == ̂ . ^ l)^(~^l) ^ unramified, co(7r) = q-8)

== ^-f(to) (co ramified, conductor P^).

Thus we can compute the multiple above explicitly.
First of all suppose that ex/* is unramified, co^M = 1^1?? say• Then we can take

<o(A:) = [ A? |{p. There exist n characters in X^ which are unramified. Let X^ be the group
of characters on R^, of order n\ this group is of order n |^|p'1. The multiple is

.-.|.|.̂  s'i-^-H-p—)^,-. |.],rf s ,̂
^=1 (i — ^ l y < ) ( i - ^ ^) xex;,-(i)

= 1«1^(- (^y C - »-)• + ""^'+ "-l^-„,?'"ll)•
If, however, o)^ is ramified then the multiple is

n-^n^m2 S q-^.
X6X«

Now let us evaluate these when \n\y == i. When co^ is unramified then y"^ == q~~1

(% e X^ — {I}) and so we obtain

MF^(I - r^^i - ̂ '^(i - r^)-^ - y^)-1.
as required. If c^ is ramified then the multiplier is, as required, w2.^"^^.

To deal with the cases when | n |p < i it seems to be most convenient to resort to
global methods. The point is that a global analogue of the functional equations in ques-
tion can be proved by means of the theory ofEisenstein series (Theorem II. i .4 below).
This is independent of any local theorems and therefore can be exploited to complete
the proof here. We shall merely sketch the latter; it runs in tandem with the proof of
Theorem 1.6.3.

Let A be a global field with Card(^(^)) == n, and which has a place v such that
ky ^ F. Then we can make use of the considerations of § II. i. There we have shown
that ifly, is 0 ly, „, the tensor product being taken over all places of k, and with respect

u '
to ^(A), then

d:r==id.
70



METAPLECTIC FORMS 71

Let now the global (D be such that co^ is ramified at all places uofk with [ n ]„ < i except
u == v. A priori we know that at these places one has (I, J2 = (const) Id. By The-
orem 1.6.3 we can assume that the archimedean analogue is true. It thus follows from
the global functional equation that when (co^),, is unramified, (I, ,,)2 is of the form

(const) (i - ̂ -n<-1) (i - ̂ -1) (i - q-^)-1^ - ̂ F1 Id.

However from the expression which we have already derived it is clear that the constant
here has to be \n\y m2. This proves the theorem in this case.

Finally we observe that {(<oS)» : (0 1 H^ = I? ̂  unramified at u with | n |y < i, u =(= v}
is dense in the set of all local c^ at ky. Therefore, to prove the local assertion, it suffices
to prove it for these {(^a)y- But since it is true at all other places of k, and is true
globally, it follows that it is true at v. This proves the theorem.

Remark. — These methods have shown that

S q-^ == i + (n - i) q~1 (c^ unramified)
xex;,

^nq-^ ((^ramified).

It seems possible to verify these assertions by purely local considerations; at least Bob
Coleman has shown us how to do this in certain cases.

After these rather lengthy preliminaries we can return to our principal objective,
which is the understanding of the V(co'). We base our analysis on the following lemma.

Lemma I. a. 7. — Let {n, W) be an admissible representation of G and let 90 be as in Prop-

osition I.2.I. Then ind5 (o/ (A) is a sub-ISi-representation of <po(^0 if an<^ ^V if ̂ ^ exlsts

a non-zero morphism of G-representations a : W -^V(co').

Proof. — This follows from [3] i. 9.

Corollary I. a. 8. — Suppose that < + | l^1 (a e O'1"). Then V((x/) is irreducible.

Proof. — By Theorem 1.2.6, under the assumptions of the corollary,
<( n L^)-1!^": V(0 -^("V)

a>0
wa<0

is an isomorphism. Thus if WCV((o') is a non-zero subrepresentation W can also be
realized as a subrepresentation of V^o/). Hence, by the lemma, <po(^0 contains
indj^-i^o)'(A), for each w e W . So, by Proposition I . 2 . I , <poCW') == 9o(V(co')).
As WCV(co') and as (po is exact, <po(V(<o')/W) =={o}; hence, by [3] 2.4 V((o')/W ={o}.
Thus W = V((o'), and so V((o') is irreducible.

We now call co exceptional if co^ = | |p for all positive simple roots a. Such an o) is
clearly dominant. Then we can construct the representations which we shall study.
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Theorem 1 .2 .9 .—Let ^ be exceptional. Let

Vo(co') = Im(̂  : V(co') -^V^co')),

wA^ WQ is the longest element ofW. Then

a) Vo(co') ^ the unique irreducible subrepresentation o/'V(WOCt}'),
b) Vo(co') t'j ̂  Mmy^ irreducible quotient representation o/'V(<o'),
c) Vo(co') = (1 Ker(I,: V^co') —V^o/)), wA^ s runs through the simple reflections,

d) Ker(I^: V(o/) -^V^co')) ^ generated by the set of Im(I,: V(W) ->V(co')) oj
j n^ through the set of simple reflections in W,

e) ?o(Vo(co')) ^ indig .̂̂ ' ^),
0 ^ In IF == T fl^ (0 ^ normalized then Vo(co') contains a K'-invariant vector.

A representation Vo(co') will be called exceptional.

Proof. — We begin with a general remark concerning the ly, in those cases when
< =(= i for any a. Then 1̂  : V(<o') -> V(M'<x)') is defined as the regularized value of

I./^=J^/(^-1^)^.

Let L be a sufficiently small compact open subgroup of 6, and let / be the right
L-invariant function in V(co') with support B^ L and such that /(I) == i. Let g = w;
then the integral is convergent and so can be understood in the usual sense. By choosing L
small enough one has I^f{w) =(= o, and hence ly, =f= o. Notice that co' is exceptional
if and only if L(| |p colj"1 = o for every positive simple root a.

With co' fixed as in the theorem let

M(w) = ind^^o/ (x).

Then we shall first prove e), i.e. that <po(Vo((*>')) ^ M(z<;o). Clearly by Lemma 1.2.7
M{wo) is a component of <po(Vo(<*>')). Conversely, if M{w) is another component then,
by Lemma 1.2.7, there would be a morphism a : Vo(co') -^V^o/). Then the com-
posite map aoI^:V(co') -^("W) is, by Proposition 1.2.2, a multiple of 1 .̂ It
cannot be 0 by construction. Thus for some c 4= 0 one has

ao 1̂  = cl^.

Suppose now s is a simple reflection such that l(ws) > l(w). Then by Theorem 1.2.6
1̂  ly = 0 but !„ I, + 0. This is a contradiction and hence we have proved e).

Since M(z<;o) is an irreducible H-module it now follows from [3] 2.4 that Vo((o')
is irreducible. Part a) of the theorem follows at once from this and Lemma 1 .2.7.

Next we shall prove b). Let V be another irreducible quotient of V(co') and
let M{w) be a component of <po(V). Then V can be realized as a subspace of V^co'),
let a : V(o)') -> V^o/) be the map whose image is V. By Proposition 1.2.2 this is a
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multiple ofl^, and as 1̂  == I^-x !„ it follows that Vo(o/) is a quotient of V. As V
is irreducible V ^ Vo(co') (and w == ^o). This proves b).

We next prove c). Let Vo be the space defined by the right-hand side of the
statement. Then as 1,1^=0, Vo3Vo(o/). Next note that the argument above
shows that M(ww') is a component of <po(Im(I^ : V^o') -^V^'o/))), and hence
M(aw') is not a component of ^(Ker^'.V^'^) ->'V(wwl^f))). Taking w' = WQ,
we see that M(wwo) is not a component of <po(Ker(IJ). But this shows, as 90 ls exact,
that

^(J^KerO^^)))

is either 0 or M(^o)- Since by Theorem 1.2.6

Vo^CKer^V^o/))

we see that

Vo(^)=J^Ker(I,V(^)).

But now if we choose s such that l(w) = /(wj) + i then

Ker^VC^o/)) C Ker^^^o/))

and c) follows at once. Part d) follows by a " dual " argument.
Finally, f) is a corollary of Proposition 1.2.4.

Remarks. — The class of the representation Vo(o/) depends only on co. Our notation
will imply a realization of the representation in the form given by either a) or b) of the
theorem.

We shall refer to Theorem 1.2.9 e), which plays an especially important role in
our investigation, as the " Periodicity Theorem ". The reason for the name will become
clearer in § 1.4.

1.3. Whittaker models

In this section we shall discuss the Whittaker models ofV(co') and ofVo(<o'). To
explain the relevant concepts, let CQ be a non-trivial additive character on F and define
the character e : N^ -> Cx by

e(n) =<?o( S w,,<+i),
l^t^r '

which we also regard as a character ofN^ . Fix a quasicharacter <x>o of 2, and form the
character (OQ x e of ZN^. by

(coo X e) {zn) = ̂ {z) e{n) {z e Z, n e N^).

73
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We shall suppose that coo o i = e on ^(F). Then we form the representation (p^, LJ
of 5 induced from <x)o X ^; that is, we regard Lg as the space of functions f:G->C
such that

^ f^S) = ("o X ^) Wf(g) _ (Y 6 ZN+),
b) for each y e L^ there exists an open subgroup K^ C G such that

Agk)-=f(g) {keK,)

on which G acts by right translation. The representation (p^ LJ is algebraic.

We say that a Whittaker model of an admissible representation (?T, V) is a injection
(TC, V) -> (pg, LJ. Let us recall how these are in general constructed. Let (TC', V) be
the dual representation to (re, V), i.e. V is the dual space of V, the action of u' e V
on v e V being denoted by < v\ v >. Then TT' is defined by

<^(g)v\v>-<vf^{g)~lv>

Now suppose that \ e V and satisfies
TC'(») ^ == ^(fi) X

and that TC | 2 == (OQ. Then if v e V, (^ K <X, TC(^) y»eL, . If (TC, V) is irre-
ducible and X + o this is clearly injective. Conversely if t: (TT, V) -> (p^, L^)
then ^(o) == ^(^)(I) is an element ofV as above. We denote the vector space of such \
byWh(V).

Another characterization can be given. Let (TT, V) be as above and let
<p<(7r, V) == V/<7c(n) v - e(n) v \ v e V, n e N^ >$

then y^TT, V) is the ^-localization of n in the terminology of [3]. Clearly y^, V) is
a Z;N^-space, and it is dual to Wh(V).

Remark. — Let Z° be the centre of G and Z° = P~\70). Then Wh(V) is naturally
a Z°-module.

Let us now consider the case of (TC, V) == (^((o'), V(<o')) so that (OQ = (x> [ Z.
For T] e H we form

<W> -^^/(^o-^) ̂ •

As in Lemma i. 2.3 b) this exists if co is dominant (as we have shown there that the integral
is absolutely convergent). Clearly \ satisfies the above condition, so that \ e Wh(V).

Clearly if h e Q, and T] e ft
^==(<O'(X)(A)\.

Lemma 1 .3.1. — There exists f^ e V(co') jo ̂

w.)+° ly^'-^efi,
=o ty^-^^e,.
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Proof. — Choose a fixed set of representatives R of fi^\JB. Then let L be an
open compact subgroup of G, which we shall take to be sufficiently small. Let^ (•/] e R)
be defined by

/,(^o)-(^)W (AeB^eL) ,
/^)==o (^B,T]L<).

Then we shall check that this has the required properties. One has

< \. , / ,>== J^(Y]' w, n) ~e(n) dn.

But there is only a contribution when
^f WQue'S^LwQ,

or (T]~ 1 T]') (^o nwo"1) e ̂  L.

This however requires that WQ nw^1 € L, •y}~1 T]' e H,, if L is sufficiently small. Thus
the integral is zero if 7]~1 Y]' ^ H,. If •y]"1 T]' e H, we can assume that T}' === T). Then

<^i?/^>==f i d n ^ o .\ ̂ 9j7l/ jN^nt^LWo

This proves the lemma.

Lemma 1.3.a. — One has

dim(Wh(V(o'))) = Card(9,\H).

Here Card(S) means the cardinality ofS; the notation will only be used for finite sets S.

Proof. — The equivalent statement that
dim^C^co')) == Gard(fi,\H)

is contained in [3], Theorem 5.2.
Thus ifco is dominant the \ (T] e H,\H) span the vector space Wh(V(o/)). Since

one can easily verify that the \(ft) are rational functions of the X(^), the method of
Bernstein explained after Lemma 1.2.4 applies and shows that the \ are defined
generically.

The objective of this section is to describe ^(V^o/)) or equivalently Wh(Vo(co'))
from the description of Vo(c>/) given by Theorem 1.2.9. We can unfortunately only
obtain complete results when \n\p = i. In § 1.5 we shall discuss a different approach
which permits us to avoid some of the problems occuring when | w [ F < i.

First of all we shall explain the basic idea of the approach of this section. If w e W
the linear form on V(co')

/^<\pL/>,
where \ e WhCV^cx/)), is defined in Bernstein's generic sense. Since it lies in Wh(V((x/))
it can be written as

ST(^O/,T],T]') <\,,/>,
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where \. e Wh(V(co')). We shall write T^T], T)') for r(z^ co', T], 73') if no confusion should
arise. The sum in T]' is taken over S,\fi. These equations define the transpose action
oftheI^onWh(V(co')).

Now let c be a function on H which satisfies
C(AT]) = ((*/ (x)(A)-1 C(T)) (A e JHL T) e ft).

Define X(c) = S c(-y]) ̂ .
^GHAH

Suppose next that o/ is exceptional. Then A e Wh(Vo(<x/)) yields an element
of Wh(V(o>')) via

VM-^Vo^'),

and this is then a X(c). Since ^.(c) is trivial on the kernel of ly, we must have
0(c),I,/>=o (/eV(V))

where s runs through the simple reflections of W. Conversely if X(c) satisfies these
conditions it follows from Theorem 1.2.9 d) that X(c) is trivial on Ker(I^) and hence
defines an element ofWh(Vo(co')).

Moreover <^(c), !,/> === o
if and only if

S c(-y)) T(W, j, Y], T)') ==0.

As s runs through the set of simple reflections in W we obtain a system of linear equations
in c. If c is a solution of this system we can define an element A(c) of Wh(Vo((o')) by

<A(c),I,./>=0(c),/>

and every element ofWh(Vo(<*/)) arises uniquely in this way.
We shall now explain how the T,(T), r\) can be computed. Let

K^ = {k e GL,(Rp) : k = I (mod P?)},

and suppose that m ̂ i is large enough so that the covering p splits over K^. Let
k h> k* be such a splitting, and let K^ be the image of K^ in 5. Let K^ == N^ n K^.
Then, as in the proof of Lemma 1.3.1 we define/^ to be that element ofV(<«/) with

a) Supp(/^) = B, 7)^ K-, - B, w^)*,
b) /y is right-K^-invariant, and
c) /^W = i.

If m is sufficiently large, such sa-f^ exists. As we have seen in the proof of Lemma 1.3. i ;

<W,S"">+° (7) =7)')
=0 (7) +7)').

Then one has
<X,,L/^>=T^,7)')<^,/M>,
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so that
^,Y)')=<\,Um)>/<^,^m)>.

Moreover in the proof of Lemma 1.3. i we saw that
<^,/.(m)>=meas((K^)

if m is large enough; consequently one has
T(^, <o', T], T]') = Ji^m <^, I,/^>/meas((K^)-).

Now that we have explained the approach we shall carry it out when \nL == i.
We shall take S, to be the standard group constructed at the end of§ I.I. Note that
j&(fi,) is then

{diag(A,) : ordp(A,) = {20 + i) S ordp(^) (mod n)}.

Let n be a uniformizer of F, let f == (y^, .. .,y,.) e Z*" and let
7^ = s((diag(^-))).

If we let
A^/eZ^.EE (2C+ i)S/,(mod^)}

and construct a set of representatives A for Z7A then {n1: { e A} is a set of represen-
tatives for 8,\fi.

Suppose now that the conductor of<?o is Rp and let dx be the self-dual Haar measure
on F. For J e Z/wZ define the Gauss sum

g^-^^^^e^xl^dx.

Suppose next that co is a quasicharacter of H^Z such that co^ is unramified for a given
simple positive root a. Since H, is the standard maximal isotropic subgroup we can
choose <x/ on H, extending (o such that o/ is trivial on

K'{diag(i, ..., i,j/,y-1, i, ..., i) :^eR^}

where K* is the canonical lift of K and, if a = (i, i + i), the^ (resp.j/~1) is in the i-th
(resp. (i + i)-th) position. Let

M,=K*(diag(i, i, ..., i, - i, i, ..., i))

where the — i is in thej-th position. If <o, co' are as above and if | n |p == i, let
6 == (o'(^,),

it is not difficult to see that this is well-defined. Then one has:

Lemma 1.3.3. — Suppose that F is such that | n [p == i. Let a == (t, f + i) be a simple
root and s e W the associated reflection. Suppose that (^ is unramified and that <o' is choosen as
above. Then

T(^ co', A, V) == e(^(A, V) + TJ(A, ̂ )),
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where
a) /or J = ̂  2, T], 7)' e fi. A, A' e ft, one Afl^

T ,̂ A' 7]') = W pt(A) . ((0' ^) (A')-1 Tf(7], 7)'),

b) ty f, f* e Zr n̂

T ,̂ T^) == o unless f * = s f (mod A),

<W, with

î == (/i?/2? • • •?^-i?^+i ~" ^/i + ^/i+a? • ••?/r)

^(^^)=o Mnto f* = ^ (mod A),

c) one has

T ,̂ T^) = (i - (o:^))-1^ ~ y-1) qfi-fi.i^^fi-fi.iM),

and T^TrS 7/1) = e(- i, ̂ f^ q^g^i-fi-^

Remark. — This lemma clearly determines T(J, G/, A, A*) completely.

The proof is an application of the formula derived above, and we shall postpone
it to the end of this section.

