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§ o. Introduction.

For line bundles (or for divisor classes, to which they correspond in a one-to-one
way) on a projective variety, the notion of amplitude has been quite well studied [9, 13].
The purpose of this paper is to extend these ideas to vector bundles of arbitrary rank,
and to transport as much of the theory as possible.

In § 2 we give the definition of an ample vector bundle in terms of sheaves generated
by global sections. In § 3 we show that this condition is equivalent to three other quite
natural conditions which generalize criteria for ample line bundles (Propositions 3.2, 3.3,
and 3.5). Therefore this seems to be a “ good >’ notion of ample vector bundle. In § 4
we give various properties of ample bundles under change of base scheme.

The multiplicative properties of ample bundles seem to be more subtle than the
additive ones. In particular, we do not know whether the tensor product of two ample
bundles is ample. However in characteristic zero we can show this is true (§ 5) using
the theory of finite dimensional representations of the general linear group, which we
include for convenience in an Appendix. In the case of characteristic p# o0 we introduce

(1) Junior Fellow, Harvard University.

319



64 ROBIN HARTSHORNE

the notion of a p-ample bundle, and prove that the tensor product of two p-ample bundles
is p-ample (§ 6). Every p-ample bundle is ample, but we do not know whether the
converse is true, except in the case of curves (§ 7). On a curve we have a fairly good
grasp on the ample bundles, and can give necessary and sufficient conditions for a bundle
of rank two on a curve in characteristic zero to be ample (Corollary 7.6).

In the last section (§ 8) we give a theorem on finite dimensionality of certain
cohomology groups of non-proper schemes, which indeed was one of the principal
motivations for developing the theory of ample vector bundles.

There are still many problems left open. One is to study the conditions for a
high symmetric product of a bundle to give an embedding into the Grassmannian (which
is not equivalent to being ample: see Remark at end of § 3). Another is to study
numerical properties of ample bundles. For example, if E is an ample bundle, then
is the ™ Chern class ¢;(E) numerically ample in the sense that it has positive intersection
with every effective cycle of complementary dimension? Even for an ample bundle E
of rank 2 on a non-singular projective surface one does not know whether ¢,(E)>o.
We hope to study these questions more fully in a later paper.

I wish to thank all those people who helped me in the preparation of this paper,
and in particular Michael Atiyah, Raoul Bott, David Mumford, and Jean-Pierre Serre,
whose conversation was invaluable.

§ 1. Review of ample line bundles.

In this paper we will use the work “ bundle ” as a synonym for * locally free sheaf
of finite rank . Thus ¢ line bundle > will mean ‘ locally free sheaf of rank one *’ or
what is the same thing ¢ invertible sheaf ”’.  When we wish to speak of the scheme bundle
associated to the locally free sheaf E, we will use the notation V(E) [EGA, II, 1.7.8].

We will deal exclusively with schemes of finite type over an algebraically closed
field £, and leave to the interested reader the pleasure of relaxing these perhaps excessively
strict hypotheses.

In this section we recall without proof various known results on ample line bundles.

Definition (cf. [EGA, IL, 4.5.5)]). — Let X be a scheme (of finite type over k algebraically
closed, as always), and let L be a line bundle on X. We say L is ample if for every coherent sheaf F
on X, there exists an integer ny, such that for every n>ng, the sheaf FOL®" is generated by its
global sections (as an Ox-module).

Proposition (x.1). — With X as above, and L a line bundle on X, the following conditions
are equivalent :

(1) L s ample.

(ii) For some n>o, L®™ is very ample, i.e. LE"=;"(0p(1)) for some immersion
J : X>P=P}, of X into a suitable projective space over k.

[EGA, II, 4.4.2 and II, 4.5.10.]
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AMPLE VECTOR BUNDLES 65

(iii) (Grauert’s criterion). Let V(L)= Spec §0L®” be the vector bundle scheme of L,

and let j : X—>V (L) be the zero section. Then there exists a scheme G (of finite type over k)
and a commutative diagram

X —— V(L)
|
f ly
Y
Spec & =5 C

such that g restricted to V(L)—j(X) is an open immersion into C—ce(Spec k). (For short,
we say  the zero-section of V(L) can be collapsed to a point .)
[EGA,II, 8.9.1.]

Proposition (x.2). — If moreover X is proper over k, then (i), (ii) and (iii) above are
equivalent to
(iv) For every coherent sheaf ¥ on X, there is an integer ny such that for all n>ny, and
all >o,
HY(X, F®L®") =0
[EGA, I, 2.6.1.]
Proposition (x.3). — Let X be a scheme, and let L, M be line bundles. Then :
a) If n>o0 is an integer, L is ample<~LO™ is ample.
b) If L, M are ample, then LOM 1is ample.
c) If L is ample, and M is arbitrary, then LE"®M is ample for large enough n,
[EGA, I, 4.5.6, I, 4.5.7 and II, 4.5.8.]

