PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S.

CHARLES C. PUGH

The $C^1 + \alpha$ hypothesis in Pesin theory

Publications mathématiques de l'I.H.É.S., tome 59 (1984), p. 143-161

http://www.numdam.org/item?id=PMIHES 1984 59 143 0>

© Publications mathématiques de l'I.H.É.S., 1984, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http://www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

THE C1+4 HYPOTHESIS IN PESIN THEORY

by Charles C. PUGH*

1. Introduction. — The stable manifold theory developed by Pesin and others [1, 4, 7, 8, 9] contains a hypothesis that the given dynamics be of differentiability class $C^{1+\alpha}$ for some $\alpha > 0$. That is, first derivatives must obey α -Hölder conditions. Here is an example showing that C^1 alone, i.e. $\alpha = 0$, is insufficient. It uses the auxiliary function

$$g(u) = \begin{cases} \frac{u}{\log(1/u)} & \text{if } 0 < u < 1 \\ 0 & \text{if } u = 0 \end{cases}$$

which is C^1 , strictly monotone increasing, has g'(0) = 0, and is not $C^{1+\alpha}$ for any $\alpha > 0$. Near 0, g grows faster than $u^{1+\alpha}$ for all $\alpha > 0$. Functions like g have been seen before, for instance in S. Sternberg's example of a non C^1 -linearizable C^1 contraction of R [10, p. 101].

Suppose $f: M \to M$ is a C^1 diffeomorphism of the compact manifold M. Let $p \in M$, $v \in T_p M$, $v \neq 0$, be given. The Lyapunov exponents of v are

$$\chi^{-}(v) = \lim_{\substack{-n \to -\infty \\ -n \to -\infty}} \frac{1}{-n} \log |T_p f^{-n}(v)|$$

$$\chi^{+}(v) = \lim_{n \to \infty} \frac{1}{n} \log |T_{p} f^{n}(v)|$$

if the limits exist. For vectors in most tangent spaces, Oseledec [6] proves that these Lyapunov exponents do exist and that there is a kind of uniformity referred to as regularity of the orbit $\mathcal{O}(p) = \{f^n p\}_{n \in \mathbb{Z}}$; namely, if E_p^{λ} denotes $\{v : v = 0 \text{ or } \chi^-(v) = \lambda = \chi^+(v)\}$ then $T_p M = \bigoplus_{\lambda} E_p^{\lambda}$ and

(1)
$$\lim_{|n| \to \infty} \frac{1}{n} \log \left(\frac{||Tf^n| E_p^{\lambda}||}{||(Tf^n| E_p^{\lambda})^{-1}||} \right) = 0.$$

^{*} Partially supported by NSF grant No. MCS-81-02262 and SERC grant No. GR/B 82363.

See also [1, 8]. (A better name for this property might be subexponential conformality since $Tf^n \mid E_p^{\lambda}$ grows like a sequence of dilations, up to a subexponential error.)

Definition. — The orbit $\mathcal{O}(p)$ is asymptotically hyperbolic if $\mathcal{O}(p)$ is regular and $\chi^{\pm}(v) \neq 0$ for all non-zero $v \in T_p$ M.

Assume $\mathcal{O}(p)$ is asymptotically hyperbolic and write

$$\mathrm{E}_p^u = \bigoplus_{\lambda > 0} \mathrm{E}_p^\lambda, \quad \mathrm{E}_p^s = \bigoplus_{\lambda < 0} \mathrm{E}_p^\lambda.$$

Pesin's Stable Manifold Theorem [1, 5, 7, 9] asserts in part that the asymptotically exponentially stable set of p

$$W^{s}(p) = \left\{ x \in M : \lim_{n \to \infty} \frac{1}{n} \log d(f^{n} x, f^{n} p) < o \right\}$$

is an injectively immersed C^1 manifold tangent at p to E_p^s , provided f is $C^{1+\alpha}$ for some $\alpha > 0$.

Theorem. — There exists a C^1 diffeomorphism of a 4-manifold having an asymptotically hyperbolic orbit $\mathcal{O}(p)$ such that $W^s(p)$ is not an injectively immersed manifold tangent to E_p^s .

See § 3 for the example cited.

In the proof of Pesin's Theorem, f is lifted from M to TM along $\mathcal{O}(p)$ via the exponential map. The composites

locally represent f in exponential coordinates along the orbit $\mathcal{O}(p)$. The crucial consequence of $C^{1+\alpha}$ differentiability of f is that the f_n are $C^{1+\alpha}$ -equicontinuous. That is, there are uniform constants K, $\delta > 0$ such that

$$||(Df_n)_x - (Df_n)_y|| < K |x - y|^{\alpha}$$

for all $x, y \in T_{f^{n_p}} M$, with $|x|, |y| \le \delta$.

In § 2, we give an example of a sequence of maps

$$\mathbf{R}^2 \xrightarrow{f_n} \mathbf{R}^2, \quad f_n(z) = \mathbf{A}_n z + \mathbf{G}_n(z), \quad n \in \mathbf{Z}$$

such that A_n is a diagonal 2×2 matrix, $||A_n||$ and $||A_n^{-1}||$ are uniformly bounded,

$$\lim_{n\to\infty} \frac{1}{n} \log |A_n \circ \ldots \circ A_0(v)| = \lambda$$

$$v \in \mathbf{R}^2 - \{0\}$$

$$\lim_{n\to\infty} \frac{1}{n} \log |A_{-n}^{-1} \circ \ldots \circ A_{-1}^{-1}(v)| = \lambda$$

where λ is a negative constant, G_n is C^1 , $(DG_n)_0 = 0$, and $(C^1$ equicontinuity of f_n)

$$||(\mathbf{DG}_n)_x - (\mathbf{DG}_n)_y|| \to 0$$
 uniformly as $|x - y| \to 0$,

but there exist points z arbitrarily near o with

$$|f_n \circ \ldots \circ f_0(z)| \to \infty$$
 as $n \to \infty$.

Thus, o should be asymptotically stable under $\{f_n\}$ since $\{Tf_n\}$ contracts asymptotically, but, due to lack of smoothness of $\{f_n\}$, it is not. See Theorem 1 in § 2. (Regularity in this context is implied by the fact that A_n is diagonal.)

In § 3 the maps f_n are realized as lifts along an orbit of some C^1 diffeomorphism of a compact 4-manifold. See Theorem 2.

Conjecture. — If $\mathcal{O}(p)$ is an asymptotically hyperbolic orbit of the C^1 diffeomorphism $f: M \to M$, M has dimension two, and dim $E_p^u = \dim E_p^s = 1$, then Pesin's result holds: $W^s(p)$ is C^1 and tangent at p to E_p^s . Indeed this might be true whenever E_p^s has dimension one. Regularity is automatic on one-dimensional subspaces.