Let p = (i, 2, ..., r) e V. We define an action of W on V by
w[m] = w{m — p) + p (meZ^weW)

where if m = (m^ m^ ..., nty)

we set w(m) == {m^^, m^^ ..., m^^).

Note that if |m| == Sw, then
[w[m] | == |m|.

The action of W on V induces one on V/nV.

Corollary 1.3.4. — Suppose that F is such that \n\y == i and that u is exceptional. Let c
be a function on H satisfying

C(T)A) = (6)' (x) (7])-1 c(A) (T] e fi,, A e fi)

/or wA^A ^(c) induces an element o/'Wh(Vo(<o')). TA^n
c(^) == e/i-^i+^^i-^-^Vn]^^ I^)r,^l^l--fi-l)c(7^t),

ifs is the simple reflection associated with the-root (t, i + i). Conversely, given a non-zero func-
tion c satisfying these conditions X(c) induces a non-zero element </Wh(Vo(c>/)).

Proof. — We have seen that we must have

ST^W^T^) c{n1) =o,
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where f is summed over a set of representatives for Z^A, in order that ^.(c) should induce
an element ofWh(Vo(o/)). We show now that this is equivalent to the stated condition
for each s. Suppose s is associated with the root (t, i + i). By Lemma 1.3.3 the
condition above is

T(^ V, U1, T/) 0(7^) + T(^ ̂  7^1, ̂  C(7A) == 0.

This is, as o/ is exceptional,
— 6/'-^l-l+[(f*-f^/n]c(^f)

+ y-2^- l. 7^)^+l)(^-l^(^^l+l)c(7^fl) = o.

In this we replace f^ by fand note that f^ = j[f]; the quoted condition follows immedi-
ately.

This leads at once the following theorem, which is the objective on this section.

Theorem 1.3.5. — Suppose that F is such that [n[p == i and that co is exceptional. Let
N. be the number of images of free orbits of W acting on V\nV (orbits of size r\) in VIA. Then

dim(Wh(Vo((o'))) === N.

As an immediate corollary one has:

Corollary 1.3.6. — With the above notations one has that dim(Wh(Vo(<x>'))) == i if and
only if either

r = = n — i , 2 ( ^ + 1 ) ^ 0 (modw),
or r == n.

Remarks, — i) Although we shall not dwell on it here it is interesting to observe
that Wh(Vo(o/)) is a Z°-module on which Z acts by ((opi)'"1. For example, if r = n
then Z° is abelian but Z° =t= Z. Thus Wh(Vo(o«/)) determines a distinguished extension
of ((op.)"1 to Z°, which could be computed. The significance of this extension is unclear.
When r === n or n— i Theorem 1.3.5 implies that Wh(Vo(o/)) is an irreducible
Z°-module.

2) Although Theorem 1.3.5 does not hold if |n|p = i is not assumed, a weaker
version does. Moreover this assumption is not needed for Corollary 1.3.6. Such
results will be derived by global methods—see Corollary 11.2.6.

Proofs. — The corollary is a simple combinatorial exercise given the theorem and
we shall leave it as such for the reader. We shall therefore just prove the theorem.

As H^ is standard c is determined by the values 0(7^) (feA). Moreover from
Corollary 1.3.4 one sees that if ^Tr"^) is non-zero then it is of the form t{w^ f) 0(7^)
where t(w^ f) is computable. Hence 0(7^) determines the 0(71^). Suppose that f lies
in a non-free orbit under W. Then, as one can easily see, there exists a w e W and a
simple reflection s so that

s[w[t]] s w[{] (mod»).
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Replace f by w[t]. Then if s corresponds to the simple reflection (t, i + i) one has
that

fi^fi+i-1 (modn)

and, by Corollary 1.3.4,
0(7^) = - qfi-fi.l+l-^l-fi-2W c{^).

But also
c^) == (co' ̂ (^.(Tr1)-1)-1.^)

and so, if 0(7^) =t= o we must have
(0' ̂ .(T^)-1)-1 = - ̂ -^l+l-^l-r.-2)/n];

But as <*) is exceptional the absolute value of the left hand side is y^1-1-1^ \vith
F ==^ —,/<-n 4- I? and that of the right-hand side is yF-l-F/n+l. This is a contradiction;
thus c(7^) = o if flies in a non-free orbit.

Suppose now that flies in a free orbit. With the notations above one can easily
verify that

a) if s is a simple reflection then t{s, f).^, s[t]) == i, and
b) ifj, j' are c< neighbouring " simple reflections then

t(s, s' .[f]) .^(^, ̂ [f]) .̂ , f) == ̂ ', ̂ '[f]) ̂  ̂ '[f]) ̂ ^ f)-

Thus given 0(7^) we can inductively define 0(7^) for all zc e W. If for some
w^w' eW we have

T^^A.T^

with A e H^ then, as |w[f]| == |w'[f]|, we would have w[£] = ^[t] (mod n) and, by
assumption, this would imply that w = w ' . Hence h === i. Thus the prescription

c^hn^) == ((o'^A))-1^1^) (AeJB,)

C(7)) =0 (7) ^ U H,.̂ ),
wew

defines a solution to the system of linear equations which c had to satisfy. If

^ e U H,T^
wew

then, for some w e W, f — w[f] is of the form (^, a, ..., a) where
fl.(r — i + 27v) = o (modw).

From this the theorem follows at once.
It now remains to prove Lemma 1.3.3.

Proof of Lemma 1.3.3. — We have

^^') = 0,, I^)>/meas((K^)
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for sufficiently large m. This then takes the form

meas^K-^ f f f fw{snl rlwo l n2) dnl 1€ { n 2 ) drhmeas îs.,j ) j^ UN^<) }

where the integrals are to be understood as their regularized values. We shall first
evaluate the inner integral. To do so we first determine when sn^w'Q1^ can lie in
B, T]' K^ w, = S, Y)' ̂ (K^. Suppose that

sn^WQ^^b^w^k {be^ke^Y),

or p{s) p(n,) == p(b) pW) p(w,1 kn^1 w,) p^)-1.

We shall express matrices in G in (^ + 2 + r^) x (^ + 2 + fg) block form so
thatj&(J) is

o

f° 3

J o^(O I )\I 0;

0

We can then write p{n^) as

l o o
/i s\

0 I I °\o i/
0 0 I

with ^ e F, ^(&) as

AI ^i ^
0 &a A-3

0 0 A,

with &i, &2? ^3 upper-triangular, p(r\) (resp. ^(T]')) as

7]l 0 0

o •/]2 o
o o 7)3

7]i 0 0

resp. | o 7)2 o
o o 7)3

with 7)j (resp. T)J) diagonal, QJldp(w^lkn^l Wo) as

"i "2 o
M2 «3 ^3

^2

11
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where n^, n^ n^ are lower-triangular matrices. From
R{s) p{n,) == R(b) pW) p(w^kn^ w,) p^)-1

one obtains after a short computation that

^2=0,u. == o, "3 == 0>

XQ == o,^2 = 0>

^ = = 1^ = = 1

^1= ^1^1~\ ^3=:=7)37!3~l

0 I\ , ,- .
and ^ ^)-^2^]r1-

One also demands that

•^l7]!"1 0 0

o Ao o
0 fl3^31

should belong to B^. From the last of the equations above
<-^-ih= f ̂ ,—1

^2 ^2

- I 1 °\n2^(^-l i)and

where v=^)01.

Let now *(S)

0 0

[ o ^ ' 0 ''l^)^)
/\-1

and ^(S) == s /- r1 o\\o ^
0

[o ^
0

The integral is then

,esp.(^,-•)((''tA)(^)^-l)^l?o(^)

where s'(^ ̂  ̂ ) == {^ F : vr1 + ̂  p?, ̂ (s) ̂ '-1 e ft,}.
It must still be regarded as a regularized value, first of the integral inside the braces and
then of the sum.
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If z does not represent the zero class of F/Pj" then the inner integral is simply

((0' ^) (^(- V^-1) 7p3-1) ?o(0 ?-' 1 ̂ ~\

it Jt^{—^z~1) ̂ ~1 eH.^ and is zero otherwise.
The integral over S'(o, T], •y]') is

A(CT)==Jo'(x(^)^'-1)^

integrated over those ^ in vP^ such that h^) TJT]'" 1 e H^. This integral <( is " a geo-
metric series if we regard it as a sum over subintegrals of the form [S| = R. The
regularization process simply means that we take the formal sum. It proves however
more convenient to compute the integral by an indirect method.

Consider now the sum over z; this sum we also arrange as the sum of the integral
over S'(o, T], T]') and the sum of the subsums over | z [ = q3 (j > — m). In these subsums
we replace z by zQ with 6 e Rp, 6 s i (mod Pp), and sum over all such 6 modulo P^.
Since the conductor of CQ is Rp this sum vanishes unless | ^ j ̂  y.

Since the sum in question converges in an open set of <o this argument is valid there
and the consequence remains valid after regularization. The terms remaining are those
with 1 z | == q, which yield

S (co^X^-v^1)^-1)^^^2

^ePF^BF
Z^RF/BF

and those with | z\ <^ i, namely

B(^) = S (co' pi) (^(- v^-1) ^/-1) ?-". I ̂  I-2.
-seRF/P?
z^P?/Py

In these last two sums there is an additional restriction on the z, viz. that the argument
of (o)' p.) should lie in H^.

Hence r(^, (x/, T], T)') is the sum of

s ((o'(x)(^(~^-l)^/-l)^)r2
^ePF'/RF
a ̂  RF/RF

and A(w) + B(w) for m sufficiently large. Thus A(m) + B(w) is constant, as a func-
tion of w, for m sufficiently large.

If in the integral defining A(m -}- n) we replace ^ by '^^n^ we see that for all m

A{m + n) == <^{n) A{m).

Moreover, if m ̂  o, m = o (mod n) one has

B(w + n) == B(m) + S (<o' (x) (^(- v^-1) ^'-1) r"-" M~2-
^epy/PFl+n

^py+n/py+n
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In the second term here we replace z by T^ z^ and obtain

B(w + n) == B(w) + (^(T^) .B(n).

From these if follows firstly that for large m, m =: o (mod w), one has

<(TT) A(w) + B(m) + <(7 )̂ B(n) = A(m) + B(m),

and secondly that this equation then holds for all m >: o, m ss o (mod n). Thus one
has, for m == o (mod n),

A(m)=<(7^n)(I~<(7^))-l.B(n)

and so A(w) + B(w) = A(o) + B(o)
=B(n)(i~<(Tc)r1.

Therefore r(^, G)', T], T]') is the sum of

s (<o^)(A/a(~^-l)^-l)^).r2
^eP^/RF
»^BF/RF

and (i-^(^))-i S (^^(^(-v^1)^-1)^-"!^-2.
^eiwp?
^Pp/Pp

We are now in a position to deliver the coup de gr&ce. In the first term set z =^/7r.
Take T] to be of the form 7r1. Under the assumption made on <x/ the sum becomes

S (^^(^(-v^^-1)^^^)-1^^).?-2.
veBp/P»
V^PF/PF

Clearly the class of-y]' in H^\H is determined and we see that it is the class of n11. If now

J=/<4-1-/<^

then the sum is
r2^^)^-^)^'-1)^),-

which after a short computation can be seen to be

er2 ̂ (-1,7^1.
Now consider the second term. It is invariant under replacing z by zQ (OeRj f )
and from this one sees that the only terms which contribute are those with
ord(v^~'1) = o (mod n). But the class of T)' in H,\H has to be that of T) if the sum is
not to vanish. Thus we can restrict our attention to the case T]' = Y], and here we obtain

(i - ̂ OT))-^ - <r1) ("' (-0 (h.i- v^-1)) M-1

where z is chosen with o < ord(^) < n. Since v = Tr^"7141 we choose
z == ^fi-fui-Wi-f^iW
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which yields
6(1 - (O^TT))-^! - q-1) ^-^1 (O^TT^-^^);

with this the proof of the lemma is complete.

1.4. Hecke Theory

In the last section we constructed the space Wh(Vo(<o')); in this section we shall
study the function

Q ->C:A^<^7To(A) y>

for X e Wh(Vo((x>')) and v eVo((x/).
To describe the results we regard Vo((«)') as a subrepresentation of V(*°'(*/). As

such it is the image ofl^. Let c : H -> C be a function satisfying
cW^^^r^cW (7)efUeH)

and which satisfies the conditions discussed in § 1.3, namely
ST^W,^^) C(7)) = 0

for all simple reflections s and T)' e H. If v e Vo(co') and v e V(<x/) is chosen so that

W-v
then A(c) : Vo((o') -> C can be defined by

<A(c),^> == <X(c)^>

and yields a Whittaker functional on Vo(<o').
With these notations we can state our first main result.

Theorem 1 .4 .1 . — With the notations above, let c be fixed and v eVo(<o'). Then there
exist numbers A, A' > o so that

a) if h e H and for some positive simple root a we have

\pm>A
then <AW, T^oW ^> == o?

b) if h e H and for all positive simple roots a we have

IW|<A'

then <A(c), ̂ (A) ^> = S c(7]) pW ^73 ^A)

^ JMW ^m^ taken over H \̂H.

Pr(?o/'. — Part a) of the theorem is a triviality as Vo((o') is admissible so that we
need only give a proof for part b),
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To do this first let h^ e fi^ Z and form

u == TToOy v — "^(A^) y;

from Theorem 1.2.9 e ) it follows that 90 (u) = o, where 90 is the coinvariants functor
of§ 1.2. Hence there exists an open compact subgroup No ofN^ so that

jy^oW udn ̂  °

(cf. [46], Lemma 2.2.1). Thus for A e ft, X e Wh(Vo(o/)) we have

f <X, TCo(A) 7To(») ^> dn == o.
JJNe

But for a suitable A ^ > o

I^^I^A,

for all positive simple a implies that

^ jANeA-^ i.

Thus, under this condition we have that the integrand is constant and hence

<^,7To(A) M> == 0.

Thus we obtain

0, TTo(^) VY = (w^) (A,) 0, 7To(A) ^>.

Since Vo((«)') is admissible

^Z /{AeH^Z |7To(A) .= .}

is finitely generated and from this one deduces that given v e Vo(<o') A e ft there exists
Ag > o so that the function

AlK^to^A^a.T^AiA)^

defined on

{AI e fi^ Z : [^(Ai)"] < A^ for all positive simple a}

is constant. We next compute the right-hand side if X == A(c).
Replace n by A^ nAf1. Then we have that this expression is equal to

s c^) -JN*^ nh^ ^^o"1^) dn-

As AI -> o

'e{h^nh^~1) -> i
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and as the integral is absolutely convergent we see, by Lebesgue's dominated convergence
theorem, that

^l™w06)pL(^)-l<A(c), 7To(M)t/> = SC(7])J^(7]^1^ dn

-^cW^f^w^n^dn

The integral is however simply I^(^) (^ ^A), or y(Y) ^A). This proves the theorem.
Let us now assume that | njp == i and that CQ has conductor Rp. If co is unramified

and (x>' normalized we let VQ GVo(o)') be that K*-invariant element for which one has
»o(I) = i. Gall h eH weakly dominant if [^(A)01] <^ i for all positive roots a.

Theorem 1.4.2. — With the notations above

<A(c),7ro(A).o>==c((rr1)^)2

if h eH tj weakly dominant and o otherwise.

Note that Theorem 1.4. i is the " asymptotic " form of this theorem.
It will be a consequence of the following theorem, of interest in itself:

Theorem 1.4.3. — With the notations above, if h e H^ Z is weakly dominant we have

JN: UK* TCO^ vo dn = "^W • ̂ o

Reminder. — The assumption that o/ was normalized carried with it the assumption
that K* is canonical. Hence N*(. n K* is a lift of N^. n K.

Deduction of Theorem 1.4.2 from Theorem 1.4.3. — Let h e H, h^ e H^ Z be weakly
dominant. Then by Theorem 1.4.3 one has

J^nK^0^1) vodn = ̂ ^^^ ^oW Vo'

Apply A(c) to both sides of this; as

A(N^ n K*) A-^CN^ n K*

we obtain
<A(c), TTo(AAi) v^ = ̂ (Ai) <A(c), n,(h) ^>.

We choose now h^ so that hh^ lies in the region where Theorem 1.4.1 b) is valid. This
theorem yields for the left-hand side the expression

Sc^)^)^".^))

and, from the construction of Vy this is simply

c^)-")-1).^)2.
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Thus if h is weakly dominant we see that
<A(c), Tto(A) ro> = ("•^(^-^(((^rr1).^^

= c((A,)-1) (x(A)2.

This proves the required formula when h is weakly dominant. If h is not weakly
dominant then it is easy to show that <A(c), TTo(A) VoY = o.

We now turn to the proof of Theorem 1.4.3. For this we make use of some
auxiliary considerations. Let K* : K -> K* be the canonical lift. Let K^ C K be the
Iwahori subgroup of K, i.e. that subgroup of matrices which are, modulo TT, upper-
triangular; let K\ == K^KaJ.

Proposition 1.4.4. — One has, with the notations above,

{v e Vo(o)') : 7To(A) v == v, k e KI} == C.^o.

We shall first assume this and deduce Theorem 1.4.3. Let N_ be the group of
lower-triangular unipotent matrices and choose n' e K* (N__ n K^). If now n e N*(. n K*
it follows from the Bruhat decomposition that we can write n' n in the form

n' n == u(n, n').a(n, n') .^(n, n')

where
u^n') eN'+ nK*

fl(n, n') e S n K'

u^n^n') 6K'(N_ nKl).