Proposition (1.4) (Nakai’s criterion). — Let X be projective and non-singular over k.
Let x be the class of a divisor D.  Then D is ample <> for every numerical equivalence class y of
cycles of dimension r>o0 containing a positive cycle, x"y>o.
[13, theorem 4.]

§ 2. Definition and elementary properties of ample bundles.

Definition. — A vector bundle E on a scheme X is ample if for every coherent sheaf F,
there is an integer ny>o, such that for every n>mn,y, the sheaf FOS™E) (where S*(E) s the
n® symmetric product of E) is generated as an Ox-module by its global sections.

Proposition (2.1). — In order for E to be ample, it is sufficient that for every coherent
sheaf ¥, and for every closed point xeX, there be an integer ny>o0 such that for every n>ny the
global sections of the sheaf F®S™(E) generate its stalk at the point x, as a module over the local
ring at that point.

Progof. — Let E be a bundle which satisfies the condition of the proposition. Fix
a point xeX, and a coherent sheaf F. First we apply the statement to {x, and conclude
that for some n,>0, S™(E), is generated by global sections. Hence there is also a
neighborhood U, of x in which the sheaf S™(E) is generated by global sections.
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66 ROBIN HARTSHORNE

Now we apply the statement to F at the point x, and conclude that there is an
ny>o such that for all n>n,, (F®S"(E)), is generated by global sections. For each
r=o, 1, ...,n, thereis therefore a neighborhood V, of x such that the sheaf F®S™*"(E)
is generated by global sections in V,. Let

U,=U;nVygnV;n...nV,

Then for any m>o, the sheaf
F®S™*7(E)®S™(E)®™

is generated by global sections in U,. Since any large enough z can be written in the
form n,+r7-+nm, we conclude that, for all large enough n (say n>n(x)), F®S"(E)
(which is a quotient of the above) is generated by global sections in U,.

Do this for each xeX. By quasi-compacity we can cover X with a finite number
of these neighborhoods, say U, ..., U,. Take ny=max(n(x;)). Then for n>n,,
F®S"(E) is generated by global sections, so E is ample.

Proposition (2.2). — Any quotient of an ample bundle i1s ample. If E,, E, are two
bundles, then E,®E, s ample if and only if E, and E, are both ample.

Proof. — For the first statement, let E’” be a quotient of an ample bundle E. Then
given a coherent sheaf F, F®S"(E) is generated by global sections for large enough n.
But S*(E") is a quotient of S"(E). Hence F®S"(E") is generated by global sections.
This remark proves the ““ only if ” part of the second statement.

Thus we have to prove that if E; and E, are ample, then E;®E, is ample. Since

S*(E,®OEy) = +§=ns” (E,) ®SY(Ey),
P, ¢=0
it is sufficient to prove that if F is a coherent sheaf on X, then there is an integer z, such
that if p-+g=ny, then the sheaf
F®S?(E,)®SI(E,)

is generated by global sections.

Given F, we proceed as follows:

a) Choose n,>0 such that for n>n,, S*(E,) is generated by global sections (which
is possible since E, is ample).

b) Choose n,>0 such that for n>n,, F®S"(E,) is generated by global sections
(E, ample applied to F).

¢) For each r=o,1,...,n,—1, choose m, such that for n>m,,

F®S'(E,)®S*(E,)
is generated by global sections (E, ample applied to F®S'(E,)).
d) For each s=o,1,...,n,—1, choose /, such that for n>/,
F®S"(E,)®S°(E,)

is generated by global sections (E, ample applied to F®S*(E,)).
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AMPLE VECTOR BUNDLES 67

Now take ng=max(r+m,; l,;+s). I claim that if p+g>ny, then
’ F®S?(E,)®S(E,)

is generated by global sections. Indeed, there are three cases:

1) Suppose p<n;. Then p-+g>ny>p+m, so ¢g>m, and we are done, by ¢).

2) Suppose ¢<n,. Then similarly p>[, and we have the situation of d).

3) If p>n,, and ¢>n,, then SP(E,) and FQ®SP(E,) are generated by global
sections, by a) and 4), so their tensor product is also.

g.e.d.

Corollary (2.3). — If E, is ample, and E, is generated by global sections, then E,®FE,
s ample.

Proof. — Since E, is generated by global sections and since it is a coherent sheaf

on a quasi-compact scheme X, we can write it as a quotient of a trivial bundle of finite
rank [EGA, 0, 5.2.3]

0 —E,—o.
Tensoring with E, we have
E]-E,®E,—o.
Now E] is ample by the proposition, and hence E,®E, is also ample.