Thanks. — In writing this paper, I benefitted from conversations with M. Herman and A. Fathi at the École Polytechnique in Paris. Comments by the referee were also useful.

2. Nonlinear shear. — Let $g:(0,\infty)\to(0,\infty)$ be any smooth function such that

$$g(u) = \frac{u}{\log(1/u)} \quad \text{if } 0 < u \le 1/e$$

$$g'(u) > 1 \quad \text{if } u \ge 1/e$$

$$g'(u) \text{ is constant} \quad \text{if } u \ge 1.$$

Extend g to all of **R** by setting g(-u) = g(u) and g(0) = 0. Then $g: \mathbf{R} \to (0, \infty)$ is C^1 and is C^{∞} on $\mathbf{R} - \{0\}$. The graph of g is shown in Figure 1.

Fig. 1. — The graph of g

Choose constants 0 < a < ab < 1 < b and call

$$S = \begin{pmatrix} a & o \\ o & b \end{pmatrix}, \quad T = \begin{pmatrix} b & o \\ o & a \end{pmatrix},$$

$$f_8 = \begin{pmatrix} a & g \\ o & b \end{pmatrix}, \quad f_T = \begin{pmatrix} b & o \\ g & a \end{pmatrix}.$$

Thus, f_8 and f_T are C^1 origin preserving maps $\mathbf{R^2} \to \mathbf{R^2}$

$$f_8: z \mapsto {ax + g(y) \choose by}, \quad f_T: z \mapsto {bx \choose g(x) + ay}, \quad z = {x \choose y}.$$

The linear parts of f_8 , f_T at o are S, T and f_8 , f_T are easily seen to be invertible on all of \mathbb{R}^2 .

As $n = 1, 2, 3, \ldots$ choose A_n equal to S or T according to the pattern

Thus, if L_k denotes $1 + \ldots + k = k(k+1)/2$ then $0 = L_0 < L_1 < L_2 < \ldots$, the sets

$$\begin{aligned} \mathscr{S} &= \{n \in \mathbf{N} : \mathbf{L}_{k-1} < n \le \mathbf{L}_k \text{ for some odd } k\} \\ \mathscr{E} &= \{n \in \mathbf{N} : \mathbf{L}_{k-1} < n \le \mathbf{L}_k \text{ for some even } k\} \end{aligned}$$

decompose N into disjoint subsets, and

$$A_n = \begin{cases} S & n \in \mathscr{S} \\ T & n \in \mathscr{E} \end{cases}$$

Correspondingly define

$$f_n = \begin{cases} f_8 & n \in \mathscr{S} \\ f_T & n \in \mathscr{E} \end{cases}.$$

To suggest local iteration along the origin-orbit, write

$$A^n = A_{n-1} \circ \ldots \circ A_0, \quad f^n = f_{n-1} \circ \ldots \circ f_0, \quad n > 0,$$

where we take $A_0 = T$ and $f_0 = f_T$. To complete the picture, if -n < 0, set

$$A_{-n} = A_n,$$
 $f_{-n} = f_n,$ $A^{-n} = A_{-n}^{-1} \circ \ldots \circ A_{-1}^{-1},$ $f^{-n} = f_{-n}^{-1} \circ \ldots \circ f_{-1}^{-1},$

and call $A^0 = f^0 = identity$. Then A^n is the linear part of f^n at $o, n \in \mathbb{Z}$.

For |n| large

$$A^n = \begin{pmatrix} c_n & o \\ o & d_n \end{pmatrix}$$

where c_n and d_n are products of approximately equal numbers of a's and b's. As $|n| \to \infty$, $c_n^{1/n}$ and $d_n^{1/n} \to (ab)^{1/2}$, so the family $\{A^n\}_{n \in \mathbb{Z}}$ has double Lyapunov exponent equal to

$$\lambda = \frac{1}{2}\log(ab) < 0.$$

Since the A_n are diagonal, regularity (see (1) in § 1) of this Lyapunov splitting is automatic. In sum, $\{A^n\}_{n\in\mathbb{Z}}$ contracts asymptotically. Note, however, that the contraction is *only* asymptotic. Along the orbit, the length of v=(1,0) expands by b, shrinks by a, grows by b at the next two points, shrinks by a at the next three points, etc.

Theorem 1. — $\{f^n\}_{n\in\mathbb{Z}}$ does not contract asymptotically although its linear part does. In fact if z=(x,y) is any point in the first quadrant of \mathbb{R}^2 , x>0 and y>0, then

$$f^n(z) \to \infty$$
 as $n \to \infty$

although $(Df^n)_0(z) \to 0$ as $n \to \infty$.

Remarks. — a) f_8 is a C^1 diffeomorphism of \mathbb{R}^2 onto itself leaving invariant the foliation by horizontal lines. It shears the y-axis onto the curve $y \mapsto g(y/b)$ and is an affine contraction of each horizontal line by the constant factor a. See Figure 2.

b) $f_{\rm T}$ is conjugate to $f_{\rm S}$ by a 90° rotation:

$$\begin{pmatrix} o & -\mathbf{I} \\ \mathbf{I} & o \end{pmatrix} \circ f_{\mathbf{S}} \circ \begin{pmatrix} o & \mathbf{I} \\ -\mathbf{I} & o \end{pmatrix} = f_{\mathbf{T}}.$$

c) $\{f_n\}_{n\in\mathbb{Z}}$ is uniformly C¹-equicontinuous.

d) The stable set of o under f^n can be shown to lie wholly in the third quadrant, x < 0 and y < 0; it seems to be a curve which converges to o in the manner of $\sin(1/x)/\log(1/x)$ as $x \to 0$. All other orbits converge to ∞ as $n \to \infty$.

Fig. 2. — The non-linear horizontal shear f_8

Lemma 1. — If
$$0 < \beta_n \to 1$$
 as $n \to \infty$ and $b > 1$, $c > 0$ are fixed, then
$$\lim_{n \to \infty} b^{cn^2} \beta_n \beta_{n-1}^2 \dots \beta_1^n \beta_0^{n+1} = \infty.$$

Proof. — Fix s, l such that
$$n > s \Rightarrow \beta_n \ge b^{-c}$$

$$\beta_0, \ldots, \beta_s \ge b^{-l}.$$

Then

$$b^{cn^{2}} \beta_{n} \dots \beta_{0}^{n+1} = b^{cn^{2}} \beta_{n} \dots \beta_{s+1}^{n-s} \beta_{s}^{n-s+1} \dots \beta_{0}^{n+1}$$

$$\geq b^{cn^{2}} (b^{-c})^{1} + \dots + (n-s) (b^{-\ell})^{(n+1)(s+1)}$$

$$> b^{(cn^{2}/2) - \ell(s+1)(n+1)} \rightarrow \infty$$

as $n \to \infty$.