Moreover one sees that n l-> u(n, n') is a measure-preserving map, by first proving this
statement for SLg(F) and then applying induction. We shall now verify that, for h e H^ Z
dominant,

J^nK.^)^"

is invariant under K^. To prove this it is sufficient to prove that it is invariant under
K*(N_ n Ki), since it is clearly invariant under N^ n K* and K* nH and these
groups together generate K^. Thus, we let n' €K*(N_ n K^J and we shall verify that
the vector above is left fixed by n\ One has

^oWJ^^oW VQ dn == J^K*^0^5 n^ a(n' n^ ut(n' n^ ft)vo dn9

Since VQ is K*-invariant and since h and fl(n, n') commute the right-hand side is

f Trnf^fn, n') A) Vn dn.
jNfnK* ov v 5 / / °

As n j-> u{n, n ' ) is measure-preserving and is clearly injective it is also surjective. Thus
this last integral can be written as

f TTnf^A) Vadn,
jN:nK* ov / ° 3
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which demonstrates the invariance claimed. Hence, by Proposition 1.4.4 there exists
a scalar 6 (K) so that

J^nK^^^^6^0-

It is easy to see that 6 (A) = ^(^(A) by applying the functor 90 to this equation. This
completes the proof of Theorem 1.4.3, once Proposition 1.4.4 has been proved.

Proof of Proposition 1.4.4. — We continue to regard Vo(co') as the image ofV(co')
by 1̂  in V^'o/). Then if ^ eVo(c«)') is K^-invariant there exists ^ eV(o/) which
is also K^-invariant and such that 1^ {uy) == z^; this follows by the familiar averaging
argument since K^ is compact. We shall define a basis f^ (w e W) of

Y = {u e V(<o') : 7To(A) v = v (A e K*i)},

and it will suffice to show that all the I^(^p) are equal. To that effect it will suffice to
show that

I.(/»-/J=0

for all simple reflections s. The element^ ofV^co') is defined to be that K^-invariant
element ofV(co') with

Supp(/J=B^Kl

and f^(w) = i.

It is easy to verify that this exists. To see that these form a basis of such functions we
observe that {f\w : T] e T, w e W}, where T is set of representatives in H for H,\H, is
a set of representatives for B,\6/K^. But it is easy to verify that if 9 is K^-invariant
then ^{rfv) = o when T] ^H^. Hence the fy, (w eW) do form a base. Moreover
we see that if 9 is K^-invariant then ^(w) == o {we W) implies that 9=0.

Now let us verify that

!,(/» -fJ = o

for a simple reflection s. By the principle which we have just explained, it suffices to show
that

W.-fJW-o

for all w' e W. However, if w' 4= w, sw, then I,(^) == o, Ig^fsw) === ° as t^e mte-
grand of the integral defining I, is zero. It will therefore suffice to show that

I.(.^-/J("0=:0,

since the other condition, that with w' = sw, arises from replacing w by sw.
Thus we have to show that

f Usnw) dn = f f^snw) dn.jmsr^ ' jNs^r^ /

89
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Let a be the root corresponding to s. Then one finds that in order that J(i + S;eJ* w
should lie in B, wK^ one requires that | S [ > i and then

s{i + w w = ̂ ) (i + r'e^r w
where hyff,) has the same meaning as in § 1.3. Since co' is exceptional it follows that

n+l

f^s{i + W w) == | ̂  | n if ord(^) = o (mod n) and | ^ | > i,

= o otherwise.

Assume now that meas(Rp) = i.
Then the left-hand side in the equality which we have to prove is

(i-y-1) S q^.q-^^^q-1.
k>0

Consider next the right-hand side of the proposed equality. The condition that
(i + ^®a)* should lie in B, swK*^ is [ ^ | < i. But the integrand is then i and the integral
is again q^1. This proves the equality and the proposition.

1.5. Characters and Whittaker Models.

Our objective in this section is to establish a connection between a numerical
invariant derived from the character %y of an irreducible, admissible representation V
of G, and dim(Wh(V)). This result could be used with a knowledge of the character
of Vo(o>), if this were available, to compute dim(Wh(Vo(o>))) when [ ^ I p ^ !• We
shall give a simple example of this (Theorem 1.5.7 below), based on Flicker's formulation
of the Shimura Correspondence in [7].

Before we can formulate the main result of this section we have to recall some
standard facts about characters. Thus let (w, V) be an admissible representation of G,
and let f be a smooth function of compact support on G. Then the map

</): V-^V; v^ff{x).n{x)vdx

has finite rank, and has therefore a trace, which we denote by Tr(n{f)). Since

f^TrW))

is a distribution, we can write it as

JxvW/W dx

where %yls a generalized function (or distribution) on G. It is invariant in the sense that

XvW==XvW O^G).

Let Greg be the set of regular elements of G, and let 6reg == P~l{^Teg)9
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Let now a = (r^, r^, ..., r,) be a partition of r and let II ̂  be a standard parabolic
subgroup of G with Levi component isomorphic to GLy (F) x ... X GL,. (F). Let ̂  be
the character of the representation ofG induced from the identity representation of 11̂ .
Then one can compute the ̂  explicitly (cf. [14] § 20.4, § 2i .5, [12] Ch. 2, § 5). We
shall not give the explicit formulae here, but we note the following consequences:
1. £1^ does not depend on the choice of 11̂ ;
2. let U be a neighbourhood of I in G; then the ̂  | U are linearly independent, and
3. let ao = (i, i, . . . , i); then

j|™ ^(A)/Q^(A)=o (a+oco).
h regular

Let ^==^oj&.

Theorem 1 .5 .1 . — Suppose that Ghar(F) = o, and that V is an irreducible admissible
representation of G. Then one has:

(i) %y can ^e represented by a locally constant function on 6 ;
(ii) there exists a neighbourhood V of I so that ^y is represented on U by a locally integrable function;

more precisely there exist c^eC (v. a partition ofr) such that

X v | U = 2 ^ 0 J U .

Proof. — Part (i) follows by writing the proof of [19], Cor. to Theorem 4 in the context
ofmetaplectic groups. Part (ii) will follow from [i8], Theorem 20 once we have verified:

a) there exist G-invariant open neighbourhoods ? of I in 6, and Yof I inG such that
p \ Y : Y ->Y

is a homeomorphism, and
b) the ̂  [ U have the same span as the " v^ " of [18].

Since the Q^ | U are linearly independent, and since the Q^ actually appear as the
germs of characters, b) follows easily.

We shall now verify a). Let Ki C GLy(Rp) be an open normal subgroup such that

(i) there exists a GL^(Rp)-invariant section KI of p over K^ (i.e. K^) = Ki^ if
x e Ki, Y <= GL,(Rp)), and

(ii) if Kg === {^n : A: e K^} then Kg is a subgroup ofK^,
Ki -^Kg; x ^ x "

is a bijection and the inverse map is given by the binomial series for (I + {y — I))^.
It is easy to see that such a K^ exists.
We now let

? = ̂ (K^, Y == Kg0;
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we have to verify that p is injective. To do this suppose that x, x ' e Kg, g, g ' e G are
such that (x)0 = {x')9' \ we have to verify that

K^xv = K^y.
To do this we can clearly assume that g ' = I. Let x == ^n, x ' = 7f1. Since

the binomial series for (I + (^n — I)^17" converges and is equal to that for
((I + (^ - IOT' ^e obtain ^= ̂  3ut then iq(^ == iq(^ = (iq(S)T; as
K^(S)17 == Ki(7)).i(^) for some ^ e ̂ (F), this yields

KiW^K^^K^)^^').

This completes the proof of the theorem.
We now choose a non-degenerate character e: N*p ->CX as in § 1.3 and

define Wh(V) as there for any admissible representation V ofG.

Theorem 1.5.2. — (i). Let V be an irreducible, admissible representation of G, Then
Wh(V) is finite-dimensional.

(ii) Suppose that V is cuspidal (i.e. 9p(V) = { o } for all P + G). Then Wh(V)+{o }.

Here 9? is the functor of coinvariants associated with the parabolic subgroup P
of G as introduced in § 1.2.

Proofs. — (i) This seems to be well-known but we could not find a reference; there-
fore we sketch a proof here. It suffices to prove the statement for V cuspidal, since, by
the obvious analogue to [3] 4.5 for the metaplectic group, the general case can be deduced
from this one. Under the assumption that V is admissible and irreducible there exists
a finite subset Vo of V such that V == < S. Vo >.

Thus if X e Wh(V), X is determined by the functions
H-^C; h^\{n{h)v) (yeVo).

Since V is admissible there exists <^> o so that, if for some a e O4" one has

W|F>^

then X(TT(A) v) == o (»eVo).

We shall show that likewise there exists c^ > o so that, if for some a e O4" one has

l/Wlp^
then \(rc{h) v) = o (v eVo).

Granted this, it follows that the functions above are determined by a finite collection of
their values.

Let now a be a simple positive root and let P^ 3 B be that maximal parabolic
subgroup of G whose unipotent radical N^ contains the unipotent subgroup of G cor-
responding to a. Then as

?Pa(V) = 0
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there exists a compact open subgroup Y ofN^ such that

J^7c(w) vdn =o (yeVo) .

Let ^(a) be such that, if \p(h)ot\p< ^(a), then
m^CKer^);

this being so we have

o == X (Jy^(A) 7c(%) vdn\ == ^(TT(A) y) .J dn.

Thus X(TC(A) ») = o,

for all h with [^(A)"]? < rg(a). This clearly implies the assertion we needed.
We now come to the central theorem of this section. To formulate it we must first

introduce some notations. If g e G let P(g) be the discriminant of the characteristic
polynomial of g and let

A^^IPWidet^))^-1)/2.

If g is split with eigenvalues ^, ..., \ then one has

A^-niX.-X^.ldet^l^-1'/2.
»<i

Naturally, A is a class-function on G; we call it the Weyl factor.

Theorem 1.5.3. — Suppose that Ghar(F) == o. Let V be an irreducible, admissible
representation of G with character %y- Then

dim(Wh(V)) == ̂ m A(A) xv(s(A)),

where h e H with h regular.

Remark. — It is not difficult to show using Kubota's formula (following Prop-
osition 0.1.2) that s | H is a continuous section of^ |S (although it is not a homo-
morphism).

This theorem is a variant of one ofRodier's [41].

Proof. — The proof of this theorem is based on the relationship between 6 and the
group ?, = /r^P,) where P, == {g e G: (o, ..., o, i) g == (o, o, ..., o, i)}. We shall
make use of the structure theory of representations of I\, and, in particular, the notion
of derived representations as discussed in [3] § 3. These are considered there only on P
but the results apply also to P.

We shall paraphrase those results of [3] § 3 which we need. Let W be an algebraic
representation of P,.. Then there exist representations (derived representations) W^
of G,^ and a filtration oCW,CW,_iC ... CW^ == W of W such that

W,/W^^ind|_^^(WW®^_,)
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where

Nl={ne^:p{n^=o i f i< j ^ r-A},

and e^(n) == ^( S ^,+1) (w e N )̂,
r-k<l<r

here the subscripts denote the relevant matrix entries. Note also that W^®^^ is
well-defined on 6^_^.N^. We shall here consider the W^ as the coinvariants defined
without the intervention of the modulus function which is used in [3] i. 8 (b); as we
have used the usual induction functor we have also used the corresponding modification
in 1.8 (a) (i). Thus this leads merely to a slight difference in definition.

Let 9 be a locally constant function of compact support on ?. We shall call 9
cuspidal if for every parabolic subgroup II ofG, such that Tt C]P one has

J^ 9(^) du == o

where Un is the unipotent radical of 11 and Un is the canonical lift ofUn to ?. Examples
of such functions are given by the matrix coefficients of cuspidal representations of 6
restricted to P. Denote the space of cuspidal functions on ? by Co(?).

Proposition 1.5.4. — Let 9 e Co(P) and let W be an algebraic representation of ?.
Suppose moreover that W^ is finite dimensional. Let T (resp. ̂ ) be the action oft? on W (resp. W^.
Then r(9) has finite rank and

Tr(r(9)) == Tr(r,(9)).

Proof. — Since 9 is continuous and of compact support one has that T(9) exists
and that it respects the filtration o C W, C W,._i C ... C Wi == W. We shall show that

T(9)Wi=T(9)W,CW,.

This will be proved by an inductive argument, of which the k-th step consists of the
statements

a,) r(9)_W, C W,,., (i ^ j + k < r), and,
b,) ifT(9):W,/W,^-^W,^/^^ ( i < y + ^ < r )

is the induced map, then r(9) == o.

Clearly bj^) implies a^i). On the other hand a^) implies that r(9) is well-defined.
If k = o b^) also is meaningful and a^) is a triviality. Now note that bo) is true since
9 e Go(?), and so is \) {k^ i) by [3] 3.2. Thus a^) is true for all k. In particular
r(9) W^CW,. The filtration gives oCr(9) W,_iC ... (^(9) W^CW,. Observe that
the natural induced maps

W,/W,^ ->r(9) W,/r(9) W,^ (i <j< r)
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are surjective, and o (by b-^)); hence it follows that

T(<p) Wi = r(<p) W, = .. . = r(y) W,

as required.
Thus it remains to prove that r((p) has finite rank in the case that (r, W) is

(^o.Wo) ==ind^x^F)^Xs).

The representation space for this latter representation consists of locally constant func-
tions y on P such that

a) Ag^)) = ^)f(g) ^ e ̂ (F),^ eP)
b) f(ng)==e{n)f(g) (neN^e?)
c) I/I? 'which is defined on N\P, has compact support.

Then {^Wf)(g) -j,fW ^Y) ̂

and d^ is a left-invariant Haar measure on ?.
Since there is a compact subgroup Ki(<p), which depends only on 9, such that

T(<p)/is K^(<p) -invariant, it will suffice to show that there exists a compact subset K(y),
which again depends only on 9, such that

Supp(To(9)/)CN.K(9).

To demonstrate this we shall use induction on r.
Let us write matrices in P in ((r — I ) + I ) x ( ( r — i ) + i)-block form; let

(I x\Ny be the subgroup of matrices of the form j {x e F*'""1), and Gy_^ the subgroup

of the form (<? I (g e GL^^(F)). Let n^n* be the canonical lift of N,. to P and

let Gy_i ==^~l(G•r-l)• ^e have a bijection

F^xG^-^; (^5)^(^ ^J.g.

We can therefore parameterize P by this map, the multiplication becomes

M.(^')=^+^^^

where gx' is, by definition, p[g) x\
In the above integral we now replace g and y by (0,^1) and (^, Yi). The left-

invariant measure can be taken to be

d-T = | det(Yi) 1^.1^1.^1

where rfy-ils a bi-invariant Haar measure on G,_^. Thus

(To(y)/)(o,^i)
=J^_/(o,Yi) Ide^lF^.^-J.y^r^^Yi) l^l.^r
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It is now convenient to replace ^ by g^ ̂ ; then the right-hand side of the above expression
becomes

Jg /(o,Yi) |det(^lYl)lFlJ^/o(^^-,.,^)9(^^lYl) I^I.^Yi.

In this expression ^ = (Si, ..., ^y_i) and ^ is the z/'-th matrix coefficient of p{g^}.
Note that there exist compact sets K^CF^1, KgC6,._i such that

Supp 9 C K^ x Kg

and also that 9 is locally constant on N^1 X Gy_i.
It follows from the last fact that there exists c^ > o such that the integral over i . is

zero unless l^r-i j lF ̂  c\9 Secondly, as 9 has compact support in the above sense, there
exists a constant c^ > o such that, if |^r-i j j p ̂  C2 ^or ^J? then

f /̂S -̂i,̂ ,-) y^r'Yi) 1^1 = f y^^Yi) ̂  == o
J p^-l 3ass 1 J Fr-l

since 9 is cuspidal.
It follows now that in order that (r(9)y) (o, g^) should be non-zero we need that

l^r-i . j lF^ c! tor all j, and that there should exist at least onej such that l ^ r - i i l F ^ C2'
It follows easily from this that there is a compact subset K.3 of G,._i such that
^P)/^^!) = ° unless ^ eP,.__i.K.3, where Py_^ is the subgroup of G,._i, defined
as P was in G. Moreover, in the integral representation of ^(9)^(0,^) above
g^~1 Yi e Kg; thus the integral need only be extended over Py^.Kg Kg. Observe here
that K3.Kg is also compact.

We have now to show that there exists a compact set K^ C P,. _ ^ such that, if g^ e K^,
then the map

Pr-l-^C; P^^WA^Pgl)

has support contained in (N* n Py_i) .K4. However, since r(9)/(o, g) is, as a function
of^, right-invariant under an open subgroup which depends only on 9, we see that it
suffices to prove this latter statement for any fixed g^ e K.^. This we shall do by reducing
the question to Py_i, when it will be justified by the induction hypothesis.

Suppose that 9(^5,?) is, as a function of g, right-invariant under a compact open
subgroup K.^CGy_^. Then we can assume thsitf{o,g) is too, since we can average
it over K^. Thus there exists a finite set YI,J e^r-l (! ̂ J ^ N), and positive con-
stants Cj (i < j< N), so that ^(9) {o,pg^) (where p eP,._i) is given by

S J /(o,?Yl.i)|det(^-ly)|pl|det(^lYlJlFl.
Kj'^n Jp^

J^/o(2^^ ̂ ST1?-1^) 1^1 dq
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where dq is a left-invariant Haar measure on Py_r Thus our contention will be proved,
by virtue of the induction hypothesis, if we verify that the function on Pr-i given by

p^\det{p)\^( .o( S gr-^) <p(^r^Txj) 1 ^ 1
Jyr-1 l ^ k ^ r - 1

satisfies the same conditions on P^_i as 9 did on Py; for then the integral above can be
interpreted as a " ̂ oWf(P) 5? ^d the conclusion follows.

This function is clearly of compact support and locally constant. That it is cuspidal
is almost immediate from the corresponding condition on 9. Hence the induction is
completed, and Proposition 1.5.4 is proved.

We next need the existence of sufficiently many 9. We let (TO, Wo) be the represen-
tation of P:

(^ Wo) == md^^F)(<? X e).