Proposition (2.4). — If E is ample, then S*(E) is ample for all large enough n.  Conversely,
if SY(E) is ample for some n, then E is ample.

Proof. — If E is ample, then S"~!(E) is generated by global sections, for all large
enough n. Therefore, by the Corollary, E®S"*~!(E) is ample, and hence also its
quotient S*(E).

Conversely, suppose S™(E) is ample for some m>o. By what we have just proved,
a suitable symmetric power S?(S™(E)), and hence also its quotient S?™(E), will be ample
and generated by global sections. So we may assume S™(E) is generated by global
sections.

Given F coherent, for each r=o0,1, ..., m—1 choose /, such that for n>/,

F®S"(E)®S*(S™(E))
is generated by global sections (S™(E) ample applied to F®S’(E)). Then the quotient
sheaf
F®S™+"(E)

is also generated by global sections. Taking n,=m-max(l/,), we see that any k>n,
can be written in the form k=mn+4r with o<r<m and n>/,, hence F®S¥E) is
generated by global sections, and E is ample.

Corollary (2.5). — Let E be a vector bundle, and let L be an ample line bundle. Then E
is ample if and only if L~ ®S"(E) is generated by global sections for some n>o. (Here
L™ =Hom(L, 0,) is the dual of L.)

Proof. — If E is ample, then L”®S*(E) is generated by global sections for all
large enough 7, by definition. Conversely, suppose L~ ®S™(E) is generated by global
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68 ROBIN HARTSHORNE

sections. Then since L is ample, L®OL”®S*(E)=S"E) is ample by Corollary 2.3.
Hence E is ample by the proposition. '

Corollary (2.6). — If E is ample on X, of rank r, then its highest exterior power ATE is
also ample.

Progf. — For suitable n>o, S"(E) is ample and generated by global sections.
Let its rank be s. Then also S"(E)®* and its quotient A*(S"(E)) are ample. But this
latter is a line bundle. Therefore, since the only linear representations of GL(r) are
the powers of the determinant, it must be a power of A"E, say (A"E)™. But then A’E
is also ample.

Remark. — In § 5 we will complete this result, at least in the case of characteristic
zero, by showing that all exterior powers, symmetric powers and tensor powers of an ample
bundle are ample.

§ 3. Some criteria for ampleness.

In this section we show that a bundle E on X is ample if and only if the tauto-
logical line bundle L = Opg (1) is ample on P(E) (see [EGA, II, 4.1.1] for definition
of P(E)). We also generalize two of the conditions of § 1 for ample line bundles, namely
the cohomological one, and Grauert’s criterion. Finally, we show by example that
the expected generalization to Grassmannians of the condition about embeddings in
projective space does not work.

Lemma (3.1). — Let E be a vector bundle on X, let p : P(E)—X be the natural projection
map, and let L= Opg (1) be the tautological line bundle on P(E). Then for every coherent
sheaf ¥ on X and for every n>0 we have a natural isomorphism

«: FOSYE) 3 p (4" (F)@LO™)
and Rép,(p"(F)®L®") =0
Sor i>o.
Progf. — There is a natural map « as shown [EGA, II, 3.3.2], so the question is
local on X, and we may assume E is a trivial bundle of rank r, and X =Spec A affine
with A noetherian.

We prove the second statement by descending induction on i. We know already
that R (G)=o for i>r—1, for every coherent sheaf G on P(E) [EGA, I, 2.2.2].
Suppose by induction we have shown

Ri+ip (p'(F)@LO") =0
for every coherent F on X. Then the functor
F>Rp (p'(F)®L®"
is right exact, since p° and ®L®" are both exact functors. Since X is noetherian and
affine, we can find a short resolution

O —0g—~F —o
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AMPLE VECTOR BUNDLES 69

and thus have only to show R (p(0x)®L®") =0 for i>0, n>0. This follows from the
explicit calculations of cohomology [EGA, I, 2.1.12].

For the first statement, we observe that both sides are right-exact functors (by virtue
of what we have just proven) and so as above we reduce to the case F=0x. That is,
we must show that

«: S"(E) — p (L&
is an isomorphism. This also follows from the explicit calculations [ibid.].

Proposition (3.2). — Let E be a bundle on X, and let L be the tautological line bundle
on P(E), as above. Then E is ample on X if and only if L is ample on P(E).