Q.E.D.

For any function f(u) that vanishes at u = 0 and is defined for $u \ge 0$, let

$$\sigma_f(u) = \frac{f(u)}{u}$$
.

 $\sigma_f(u)$ is the shrinking factor of f at u: under f, the distance from u to o is shrunk by the factor $\sigma_f(u)$.

Lemma 2. — Let
$$g(u) = u/\log(1/u)$$
 as above, $0 < u < 1/e$. Call $\sigma = \sigma_g$. Then
$$\frac{\sigma(gu)}{\sigma(u)} \to 1 \quad \text{as } u \to 0.$$

Proof.

$$\frac{\sigma(gu)}{\sigma(u)} = \frac{\log(u)}{\log(gu)} = \frac{\log(u)}{\log u - \log|\log u|} = \frac{1}{1 + \frac{\log|\log u|}{|\log u|}} \to 1$$

as $u \to 0$.

Q.E.D.

148

Remark. — Since g'(0) = 0, $\sigma(gu)$ and $\sigma(u)$ both tend to 0 with u. It is somewhat remarkable that they do so at the same order because gu is far closer to 0 than is u. If g were $C^{1+\alpha}$, $\alpha > 0$, the lemma would fail. For example if $\tilde{g} = u^{1+\alpha}$ and $\tilde{\sigma}$ is the shrinking factor for \tilde{g} , then

$$\frac{\widetilde{\sigma}(\widetilde{g}u)}{\widetilde{\sigma}(u)} = u^{\alpha^{1}} \to 0$$
 as $u \to 0$.

Likewise, in the next lemma, g must be $u/\log(1/u)$ or some similar function which grows too fast near o to be $C^{1+\alpha}$, $\alpha > 0$.

Lemma 3. — Let g be as in Figure 1 and (2). Fix
$$u_0 > 0$$
, $b > 1$. Set $u_1 = bg(u_0), \ldots, u_k = b^k g(u_{k-1})$.

Then

$$\lim_{k\to\infty}u_k=\infty.$$

Proof. — If
$$u_0 > 1/e$$
 then $u_1 = bg(u_0) \ge b/e > 1/e$, and, by induction, $u_k = b^k g(u_{k-1}) \ge b^k/e \to \infty$ as $k \to \infty$,

so we may suppose $0 < u_0 < 1/e$. On (0, 1/e),

$$\sigma'(u) = \frac{1}{u(\log(1/u))^2} > 0,$$

so σ is monotone there. Clearly g and $g^k = g \circ \ldots \circ g$, k times, are monotone also. Thus,

$$g^{k}(u_{0}) = g^{k-1}(gu_{0}) < g^{k-1}(bgu_{0}) = g^{k-1}(u_{1})$$

$$= g^{k-2}(gu_{1}) < g^{k-2}(b^{2}gu_{1}) = g^{k-2}(u_{2})$$

$$= \ldots < u_{k}$$

and

$$u_{k+1} = b^{k+1} g(u_k) = b^{k+1} \sigma(u_k) u_k = b^{k+1} \sigma(u_k) b^k \sigma(u_{k-1}) u_{k-1}.$$

$$= \dots = b^{(k+2)(k+1)/2} \sigma(u_k) \dots \sigma(u_0)$$

$$> b^{(k+2)(k+1)/2} \sigma(g^k u_0) \sigma(g^{k-1} u_0) \dots \sigma(u_0)$$

$$> b^{k^2/2} \left(\frac{\sigma(g^k u_0)}{\sigma(g^{k-1} u_0)} \right) \left(\frac{\sigma(g^{k-1} u_0)}{\sigma(g^{k-2} u_0)} \right)^2 \dots \left(\frac{\sigma(g u_0)}{\sigma(u_0)} \right)^k (\sigma(u_0))^{k+1}.$$

By Lemma 2, all the factors

$$\frac{\sigma(g^n u_0)}{\sigma(g^{n-1} u_0)} \to I$$

as $n \to \infty$, so by Lemma 1, $u_{k+1} \ge 1/e$ for some first k+1. Beyond this k+1, $u_m \ge b^{m-(k+1)}/e \to \infty$ as $m \to \infty$, as observed at the outset. Q.E.D.

Proof of Theorem 1. — Recall that 0 < a < ab < 1 < b and

$$S = \begin{pmatrix} a & o \\ o & b \end{pmatrix}, \quad T = \begin{pmatrix} b & o \\ o & a \end{pmatrix}, \quad f_{S} = \begin{pmatrix} a & g \\ o & b \end{pmatrix}, \quad f_{T} = \begin{pmatrix} b & o \\ g & a \end{pmatrix},$$

$$A_{n} = \begin{cases} S & \text{if } n \in \mathscr{S} \\ T & \text{if } n \in \mathscr{C} \end{cases}, \quad A^{n} = A_{n-1} \circ \ldots \circ A_{0},$$

$$f_{n} = \begin{cases} f_{S} & \text{if } n \in \mathscr{S} \\ f_{T} & \text{if } n \in \mathscr{C} \end{cases}, \quad f^{n} = f_{n-1} \circ \ldots \circ f_{0},$$

where

$$\mathscr{S} = \{n \in \mathbb{N} : 1 + \ldots + (k-1) \le n \le 1 + \ldots + k \text{ for some even } k \in \mathbb{N} \},\$$

$$\mathscr{E} = \mathbb{N} - \mathscr{S},$$

and g is the function in Figure 1 or (2). Write

$$f_n(z) = A_n z + G_n(z),$$

where $G_n: \mathbb{R}^2 \to \mathbb{R}^2$ is given by

$$G_n(z) = egin{cases} \left(egin{array}{c} gy \ \mathrm{o} \end{array}
ight) & ext{if } n \in \mathscr{S} \ \left(egin{array}{c} \mathrm{o} \ gx \end{array}
ight) & ext{if } n \in \mathscr{E} \end{cases}, \quad z = egin{array}{c} x \ y \end{pmatrix}.$$

Let π_1 and π_2 be the projections onto the x-axis and y-axis. Identify each axis with **R**. Then

$$\pi_1 \circ G_n = \begin{cases} g \circ \pi_2 & \text{if } n \in \mathscr{S}, \\ 0 & \text{if } n \in \mathscr{E}, \end{cases} \qquad \pi_2 \circ G_n = \begin{cases} o & \text{if } n \in \mathscr{S}, \\ g \circ \pi_1 & \text{if } n \in \mathscr{E}. \end{cases}$$

Now fix some z=(x,y) with x>0 and y>0. We must prove $f^n(z)\to\infty$ as $n\to\infty$.