Lemma 1.5.5. — Let L C P be an open compact subgroup of P. Then there exists 9 e Co (P)
such that

Supp(9) C L

and Tr(To(9)) =t= o.

Proof. — We shall first show that there exists such a 9 =f= o but without the restric-
tion that Tr(To(9)) 4= o. We can also assume that L is of the form K^ n P where K^ is
the lift of

K, = {k e GL/Rp) : k ^ I (mod TT-) },

the lift exists for m large enough.
It will now suffice to show that there exists a non-zero locally constant function 9^

on 6 with Supp(9i) CK^ such that for every parabolic subgroup 11 CG one has

L 9i(^) du == o.JUn

This is so since, for some k e K (= GL^(Rp)), one will have that the function p h-> 9i(^)
on P is non-zero.

Let now h e K be such that its image under the reduction map
G4(Rp)->G4(RF/(7r))

is elliptic. We let a e F^, to be chosen later. Then define
9,M=,o(aTr(^)) \x e K;)

== o (otherwise).

Here we are identifying K^ with K^ in writing Tr(xh). We have clearly only to show
that 91 is cuspidal. To do this let n be parabolic in G. Then II is conjugate to a stan-
dard parabolic subgroup II^, and Ujj is then also conjugate, by the same element, to U^j .
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However, Tl^ normalizes Un and G = n^ K so that there exists k e K such that
Un = (Un )&. Thus it suffices to show that

S^^§)du=o

for all k e K and all standard parabolic subgroups 11 C G. Now since K^ is (for m
large enough) normalized by K it follows that one can assume that k = i. It then
follows from the Iwasawa decomposition that if (U^)*^ n K^+ 0 then g eUn.K^.
Thus we need only show that

JcnnK^^) du = °

where k e K .̂ However, written out explicitly this is

Jun^K^o(aTr(^))^==o.

Let IT be the opposite parabolic subgroup to II; then since kh has elliptic reduc-
tion (modw)

p(kK) ^Ki.(II' nK).

Thus Tr((^) ̂ (Un n K,)) = ̂  Rp

and so, for a suitable fixed a (depending only on m) the above integral is o. Thus <pi is
cuspidal.

Now let 9 be as constructed. We observe that there exists an algebraic represen-
tation (p, Y) ofP such that p(<p) =t= o (for example the regular representation). Thus
from the discussion in the proof of Proposition 1.5.4 one has p,.(<p) =(= o. Since py is of
the form TQ ® X, where the action ofPy on X is trivial, it follows also that (ro)y (9) =t= o.
Note that

(TO. ̂ o) = ^d^x^F)^ X e)

is unitarizable. Hence if <p' = 9 * 9 one has

a) ^o(y') + o d̂ Tr(To(9')) + o
b) Supp(9')CL, and
,; 9'^Go(P),

as one sees at once. Thus the lemma is proved.
We are now in a position to prove Theorem 1.5.3. We shall consider the restric-

tion ofV to P. This is algebraic and the multiplicity of (TO, W^),. in Vy, or, for that
matter V, is dim(Wh(V))$ this we write as N(V), which is finite by Theorem 1.5.2.
Hence by Proposition 1.5.4 one has, if n denotes the action of G on V and if 9 e C()(P),

Tr(7r(9))=N(V).Tr(To(9)).
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However, let L C G be a sufficiently small compact open subgroup, and let /^ ^)e

the normalized characteristic function of L. Here <( sufficiently small5? means that the
image of n{^) is to be L-invariant. Then ^ * 9 ls locally constant and of compact
support on G, and 71(9) = TT(/L * ?)• Thus we see that

<Xv.YL*9>=N(V)Tr(To(9)).

From Theorem 1.5. i we have that there exists an open neighbourhood 0 of I in G
and an expansion of the following form:

Xv|^=S^(V)QJ^.
a

We now choose L C (9 and 9 such that

Supp(<p) C 0.

Then we verify at once that

< 4 x » X L * ? > =0

for all a =t= ao, where H^ = B, since XL * 9 ls cuspidal (or since dim(Wh(ind^(i))) == o).
Thus

<XV. XL * 9> = ^a.(V) <t2a.» XL * ?>;

hence there exists a constant y^ such that

N(V) == Yr^(V).

This involves %y only in a neighbourhood of I; since the representation of G of which 0^ is
the character has a unique Whittaker model it follows that YI = I • Thus one has

^V)^^)-1^^))

where h is taken to be regular. It then follows that

NCV)^!)-1!™^)/^))
71 ~^ 1

since, in a neighbourhood of I on H

QJA) = r!/A(A),

as one can see from Proposition 1.5.6 below. This proves the theorem.
Let V(co) be the representation defined in § 1.1. Then one has

Proposition 1.5.6. — The character of V(co) is represented by a locally integrable func'
tion Xv(co) which is supported on (£[„ Z)° and whose value at a regular element h of H^ Z is given by

[H: H']A(A)-1. S ^(A).
wew
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Remarks. — i. This proposition is a generalization of the computation of characters
of principal series representations, which have been known for a long time (cf. [14]
§ 20.4, [12] Ch. 2, § 5).

2. If n = r, co == i we obtain the formula for O^o xlse(^ above.
3. From Theorem 1.5.3 it would follow that

dimWh(V(o))) = [H:HJ;

this agrees with Lemma 1.3.2.
4. In the case r == 2 this formula was given by Flicker [7] p. 141, but the factor

[H : HJ has been inadvertently omitted.

Proof. — This is a generalization of [7] Lemma 2.1, and the proof is essentially the
same. We shall merely note the modifications which have to be made. Firstly, if h e H
then the Jacobian of N^ ->N+; n\-^nhn~lh~l is A (A)/pi (A); thus the computation at
the bottom of p. 141 of [7] can easily be generalized. The other point to note is that
in [7] p. 142 the author has omitted the integration (in his terminology) over AQ\A and
this accounts for the missing factor [H : H,].

Theorem 1.5.7. — Let n == 3, r = 2 and c = — i (mod 3). Then

dimWh(Vo(<o)) =i.

Proof. — In the sense of [7], Definition i, p. 172 and Theorem 5.2 the represen-
tation Vo(<x)) corresponds to a one-dimensional representation of G, which, by computing
its N^-coinvariants by [7] Theorem 5.2 is seen to be / where

X(A) = (o(s(^)) (x(A)-1 (AeH).

It is then easy to compute dim(Wh(Vo(<x)))) by Theorem 1.5.3. This yields the result
quoted.

Remarks. — Theorem 1.5.7 is also a special case of Corollary II. 2.6. The proof
sketched here is quite different and appears to us to give different insights. We plan
to return to the discussion of the generalization of the Shimura Correspondence as for-
mulated in [7] and its consequences in a later publication.

1.6. Archimedean fields

In this section we shall discuss the analogues of the results obtained in the previous
sections of this chapter for archimedean fields. We have three distinct cases to consider.
These are
1. n == i, F = R, C
2. n == 2, F == R
3. n> i, F = = C .
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In cases i and 3 G is isomorphic to G X ^n(F), and we need only review some
well-known results. In case 2 the situation is a little more involved, but since 6 is a real
reductive Lie group, locally isomorphic to G, it is also covered by the general theory.

We shall begin by defining the analogues of the V^co') and discussing the inter-
twining operators. Then we shall consider the irreducibility of the representations, as
in Theorem 1.2.9. In cases i and 2 the results are analogous to those of§I .2 ; in case 3
the <( relevant95 V(co') is actually irreducible. Finally we shall derive those results con-
cerning Whittaker models which we shall later need.

We define H, N+ as before, likewise H, H,, N^.. In cases i, 3 H, == H ^ H X ^(F),
whereas in case 2 the index offi^ in fi is 2[r/23. We let H^= p~l{hn: h eH}; this is H
in cases i and 3, and of index 2r in case 2. Let Z be the centre of 5 (and ofB); it is
^{Xl: r~1 e F^}. Thus in cases i and 3, Z == p-1^! : X e F^ }, and in case 2

Z^-^I^eR^} (r odd)

^-^I^eR^} (r even).

The function (JL can be defined as before; note, however, that we shall always take
Me ==z^

Now let o) be a quasicharacter of !!„ Z, extending e : ̂ (F) -> C^ and let co' be
an extension of co as a quasicharacter to H^. We let V(co') be the space of func-
tions f: G -> C which satisfy

(i) fW = (o)' (i) {b)f{g) (b e B,(== fi, N^))

where we have extended o/ to B, by requiring that co' | N!(. == i,
(ii) g ^->f(g) is a smooth function.

Now we define, as before, ^ : V(co') -^ V(wco/) by

(L/)^)-^,/^-1^)^
which, as we shall see below, converges when co is dominant.

Let us also define co^ and cr(co) as before. We shall define, as usual, the L-function
associated with a quasicharacter / o f F X as follows:

L(X) - ̂ ~2 r^/2) F = R, ^x) = | x |n, or
I Y \8 Y 1
\ X \ ^ X

== (27c)1-8 F(J) F = C ^) = \x\ix-m, or

M -̂̂  (m^ o).

We can also define co^,^ exactly as in § 1.2.
The analogue to Proposition 1.2.3 (a) is clearly valid. Consequently, as in § 1.2,

most of the problems involving 1̂ , can be reduced to the corresponding problems in the
case of r == 2. In particular, one has the following analogue to Proposition 1.2.3 (b).
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Proposition 1 .6 .1 . — If w e W ^n ̂  integral defining 1^ converges if < a, o(co) > > o
/or ̂  a > o ^cA ̂  wa < o and the function t [-> 1^ is analytic in the corresponding
region. Moreover the function

t^ n L(((O, co);)-1!,(/,)
a>0

wa<0

can be extended from its original domain of definition^ viz.

{ t : Re«a, 0) > — <a, or(co) >, for a > o, wa < o},

to a holomorphic function on 3)(C).

We shall not give the proof in detail here; we remark merely that it reduces to the
case where w = s, a simple reflection, in which case we can treat the integral directly
in order to determine its poles. They are amongst those of L(((O( co):) and the holo-
morphy follows from this. One should note that the holomorphic function above has
zeros.

We shall now formulate a version of Lemma 1.2.5. As in § 1.2 we can define
^ : V^cx/) ->V(o/), in the case that <o^ = i where a is the positive simple root cor-
responding to s.

Lemma 1.6.2. — Suppose that s is a simple reflection associated with the root a. Then,
for /eV(co'), one has

a,Q™ L(| IF(O), (o);) L(((O, co):)-1 V,) == A/

where

A = n~l\n\yAo

and AQ is the measure of Q^/fi^ n fî  used in the definition of OL, .

Remark. — As usual here, we take the measure associated with dx on R, and with
dz A dz on C.

Proof. — We write S for the complex conjugate of ^ when F = C, and i == S
when F == R. Then one readily verifies that

limL(l JF^nU^n-1!^^)
t-^0

is equal to

n̂ mLd ipM) Lacojr1^^^! + ̂ -^/(TO ̂ g) ̂
where 7]o is as in § 1.2 and h^) = %a(S/(SD2)? ^A ̂  as before.

When F == R, we set R-o == { i , — 1} and the limit becomes

n S f(h^{x} ̂ g)
»eRo
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from which it follows that

a.(Hm^L(| (p^) L(M1)-1 V,) (g)

is equal to \f(g) both when n == i and n == 2. This proves the lemma in this case.
When F = C then f(h\{^) r^og} ==f[^Qg) (as ^ = i) and then the limit

becomes nf^g). This yields, for a,(limL(| [p^)") U^)")^ IjO (s)? the value
n'f^QS)^ as required.

As a consequence of Proposition I .G.I , 11 L^^)""1!^ can be given a meaning
a>0

wa<0

for all (o; this we understand to be the regularization ofl^,. Note that it involves a process
of analytic continuation.

Since II L(co^)~1!^ is sometimes zero we need some finer information, which
<x>0

wa <0

will be given by the analogue of Theorem 1.2.6. We define

!„= n (|«|^L(| l^iw1)!,
a>0

wa<0

which is defined at generic <x) but which does have singularities.

Theoreml^.3.— 1^=1^1,,.

Proof. — We begin by making some simplifications. First of all, as in the proof of
Theorem 1.2.6 we can restrict ourselves to proving that I^2 = I, where s is a simple
reflection. Next, we note that when F == C

|n|^L(| jp^L^-^Ld jpcoJLK)-1

where (OaW = ^(^aW)^ tllus m ^is case we can assume n = i.
It would be possible to mimic the proof of Theorem 1.2.6, but it is easier here to

exploit the theory of Eisenstein series as we did at the end of the proof of Theorem 1.2.6.
Let us first deal with the case F === C. Since we can take n == i we choose an

imaginary quadratic field k (eg. Q/'v/"'"1))- Then, since we did not need the theory
of Eisenstein series to prove the functional equation at those places w with \n\^ = i,
we can assume that Theorem 1.2.6 is valid for all finite places of k. Since the global
functional equation is also known, its validity at the one archimedean place of k follows
immediately.

The same proof, with n == i, k = Q ,̂ shows that the assertion is also valid for
F ==R, n == i.

Now let k ' be an imaginary quadratic field with k ' ®Q Q^ ^ Q^ © Q^. The proof
of Theorem 1.2.6 applies to this case and so we derive the validity of Theorem 1.2.6
for F == Q^g, with n == 2. Now finally we can apply the argument above to Q,to derive
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the validity of Theorem 1.6.3 in the case F = R, n = 2. The remaining cases of
Theorem 1.2.6 now follow.

We next call an co as above exceptional if for all positive simple a one has co^ = | |p.
We also let, as before, Vo(<*/) be the image in V^o/) of V(<x/) under 1̂  . We suppose
here that o/ is exceptional. Then one has

Theorem 1.6.4. — The representation Vo((x)') is the unique irreducible subrepresentation
of V^co') and the unique irreducible quotient representation o/'V(co'). Moreover
a) if n == i then Vo(co') is the one-dimensional representation the restriction of which to H is w0^^
b) if n = 2, F = R then Vo(<o') is a proper subrepresentation of V{wo(^/) and a proper quotient

representation ofV(^),
c) if r ^n , F = C, Vo(co') ^ V(co') ^ V^co').

Proof. — The initial statement follows from the general principles of [31]. State-
ment a) is well-known. To prove c) regard 6 as G X ^y»(^). Then V(<o) ^ (W®^) X e
where % is a one-dimensional representation and W is induced from the representation

i i
(A".^ ofH. Since, if r ^ n there is no root a for which (^n)a==\ |p^ it follows that W is
a non-degenerate representation in a complementary series.

To prove b) we check that if s is a simple reflection associated with the simple root a,
then the composite map

V(W) <L(<0^ v(co') -I^ V(W)

is o. Thus, by Theorem 1.6.3, the image ofV^co') under I, lies in the kernel of If .
(One observes that, by Proposition 1.6. i, both maps are defined, that the composite is o
follows from Theorem 1.6.3.) On the other hand on examining the proof of Prop-
osition I.6.I one sees that " L(co^)""11^ " is non-zero. Hence the kernel of I^, is non-
zero. From [31] it follows also that the image ofV(co') under 1̂  is non-zero. Hence
V(co') is reducible.

Now we can discuss the Whittaker models of the Vo(c*/). Let e be a non-
degenerate character of N*(. . Then if co is dominant, T] e H, we can define the linear
functional \, on V(o/) by

<^,/>=J^^)/(W-1^)^-
If h e H^ then one has

^=((O^)(A)^.

These define Whittaker functionals. Let, as before Wh(V) be the space of all Whittaker
functionals on V.

Theorem 1.6.5. — a) When n = i, Wh(Vo(<o')) = o.
b) When n = 2, r==2, F=R

dim(Wh(Vo(co'))) = i.

104



METAPLECTIC FORMS 105

c) When r^ n, F == C, then Vo(c«/) is isomorphic to V(o/) and

Wh(V(co')) = <^>.

Proo/l — fl^) is obvious in view of Theorem 1.6.4.
b) is proved in [8] § 4.
<:J is well-known (see, e.g. [44], Corollary to Theorem 2.2 which is much stronger).

Remark. — It would be possible to show, as in [44], that the \ can be regularized,
and that these give rise to all ofWh(V(co')). Then, by studying the effect to the inter-
twining operators 1̂  on the ̂  (as in §1.3, in the /»-adic case) one could show that, when
n = 2, r> 2, F === R, Wh(Vo(co')) = o. We shall not need this result. More gen-
erally, if r> n then Wh(Vo(co')) == o.

We shall need however one particular result of this type when F == C and <o is
arbitrary. This result is a special case of the functional equation proved by Jacquet
in [22] (see also [43], [44]), so that we shall merely reformulate these known results in
our terminology.

We let X == Xi. Then the function t\-><,\f^ has a meromorphic extension
to 0(C); hence \ can be defined on a generic V(<o'). If w eW then f\-> <^, Iio/>
is also a Whittaker functional on V(o/). Since we know that dim(Wh(V((o'))) = i
this must be proportional to \. We shall determine the factor of proportionality.

If^ is a quasicharacter ofC^ then /(^?) can be written either as x'^ [ x \^ or ^-w | x^c
where m is a positive integer. We define then

eOc)^-".

We fix the additive character e of C to be
e(z) =^+^.

If co is a quasicharacter ofH we let, for a e 0,
<o )̂ == O)(A^)).