Proof. — a) Suppose E is ample on X. Given a coherent sheaf G on P(E), we
must show that G®L®" is generated by global sections, for all large enough n. Let
p : P(E)—>X be the projection. Since L is relatively ample for p [EGA, II, 4.4.2 and
4.6.11], there is an n,>>0 such that for all n>n,,

p',(GOL®") —~ GRLe"
is surjective. Hence also for all n>o,
p‘p‘(G®L®”')®L®”->G®L®‘”+"l’

is surjective. Hence it will be sufficient to prove that the former is generated by global
sections for large n. Let F=p (G®L®™). Applying the same argument to p'(F), we
conclude that it is sufficient to show that p'p (p°(F)®L®") is generated by global sections
for nlarge. But p" is exact, so it is enough to show p_(p"(F)®L®") is generated by global
sections for n large. But by the lemma, this is F®S"(E), which is generated by global
sections for n large, since E is ample.

b) Suppose L is ample on P(E). To show that E is ample, we use the criterion
of Proposition 2.1. So let a coherent sheaf F on X and a closed point xeX be given.
We must show that for all large enough =, the stalk (F®S*(E)), is generated by global
sections of F®S"(E).

Using Nakayama’s Lemma on the local ring O , of x, it will be sufficient to show
F®S*(E)®k(x) is generated by global sections, i.e. that

I'(X, F®S*E)) - I'(X, FOSYE)®Kk(x))
is surjective.

Using the Lemma, this is equivalent to the condition on P=P(E) that

['(P, p'(F)®L®") — I'(P, p’(F)®L®"®0y)
be surjective, where Y =p"1(x) and Oy is its structure sheaf with the reduced induced
structure. (Note p'(F®k(x))=p"(F)®0y). Using the exact sequence of cohomology,
this is equivalent to showing that

B : HY(P, Iyp"(F)®L®") — HY(P, p"(F)®L®")

is injective for large enough n, where Iy is the sheaf of ideals of Y. (Note that if X is
proper over k, we are now done. For then P will be proper over &, and both of these H’s
will vanish for large n, by Proposition 1.2.)
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70 ROBIN HARTSHORNE

Choose r>o0 such that M=L®" is very ample, say M =0p(1) for a suitable
projective embedding p : P—P}. For each i=o,1,...,7—1, extend p'(F)®L® to
a coherent sheaf G; on P, the projective closure of P in PN, Let Z=P—P, which is
closed in P.

Now apply the exact sequence of local cohomology to the closed subset Z of P
[10, Corollary 1.9]. We have exact sequences

H!(P, I,G,®M®") —> H!(P, I,G,®M®") —> H2(IyG,@M®"

H!(P, G,@M®") — — H(P, G,OM®" — > HZ(G,©@M®")

For large enough 7, the two terms on the left become zero, since P is projective and M

is very ample. Since Y, being the fibre of a proper morphism, is proper over &, Y does

not meet Z. Hence Iy=~0@, in a neighborhood of Z, and by excision, y is an isomor-

phism [10, Proposition 1.3]. Hence B’ is injective for large . But on P we have
G;®M®" =" (F)@L&t+

and the expression i+4nr, for i=o,...,r—1, and n large, covers all large enough
numbers.
q.e.d.

Remark. — In the course of the proof we have in fact established the following
result: let P be a scheme over £, let L be an ample invertible sheaf on P, and let Y be a
subscheme of P, proper over £. Then for every coherent sheaf F on P, there is an integer
ny such that for all n>n,, the natural map

I'(P, FRL®") — I'(P, FROy®L%®")

is surjective.

Proposition (3.3). — Let E be a vector bundle on X, and suppose the following condition
satisfied:

(*) For every coherent sheaf F on X, there is an integer ny>o0 such that for n>ny and i>o,

HY(X, F®S"E))=o0

Then E is ample. Conversely, if E is ample, and X is proper over k, then (*) holds.

Proof. — a) Assume (*). To show E is ample, we use the criterion of Proposi-
tion 2.1. Let F be a coherent sheaf, and xeX a closed point. Then we must show that
for all large enough =, the stalk ,

(F®S™(E)),
is generated by global sections of F®S*(E). Using Nakayama’s Lemma, it is sufficient
to show that
"X, FOSYE)) - I'(X, FOS*(E)®k(x))

is surjective, or that H'(X, ,F®S*E))=o0

326



AMPLE VECTOR BUNDLES 71

where I, is the sheaf of ideals of the subscheme {x}. But this follows directly from (*)
applied to the sheaf I F.

b) Conversely, assume E is ample, and X proper over £&. Then P =P(E) is also
proper over k, and the tautological line bundle L on P is ample, by the previous propo-
sition. Given a coherent sheaf F on X, we use Proposition 1.2 to conclude that there is
an ny,>0 such that for n>n, and i>o,