By construction, f^n carries the first quadrant into itself, so all quantities in the following estimates are positive. Set

$$s_0 = \pi_2(f^1 z) = \pi_2(f_0 z),$$
 $s_1 = \pi_1(f^3 z),$
 $s_2 = \pi_2(f^6 z),$
 \vdots
 \vdots
 $s_k = \pi_i(f^m z), \quad m = 1 + \ldots + (k+1), \quad i = \begin{cases} 1 & k \text{ is odd} \\ 2 & k \text{ is even}, \end{cases}$
 \vdots

(3)

We claim

$$(4) s_k \geq b^k g(s_{k-1}) k \geq 1.$$

Suppose k is odd, for instance k = 1. Then

$$A_n = T$$
 $\pi_1 \circ G_n = 0$
 $\pi_2 \circ G_n = g \circ \pi_1$
 $A_n = S$
 $\pi_1 \circ G_n = g \circ \pi_2$
 $\pi_2 \circ G_n = 0$

if $n = m - (k + 1)$.

Thus

$$\begin{split} s_k &= \pi_1(f^m z) = \pi_1(f_{m-1}(f^{m-1} z)) = \pi_1(\mathrm{T}(f^{m-1} z) + \mathrm{G}_{m-1}(f^{m-1} z)) \\ &= b\pi_1(f^{m-1} z) = \ldots = b^{k-1}\pi_1(f^{m-k+1} z) \\ &= b^{k-1}\pi_1(f_{m-k}(f^{m-k} z)) = b^{k-1}\pi_1(\mathrm{T}(f^{m-k} z) + \mathrm{G}_{m-k}(f^{m-k} z)) \\ &= b^k\pi_1(f^{m-k} z) = b^k\pi_1(f_{m-k-1}(f^{m-k-1} z)) \\ &= b^k\pi_1(\mathrm{S}(f^{m-k-1} z) + \mathrm{G}_{m-k-1}(f^{m-k-1} z)) \\ &= b^ka\pi_1(f^{m-k-1} z) + b^kg(\pi_2(f^{m-k-1} z)) \\ &> b^kg(\pi_2(f^{m-k-1} z)) = b^kg(s_{k-1}), \end{split}$$

since $(1 + \ldots + k) = m - k - 1$. Similarly, if k is even, $k \ge 2$, $m = 1 + \ldots (k + 1)$, then

$$\begin{array}{l}
A_{n} = S \\
\pi_{1} \circ G_{n} = g \circ \pi_{2} \\
\pi_{2} \circ G_{n} = 0
\end{array}
\qquad \text{for } m - (k + 1) + 1 \le n \le m,$$

$$A_{n} = T \\
\pi_{1} \circ G_{n} = 0 \\
\pi_{2} \circ G_{n} = g \circ \pi_{1}$$

$$\text{if } n = m - (k + 1)$$

and

$$s_k = \pi_2(f^m z) = \dots = b^k \pi_2(f_{m-k-1}(f^{m-k-1} z))$$

$$= b^k \pi_2(T(f^{m-k-1} z) + G_{m-k-1}(f^{m-k-1} z))$$

$$= b^k a \pi_2(f^{m-k-1} z) + b^k g(\pi_1(f^{m-k-1} z)) > b^k g(s_{k-1}),$$

which proves (4).

Call $u_0 = s_0$ and $u_k = b^k g(u_{k-1})$, $k \ge 1$. By (4), induction, and monotonicity of g,

$$(5) s_k \ge u_k \text{if } k \ge 0,$$

for $s_k \ge b^k g(s_{k-1}) \ge b^k (u_{k-1}) = u_k$. By Lemma 3, $u_k \to \infty$ as $k \to \infty$. From (5)

(6)
$$s_k \to \infty$$
 as $k \to \infty$.

This proves (3) for a certain subsequences of $n \to \infty$, namely for n = m with m of the form $1 + \ldots + (k + 1)$.

To handle general n, observe that

(7)
$$\pi_1(f^{m+1}z)$$
 and $\pi_2(f^{m+1}z)$ both tend to ∞ as $m=1+\ldots+(k+1)\to\infty$.

For if k is odd then

$$\pi_{1}(f^{m+1}z) = \pi_{1}(T(f^{m}z) + G_{m}(f^{m}z))
= b\pi_{1}(f^{m}z) = bs_{k} \to \infty \quad \text{as } k \to \infty,
\pi_{2}(f^{m+1}z) = \pi_{2}(T(f^{m}z) + G_{m}(f^{m}z))
= a\pi_{2}(f^{m}z) + g(\pi_{1}(f^{m}z)) > g(s_{k}) \to \infty \quad \text{as } k \to \infty.$$

Similarly, if k is even. Now the k+1 iterates f_n , m < n < m + (k+2), increase one of these coordinates, $\pi_1(f^{m+1}z)$ or $\pi_2(f^{m+1}z)$, by powers of b, so, for these n,

$$\max(\pi_1(f^{n+1}z), \pi_2(f^{n+1}z)) > \min(\pi_1(f^{m+1}z), \pi_2(f^{m+1}z)).$$

But this means, by (7), that

$$|f^{n+1}z| \ge \min(\pi_1(f^{m+1}z), \pi_2(f^{m+1}z)) \to \infty$$
 as $k \to \infty$,

for $1 + \ldots + (k+1) \le n < 1 + \ldots + (k+2)$, which completes the proof of (3) and Theorem 1.

Remark. — The strategy of $\{f_n\}$ is to expand one component of z k times by b and then transfer as much as possible of this expanded component to the opposite component for the next k+1 iterates. The non-smoothness of f_n permits just enough transfer.

3. Realizing the Example. — Consider the diffeomorphisms $f_n: \mathbb{R}^2 \to \mathbb{R}^2$ as in § 2. We want to lift them to the 2-sphere by central projection, that is, by projection from the center of a unit 2-sphere whose south pole rests at the origin of \mathbb{R}^2 . For polynomial vector fields this is a standard construction due to Poincaré [2]. Let

Fig. 3. — Central Projection

 $\rho_-: \mathbf{R}^2 \to S_-^2$ be this projection where S_-^2 is the southern hemisphere. Let α be the antipodal map of S^2 and define $\rho_+: \mathbf{R}^2 \to S_+^2$, the central projection to the northern hemisphere, S_+^2 , by $\rho_+ = \alpha \circ \rho_-$. See Figure 3. (Stereographic projection, by the way, is unsuitable for such lifting.)