Moreover we define, for a e O, T}^ e H to be diag(i, i, . .., i, — i, i, ..., i) where,
if a = (y*), the — i is in the z-th position. Then the functional equation is given by:

Theorem 1.6.6. — With the notations above, yeV(co')

o, i,/>== n (co^js^j-^^jLd [ o),-1)-1) <x,/>.
oc>0

wa <0

Remark. — We could also deduce this from the (< global5? functional equation of
Theorem II. i. 3, the procedure being the inverse of that which we shall use in the proof
of Corollary 11.2.4. This suffices to determine the factor of proportionality up to a
constant. (To complete the proof one reduces the evaluation of this constant to the
case r == 2 and then makes a special choice of/.)
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II. — GLOBAL THEORY

In this chapter we shall apply the local theory of Chapter I and the theory of
Eisenstein series to construct an automorphic representation of the global metaplectic
group SA over a global field k with Card(^(A)) == n. We shall show that this represen-
tation is, in an appropriate sense, a tensor product of the <c exceptional " representations
of Theorem 1.2.9 and §1.6.

In § II. i we shall recall those aspects of the theory of Eisenstein series which we
need. The automorphic representation referred to above is then described in The-
orem II. 2. i. Although this is of interest in itself one can only derive consequences of
arithmetic interest after some further work. The automorphic forms have " Fourier
coefficients " which may be described in two different ways.

Firstly, as we have represented the representation as a restricted tensor product,
these Fourier coefficients are described by the local Whittaker models as in The-
orem II. 2.2. One consequence of this is that one can use global methods to complete
the local theory in certain points. Thus, for example, one can show that if r = n or
if r === n — i and 2 ( ^ + 1 ) = o (mod n) in our customary notations then all the local
factors of the representation have a unique Whittaker model whereas we could only
deduce the corresponding statement for almost all local factors from the local theory at
our disposal. For this see Theorem II. 2.5 and Corollary 11.2.6.

The other approach is to observe that the Fourier coefficients can be expressed as
residues of the corresponding Fourier coefficients of Eisenstein series. These, in their
turn, are Dirichlet series, here denoted by Y or Y^ whose coefficients are typically Gauss
sums.

Although we shall not discuss these functions in general here we shall investigate
the special case r == 2 in § 11.3. Thus our treatment of the arithmetic implications of
the theory of metaplectic forms will be rather cursory, but our intention has been to stress
the representation theoretic aspects here. Moreover we shall restrict our attention to
the case of a number field A, although the case of a function field is also of interest, and is
in some senses simpler since | n \y = i for all places v of k.

The arithmetrically interesting consequences follow from a comparison of these
two approaches and are given in Theorem II. 2.3, Corollary II. 2.4 and in the conse-
quences of Theorem II. 3.3.

We conclude this introduction with a notational remark; we shall write G^ in place
of G^, but the dependence on c should not be forgotten.
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II.i. Eisenstein series on the metaplectic group

Let k be a global field satisfying Gard(^(^)) = w, and let G^ be constructed as
in § 0.2. Let H^ ^ (resp. Z^) be the subgroup each of whose local components lies
in fi^ (resp. Z^). Let G^, H^ be the images of G^, H^ under the lifting described
in § 0.2.

Lemma n. i. i. — H^ H^ ^ ZA ̂  a maximal abelian subgroup ofH^

Proof. — Recall that, relative to the n-th order Hilbert symbol on k^ the sub-
group kx k^ is maximal isotropic; cf. [50] XIII-5, Prop. 8. The assertion then follows
from Proposition 0.3.1.

Next for each place v of k we choose a maximal abelian subgroup H^ „ of H,, which,
at all but a finite number of places, is the one appearing in the discussion preceeding
Lemma 1.1. i. Then let H^ ^ be the subgroup ofH^ all of whose components lie in the
corresponding H^ „. This H^ ^ 1s a second maximal abelian subgroup of H^; the material
in § 0.3 was introduced chiefly in order to compare it with H^H^ ^ ZA.

Let <o be a quasicharacter of H^ ^ Z^ which is trivial on H^ n (^^Z^), and
let <x)o be the extension ofo to H^ Hy^ ^ Z^ which is trivial on H^. Let co^ be any extension
ofco to H, A« As in the local case we shall fix an injective homomorphism e : p-^(^) -> C^
and we shall only consider those <x> for which co o i = e.

We remark also that there exist <r((*)) in ^(R), T e R so that, if a(cx)) == 2 (Ta^) -a

then
KA)| == nn^Wll^.lldet^W)!!!

a

where || HA^A"^^ is the idele norm.
We observe next that, as the map p^ in

(I) ——> ^n(A) ^-> ^A -̂ > GA ——> (I)
\ +j\

\

'G.

is a finite covering map, then the usual consequences of reduction theory ([4], [15]) hold
also for the discrete subgroup G^ ofG^; see for example the remark in the proof of The-
orem II. i .3. In particular the assumptions necessary for the development of the theory
of Eisenstein series in [i6], [29], [36] are fulfilled.

Let ^(A) = HjWIlA where p = ^ S a.
2 ae^

The theory of Eisenstein series begins by constructing (analogously to the (7r(co),V((o))
of Chapter I) representations (^,V^) of G^ which are realized in a space of slowly
increasing functions on G^\GA. The Eisenstein series form the intertwining operator

107



io8 D . A . K A Z H D A N A N D S . J . P A T T E R S O N

from the standard representation into this space. They are first defined when cr(co) — p
lies in the dominant Weyl chamber, this definition is then extended to almost all co by
analytic continuation (due to Roelcke, Selberg and Langlands).

To be able to express these results we must first describe the analytic structure on
the set of all co. To do this we define for s £ ^(C) the quasicharacter co, ofH by

".W= n H^mi^ i f ^ = S .(a) a.
a £0 a £0

This is trivial on i{[^n{k)) and H^. We let Q^ = {c0g co: s e 0(C)} where co is as above,
then the map 0(C) -> Q^; s \-> GO, co defines an analytic structure on Q^. We regard i2^
as the component of co in the set 0, of all quasicharacters co : H^ ^ Z^ ->CX, with
co o i = e, co trivial on H^ n (H^ ^ 2^).

Let ]KA ==^A1(K-A) where K^ is the standard maximal compact subgroup of G^.
Let KA oo (resp. Ti^f) be the product of the archimedean (resp. non-archimedean)

components of K^. Then there is a natural product decomposition

KA == K^oo X KAJ.

Corresponding to this one obtains a product decomposition of K^,

KA = KA^QO X^(fc)K.A,p

where 10̂  oo (^sp. KA,^) is a ^ (A)-covering of K^oo (resp. K^^). We therefore have
a map from the usual product to G^,

KA,, X KA,^ ̂  GA; (^oo ̂ f) ̂  (^oo X )̂

(this defines the notation to be used).
We call a function /: G^ -> C ri^A^ K^-smooth if

fl^ for all ^ e G^ the function
KA,oo->C; ^^/te(^xl))

is smooth, and
b) there exists an open subgroup L of K^ ^ so that for all g e G^ one has

/(5(IX^))=/(5) (^eL).

Naturally this definition does not depend on the choice ofK^.
For each co e Q let ^o^) be the space of right S -̂8111001^ functions /o on GA

which satisfy
fW = (coo ̂ ) {b)f,{g) (b E (H^ H^A ZA) N!,̂ )

(where coo ̂  is taken to be trivial on N^)' There is a trivial holomorphic vector
bundle ^o over ^ wlt^ ^bre ^o((o) at <x)* ^e ̂ ^ a^so ^ave occa^011 to speak of the
space ^o(U) of holomorphic sections over an open subset U C £2.

Let now co, be an extension of co to H^ ̂  as

((H^H^AZA)nH^)/H^.AZA

J<?5



METAPLECTIC FORMS 109

is finite we can assume that co^ = <x)o on (H^H^ZA) n fi^ ^. Let ^,(coJ be the
space of right K^-smooth functions y, on GA which satisfy

Mbg) = (to. (XA) W/.Q?) (& e a.,A.N*+.A),

just as above one can form a vector bundle ̂  and so on if we choose co, so that
(^s (*>)*= ̂ ^-

From § 0.3 one sees that there are inverse isomorphisms ^o((0o) ~^t^(cl)*)?
^(coj -> «^o((0o). To simplify notations we let^o,^ be functions in ^o((*>o) ^d ^(^J
respectively which correspond under these isomorphisms. We recall that

f^)=^ , ,g (.^^W-^fMdh
JH^A^A\H^A

and Mg)= ,S J^hg).
heH^k^t

Notice that from its definition, j^ can be written as a finite sum of functions of the
form ®y» y(gy) where g = (^) e G^ in the sense discussed in § 0.3, andy, ^gy) satisfies

f.^v gv) == {^v ^) {^f.Mv)

{ l 9 € ' f* v eV(<x)^ y)). Note that at almost all y, f^ „ is the K^-invariant vector with
y, „(!) = i. Also, co^ „ is the y-th component of (o^, and ^ is pi as in Chapter I with
F'=^.

Now we can define the Eisenstein series themselves; if f^ e ̂ oC00) ^et

E(^,(O,/)= S ^/o(T^).
reB^Git

This converges absolutely if (r(o)) — p lies in the dominant Weyl chamber ([i6], [29]).
The convergence is locally uniform and if U C{co e Q : a(cx)) — p lies in the dominant
Weyl chamber}, foe^('U), then

E( -3 -5/0) : U -> Slowly increasing functions on G^\G^

is analytic.
One of the major achievements of the theory of Eisenstein series is the proof that E

has an analytic continuation as a meromorphic function, in the sense that E is defined as
a meromorphic function on any U X ^o(U) (with values in the space of slowly increasing
functions on G^\G^) with the obvious compatibility under restriction from U to U\ C U
and which agrees with the original class of U. The analytic properties of E can be
described quite accurately. As we shall need a few of the intermediate results we shall
sketch some of the important features of the theory. The first concept which we need
is that of the constant term.

Normalize the additive Haar measure on k^ so that it is selfdual with respect to a
character CQ trivial on k, [50] VII-2); then meas(A\^) = i (loc. cit. Cor. 2 to Thm. i).
We can assume that this measure is a product measure formed from the local Haar measure
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self-dual with respect to the v-th component ̂  of^o. Other measures on adelic groups
will be those given be the Tamagawa construction.

Proposition n.i.a. — Let notations be as above. Then

JN-AN- E(^<Vo)^== S Wo) Q?)•'lN+,Jl\js+,A wew

where 1^ : ̂ (co) .̂̂ ("o)

is defined by

^(/o)te)=^/o(^-1^)^.

Moreover if 1^: ̂ (co^) ->^{w^) ^ ^ corresponding map, and if f == ®/»,,, ^n
I^/== <S) (L,t,/*,<,), wA<?r<? 1^ zj, wz^ F = k^ the operator introduced in § 1 . 2 or § 1.6.

Prooy. — The proof is based on the Bruhat decomposition ofG;, viz.

G^U^B^N^),.

Since EQ?, co,/o) = S ^/o(Y^)
YEB^G?

we have immediately that

f E(n^ cVo) ̂  == S f S /o(^-1 ̂  ng) dn.
•'N:^\N+,A w J^k\^A n'e^Wk

On factoring the integral into two parts we see that the right-hand side is equal to

^W^XNtMjNW/"^"1"^^) dn^

where N^[w] corresponds to those a e O4" such that w~1 a > o (as N_{_(w) corresponds
to those a e O'1" such that w~1 a < o). Since /o is left N*(_ ̂ -invariant, and as dn^ is a
product of self-dual measures, this is

2 f Uw^ng^dn.
wew^W^0' 0/

This proves the first assertion of the proposition. The second statement, the translation
in terms of«^., is formal. This proves the proposition.

Now let a e 0, a = (y); we let H^ : k^ -> S^ be the homomorphism such that
H^(^) = s(diag(i, ..., i, ^n, ..., ̂ -n, ..., i)) where ^n sits at the t-th place, ^-n at
thej-th. Then we let (o^ = co o H^; this is a Grossencharacter, which is to say, a quasi-
character of k^ trivial on kx. If v is any place of k we let L,,(co^) be the corresponding
L-function, and L((x)^) = IIL^((O^).

We now redefine ly, by setting, when /, = ®/^ „,
v '

I;(/.)={ n L«)L(||..|^<)-1}0[L,(|1 llAOL.K)-1.!^/,)].
a>0

wa<0
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The expression in [ ] is, by Proposition 1.2.4, the canonical K^-invariant vector at almost
all places. Thus this operator has an analytic continuation as a meromorphic operator
since the L-functions have analytic continuations as meromorphic functions.

Let

Q+ == {co e Q : <(r(<o), a> ̂  o (a e (&4-)}

and Q^ ={<o e Q : <<r((o),a>> o (aeO4-)}.

Note that the only singularities of I^(/J in ̂  lie on the " hyperplanes "
T,={(O:<=|| 1^} (ae<D+).

Theorem n. i .3. — The operator E can be analytically continued to a meromorphic operator
on Q in the sense explained above, and satisfies the following functional equations

E(5, <o,/o) - EQ?,-co, I^(/o)) (w e W),

^ I^-W.

^ U ̂  fln open subset of Q, U D 0 .̂ fl̂  /^ /o e ̂ o(U). TA^ the function

Q)^ nL(|| ||A<)E(^(oJo)
a>0

in analytic on D. — U T,.
a>0

Proo/'. — This follows from the general results of [i6], [29], [36]; we shall first discuss
the analytic continuation and functional equation.

In the case that k is an algebraic number field we need only remark that if K is a
compact open subgroup of p^^ Tl GJ then G^GA/Z^K can be covered by a finite

v-r co

number of spaces of the form F\ II (5,,/Z,,), where F is arithmetic: thus the assumptions
t?|oo

of [29] are satisfied. When k is a function field the arguments of [36] can be modified,
as L. Morris indicated to us. We do observe, however, that since in this case the analytic
continuation of the 1̂  is known, the analytic continuation follows from the " principle
of the constant term35 ([29], Lemma 6.2). This leads to substantially simpler proofs
in our case. The functional equations follow from the Maass-Selberg relations, which
will be discussed in the course of the proof of Theorem II. i .4. They are essentially
equivalent to the local functional equations (Theorems 1.2.6 and 1.6.3), along with
the functional equation of Hecke-Tate.

It will be useful to make this a little more explicit. Let us recall the functional
equation of Hecke-Tate; it is

L(co) = e((o) L(|| \\^-1)

where, with a choice of^o as above, e(co) has the form IIe^o),,, e^ where the s-functions
v

are monomials and are given in [23] pp. 104-5, 194-5, or, essentially, [50] VII-7.
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We consider instead of the 1 ,̂ the 1 .̂ Then if /, == ®/^ e^,(coj, we can
write

U= n {L(co:)L(|| llAO-1}®^]] llAOL.K)-1!^/^)]
a>0 v

wa<0

= n {L(|| llAK)-1)!^ ||AO)"a)-1}
a>0

wa<0

0 [| <i e.«, ̂ .) Ml HA <) L,«)-11»,,(/.,»)].
If we write I'^f,) for

n (w^«, ̂ ) L,(|| HA o i^«)-1) L,»(/.,»)
a>0

wa <0

then one verifies easily that, equivalently to Theorems 1.2.6 and 1.6.3, one has
I" == I" I"

W^Wt,V *Wi,V Wg,U

and the global functional equation follows from these local ones. This, however, is not
a proof since we used the global functional equations in the proofs of the local ones, but it
serves to demonstrate the equivalence.

Now that we have made these remarks we can return to the study of the singularities
of

IIL([| [|A<)E(^(o,/o).
a>0

By the principle of the constant term these are determined by the singularities of the
constant term. We shall write the constant term of the above function in terms of^/,,
which we assume to have the form ®y, „; it is

v '

s n L(|| HA<) n L(|| iiA^:)-1)®^^).
weW a>0 a>0 v

woe, > 0 wa < 0

Since L(%) is holomorphic except where / == i, || [ I A , we see that the singularities in Q^.
lie in the sets <o^ = || j^, i (a e O4'). The content of the assertion of the theorem is
that there is (essentially) no singularity along o^ = i.

We Shall first show that it suffices to prove that the constant term is analytic at
those co e D+ — U T^ for which there exists exactly one (B e 0"^ with <x^ = i; such

(X

a (B is necessarily simple. Consider a singular point

^eD+-(^u UTJ.
a

It follows from the functional equation and Proposition 1.2.3 b) that the divisor of the
singularity is Stab^co^-invariant. Since the divisor is disjoint from Q .̂ — U T ^ it
follows that it must be a union of some of the hyperplanes

{co: < = 1} (a eO-1-)
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which pass through co^. It therefore suffices to show that the constant term is analytic
at those points of t^+ — tl^. described above.

We shall therefore consider a positive simple root a^ with associated reflection s^
and show that at <o e D^_ — U T^ with <o^ == i but co^ =t= i (a e O4' —{a^}) the

oc
constant term is analytic. The constant term consists of a sum over W; we shall show
that the sum of the terms corresponding to w and ws^ is analytic at co. To see this observe
that { a > o; ws-^ a < 0} differs from { a > o; WQL < 0} by exactly a^. Thus, as c^ -> i
the products of L-functions differ by one factor, which has a pole, and in the two terms
the residue of one is just the negation of the residue of the other. Thus we have to show
that

(5?) i" f _ (5?) i" f — o
<:y ^WS^vJ*^ NLy -W,t?J*,t7 —— ^9

» ' V '

or, equivalently,
®

I" f == 0 f
•••Sl,t?J*,0 —— ^-''J*,!?*

V t?

Now recall that co, was an extension of <o; the assumption that co^ = i is equivalent to
^(Q == co. Thus ^co,, is a second extension of co,. As we have seen there is locally an
isomorphism a, „ : V^o,, „) ->V(o)^ „) (see the discussion leading up to Lemma 1.2.5).
These yield an isomorphism a^ : ̂ .(^coj -^^,(0),), and one verifies from the construc-
tion of the maps involved that the diagram

^o(^) <-"- ^M == ^o(^)

^(^) <^- :̂(81^)

commutes. Thus we have to show that

«.(®(I::..A«))=(S>/.,.v

where now the equation takes place inside ^(co,). But by Lemmas 1.2.5 and 1.6.2
the left-hand side is a positive multiple of the right-hand side. Moreover, as 1̂  == i
it follows that this multiple can only be i. Hence we have proved the equality, and
with it, the theorem.