Hi(P, p"(F)®L®" =o.
Now there is a spectral sequence, for any coherent sheaf G on P,
Ef=H?(X, R% (G)) = E"=H"(P, G).
Applying this to G=p"(F)®L®" and using Lemma 3.1, we find that for every n>o0

and 7>o0,
HY(X, F®S"(E)) =~ H(P, p’(F)®L®"),

Now the right hand member is zero for large 7, as we have shown, so the left hand one is
also, and we have condition (*).
Remarks. — 1.In condition (*) itis sufficient to take =1, as one sees from the proof.
2. The converse of this proposition is false without the hypothesis X proper
over £, even for line bundles. For example, let X be P; minus a closed point x. Let
L=0(1) restricted to X, and let F=0x. Then using the exact sequence of local
cohomology

H'(P? F®L®" - H'(X, FOL®") - HE(F®L®") - H3(P? FOL®")
we see that for n>o0, the two outside terms are zero, so
HY(X, FOL®") ~ H3(F®L®").
But F®L®" is isomorphic to Oy in a neighborhood of x, so this latter groupis H2(0x)=1,
which is the injective hull of k(x) over the local ring 0x ,. In particular, it is non-zero.
[10, Proposition 4.13.]
Corollary (3.4). — Let X be proper over k and let
o—>E' -E—-E"—o0
be a short exact sequence of vector bundles on X, with E' and E'' ample. Then E is ample.

Proof. — By Proposition 2.2 we know that E’'@E” is ample. Hence for each
coherent sheaf F there is an ny>o0 such that for n>n, and ¢>o,

HY(F®SP(E'®E"))=o.
In other words, for p+¢>ny, p, g0 and i>o,
HY(F®S?(E')®SYE"))=o,

since S"E'®E")= +E SP(E")®SYE"), and cohomology commutes with direct sums.
pHg=n
2,420
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72 ROBIN HARTSHORNE

Now S™(E) has a filtration whose successive quotients are SP(E')®S¢E’”) for
p+g=n and p,¢g>o0. Hence, using the exact sequence of cohomology and proceeding
step by step up the filtration, we deduce that for n>n, and i>o,

HY(F®S™(E))=o.
Therefore E is ample.
Remark. — We do not know whether this Corollary remains true without the
hypothesis that X is proper over £.

Proposition (3.5) (Grauert’s criterion). — E is ample on X if and only if there is a
commutative diagram

X — & V(E)

|

Spec k —> C

where V(E)=Spec(2S™(E)) is the vector bundle scheme of E, j is the closed immersion of X

onto the zero-section of V(E), C is a scheme of finite type over k, and the restriction of g
to V(E)—j(X) s an open immersion into C—=c(Spec k).

Proof (The equivalence of this condition with the condition (*) of proposition 3.3
was proved in the analytic case by Grauert [7]). — Let L be the tautological line bundle
on P=P(E). We use Proposition 3.2 above, and Grauert’s criterion for L (Propo-
sition 1.1 (iii)).

a) Suppose the condition of the proposition is satisfied. Considering the natural
map 4 : V(L) —>V(E), we get a diagram as shown below.

p " v

J» v
X 5 VE) |¢

! N

Spec & —* 5 C

Note that L is relatively ample over X, and p is proper. Therefore by Lemma 3.1
and [EGA, II, 8.8.2, 8.8.4], & restricted to V(L)—j'(P) is an isomorphism onto
V(E)—j(X)-

Let g'=goh. Then g’ restricted to V(L)—j'(P) is an open immersion into
C—c¢(Spec k). Thus L is ample over Spec £, so E is ample over X.

b) Conversely, suppose E is ample on X.

Let C= Spec(%I‘(X, S*(E)) =Spec(§I‘(P, L®"), and build the same diagram as
above. Then since L is ample over Spec £, g’ restricted to V(L)—j’(P) is an open
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AMPLE VECTOR BUNDLES 73

immersion into C—z¢(Spec £). But Aisanisomorphismof V(L)—j’(P) to V(E)—j(X),
so we conclude g is an open immersion of V(E)—j;(X) into C—=z(Spec £).

Remark. — One is tempted to generalize the criterion for line bundles, ““ L is ample
if and only if L®"= 0 (1) for some n and for a suitable projective embedding > to vector
bundles, by considering the mappings into Grassmannians defined by vector bundles.
One gets a condition which is too weak: it may happen that a non-ample vector bundle
gives an embedding into the Grassmannian. For example, let X be the projective line,
and let E be 0O3®0x(1). Then E is not ample, but one checks easily that the mapping
of X into the Grassmannian given by the sections 140, 0+x, 0+ of Eis an embedding.

§ 4. Functorial properties.

In this section we discuss the behavior of ample vector bundles under change of the
scheme X. As before, all schemes X are of finite type over an algebraically closed field £.