Any map $f: \mathbb{R}^2 \to \mathbb{R}^2$ lifts to a map $\rho_- f \cup \rho_+ f: \mathbb{S}^2 - \mathbb{S}_0^2 \to \mathbb{S}^2 - \mathbb{S}_0^2$ making

$$\begin{array}{ccc} S_{\pm}^{2} & \xrightarrow{\rho_{\pm}} f & S_{\pm}^{2} \\ \downarrow^{\rho_{\pm}} & & \downarrow^{\rho_{\pm}} \\ \mathbf{R}^{2} & \xrightarrow{f} & \mathbf{R}^{2} \end{array}$$

commute. (S_0^2 is the equator of S^2 .) The next lemma gives sufficient conditions that $\rho_- f \cup \rho_+ f$ extend to a map $\rho_{\sharp} f$ on all of S^2 . Note first, however, that any linear (or affine) isomorphism $A: \mathbb{R}^2 \to \mathbb{R}^2$ lifts to a diffeomorphism $\rho_{\sharp} A: S^2 \to S^2$. See [2] or below.

Lemma 4. — Suppose $A = \begin{pmatrix} a & c \\ o & b \end{pmatrix}$, $ab \neq o$, and $h : \mathbf{R} \to \mathbf{R}$ is a C^1 function with compact support. Then the map

$$f = \begin{pmatrix} a & c + h \\ 0 & b \end{pmatrix} : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax + cy + h(y) \\ by \end{pmatrix}$$

lifts to a unique continuous map $\rho_{\sharp} f: S^2 \to S^2$ which agrees with $\rho_{\pm} f$ on S^2 . Moreover, $\rho_{\sharp} f$ is a C^1 diffeomorphism whose 1-jet at the equator S^2_0 is the same as that of $\rho_{\sharp} A$. At the points $x_{\pm \infty}$ where the x-axis-longitude L_x meets S^2_0 , this 1-jet is independent of c; it is

$$x_{\pm \infty} \mapsto \left(x_{\pm \infty}, \begin{pmatrix} 1/a & 0 \\ 0 & b/a \end{pmatrix}\right)$$

respecting the splitting $T_{x_{\pm \infty}}(S^2) = T_{x_{\pm \infty}}(L_x) \oplus T_{x_{\pm \infty}}(S^2_0)$.

Proof. — This is basically a chain rule calculation. Let (φ, θ) be the natural angular coordinates on S^2 and let (r, θ) be the polar coordinates in \mathbb{R}^2 . Then

$$r = \tan \varphi, \quad \theta = \theta, \quad \rho^{-1}(\varphi, \theta) = (\tan \varphi, \theta),$$

 $x = r \cos \theta, \quad f_1 = ax + cy + h(y),$
 $y = r \sin \theta, \quad f_2 = by.$

Express $\rho_- f: S^2_- \to S^2_-$ in the (φ, θ) -coordinates as

$$(\varphi, \theta) \mapsto (\Phi, \Theta)$$

 $\Phi = \tan^{-1}(R), \quad R = |f| = (f_1^2 + f_2^2)^{1/2},$
 $\Theta = \tan^{-1}(f_2/f_1).$

Since R = |f| we have

$$\frac{R^2}{r^2} = a^2 \cos^2 \theta + c^2 \sin^2 \theta + \frac{(h(r \sin \theta))^2}{r^2} + 2ac \cos \theta \sin \theta + 2a \cos \theta \frac{h(r \sin \theta)}{r} + 2c \sin \theta \frac{h(r \sin \theta)}{r} + b^2 \sin^2 \theta.$$

Let $\varphi \to \pi/2$. Then $r = \tan \varphi \to \infty$ and

(8)
$$\frac{R^2}{r^2} \Rightarrow a^2 \cos^2 \theta + c^2 \sin^2 \theta + 2ac \cos \theta \sin \theta + b^2 \sin^2 \theta > 0.$$

By \Rightarrow we denote uniform convergence respecting θ . From (8) follows

(9)
$$\Phi \Rightarrow \pi/2$$
 as $\varphi \rightarrow \pi/2$.

Similarly

(10)
$$\Theta(\varphi, \theta) = \tan^{-1}(f_2/f_1) = \tan^{-1}\left(\frac{b \sin \theta}{a \cos \theta + c \sin \theta + \frac{1}{r}h(r \sin \theta)}\right)$$
$$\Rightarrow \tan^{-1}\left(\frac{b \sin \theta}{a \cos \theta + c \sin \theta}\right).$$

Some care is needed here since $a \cos \theta + c \sin \theta$ can equal o. Fix some small $\theta_0 > 0$ and let $N = \{\theta : 0 \le \theta \le \theta_0, \text{ or } \pi - \theta_0 \le \theta \le \pi + \theta_0, \text{ or } 2\pi - \theta_0 \le \theta \le 2\pi\}$. If θ_0 is small and $\theta \in N$ then the argument of \tan^{-1} converges uniformly and (10) is immediate. If $\theta \notin N$ and $z = (r, \theta)$, $r = \tan \varphi \to \infty$, then

$$f(z) = \begin{pmatrix} ax + cy \\ by \end{pmatrix}$$

since $h(y) = h(r \sin \theta)$, h has compact support, and $r \sin \theta \to \infty$. Since Θ refers to the angle made by f(z), $\Theta(\varphi, \theta)$ converges uniformly for $\theta \notin \mathbb{N}$ also, proving (10).

From (9) and (10) we see that $\rho_- f: S^2_- \to S^2_-$ extends to a continuous map on $S^2_0 \cup S^2_-$, sending the equator into itself according to

(11)
$$\theta \mapsto \tan^{-1}\left(\frac{b\sin\theta}{a\cos\theta + c\sin\theta}\right).$$

Note that (11) changes by π if θ is replaced by $\theta + \pi$. Thus, $\rho_+ f$ extends to the same map on the equator; *i.e.* f lifts to a (necessarily unique) continuous map $\rho_{\sharp} f \colon S^2 \to S^2$ agreeing with $\rho_{\pm} f$ on S^2 . It is easily seen to be a homeomorphism which is a diffeomorphism except perhaps at the equator.