The final result of this section is a simple, but important consequence of the Maass-
Selberg relations. We call co exceptional if co^ === || \\^ for all positive, simple roots a.
At such points the Eisenstein series have their greatest singularity. Let co be exceptiona
and let

6(^/0) = Jmî  (^L((o/)S)-1) E(^, o/,/o).

113
15



"4 D. A. K A Z H D A N A N D S. J. P A T T E R S O N

This depends on the choice ofo, and we shall write Q(g, <o,/o) ^lt ls necessary to make
the choice of co explicit.

By Proposition II. i. 2

kAN:,^^dn = W05(0) ̂
where T^/o, <o) = J,im^ (^L((o/)a-1) I^(/o, <o').

If we express this in terms of/,, as usual taken to be in the form 0/» „, then
v '

LJ/, Q/) = Z^)-^1)^)-^ ... Z,(r)-1 ® I,̂ (/..J,

where Z,(.) = L(|| ||1).

Note that ifco^ and o^ are exceptional then co^5. ((x)^)"1 is of the form / o det op^
where ^ is a Grossencharakter. Thus we can alter a given co by such a character so that
co | ZA is unitary. This we shall do, and fix such an exceptional <o1 such that <o1 [ Z^ is
unitary. Then the result which we referred to above is the inner product formula in the
following theorem.

Theorem DL i .4. — With the notations above, t/W | Z^ is unitary

S^^fz.o)^g,A,o)dg

is equal to

'JH \̂H,/Z, JN^AO^O n) W2,o) (W )̂ dn d^

where c is a non-zero constant which depends on the choices of Haar measures.

Remark. — We observe, before beginning the proof, that under the assumptions of
the theorem,

"MA)-^^) (AeH^A

as one easily verifies. Thus the integral is well-defined.

Proof. — The proof is an adaption of the technique used by Langlands in [30].
We must begin by developing some general principles. Let 0)5 {s e 0(C)) be as above.
Ifo^, ..., ay_i are the positive simple roots in the usual order we can write s == Sj- a..
We then let ds be the differential form

ds^ A ds^ A ... A dSy_^

on 0(C). From now on, we take k to be a number field, leaving the modifications for
the function field case to the reader.
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Fix now ajluasicharacter x on Z^, trivial on Z^ n H^, and consider the space Y
of functions on G^ which satisfy the following conditions:

if ^ e Y then

(i) ^{hng z) =^z} ̂ g) {h eH^ne N^, z e Z^)
(ii) ^ is right ELA-finite,

(iii) 4' has a representation of the form

<K )̂ = 2; (aTO)-^-1' f ^{g, Sco.) ̂  (<T e <D(R))
s ^^'

where (a) S is a quasicharacter ofH^ft^ZA, trivial on H^ and

$(^, S) = £^(A) $(^ S) (A eH;H,^ZA, ̂ N^),

6^ if Q is the set of quasicharacters satisfying a) and Qc = { c^ : j e 0(C)} then (noting
that Q is a t^-homogenous space), the S-sum is over a set of representatives of Qc\A

c ) the function ^ i-> ^{g, S^) is analytic and there exists B > r such that, for any
norm 1 1 . . 1 1 on 0(C), given a compact set GCO(R) onehasfor Re{s) (== Re(<oJ) e G

^,s^) <(i +||^ ||)-B;
moreover ^( •, S) == o for £ lying in all but finitely many elements of ^\°-

d ) j^ indicates that the integral is taken over the product of lines Re(s) = a given the
usual orientation.

Before we continue, some remarks on this rather lengthy definition are in order.
The fundamental part of the definition is given in (i), (ii). Parts a) and b) of (iii) state
that ^ is a Fourier transform with respect to H^\H^ Q^ ̂  ^A/ZA and c ) imposes fairly
stringent regularity conditions which, although they could be relaxed, suffice for our
purposes. Note that, if the Haar measures are suitably chosen

^ ")= JH^H,,,A^ (^A)-l (A) w dh'
Given ^ e Y we define

E(^)= S te);
Y£B?\Ci

under the assumptions above this converges absolutely and locally uniformly. One
has, by (iii) above,

E(^ +) - (sm-r^J^E^, coco,, $) A

where or satisfies a(<o) + (T > p. Moreover, if^ is unitary, as we shall henceforth assume,
then

Ja^l^)!2^--
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Let Y be the space of $(.?, <o) as above. We define for ^, ̂  e T

[$1. $2] (^) ^H^HA/^JN: ̂ 1^0 ̂  <*>) $2(^0 W, CO-1) ^ A].

Then the Maass-Selberg relation is, in this case, the inner-product formula

Ja^/z^ +i) E(̂ ) ̂  = ̂  ̂  S M-^-1^ [̂  ̂  $2] CM) ds

where q is a constant depending on the choice of Haar measure and — (cr(co) + a + p)
is dominant. This is a variant of [29] Lemma 4.6 and is proved in the same way.

The right-hand side of the equation above thus defines an inner product which
gives Y the structure of a pre-Hilbert space.

Let now o satisfy ^co == co (w e W) and let <x) be unitary; for example, if <o1 is
as in the statement of the theorem then

co = ̂ l^l/n

satisfies these conditions. Let ^((o) be the subspace of those ^ of the form

^(^)=(2m)-(r-l)J^$(^^)A.

Recall that < , > denotes the Killing form on 0(C).
We let Y01 be the Hilbert space completion ofY, and ^((o)01 the closure of Y(co)

in it. We define an operator

A : Y(co) ->Y((o)61

by (A^)" (§^ ^s) = <^ •Q $(^ ̂ s)

which is a symmetric operator with an essentially self-adjoint extension.
Let now L^G^C^, x) be the space of functions/on 6^ which satisfy

fW-^)f(g) ^ e G ^ z e Z ^ )

and such that

'^l2^/^!2^
is finite. Let, for /i, f^ e L^^G^G^ /) be the inner product

(A, /2) = L^ /̂̂ /lte) ̂  dg9

Thus E (the Eisenstein series function) can be regarded as a continuous map
E : Y -^(G^GA/ZA, 7). Let L^ be the image, under E, of T(<o); then A induces
a map (which will also be denoted by A) from L^ to its completion L^ in L^G^GA, /).

Let © (<o1) be the subspace of L^G^G^, z) (where ^ == co1 | Z^ and
<o1 = co^) generated by the 6(^,/o) (/o ^ F(<^)).
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Let € be the spectral resolution of A on L^. Then the argument of Langlands
is based on the following facts:

a) (E(^),e(/,)) =AL,(/o)](^»)

where c^ is as above. This is proved by the same techniques as are used to prove the
Maass-Selberg relations.

From this it follows that

(AEW, 6(/o)) = n-2 <p, p > (EW, 6(/o))

and hence ©(<x)1) lies in the range of

€, = S{d) -S[a-) ^=^<p,p>y

b) For a certain constant ^
(^e E(^), S, E(^)) = ̂ [^, !„ $,] (co^).

This is proved by a transcription of the argument on pp. 145-148 of [30], using the version
of the Maass-Selberg relations above instead of the corresponding result used by Lang-
lands.

Now we choose ^o such that

^oW) =/o.

Then, combining a) and b) we see that

(^e E(^), <?e E(^o) - (^i) 6(/o)) == o

and hence ^ E(^) = (c^) 6(/o)

and, in particular, the range of SQ is precisely ©(o>1). Also

(EW,6(/o))=^W,e(/o))
=(q/^(6^((o')),6(/o))

and so, writing f^ == ^(<o1) we have, by <z^,

(9(/oZ 6(/o)) = ̂ [/o. L.(/o)] W)

which is the assertion of the theorem.

11.2. The Main Theorems

We are now in a position to state and prove our main results. These involve the
construction of an automorphic representation (71:0, V@) of G^, which we shall identify
locally.
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We first remark that if (TT, V) is an admissible irreducible representation of 6^
then there exist representations (^, VJ of G^ and, for almost all v, a K;-invariant
SS eV,, such that (TT, V) is the restricted tensor product (over C[^(A)]) of the (n^ VJ
with respect to the family (^). Compare [23], Proposition 9.1. The (T^, VJ are
irreducible and admissible.

Let <o be as in § II. i, and suppose that co is exceptional (which we could express
as co^ == (Ji^a for all a eO). Then 6(/o) is defined. Let VQ be the space spanned
by the 6(/o) as/o runs through ^o^)? and let 71:0 be the representation of G^ by right
translation on VQ. Since 6(y^/o) = ̂ /o) (Y e C^) the representation (7Te,Ve) is
automorphic. (One sees easily that Q{g,fo) is slowly increasing, and even that (71:0, Ve)
is unitary when ̂ A^ is unitary (by Theorem II. i .4).)

We write (x> = 0 (o^,, where the tensor product is with respect to C[^(A)]. Then
v

it is possible to describe the local structure of (TCQ, Vg).

Theorem n.2.i. — With the notations above

(7re,Ve)^®c[^)](^..,Vo((oJ)
v

where (TCo^,Vo(coJ) ^ Im(Î  : V(co^) -^V^0^)) ^ ̂  representation discussed in § 1.2.

jProo/'. — This is an immediate consequence of Theorem II. i .4.
We come now to the discussion of Whittaker models of these representations. Let

CQ be an non-trivial character of^, trivial on k. We can write CQ == ® CQ „. We define
the character e on N^ ^ by e(n) = ^o( S ^(w)»i+i) , and an analogous character <?„

l^i<r

on N^^ . Let us denote the y-th factor of (T^e.Ve) by (^o^Vo^). Recall that a
Whittaker model ofVo^ is a linear map \,: Vy -^ C such that \{-^o{n) v) == e(n) \{u).
We let Wh,, be the space of such functionals. At almost all places we have a preferred
vector ̂  ofVo,,, as was described above.

Now, the same definition holds for (TTQ , VJ. However we can construct a Whit-
taker functional \^ on Vg as follows:

V8(/o)) -Lî N:.,6 )̂ ̂  dn-

The space ^,(00^) can be regarded as the restricted tensor product of the V(co^). Thus
we can form

®c[^)]V(co:) -^ Fo(co) -̂ > Ve -̂ > C.

This is a Whittaker functional on the left-hand space which factors through ly, . Let S be
a finite set of places of k containing all the archimedean places and all the places v with
\n\y< i and such that if v ^ S then V(<x)^) has a K^-invariant vector. We can assume
that <i^(y ^ S) is canonical in the sense of§ I.I.
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Let V(S) be the subspace of ®c[^)]V(c^) which is the image of

(®V(o);) )®(®.o),
»es v^s

where ^ ^(co^) is the K^-invariant vector with ^(1) = i, in V(c^). All the tensor
products over V(<x^) are to be taken with respect to C[^(A)].

The space V(S) is a C^S^representation and ̂ ls a Whittaker functional on V(S).
Let QA(S) = HA n GA(S) and H^S) = H, A n 5^(8). Then from § 1.3 we see
that there exists a function Cg on QA(S) satisfying

CsW == (^^(^"'CgW

if 7]efi^A(S) and AeH^S), such that

^(9(J(<S)/.))) = . s , cs(^) n <^,/,>
7ieH^A(S)\HA(S) »es

where (^),, g g projects to T] in HA(S) • Here ^^ is as defined in § 1.3. Moreover as J fac-
tors through 1̂  we have that Cg has to satisfy various relations. Let v e S, v non-
archimedean. Then there is a projection a of fi,, X II fiy, into HA(S).

w e s
w ^ v

Let 7f e I! Hy,; then we require that for each simple reflection s the following
holds: ,„ ±,,ices

w + v

J ^ Cg(a(7] X 7)')) T(^, J, 7], 7)') = 0 (•)
7)eH,^\Ho

where T is as in § 1.3. Moreover since

^l^O.t,) == I
and <^^o,.>==o (7]^a^j
for almost all v it follows that if S is large enough and if S' 3 S then

Ca = c ' I HA(S).•S — ^S' I "AW-

Thus the family of Cg defines a function c on HA.
In this sense we can write

V9(J(<S)/J))= ^ , c(7o.n<\ ,/,>.
TIGH^A\HA u

Let U(co) be the space of functions /: HA -> C which satisfy

fW^^^^-VW

when T jeH^A. Let U°(o)) be the subspace satisfying the relations (*) adumbrated
above. Then we have shown:
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Theorem n.2.2. — There exists c e U°(co) jo that, when f^ e^o(co) î  such that

f.-^f^ then

J e{n)Q{nJ,)dn= JS , c(^).n<\^>.
^N^A;\N+,A 7]6H^A\HA v

Remark. — This result is particularly strong if we know that U°(co) is i-dimensional.
We see that this is so precisely when dim(Wh(Vo(o^))) ==; i for all v. By Cor-
ollary 1.3.6 this is so if k is a function-field and

r = n or r = n — i and 2(^ + i) == o (mod n).

We shall see in Theorem II. 2.5 that the same conclusion holds when k is a number
field.

Note that we have not shown that c =(= o. If r> n then, as dim(Wh(Vo((x^))) == o
when | n [y == i, c == o. However, we shall also show in Theorem II. 2.5 that, if r ^ n,
then c =(= o.

Theorem II. 2.2 is one of the major results of this work. In principle the
space U°((o) can be fully described by the methods of§1.3.

When n == 2 the theorem has content only when r == 2; in this case it is easy to
see that (TT^, V^) is the Weil representation r^ discussed in [n].

When n == 3, r == 2 we obtain the results of [6] and [37].
There is another formulation of this theorem which is frequently useful. We observe

that, for oj 6^0°,. and fo e^Q),

L,̂ ,/̂  ̂  ̂ o) dn -L,^/^ .e^o/0^ '»•

Using the non-degeneracy of e and the Bruhat decomposition the right-hand side can be
written as

L ^Wfo(won)dn.
•^.A

If we write this in terms of f^ == ® f^ „ we see that it is
v '

S nf ^{n)f {rjWon)dn.
,,eH^z3E\H;S » ̂

This we write as Y* (&),./,) which is essentially a Dirichlet series in several variables whose
coefficients involve Gauss sums. Now define

Y((O,/.)= n L(|| i^oy^,/.).
a>0

Also define !«,' by

I;((S>/.,«)=<^I^(/.,.)
V

where I^\ was defined in § II. i. Then one has:
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Theorem H.2.3. — Y(c>),/,) can be continued to a meromorphic function in co whose singu-
larities in 0+ lie in U {co e= Q+ : cx^ = || j^}. 7^ satisfies the functional equations

f^/,) = ̂ (V I.'/,) (^eW).

Moreover, there exists a constant a > o so that if f^ == 0/, „ ̂  <w<? Aa^

Hm^(<o,/j( n L«)-1)) = < z . ^ , c^n<^,/^>.
a > 0 ^GH^A\HA t? 0

Proo/. — The analytic properties ofT((o,/J follow directly from the corresponding
properties of the Eisenstein series given in Theorem II. 1.3. The description of the
singularity follows from Theorem 11.2.2. The value of a is

Z,(2)r-lZ,(3)r-2Z,(4)r-3...Z,(r).

When k is a number field this formulation has the unattractive feature that the
function Y((O,/J involves factors which are Whittaker functions associated with the
archimedean places. Since there are transcendental functions of a not particularly well
understood type, and since they can be factored out, it is desirable to do this.

We assume now that k is a totally imaginary number field. We let

Q>oo === n co,, os,,, ^ = n ^
V\00 V J O O

which are quasicharacters of Ft Hy. We define
t)|oo

^*(< )̂ = ^ ( n J e,(n)f^w, n) dn] ̂  ̂ {p^))
Tie^k^^k vfao *'"

W = n L,(x)
v-roo

and ^(a),/.) == n L^| 11̂ ;) Y?(<o,/.).
a>0

The function Yj!'(co,y,,) is a Dirichlet series and it appears to be a fundamental function
in this connection. Its coefficients are Gauss sums.

Let now (x>i be a quasicharacter of Hp; we define

rs(co,)= n "ni^j |^).
a > 0 j = 1

We now observe that if we make use of the Gauss-Legendre multiplication formula, viz.,

r(^) = nns-^2n)-(n-i)/2 FM r (̂  +1)... r (. + n:=-2},
\ n) \ n f

121
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where F is the usual gamma-function, then we can verify that the formula of Theorem 1.6.6
can be expressed as

n Led M o,i,'/> == n eW^a) <w
a>0 a>0

wa<0 P*^^•-^--/ nLcd |c<)a,/.>
1 c^6^ a>o

where /, e V((o) and -y^ is as in Theorem 1.6.6.
We now let k be as above and

FM == n rs(o>j.
v joo

Then if/, is of the form 0 /, „ we see that the following corollary holds.
V f 00

Corollary n.2.4. — Let k be a totally imaginary number field. Then r^(co) Y.((O,/J
can be continued to a meromorphic function in co. It satisfies the functional equations

r^co) T/(V i..'/.) = n M^,.)-'"-1'̂ ) <»;(»)}. IWF^,/.).
t?| 00

rAe singularities of Î ((o) (̂(d,/.) tn Q+ & in U { o) e Q+ : o; = || 11^}. ^/jo, if u' is
0(>0

exceptional there exists a constant a' > o so that, if f, = ®/., <ACTI

j^ r^(<o) Y/(o>,/.) ̂  L/K)- 1

= a' ,s , C(T)) n <^,/.,«>. n ̂  ^h.).
^eH^AVKA v<00 ^ l ®

Proo/'. — The only statement which remains to be proved is that the singularities
are as described. To do this it suffices to consider a{<^) lying in the closure of the dominant
Weyl chamber in ^(R). Thus, in this region we have to show that the functional (when
F = C )

/^rs(co)-1 nLcd ic<xw,>
a>0

on V(co) is non-zero. For this see [44], § 2.
The following theorem closes our investigation.