Proposition (4.1). — Let E be an ample vector bundle on X, and let Y be a (locally closed)
subscheme of X. Then E restricted to Y is ample on Y.

Proof. — 1t is sufficient to treat the cases Y open and Y closed. If Y=TU is open,
any coherent sheaf F on U can be extended to a coherent sheaf F on X [EGA, I, 9.4.5].
Now if F®S*(E) is generated by global sections, so is F®S*(E|U), which it its restric-
tion to U. Therefore E|U is ample. On the other hand, if Y is closed, and if F is
any coherent sheaf on Y, then F®q S"(E)=F®, S"(E®0y) is generated by sections for
large n. Therefore E®0y is ample.

Proposition (4.2). — A vector bundle E on X is ample if and only if E ; on X 4 is ample.

Progf. — Note that L, on P(E),, is the same as the tautological bundle L’
on P(E ;). Therefore by Proposition 3.2 we reduce to the case of a line bundle [EGA,
I, 4.5.14].

Proposition (4.3). — Let g :X'—>X be a finite, surjective morphism, and let E be a
bundle on X. Assume that X contains a subset Z, proper over k, such that for every point xcX —Z,
either X is normal at x, or g is flat at every point of X' lying over x. Then E is ample on X of
and only if g"(E) is ample on X'.

Proof. — By passing to P(E) and P(g"(E)), we reduce immediately to the case E is a
line bundle, which is [EGA, III, 2.6.2].

Examples. — The hypothesis of the proposition is satisfied if X is proper or X is a
reduced curve, or X is normal, or g is flat.

Proposition (4.4). — Let f:X—>Y be a proper morphism, and let E be a bundle on X.
Suppose for some yeY, the restriction E, of E to the fibre X is ample. Then there is a
neighborhood U of y such that E restricted to f~'(U) is ample. (In particular, the restriction E,,
of E to any nearby fibre X, with y'eU, is ample.)

Proof. — Again, passing to P(E), we reduce to the case of a line bundle, which
follows from [EGA, II, 4.7.1].
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Proposition (4.5). — Let f:X—>Y be a finite, faithfully flat morphism, and let E be
a bundle on X. Then the sheaf f.E is locally free of finite rank on Y, and if it is ample, so is E.

Proof. — The fact that f E is locally free of finite rank follows from the hypotheses
on f. Now suppose that f E is ample. Then for any coherent sheaf F on X, f.F is
coherent on Y (since f is finite), so f F®S"(f E) is generated by global sections for
large enough n. Since f~ is right exact, f'(f,F®S"(f,E)) is also generated by global
sections. But since f is affine, this maps onto F®S"(E) hence the latter is generated
by global sections, and E is ample.

Remark. — The converse of this proposition isfalse. Take for example X =Y =P},
and for f the square mapping x—>x% Let E=0x(1). Then f,Eisabundle of rank two,
since the mapping is of degree two. Hence it is of the form Ox(n)®0x(m) for
suitable 7, m [8]. But I'(E)=TI(fE) is a vector space of dimension two. Therefore
either n=m=0 or n=1 and m<o. In either case, f E is not ample.

§ 5. Bundles in characteristic zero.

In this section we use the theory of finite-dimensional representations of the general
linear group (see Appendix) to study the behavior of amplitude under various tensor
operations performed on a bundle. The theory works best in characteristic zero, and in
that case we can prove that the tensor product of two ample bundles is ample. We will
discuss the case of characteristic p in section 6.

Let £ be an algebraically closed field (of arbitrary characteristic) and let
G=GL(r, k) be the general linear group of rank r over £. We refer to the Appendix
for the classification of the irreducible representations of G. In particular, if
¢=(ny, ..., n,) is a set of integers with n,>n,>...>n,, we will denote by V, the corres-
ponding irreducible representation of G (see Theorem A 7), and we will denote by V
the standard representation of G.

Definition. — If V, is an irreducible representation of G, with ¢=(ny, ..., n,), then
we call Zin; the weight of V,. We say that V, is positive if Zn>o0 and n,>o0. If W is any
representation of G, we say W is positive if all the irreducible representations in a composition series
Jor W are positive.  Finally, we say that W is homogencous if all the irreducible representations in
a composttion series for W have the same weight, and in that case we call that weight the weight of W.