To calculate the derivatives of $\rho_{\sharp}f$ we compute

$$\frac{\partial \Phi}{\partial \varphi} = \left(\frac{1}{1 + R^2}\right) \left(\frac{1}{R}\right) \left\{ f_1 \left(\frac{\partial f_1}{\partial x} \frac{\partial x}{\partial r} \frac{\partial r}{\partial \varphi} + \frac{\partial f_1}{\partial y} \frac{\partial y}{\partial r} \frac{\partial r}{\partial \varphi}\right) + f_2 \left(\frac{\partial f_2}{\partial x} \frac{\partial x}{\partial r} \frac{\partial r}{\partial \varphi} + \frac{\partial f_2}{\partial y} \frac{\partial y}{\partial r} \frac{\partial r}{\partial \varphi}\right) \right\}$$

$$= \left(\frac{1 + r^2}{1 + R^2}\right) \left(\frac{r}{R}\right) \left\{ \left(a \cos \theta + c \sin \theta + \frac{1}{r} h(r \sin \theta)\right) \right\}$$

$$(a \cos \theta + (h'(r \sin \theta) + c) \sin \theta) + b^2 \sin^2 \theta \right\}.$$

By (8), the first two factors converge uniformly. As above, the terms $h(r \sin \theta)/r$ and $h'(r \sin \theta) \sin \theta$ go to o when $r \to \infty$. Thus

(12)
$$\frac{\partial \Phi}{\partial \varphi} \Rightarrow \lim_{\varphi \to \frac{\pi}{2}} \left(\frac{r}{R} \right)^3 \{ a^2 \cos^2 \theta + 2ac \cos \theta \sin \theta + c^2 \sin^2 \theta + b^2 \sin^2 \theta \}$$
$$= \lim_{\varphi \to \frac{\pi}{2}} \left(\frac{r}{R} \right).$$

Second,

$$\frac{\partial \Phi}{\partial \varphi} = \left(\frac{\mathbf{I}}{\mathbf{R}^2 + \mathbf{I}}\right) \left(\frac{\mathbf{I}}{\mathbf{R}}\right) \left\{ f_1 \left(\frac{\partial f_1}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f_1}{\partial y} \frac{\partial y}{\partial \theta}\right) + f_2 \left(\frac{\partial f_2}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f_2}{\partial y} \frac{\partial y}{\partial \theta}\right) \right\}$$

$$= \left(\frac{r}{\mathbf{R}^2 + \mathbf{I}}\right) \left(\frac{r}{\mathbf{R}}\right) \left\{ \left(a\cos\theta + c\sin\theta + \frac{\mathbf{I}}{r}h(r\sin\theta)\right) \right\}$$

$$(-a\sin\theta + (c + h'(r\sin\theta))\cos\theta) + b^2\sin\theta\cos\theta.$$

As $r \to \infty$, $r/(R^2 + 1) \to 0$ while the other factors approach finite limits. Hence

(13)
$$\frac{\partial \Phi}{\partial \theta} \Rightarrow 0 \quad \text{as } \phi \to \frac{\pi}{2}.$$

Third,

$$\begin{split} \frac{\partial \Theta}{\partial \varphi} &= \frac{1}{1 + (f_2/f_1)^2} \left\{ \frac{\partial (f_2/f_1)}{\partial x} \frac{\partial x}{\partial r} \frac{\partial r}{\partial \varphi} + \frac{\partial (f_2/f_1)}{\partial y} \frac{\partial y}{\partial r} \frac{\partial r}{\partial \varphi} \right\} \\ &= \frac{f_1^2}{R^2} \left\{ \frac{-aby}{f_1^2} \frac{\cos \theta}{\cos^2 \varphi} + \frac{abx + bh(y) - byh'(y)}{f_1^2} \frac{\sin \theta}{\cos^2 \varphi} \right\} \\ &= \frac{1 + r^2}{R^2} \left\{ -abr \sin \theta \cos \theta + abr \cos \theta \sin \theta + (bh(y) - byh'(y)) \sin \theta \right\} \\ &= \frac{1 + r^2}{R^2} \left\{ bh(r \sin \theta) \sin \theta - br \sin \theta h'(r \sin \theta) \sin \theta \right\}. \end{split}$$

Now as $\varphi \to \frac{\pi}{2}$, either h and h' equal o or else $r \sin \theta$ stays bounded: $\sin \theta \to 0$ while $r \to \infty$. Thus, the bracketed terms go to 0 while $(1 + r^2)/R^2$ tends to $(\lim r/R)^2 \neq \infty$. Therefore

(14)
$$\frac{\partial \Theta}{\partial \varphi} \rightrightarrows 0 \quad \text{as } \varphi \to \frac{\pi}{2}.$$

Finally,

$$\frac{\partial \Theta}{\partial \theta} = \frac{1}{1 + (f_2/f_1)^2} \left(\frac{\partial f_2/f_1}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f_2/f_1}{\partial y} \frac{\partial y}{\partial \theta} \right) \\
= \left(\frac{r}{R} \right)^2 \left\{ ab \sin^2 \theta + ab \cos^2 \theta \\
+ \left(\frac{1}{r} bh(r \sin \theta) - bh'(r \sin \theta) \sin \theta \right) \cos \theta \right\}.$$

As above, the terms involving h and h' tend to o as $\varphi \to \pi/2$. Thus

(15)
$$\frac{\partial \Theta}{\partial \theta} \Rightarrow \left(\lim \frac{r}{R}\right)^2 ab \quad \text{as } \phi \to \pi/2.$$

The limits (12)-(15) commute with the antipodal map, so $\rho_{\sharp} f$ is C^1 ; at $(\pi/2, \theta) \in S_0^2$ it has derivative

$$\begin{bmatrix} \gamma & 0 \\ 0 & ab\gamma^2 \end{bmatrix}, \quad \gamma = ((a\cos\theta + c\sin\theta)^2 + (b\sin\theta)^2)^{-1/2},$$

respecting the (φ, θ) -coordinates. This is clearly invertible and independent of h. Hence $\rho_{\sharp} f$ is a C¹ diffeomorphism whose 1-jet agrees with that of $\rho_{\sharp} A$ at the equator. The points $x_{-\infty}$, $x_{+\infty}$ correspond to $\theta = \pi$, $\theta = 0$ and give $\gamma = a^{-1}$, verifying the fact that the derivative of $\rho_{\sharp} f$ at $x_{\pm \infty}$ is independent of c. Q.E.D.