Theorem n.2.5. — a) Suppose that for each place v of k for which \n\y = i one has
dim(Wh(Vo,,)) > o. Then c + o.

b) Suppose that for each place vofkfor which \n\^ == i one has dim(Wh(Vo „)) == i.
Then one has dim(Wh(Vo^)) = i for every place vofk.

Proof. — This is based on the ideas of [i 3]. We must first make some remarks about
representations of local groups, concentrating on those over non-archimedean fields.
Thus we fix a non-archimedean local field F and consider an exceptional represen-
tation (TCO, Vo) of G.
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Let P be the subgroup of G defined by

P ={g eG: (0,0, ...,o, i) g== (o, ...,o, i)}

and let ? = /^(P). Let Z° be the centre of G and Z° = /^(Z0). Let e be a non-
degenerate character of N^. Let us now regard Vg as a P-representation. Then there
exists a filtration

Vo3Vi3Va3 . . . 3V^3o

of Vo as a P X^ ^F) Z°-module where

V,_i === ind^^^F) ̂  X e) ®c[^(F)^(Vo)

and r(Vo) == Vo/< n^n) v - e{n) v \ v e Vo, n e N^ >.

This is analogous to [3] 3.5. Here r(Vo) is to be regarded as a C[^(F)]-module. The
group P acts on this through the first and ZQ through the second factor. From the dis-
cussion of § 1.3 it follows that r(Vo) is finite dimensional, and is non-zero if Wh(Vo) =t= {o}.

Let us observe that Vy_i is cuspidal in the sense that if N\ 4= {1} is a unipotent
subgroup of P and is also the unipotent radical of a parabolic subgroup of G then,
letting N^ be the lift ofN^ to P,

V^i/<^ - TTo(n) v | v eV,_,, n (=NI> =={o}.

If F is archimedean similar considerations can be applied—see [45]. These we shall
pass over in silence. Note however that it follows from our assumptions, Theorem 1.3.5
and Theorem 1.6.5 that

dim(Wh(Vo,J) = i

for archimedean v.
Let us now return to the global situation. We shall reformulate assertion a) in a

suitable fashion. Let S be a finite set of places which

a) contains all archimedean places,
b) contains at least one non-archimedean place, and
c ) is sufficiently large in a sense to be made precise later.

For v f S let K,, be a compact open subgroup of G,, over which py splits, and such
Ky = GL^(^) if | n |y = i. If | n \y < i we assume K,, has the form

K^{keGLM:k=I (mod^)}

where py is the maximal ideal of r,,, and niy is some suitable integer. Let G8 == II G,,,
v^S

the restricted topological product with respect to this family. Let K8 == II K,,.
^8
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Consider the diagonal embedding G^c-^ 0s and let Fg == G^ n K8. Let now
Gg = II G, and

ves
Gg = ( n 6«)/<i.,(y .t,^)-11 o, v' e S, !: e ^(A)>.

v G S

Let K^K^-^GA and s^: G^-^ 6^ be the liftings which we have discussed. Let
GA(S)C GA be the subgroup Gg x (K8)* discussed in § 0.2 where (K8)* == K*(K8).
Let Sr: Fg -> Gg be the map defined by Sp X K* = s^ in Gg X (K8)* == G^S).

Now let / be a function on 6^ suc!1 ^at

^ /(Y5)=/(5) (Y^G;) ,and
b) Agk) ^f{g) (k e (K8)*).

Let ag : Gg -> GA be the composite
Gg -> Gg x (K^y ̂  GA

where the first map is the injection into the first factor. Let^g be the function on &g
defined by/g(^) =/(ag(5)); then/g satisfies
^ /s(s^(Y)^)=/s(5) ( Y ^ F g ) .

Conversely, given /g satisfying a ' ) we can construct / on G^ satisfying a) and ^, and
which has support G^. 6^(8). Moreover it follows from Kneser's Strong Approximation
Theorem [24] that if S is large enough then

Gi^A(S)=5^

if this is so then/is uniquely determined by/g and a), b). We shall henceforth demand
that S is so large that this holds, and also that for each w e S one has [ n\^ = i.

The theory developed above for G^, G^ can now be developed without essential
change for the pair Gg, Fg (= : Sp(rg)). Indeed this new theory is nothing other than
the theory of (K^) "-invariant vectors of the original theory.

Denote by r8 the ring of S-integers of k and let
r' ={xers:oTd,{x)>.m, i f |w[,<i}.

Let CQ == II CQ „ be a character of II k^ which is trivial on r8. Let I) be the fractional
v e s ' i?es

ideal of r8 defined by
2)-1 == {x e k : e^xy) == i for all y e r'}.

We shall assume that S is so large that r8 is a principal ideal domain. We can
then write D as < 8 >, S e k " .

For d== {d^, ̂ 3, ...,^,)
with ^^eT)-1-^} (i <_i< r)
we set e^n) == <?o( S <,+i^ ,+i)

l^Kr

where n = (n,.) e N . ( II ky ) .
i? e s
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We regard ^ also as a character of (N*(_)g = (N^.)^ ^ Gg. ^e wrlte ^ f01' ed wlt!1

r f = = (i, i, ..., i).
Now, if v e S let Ty CVg y be the sub-space Vy_i discussed above, Tg = (S) T,,,

i? G s
the product being taken with respect to C[^(A)]. Let now Pg C Gg be the group whose
local factors are the ^(F^)) (y e ^ ) ' Let, for g e Gg,

^ Ps-^Gg; p->p^

be an embedding of Pg in Gg. Let

TQ^TroQr^Tg).

Then T{g) CVo^g is a (^(Pg)-module. Both (^(Pg) and T{g) depend only on the class
of g in Pg Zl\Gg, where the notations used should be self-explanatory.

Let 6 : VQ g -> C be the rg-invariant linear form given by the theory of Eisenstein
series. We shall show that if

jN^nr^/^^oW^^-o

for all d as above and for all /eVo,g, then 6 | T(y) = {0} for all y ^ 1'g. If this is
so then, as Fg.^g.Z^ is dense in 6g, we deduce that 6 | T{g) == {0} for all g e Gg and
hence 6 is zero on the space spanned by all the 'T(g) (g e Gg). But this latter space
is Gg-invariant and hence 6 == o. But this contradicts the fact that

L^r^:,̂ ")^"

is not identically zero.
Hence it will follow that there exists at least one d and one f e VQ g such that

L nr-VN- ^9(^)/)^+0.J N+,s n rs\N+,g

On translating this back into terms of the group G^ one sees that the (< e-th Fourier
coefficient?? is not identically zero. This is what we had to prove.

It therefore remains to prove that, given the assumption above, 6 | T(y) = = { 0 }
for all Y e fg. It will suffice to show that 6 | T(I) = {0} since 9 is I^-invariant. To
do this consider /eT(I); as S contains at least one non-archimedean place,/is then
cuspidal with respect to any unipotent subgroup of P. The function p h> Q(^o{P)f)
can then be expanded in a " Fourier series "

6(/) = S 2 , f ^^ e,(n) Q{n,Wf) dn
d p e (N: s, n rS\(Fs n r^) J ̂ 8 n ̂ S)\N+.s)

by following step for step the proof of [40] Theorem i. Here we have assumed that the
measure on N^ g is so normalised that the measure of (N^ g n rg)\N^ g is one.
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But, by assumption, all the terms in this sum are zero. Hence 6(jf) == o, as we
required. This completes the proof of a).

We shall now prove b). Let S be the finite set of places
S = {v : v a place of k, \ n \^ < i }.

Under the assumptions made the group Z^ is abelian for all y. Moreover, since Wh(Vg J
is one-dimensional when v ^ S we see that there exists a quasicharacter %^ of Z^ so that
Z^ acts on Wh(Vo „) by /^. It follows easily from a) that the /^ are local components
of a quasicharacter ^' of Z^ trivial on Z^".

We can factor

G^GgXG^

7° - Z Y Z8
^A — .̂g A ^

with the products being taken over ^yi(^). Likewise one has

Ve=Vo,g®V 8

where the tensor product is with respect to C[^(A)].
For a non-archimedean place w of k define T^ as above and form

VLp= ? (T^V8^).w ^ S
w non-arch

Again the argument of [40] Theorem i yields the expansion

e(U(^®j))= S ^(y(^)).
YGN^P?

If we now choose Xs to be a generator ofWh(V8) then we see that there exists a
Xg eWh(Vg) such that for x ' eVg, y eV8 one has

^(^y^v^xV).
The local results recalled at the beginning of the proof of this theorem can easily be
extended to the semi-local case and we obtain an embedding

j : ind^^{e X e) X Wh(Vg)' -^Vg

where we have extended some of our notations in what we hope is a self-evident fashion.
Here Wh(Vg)' is the dual space to Wh(Vg). We shall suppose that the induced rep-
resentation here is realised by functions on Pg in the usual way. If X e Wh(Vg) then
one has for f in the induced representation and for / e Wh(Vg)'

Wf®i))=fW<\l>.
Since Z^ acts on Wh(Vg)' we can consider j as a homomorphism ofPg Z^-modules.

Suppose now that

dim(Wh(Vg))> i.
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Then there exists / eWh(Vg)', /+ o such that <Xg, ^> == o. It follows that there
exists a ?g Z^-subspace Ug of Vo, g so that

VM) =o {u eUg).

We now construct U^ = Ug®V^gpCVe$ it is a I\ Z^-subspace. From the
Fourier expansion given above we also have

e(U(^))-o {ue\J^).

For u e U^ one can therefore regard

g^Q{g,JW
as a function on G^G^ which is zero on the subset P^ Z^'*\PA Z^. This subset is dense
in the sense above and it follows that for u e U^ one has Q{g,J{u)) == o for all g e 6^.
Thus UA generates a proper G^-subspace of VQ . This is however impossible since Ve
is irreducible. This shows that the assumption that dim(Wh(Vg)) > i is untenable.
Thus

dim(Wh(Vg)) = i

by a), and the assertion b) follows at once.
We record here a corollary of this theorem, an immediate consequence of it and

Theorem 1.3.5.

Corollary n.2.6. — Let F be a non-archimedean local field with Gard(^(yfe)) = n.
With the notations of Theorem 1.3.5 one has

a) if N> o then dlm(Wh(Vo(<*>'))) > o,
b) if N = i then dim(Wh(Vo(co'))) == i.

Remarks. — i) We are indebted to I. I. Piatetski-Shapiro for pointing out The-
orem II. 2.5 b) and Corollary 11.2.6 b) and their proofs to us.

2) Examples based on Theorem 1.5.3 and [7] show that one does not always have
dim(Wh(Vo(co'))) == N.

3) This corollary completes the local theory in an essential point. Its significance
for the global theory is that it shows c to be determined up to a constant by local con-
siderations. Whereas it is possible to give a purely local proof of Corollary II. 2.6 a) we
have not found one for Corollary 11.2.6 b). Another approach to this question can
be given by the techniques of § 1.5 and a generalisation of the Shimura Correspondence.
We hope to return to this in a later publication.

11.3, Examples

In this section we give some examples to show how the theorems of the previous
section relate to more familiar concepts. We restrict our attention to the case r = 2.
What we shall do is to choose (/^ J conveniently and to make Corollary 11.2.4 explicit.
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Let k be a totally imaginary number field. Let 91 be an integral ideal of A such that
if v is a place of k for which [ ^ [ y ^ i holds then [9l |y< i also holds. We shall also
assume that for each v for which [ 91 |y < i holds we have furthermore

(i+^C^1.

Let S ( 9 I ) = { y : y a place of k, |%|,<i}.

If ye8(%) we let
L,(%)=={AeGL,(rJ:^I(^)}

and we let L^(A) be the Kubota lift of this to G ([26], Theorem 2). For convenience
we shall take c = o.

We shall next define the H^. Ifv is a finite place ofk, v ^ S(9l), then we take H^ „
to be the standard group ̂ "^H, „) where

H-
r/fli o \ )

: a, e k^ , ord,(̂ .) E= o (mod n) {j == i, 2) .

If, however, v e S(%) then we can take H, „ to be ^"^H^ „) where

f/^i °\ 1H^= p^e^.^e^ .
[\° ^2; j

That this is a maximal isotropic subgroup is special feature of the case r =2.
For our applications the set S(%) can be taken to be large, and to simplify our dis-

cussion we shall assume that it is sufficiently large. Recall that we have already assumed
that

s(9ip{^M.<i};
we supplement this with:

(A) the ring of S(9l) -integers is a principal ideal domain.

Let e: (J^(&) ->CX be an injective character. We shall next denote by UsW
the group ofquasicharacters ofH^ ^5 which restrict to e on z(^(^)), and whose ramification
is restricted by the following conditions on the local components ̂  of an <o e ^e(%)
at the non-archimedean places of k:

o>J (H^ n K:) == i (^SW),

and <oJ S^ n L:(%) == i (veSW).

We are assuming here that K,, = GL^rJ and K^ is the canonical lift of Ky, which
is defined whenever v is a non-archimedean place of k, v ^S(9I).

Note that if co e Q,(%) then coco, e ̂ ,(%) (J e <D(C) ^ C).
Let U(9I) be the group of units of the ring of S (91)-integers. If S is any finite set

of non-archimedean places of k let r8 be the ring of S-integers of k.
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We now observe that co e ̂ e(^) can be extended to H^ ^ in such a fashion that
c^JK:nH^=i (^S(9l)),

^JL:(9l)nH^=i (.eS(%)),

and coJH;nH,A=i.

To see this we first note that
{x € k x : ord,(x) = o (mod n) (v e S(5I))}

is, by (A), .̂1 (̂91), where
IW =={ueVW:uek^ (yeS(%))}.

Then ^ n H^) = H,,,. ^ ^ : a e U,(9l), & e U(5I)1.

We seek therefore (x), „ on H^ „ such that
la o\ / (a o\\

h> n co^ sj , (^eUJSlUEUOK))
\o &/ vesoo(9i) \ \o b j ]

where S^(%) == S(9I) u { y : y archimedean},

should be trivial. Since this quasicharacter has trivial restriction to
[ l a o\ )
|(o i)-.'6 "W).

where 1̂ (91) == { ^ e U(9l) : u ek^};

the existence of such co^ „ is easy to see. That co, „ | 1̂ (31) n H ^ y = i { y e S(9l)) is
automatic.

Now that we have constructed co^ we shall construct an element f^ e V(o)J. This
is 0/,0, where

(i) if v ^ S(%) but v is non-archimedean then/^ is the element of V(c^ J which is
K^-invariant and such that ./»°y(I) == i;

(ii) if yeS(9I) we let f^ve^^v) be the L^ (91)-invariant vector with sup-
port B^L;(9I) WQ and such that f^{Wo) = i, and

(iii) i fy is archimedean thenyj^ is arbitrary.
As in Corollary II. 2.4 we shall remove the archimedean places from our discussion.
Fromf^ and h e H^ we formy,. by

Ug) =./M.
We shall mainly have to consider h e H^.

Let CQ be a character ofk/^ such that the conductor of the local factor CQ „ is r^ at all
non-archimedean v ^S(9I). It follows from assumption (A) that such an e^ can be

129
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found. Let S)^), or simply 2), be the fractional ideal ofk associated with the differential
idele of^o as in [50], VII-2.

Let a be the unique positive root of GLg.
If we define, for 7]y, hy e H,,,

G,̂  -^ ̂ ) = f e^n)f{^ WQ n) dn,
•/•'•'+, 0

then we are to investigate

Y,(<V.) == L^(|| HA (o;). S , <o, (z^) n G.,̂ ,,, S,(T)), A,)
DeH;,t/Ht tfoo

where (o<» ^(•>)) = 11 <», (A«(S,,(T))).
v| oo

More precisely we shall show that Y^(<o;/,) is a Dirichlet series the coefficients of which
are Gauss sums. In the obvious sense T^(co,/,) has an analytic continuation to 0-eW as

a meromorphic function. There is a pole at co^ == || \\^ and (using the isomorphism
C ^ $(C); s -^j.a) the residue at (x/ with (o)')^ = || \\^ is given by

,s , 0(73). n<^,/^>n(o,^j
•»]€H+,A\HA V-TOO v joo

as in Corollary 11.2.4, where c e U°(co).
To formulate the results we let

^((O,A)=^(CO,/,);

let o)' be exceptional, i.e. (<o')2 == || HA? ^d
p9i(o)',A) == Res ^(o),A).

CO = to

Let H^A (resp. H^ ^^ be the group for which

HA S n fi, X fi^ (resp. H^A S n H,,, X fi«,^)
V\00 t? |o0

where all the products are with respect to ^(^). Then H^ (resp. H^ ^ ^) is naturally
a subgroup of H^ (resp. H^ ^). In particular, we can make use of the restrictions of co
and (AA to ^n,f,A as these are well-defined.

Theorem EL 3.1. — There exist c^y Cy eR^ for each non-archimedean place v of k such
that c^ == c[ = i for v ff: S(%) and

a) if y for one place vofkone has

ljWL>^
then P^^ A) = o,

b) if h^\ h^ e H ,̂ h^h^1 e H^^ ̂

MY\^c, (j=i,2)
23^
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for all non-archimedean places v of k then one has

^^h^-1)-1 p^CO', ̂ ) = p^((0', ̂ ).

Remark. — All the other consequences of Theorems 1.4.1 and 1.4.2 can be deduced
from this one, as we shall explain in more detail later. Note that the corresponding
identity for the ^((x)? h) does not hold.

Proof. — Part a) of the theorem is an immediate consequence of Theorem 1.4.1.
Likewise part b) follows from Theorems 1.4.1 and 1.4.2.