Proposition (5.1). — For each set of integers ¢=(n,, ..., n,) with n,>2n,>...2n,>0
one can find integers qy, ..., q;, with t=r! such that

a) The character N\ given by

INCOET N it
for every diagonal matrix h=(hy, ..., k), is an upper weight (see definition in Appendix) of
S#(V)®...88%V),
where V is the standard representation of G, and
b) the minimum of the q; tends to infinity with Zin,.
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Proof. — To prove a), we must show that there is a non-zero vector
veS(¢gy, .., ¢)=S2(V)®...®8%V)

which is an eigenvector for the subgroup P of G consisting of the upper triangular
matrices, and which gives rise to the character A of H=P/X (using the notation of the
Appendix). We proceed in several steps.

1. If veS(ay, ..., ) and weS(d,, ..., b,) are two vectors, we define a vector

v®weS(ay, ..., a5, by, ..., b)

in the obvious way. If » and w are non-zero eigenvectors for P with characters A, yu, then
clearly »®w is also non-zero, and is an eigenvector for P with character Ap.

If veS(a) and weS(d) are two vectors, then there is a natural product
vweS(a+b). Since agaoS(a) with this multiplication is a polynomial algebra in r inde-

terminates (where r=dim V), we see that if v, w#o0, then sw+o0. This product

extends in a natural way to give, for veS(q,, ..., ) and weS(by, ..., H,) a product
vweS(ay+ by, ..., a4 by, ..., by)

(say j<k). Ifw, w are non-zero eigenvectors for P with characters A, u then vw is also

non-zero and is an eigenvector for P with character Ap.
We will use these notations and results below.

2. We now define some specific eigenvectors for P. Let ¢, ..., ¢, be the basis
of V relative to which G acts. Define, for each i=1, ..., 7 a vector
feV®i=S(1,1,...,1)
by fi= Z sgno.e,,®...Qe¢,
cES;

where ©; is the symmetric group on ¢ letters. Then clearly f; is an eigenvector for P,
with character A; given by
NR)Y=hy ... R

3. Now let ¢=(ny, ..., n,) be given. Let s;=n—mn, , for i=1, ..., 7—1;

s,=n,, and let t=r! For each i=1, ..., we perform a division:

s='0,+R, with o<R<™.
1 1

Let Q—=Q.1++Q.n
a1 Q+R;+R; ;+...+R, for i=1,...,7
and fet &= Q for i=r+41,...,t

Define v€S(q,, ..., ¢q) by
r
too: .
v= I (f23)%(f)™
Then by construction, v is a non-zero eigenvector for P with character A given by

MNB)=hr. . B}
as required.
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4. To check statement b) note that

Z.Si - tQ,‘ + lRt With O< iR'< t.
Hence < (t+1)Q;,
and X = Xis;< (¢4 1)Q.

But Q=min(g;), so we are done.

Now let X be a scheme over £, let E be a vector bundle (i.e. a locally free sheaf)
of rank 7 on X, and let T be a representation of GL(r, k) on a vector space of dimension 7
over k. That is, T can be thought of as a homomorphism of group varieties
from GL(r, k) to GL(n, k). With this data we define a vector bundle T(E) of rank =
on X as follows.

Since Eis a locally free sheaf, we can describe it by taking an affine open covering (X;)
of X, and giving transition functions g;eGL(r, A;;) where A;=T(X;nX;, Ox), satis-
fying the usual cocycle condition. Now all the A;; are £-algebras, so by base extension
we obtain homomorphisms of groups, for each i, j,

Tij : GL(r, Ai;‘) — GL(n, Aif)'

Now the collection of functions Ty;(g;;) allows us to define the new bundle T(E) of rank #,
which of course does not depend (up to isomorphism) on any of the choices made.

We will call T(E) a tensor bundle of E, and will carry over to T(E) terminology
which applies to T, such as irreducible, positive, homogeneous, weight. Examples of tensor
bundles are tensor products, symmetric products, and exterior products.

Theorem (5.2). — Assume char k=o. Let E be an ample vector bundle on X. Then
any positive tensor bundle of E is also ample.

Progf. — Since any direct sum of ample bundles is ample (Proposition 2.2) and
since in characteristic zero, every representation of GL(r) (where r=rank E) is a direct
sum of irreducible representations (see Appendix), we have only to consider positive
irreducible tensor bundles of E.

Pick n,>o0 such that for all n>n,, S"(E) is ample and is generated by global
sections (Proposition 2.4). Pick an my,>o0 such that whenever ¢=(n,, ..., n,) is a set
of integers with n,>n,>...>n,>0 and Xn;>m,, then the minimum of the g; of Propo-

sition 5.1 is >n,. Then if T, is the irreducible representation of GL(r) corresponding
to ¢, T,(E) will be a direct summand of

S%(E)®...®S%E)
which is ample (Corollary 2.3), and so T,(E) will be ample. Thus any positive irre-

ducible tensor bundle of E of large enough weight is ample.
Finally let T(E) be any positive irreducible tensor bundle of E. Then for n large,
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S*T(E)) will be a direct sum of positive irreducible tensor bundles of E of large weight,
hence ample. Therefore T(E) will be ample by Proposition 2.4.