Now return to the proof of Theorem 1. Since f_8 does not satisfy the hypotheses of Lemma 4, it is convenient to introduce the odd version of the function g in § 2,

$$g_o(u) = \begin{cases} g(u) & \text{if } u \ge 0, \\ -g(u) & \text{if } u \le 0. \end{cases}$$

Then $g_0'(u) \equiv c$ for some constant c > 1, provided $|u| \ge 1$. Call

$$A_{\pm} = \begin{pmatrix} a & \pm c \\ o & b \end{pmatrix}, \quad f_{\pm} = \begin{pmatrix} A_{\pm} \pm \begin{pmatrix} o & g_o - c \\ o & o \end{pmatrix} \end{pmatrix} : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} ax \pm g_o(y) \\ by \end{pmatrix}.$$

Clearly

$$f_{\pm}(x,y) = f_{8}(x,y)$$
 for $\pm y \ge 0$.

156

Since $g_o(y) - cy$ has compact support, f_{\pm} satisfies the hypotheses of Lemma 4 and lifts to S² as $\rho_{\sharp}(f_{\pm})$. At the equator, the 1-jet of $\rho_{\sharp}(f_{\pm})$ agrees with that of $\rho_{\sharp}(A_{\pm})$. Divide S² into two hemispheres H_{\pm} along the x-axis longitude L_x , say

 \mathbf{H}_{\pm} is the hemisphere containing the quarter sphere $\rho_{-}\{(x,y) \in \mathbf{R}^2 : \pm y > 0\}$.

See Figure 4.

Fig. 4. — The hemispheres H_{\pm} with half latitudes drawn in H_{-}

Define $F_8: S^2 \rightarrow S^2$ by

$$F_{S}(z) = \begin{cases} \rho_{\sharp} f_{+}(z) & \text{if } z \in H_{+}, \\ \rho_{\sharp} f_{-}(z) & \text{if } z \in H_{-}. \end{cases}$$

Then F_8 lifts f_8 to S^2 , but not as $\rho_- f_8 \cup \rho_+ f_8$! In fact this canonical lift $\rho_{\sharp} f_8$ fails to be C^1 at the equator.

At all finite points of the x-axis, $f_+ - f_-$ vanishes to first order (since g(0) = g'(0) = 0) so F_8 is well defined and continuous on S_-^2 ; in fact

$$T_z F_S = T_z(\rho_{\sharp} f_+) = T_z(\rho_{\sharp} f_-)$$

for all $z \in L_x \cap S^2$. Thus, $F_8 \mid S^2$ is a C^1 diffeomorphism of S^2 .

Although F_8 does not commute with the antipodal map α , there is enough symmetry that differentiability of F_8 on S_-^2 implies it on S_+^2 . If $z \in S_+^2 \cap H_+$ then

$$F_{S}(z) = \rho_{\sharp} f_{+}(z) = \alpha \circ \rho_{-} f_{+} \circ \alpha(z),$$

$$T_{z} F_{S} = (T\alpha)_{\alpha f(\alpha z)} \circ T_{\alpha z} (\rho_{-} f_{+}) \circ T_{z} \alpha,$$

while if $z' \in S^2_+ \cap H_-$ then

$$\begin{aligned} \mathbf{F}_{\mathbf{S}}(z') &= \mathbf{\rho}_{\sharp} f_{-}(z') = \alpha \circ \mathbf{\rho}_{-} f_{-} \circ \alpha(z'), \\ \mathbf{T}_{z'} \mathbf{F}_{\mathbf{S}} &= (\mathbf{T}\alpha)_{\mathbf{o}, f_{-}(\alpha z')} \circ \mathbf{T}_{\alpha z'}(\mathbf{\rho}_{-} f_{-}) \circ \mathbf{T}_{z'} \alpha. \end{aligned}$$

Now if $z = z' \in L_x \cap S^2_+$ then

$$egin{aligned}
ho_-f_+(lpha z) &=
ho_-f_-(lpha z'), \ T_{lpha z}(
ho_-f_+) &= T_{lpha z'}(
ho_-f_-), \end{aligned}$$

since $\rho_- f_+$ equals $\rho_- f_+$ to first order along $L_x \cap S_-^2$. Thus, $F_8 \mid S_+^2$ is a well defined C^1 diffeomorphism of S_+^2 also.

Since F_8 is the C^1 diffeomorphism $\rho_{\sharp}f_{\pm}$ on the interior of H_{\pm} , it remains only to check F_8 at $S_0^2 \cap \partial H_{\pm} = x_{\pm \infty}$. But by Lemma 4, $\rho_{\sharp}f_{\pm}$ has at the equator a 1-jet equal to that of the diffeomorphism $\rho_{\sharp}A_{\pm}$ and at $x_{\pm \infty}$ the latter 1-jet does not depend on c. That is,

$$egin{aligned} &\mathbf{T}_{x_{\pm\,\infty}}(\mathbf{p}_{\sharp}f_{+}) \,=\, \mathbf{T}_{x_{\pm\,\infty}}(\mathbf{p}_{\sharp}\,\mathbf{A}_{+}), \ &\mathbf{T}_{x_{\pm\,\infty}}(\mathbf{p}_{\sharp}f_{-}) \,=\, \mathbf{T}_{x_{\pm\,\infty}}(\mathbf{p}_{\sharp}\,\mathbf{A}_{-}), \end{aligned}$$

and so $T_{x_{+\infty}}F_8$ exists and is invertible. Hence

(16) f_8 lifts to a (somewhat noncanonical) C^1 diffeomorphism F_8 of S^2 ; similarly f_T lifts to F_T .

Remarks. — It is because the dynamics of the sequence $\{f_n\}$ is sensitive to perturbations at infinity that we took pains to lift the global map f_n to S^2 , not just its germ near o.

We are now ready to embed the example in § 2 into a diffeomorphism of a compact manifold.

Let $h: M^2 \to M^2$ be any diffeomorphism having a hyperbolic invariant set H on which h is topologically conjugate to the full 2-shift and

(17)
$$T_H h$$
 dominates TF_8 .

By (17) we mean that if $E^{uu} \oplus E^{ss} = T_H M^2$ is the hyperbolic splitting then

$$|\operatorname{T}h(v)| > |\operatorname{TF}_8(u)|$$
 whenever $v \in E^{uu}$, $|v| = 1$, $u \in TS^2$, $|u| = 1$, $|\operatorname{T}h(v)| < |\operatorname{TF}_8(u)|$ whenever $v \in E^{ss}$, $|v| = 1$, $u \in TS^2$, $|u| = 1$.

That is, the spectrum of $T_H h$ lies outside the annular hull of the spectrum of TF_s . We could, for instance, take H to be a horse-shoe basic set.

Let H_0 be the set of points of H which correspond to symbol sequences with a o in the initial position and H_1 be those with a 1 in the initial position. Then

$$H = H_0 \sqcup H_1$$

and H₀, H₁ are compact. Choose a smooth bump function

$$\mu: M^2 \to [0, \pi/2]$$

such that $H_0 = \mu^{-1}(0) \cap H$, $H_1 = \mu^{-1}(\pi/2) \cap H$, and $\mu^{-1}(\{0, \pi/2\})$ is a neighborhood of H.