Let £1: (JL^(A) -> Cx be a homomorphism. Let c e r^, c =f= o, and define the

restricted Legendre symbol ( - ) by
W%

(rf) = n M.
W<a v [ c

v^S(%)

for d coprime to c in r^. Let, for x ek,

e^x) == n e^{x),
v I oo

where CQ is the character of kp, defined above. Then we define, for X e r6^
, Y , v Kd\ \ /Xd\

g^X,c) =Seill;l •^00——)
d \\C/^/ \ C I

where d is summed over a set of representatives for ^rsw|crsw)x which also satisfy
I^I.D-^X-1!, (.eS(5I)).

We define the quasicharacter co^ of 11 ^xn by
t^eSooW

<^))== n ^(xjsj'71 0))
veSooW ^ \o c^]veSooW ^ \o c^j

Regarding U^(9I) as a subgroup of II ^xn we see that ^(u) == i (u eU^(9I)).
» G Soo(9l)

Conversely it is easy to see that if a quasicharacter 9 of II k^ is given such that
v e Soo(%) ^

<p(^) == i (t^ eU^(Sl)), then there exists a quasicharacter co e ^e(%) of fi^ ^ trivial
on H^ such that co^ == 9.

Let 9 be as above and define, for X e r^, s^ : ̂ (A) -5- C>< injective,

^(9, ex, X) == (S^(s,, X, .) 9(.)) L,(|| [1^9?),

where the sum is taken over c e r^ such that c e k^ for v e S^(5l), and modulo U^(5l)
(multiplicatively). Here 9^ is the Grossencharakter of k^ unramified outside Soo(Sl)
and whose Sy, (91) -factor is

(^)->?((^)).
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Note that the series is well-defined, and, as one can easily verify, that it converges absolutely
if (1(9) > 3/2, where 0(9) e R satisfies

^((^l-ni^i;-^ We n ^xn).
, v veSooW

That (7(9) exists follows from Dirichlet's Unit Theorem.
Observe that whereas co involves a choice of character e : ̂ (A) -> C^, the quasi-

character 9 involves no such choice.
It is convenient here to record a proposition which will be of use to us later. Let

%, 9 be as above.

Proposition n.3.2. — Let p be a prime ideal of k, coprime to 91. Let n e r^ be such
that nr^ == p.r^. Let v be the place of k associated with p. Let 9' be the quasicharacter of

n ^n x ̂ n
w e Soo(%)

which is 9 on the first factor, is unramified on the second factor and is trivial on U^( l̂p). Let
X e r^ and let I = ord,(X), and XQ == Xn-1. Suppose that

(i) T^C^ (^eS.W),

and (ii) the natural map U (̂9I) -^/r^ is surjective.

Suppose that s^ is injective. Let N be the absolute norm. Then we have

^(9, ̂  X)

fI-N(7^)n-19(7^n)-(I-N(7T)-l)(N(7^n)9(^))l+^ , .
=\^——————————^^^^——————————jkpOp^Xo.)

+ g^\ Xo, TT) N(T^ 9(^4-1) ̂ (9', si, Xo Tr^-2).

Proo/'. — In the series defining ^(9, £i, X) we replace c by TT^Q, where \CQ\^ == i
and CQ e r8^. It is summed over a set of representatives modulo U^(9I). Since

/ / ^ \-i\ /AA"^
^(q, Xo^, TC^o) = Sl p& • Sl — g^l, Xo TT1, 7 )̂ ̂ (£i, XQ^, ̂ )vv^/^ / vv^o/si /

and since, as we shall see, we may assume that
,Jc „ ^ T7 7>xn
7T , ̂ o £ 11 /c ,̂

w£Soo(%)

for otherwise the term which we are computing will be zero, we obtain from the reci-
procity law

^(si, X, T^ Co) == ̂ (ei, Xo T ,̂ T^) . ̂ (ei, Xo n1-^ Co).
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Then

^(?, ei, X)
= Lf(ll HA <P?) { S S l̂, XQ Tt', 7 )̂ ̂ (Sl, Xo Tt'-^, ,,) <p(Co 7^)}.

A^.0 Co

Observe that
^(ei.Xo^,^) =0

unless k <_ /, A = o (mod n) or A == / + i. As

^e n ^xn
i^eSooW

it follows from assumption (i) that

coe n /^n.
w e Soo^)

It is easy to verify that the summand does not change if CQ is replaced by CQ u
(u e U^(9I)); hence by assumption (ii) we can assume that

r (= r^CQ e r,, .

Thus the summation is now carried out over CQ e r^, <:o e II k^ x r^ and
modulo wesoo(%)

{^6^(91) :^er,> < n}

multiplicatively. Since

U.(9lp) = {i^ e U,(Sl) : ̂  e r^}.^

this set of elements is also a set of representatives for those c^ e r8^, c^ e II ^n

taken modulo U^(2Ip). Hence we obtain ^eSoo(%p)

^(y^i,X)
= L,(|| 1 1 ^ 9?).{ S ̂ (^i, ̂  Xo, T^) 9(^) .^p(?', ^i, Xo TT^)}.

fc^.0

However ^(si? ̂  Xo, T^) == (^(TT:^ {k<l,k== o (mod ^)),

-^^^(s^^Xo.Tr) (A = / + i ) ,
= o (otherwise),

where $ is the Euler totient function in k. Hence the term in braces becomes

{ ^S^ ^(^^(^^(^c^Xo^)

.EO (modn) ^ ̂ ^ ̂ ^ ̂  ̂ ^ ^ ̂ ^ ^ ̂ ^,^ ^^ ̂  ̂  _^^

On carrying out the summation this gives the expression of the statement.
Let D^ be the discriminant of k. The central point in these computations is that

^((o, h) can be expressed in terms of ^i, at least if h E H^.
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Theorem 11.3.3. — Suppose that h eH^ W let X = pW. £^ co e Q^W ^
/^ o^ ̂  defined as above. Then

k(^, A) == [U(%) : U,(9I)] .NOK)-1 IDJ-^^UA)-1 ̂ (<o(1), e-S X)

i/Xe^i^D-s
= o otherwise.

The proof of this theorem is based on a fairly long computation, so that it will be
more convenient for us to discuss its significance now and to postpone its proof to the end
of this section.

The first conclusion that one can draw is that ^(9, e, X) (e injective) has an analytic
continuation to the group of all 9, that it has at most a simple pole in 0(9) > i and this
where 9 == 90 with

?o((^))= n Kl^.weSoo(%)
Let P°^X) == Res^(9,e,X).

<P=<Po

From Proposition 11.3.2 we see that ifX, Xo, p, TT, / are as in the enunciation of
that proposition then one has

^-I^PI^X)
/t4-l\

+ {g^\ Xo, T.) p^(e, Xo T^-2) N(TT) v n '

-^^"^"'p^X)}.

If we assume, as we may, that n e % then we can deduce from Theorem II. 3. i
that p^(e, Xo 7c1) is ultimately periodic with period n in / for large /, as i^ ekx n ̂ n-
Hence we can deduce that

po^,X)=(I+N(7^)- l).po^,X)

and, if o < I <_ n — i, that

p^(e, Xo n1) == ̂ (^+1, Xo, TT) N(TT) "^r p^(e, X^-1-2).

These represent the arithmetic form of our results. The restrictions on TT represented
by conditions (i) and (ii) of Proposition II. 3.2 are quite stringent, but other variants
can be given. Those quoted in [39], p. 180, are such; we shall not give a proof for those
formulae here. Nevertheless the formal similarity between those derived here and those
in [39] should convince the reader that the latter formulae are a consequence of the
techniques developed here. The variations lie in the choice of H^ and/,0^ if w e S(5I),
and these lead to variations on Proposition 11.3.2.
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Observe that, if n == 3, then
p°^,Xo^)=o

and if n e II k^
weSooOtt)

p^e, Xo n) = ̂ (e-1, XQ, 7r) N(7r)-2/3 p^e, Xo).

Moreover p^e, XQ w3) = p^(e, Xo)

if m e r8^, by Theorem 11.3. i. Hence p^(e, Xo 7^) (A ̂  o) is determined essentially
by pSa(e, Xo). This observation is that of Corollary II. 2.4 in a different guise.

The arithmetic significance of these p^(s, X) for general n has been discussed in [39].
The significance of these results with n == 3 for the construction of the (c cubic theta
function " in [37] should also be clear, since the " Fourier coefficients " of that function
are essentially p/ —,(e, X). The results discussed here would not determine this function
completely, but explain the <c multiplicative " relations between different Fourier coef-
ficients. In this connection the reader should also consult [6].

We turn finally to the proof of Theorem 11.3.3. This is based on the evaluation
of the G,,(co, „, '/]„, h^) given by the following lemma. The additive measure on ky will
be taken to be the self-dual measure with respect to CQ „.

Lemma n.3.4. — a) Suppose that v e S(9I); then
G,K,,7],,^) = m\^\y^h^^)^h^

if^h^eH^ and \pW\^ \^-l^-l[,
= o otherwise.

b) Suppose that v is a non-archimedean place ofky v f S(5l). Let n^ be a uniformizer of ky
and let q^ be the modulus ofky. Let

h ° \
'hi o

and let p{h,) == ,
vO It

Let I == ord^A^/Aa), and

Then

^'(^)== S ^{^c^e^cl^.
c (mod it,)
<C,lt^> =1

G«(".,,, ̂ , ̂ ) = ("«!^)«(^ ̂  TC,) ̂ -l-l)(7c„) .£(TC,, h^h^1^— i, Ag),

'i - g-̂ U )̂ - (i - ̂ 1) ^U^)1^"3]4- (o. (X),(Y), h^) ^(A,)2,
i - <,(̂ )

ja,!
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tf l^>_ o; if the argument of (co^ (Ji)y ^ ̂ '̂ r ^m does not lie in H^ „ ^% ^Aa^ term is taken
to be zero. If /< o ^z

^(^.^ ̂  ̂ ) = o.

/7]i 0 \ /AI 0 \
Proof. — Let us write ^ = s }i{'Q and ^ = s , P'(^)-

\0 7]2/ \0 A2/

Let n = sl i. Then
\o i

/ 0 7]i ^2 \
Y],^O^=S J^i^U^')

\7]2 î Tja ^2 ^/

and this is equal to both

hih ° \ /° I \
s o . ,]i{{^h,)^)s( \
\ ° 7)2^^/ \1 ^^l/

(—^lA^"'1 ^27)l \ / I ^

and s o A . J^^^^^^^L/A ^ T •0 ^2Y)2^/ \^2^ I/

fl^ In this case, using the Iwasawa decomposition given above, one sees that one
must have

^h^ek^

and |A2S/U<1%1..

The integral defining G,((d, „,'>)„, A,,) is then simply

/ hih-t o \ \ f

^•J,((o.(z)Js h'((^^,A^^') . ^^)^
\ \ o •»)2»i/ / J|s|^[a|»|Ai/»>isi»

The integral here is non-zero if and only if

m,,i^/u<i^i,r1;
when this condition is satisfied the integral is

WJW.W
by [50] VII-2, Cor. 3 to Prop. 2. Since

PW^h^h,

the statement in the lemma follows at once.
b) We split the integral into two parts, that over { ^ : |S|i,^ l^i/^liJ ^d that

over { ^ : |^|v> [^1/^2 lv}- The first of these can be treated as we treated a); we find
(^^(^W^(^)2 i f / ^o .
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Now we turn to other integral, which is

f / /-•^iS"1 o \ \
(^^ s ^((^^,A,^^)po^)^

Jm.>IM*2l. \ V ° ^W j

from the second of the two formulae above. To compute this integral we let ^ == ' K ~ t .x
with t > — ord^Ai/Ag) and x e r^. Thus we obtain

/ /— -^AiT^ o \ \
.. S^^M8 o .^i^i^^U^)<>-ordp(^2) \ \ 0 ^^^i? / /

.9^ £^l^^)^0..(^)^
J^

since (x), „ is unramified in the sense discussed above. Observe that with our conventions
the summand is non-zero only when

ord,,(7]i h-^ -}- t =. Q (mod n)

and ord,,(7]a h^) — t =. o (mod n).

Moreover the integral over r^ is non-zero only when ^ < o , ordy{^h^) = o (mod n)
or t = i. In the former case it has the value (i — S^1)? anc!- m tl1Le ̂ ^er

y^1.^^)
with J = ord^^Ag).

From these remarks it follows that our integral has become

/ /-7)iA7^ o \ \
S (<o^)Js -^•((^^.^^.(i-^-1)^

-_ord^//»2)«^0 \ \ 0 ^2 ^2 ̂ 7 /
< = — ordpCifii h^} (mod n)

+((o^),(s(~73lAl7^v o)i((^A2,< l^^'))^)(^),
\ \ 0 ^2^2^ / /

under the assumption that / >; o. In the first term we replace n[ by Af1 Ag TC^" where M is
summed over

— ordy(h^h^) < u < o, M s o (mod n).

The u-th summand is then
((O^Y^A^.^^J-u/n^^H^^

The sum is now a geometric series, which is easily computed. Combined with the first
integral it yields the second term in the quoted formula.
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In the second term we observe that

ord,,(7^ Ai) == -- i (mod n)

so that J == — / — i (mod n).

After a little rearrangement this yields the first term in the formula of the lemma.
Finally we observe that if l< o the integral is zero as in Theorem 1.4.1.
We are now in a position to prove Theorem II. 3.3. This we shall do by bringing

both expressions ^(<o, h) and ^(^e-^X) to forms which can be easily compared.
Observe first that

^(o>, h) = L^(|| HA co;) S <o, ̂ ) n G,(<o, „, S,(T)), s,(A))
7l6H^^\H^ vfao

and hence, by Lemma 11.3.4, ^(<o, A) == o unless X(==^(A)a) eSI-1?)-1. Hence
we can make this assumption henceforth.

Let us examine the factors in the product. The factors corresponding to v e 8(91)
yield

N(<tt)-1 |DJ-^ n (<o.^ (x.) (s,(^) s,(^)) (x .̂
t? G ot'a)

It is now convenient to replace T) by T). (A"'0)"1.

Suppose that T) = (7)x ); we require that ^ e II ^xn. Let ^(A) == ( l ° |.
\o W ^es(%) v / \o Aj

We let S(%) be the set of non-archimedean places of k not in S(%). Then the
product of those G^(<o, ̂ , s^Tj^o)-1), s,,(A)) can be taken to be the sum over all finite
subsets S' ofS(%) of

I! (0), ̂ (S^(ro)--1) S,(A) %,) ^-^-^(TTj .£(7T,, A^)^1 e(-- I, ̂ ),re s'

\ei5)-E'((ot ^^S^^AWO)~1) S^AWO)) ^W2

X l-^1^^^)- (i - y.1) ̂ .^J^^1]
1 -<w(^w)

where /„ = ord,{h^h^.

In order that this be non-zero we require that

ord,,(7]i) E= o (mod n)

^dt^^) = ° (mod n)

if ue S(%) - S', and

ord^ X) = — i (mod n)

ord^X-1) = i (modn),
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if v e 2'. Recall that T)^ and T^ are to ̂  chosen modulo n-th powers, and that each
summand is unchanged if either of these is replaced by a multiple of itself by an n-th power.
Because r8^ is a principal ideal domain we can choose Y]i to be c~1 where

ord,^) - o ( y e S(%) - S')
-ord,(X) +i ^e 5V).

This is then to be chosen modulo U^(%). Let Y^ == ^, where u e U(9l), and u is to
be taken modulo U,,^). It is clear that if write f] as

c 1-r °)\° "/ \° c ]
(and noting that

/ /i o\\"("•"'H .j)"
by the assumption made on <o, at the outset) the summation over u can be carried out
and yields the factor

[U(<S) : U,(<K)].

Combining these, and using the reciprocity law, we see that
^((O,A) - I^IHI^M^U^NOK)-1 l^l-^EUW : U,(<K)]

. 2 n (^ ̂  (s, f °)). n ^-l»-l>(^) ^(A)-2 e(., XTC).c,s' ceSooW \ \o cff ve^

n f 1 ~ ̂ 1 <^^) - (I -" ̂ "1) ̂ ^(^^l
\es(%)-s'[ i — ^S.v(^) j"

Observe that here S' can be characterized as {v e S(%) : |c|,,< i}, so that the
summation may be taken to be over c alone. The product over S^(9l) is ^{c).

In the product over £' we can take ^ === <:/X, Hence we obtain
IY(II IIAO.NW^DJ-^UW :U^%)]N(X)-1

•2^(.). n g^WiX^^X^
e ves'

n (I ~ ̂ l<^^) - (z ̂  ̂ 1) <^^)[vn^
\eaw-s^ i — <.<,(̂ ) j'

We shall now show that the sum over c is ^(^(1), s"~1, X) Ly(|| [1^ ̂ )~1. First observe
that if e^ is injective 5%(ei., X, c) is zero unless for each v G S(3l) one has either

ord^) = o (mod n), \ X^ <^ i

or ord,,(X/c) === — i.
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Thus, if we let

S'M == {v 6 S(9I) : ord,(X/,) = - i}

we obtain by a familiar transformation

^(e^X,^ n ^-^/X^IXI,-1. n Gard((rJ^)x).
t»es'(c) t?es(9i)-s'(c)

Consider next a fixed set S' and

{.: S'^^S'}.

If this set is non-empty there is an element CQ in it with ord^o) =o for v e S(9I) — 2V
since r^ is a principal ideal domain. Then the sum of^(e~1, X, c) <p(c) over this set
is equal to

<p(^o) n ̂ -^oW.ixi;-1 :
ves'

x n f 1 - ̂ "^(O - (I - g^^^y^}
wew-^[ i -^9«) j

where -K^ e^x is a uniformizer of^,. Now notice that

^'((^))= n <.»(^)-l|cJ.;»
"eSooW

and so <,(7tJ = o)^).^.

Finally observe that if c is as above

n (-1,^=1.
vesy

Hence, comparing the two expressions, we see that the identity asserted in the theorem
is true. This completes the proof of the theorem.
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