Let R_{θ} be the rotation of S^2 by angle θ which fixes the poles. Form the skew product of h and F_8

$$F:\ M^2\times S^2\to M^2\times S^2$$

$$(w, z) \mapsto (h(w), R_{\mu(w)} \circ F_8 \circ R_{-\mu(w)}(z)).$$

F leaves invariant the foliation $\mathscr S$ by 2-spheres $w \times S^2$, $w \in M^2$, and by (17), F is normally hyperbolic to $\mathscr S$. See [3, p. 116]. Besides

(18)
$$\mathbf{T}_{(w,x)} \mathbf{F} = \begin{bmatrix} \frac{\partial h}{\partial w} & \frac{\partial \mathbf{R}_{\mu} \circ \mathbf{F}_{g} \circ \mathbf{R}_{-\mu}}{\partial w} \\ \mathbf{0} & \frac{\partial \mathbf{R}_{\mu} \circ \mathbf{F}_{g} \circ \mathbf{R}_{-\mu}}{\partial z} \end{bmatrix}.$$

Since $h \mid H$ is the 2-shift, there is a (unique) orbit $\mathcal{O}(p)$ in H such that

$$h^n(p) \in \mathcal{H}_0$$
 iff $A_n = S$, $h^n(p) \in \mathcal{H}_1$ iff $A_n = T$.

That is, we consider the orbit $\mathcal{O}(p)$ whose symbol is

respecting the division $H = H_0 \sqcup H_1$. Let

$$P = (p, z_0)$$

where z_0 is the south pole of S². The F-orbit of P is $\{(h^n p, z_0)\}$ since z_0 is fixed under F₈ and R₆. By (16), (18), and constancy of μ near H,

(19)
$$T_{(h^{n_{p,z_0}})}F = \begin{bmatrix} T_{h^{n_p}}h & o \\ o & A_n \end{bmatrix}.$$

Indeed by choice of μ and the fact that

$$f_{\mathrm{T}} = \mathbf{R}_{\pi/2} \circ f_{\mathrm{S}} \circ \mathbf{R}_{-\pi/2}$$

one sees that

commutes, where $F_n = F_S$ or $F_n = F_T$ according as $A_n = S$ or $A_n = T$.

From (19) $\mathcal{O}(P)$ has one positive Lyapunov exponent corresponding to $Th \mid E^{uu}$ and three negative Lyapunov exponents: one corresponding to $Th \mid E^{ss}$ and the other two being $\lambda = \frac{1}{2} \log (ab)$ which correspond to the A_n 's as in § 2. Let E^s denote the space of vectors with negative Lyapunov exponents

$$E_p^s \supset T(p \times S^2)$$
.

The orbit $\mathcal{O}(P)$ is regular because $TF^n \mid E_P^s$ is diagonal repecting $E^{ss} \oplus (x\text{-axis}) \oplus (y\text{-axis})$.

Theorem 2. — The stable set of P is not an immersed manifold tangent to E.

Proof. — Since F is normally hyperbolic to \mathcal{S} , a point (w, z) is asymptotic with P under F if and only if (w, z) lies on the strong stable manifold of some point

$$(p, z') \in W^s(P) \cap (p \times S^2).$$

That is,

$$W^{s}(P) = W^{ss}(W^{s}(P) \cap (p \times S^{2}))$$

where W^{ss} denotes the strong stable manifolds. See [3, p. 71]. But, by (20), $W^s(P) \cap (p \times S^2)$ is just the stable set of o under the maps f^n as in § 2 and this set is not a neighborhood of o; it misses the whole first quadrant. Thus, $W^s(P)$ is contained in the three dimensional set $W^{ss}(p \times S^2)$ but does not include a neighborhood of P in it. It is therefore not able to be an immersed manifold tangent to E_p^s . Q.E.D.

Remarks and Questions. — a) More can probably be proved about $W^s(P)$. It seems to consist of the W^{ss} fibers over a curve tending to P in $p \times S^2$ in an oscillatory fashion. In particular, it seems to have dimension two.

- b) Can the dimension of M be reduced form 4 to 3 in the above example by the introduction of a solenoid?
- c) Do C¹ diffeomorphisms of 2-manifolds have C¹ stable manifolds at asymptotically hyperbolic orbits?

160

- d) Which orbits in H (i.e. which symbol sequences) exhibit this anti-Pesin behavior? Do they form a residual set in H? A set of measure zero for every h-invariant probability measure on H?
- e) Is the set of points where the stable set of f is a C^1 injectively immersed manifold a set of measure one for every f-invariant probability measure on M?
- f) Does the generic C^1 diffeomorphism (for example, one near the F above) have C^1 stable manifolds at its generic asymptotically hyperbolic orbits?

REFERENCES

- [1] A. FATHI, M. HERMAN and J. C. YOCCOZ, A proof of Pesin's Stable Manifold Theorem, preprint of Université de Paris-Sud, Orsay, France.
- [2] E. A. Gonzales Velasco, Generic Properties of Polynomial Vector Fields at Infinity, Trans. AMS, 143 (69),
- [3] M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Springer Lecture Notes, 583, 1977.
- [4] A. KATOK, Lyapunov Exponents, Entropy and Periodic Orbits for Diffeomorphisms, *Publ. Math. IHES*, 51 (1980), 137-173.
- [5] R. Mañé Ramirez, Introducão à Teoria Ergódica, IMPA, 1979.
- [6] V. I. OSELEDEC, Multiplicative Ergodic Theorem, Lyapunov Characteristic Exponents for Dynamical Systems, Trans. Moscow Math. Soc., 19 (1968), 197-231.
- [7] Y. B. Pesin, Families of Invariant Manifolds Corresponding to Nonzero Characteristic Exponents, *Math. USSR Izvestija*, 10 (1976), 1261-1305.
- [8] Y. B. Pesin, Characteristic Lyapunov Exponents and Smooth Ergodic Theory, Russian Math. Surveys, 32 (1977), 4, 55-114.
- [9] D. RUELLE, Ergodic Theory of Differentiable Dynamical Systems, Publ. Math. IHES, 50 (1979), 27-58.
- [10] S. STERNBERG, Local Cⁿ Transformations of the Real Line, Duke Mathematical Journal, 24 (1957), 97-102.

Mathematics Department University of California Berkeley, California 94720 U.S.A.

Manuscrit reçu le 26 février 1982.