Corollary (5.3) (char k=o0). — Let E be an ample bundle on X. Then S*(E) and E®"
are ample for every n>o, and A'E is ample for n=1,2, ...,r, where r=rank E. If E,
and E, are ample bundles, then E,®E, is ample.

Proof. — These statements are all special cases of the theorem, except for the last.
If E, and E, are ample, then E, ®E, is ample. By the Theorem,

S$*(E,®E,) = S*E,)® (E, ®E,) ®S*(E,)
is ample, and so E,®E, is ample.

Proposition (5.4) (char k=o0). — Let E be an ample vector bundle on X. Then for
every coherent sheaf ¥ on X, there is an integer my>o0 such that for every positive homogeneous
tensor bundle T(E) of E of weight >m,, F®T(E) is generated by global sections.

Proof. — Choose n,>0 such that for n>n,, F®S"(E) and S"(E) are generated by
global sections. Then also
(*) F®S%(E)®...®S%E)
will be generated by global sections whenever min(g,)>n,. As before it is sufficient to
consider irreducible positive tensor bundles of E. If T(E) is such a bundle of large
enough weight, then by Proposition 5.1, FOT(E) will be a direct summand of a sheaf
of the form (*) above, with min(g;)>n,, and hence will be generated by global sections.

Exercise. — In case X is projective over %, find out whether the analogous statement
about the cohomology groups HF®T(E)) being zero for i>o0 is true.

Corollary (5.5) (char k=o0). — Let E be a bundle on X. Then E is ample if and only
if for every coherent sheaf ¥ on X there is an integer ny>o0 such that for every n>n,, FOE®" is
generated by global sections.

Proof. — One implication follows from the Proposition, and the other follows from
the fact that S*(E) is a quotient of E®",

§ 6. Bundles in characteristic p =+ o.

In this section we try to extend the results of the previous section to the case of
characteristic p#+0. We introduce the notion of a p-ample vector bundle which is
a priort stronger than the notion of an ample bundle. We prove that tensor products,
symmetric products and exterior products of p-ample bundles are p-ample, and hence
ample. However we do not know whether every ample bundle is p-ample, except
over a complete non-singular curve in which case it is (see section 7).

Proposition (6.x). — Let X be a quasi-projective scheme over a field k of characteristic p+ o.
Then there is a unique functor w : F>F® from coherent sheaves on X to coherent sheaves on X
with the following properties:

a) m is additive and right exact;

b) if L is a line bundle, =(L)=L®?;

c) if u:L,—L, is a morphism of line bundles, then m(u) : LY?—LE? is u®?.
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Proof. — To show = is unique if it exists, let F be any coherent sheaf on X.
Then since X is quasi-projective, we can find a short resolution of F

M, 5>M,->F->o

where M, and M, are finite direct sums of line bundles. Now by @) and 5) we know
what = does to M; and M, and by ¢) we know what it does to u. Finally, since = is
right exact, we know =(F) by the five-lemma.

For the existence we proceed as follows. Define a new scheme X, over £ by taking
the same scheme (X, 0x), but where the k-algebra structure of 0 is given by multiplying
by the p® roots of elements of k&. We define a k-morphism f: XX, (the Frobenius
morphism) by giving the identity map on the spaces, and the p™ power map on the
structure sheaves. (Note by the way that since X is of finite type over £k, f is a finite
morphism: it is sufficient to check that a polynomial ring £[¢,, ..., ¢,] is a finite module
over its subring £[#, ..., #].) Now for any coherent sheaf F on X, denote by F, the
same sheaf considered on X, and take n(F)=f"(F,). On checks easily that = has the
required properties.

Remarks. — 1. One can describe F® a bit more simply as a tensor product with
explanation: F®= F®e, 0k, where F is an Ox-module in the usual way; 0x is an Ox-module
via the p* power map, and the result is an Og-module by multiplying in the factor on the
right in the usual way.

2. IfEis a vector bundle on X, then one can describe E? as the tensor bundle T(E)
where T is the representation of GL(r) given by T((g;))=/(gk)-

3. We denote by F® the result of applying the functor = to F 7 times.

Proposition (6.2) (char k=p). — Let E be a vector bundle on X, and assume either a) X is
normal, or b) X is proper over k. Then E is ample if and only if EP is ample.

Progf. — With the notation of the proof of Proposition 6.1, the functor F>F, is
an isomorphism of the category of sheaves on X to the category of sheaveson X,,. Since
ampleness of a vector bundle depends only on the category of sheaves on the underlying
scheme, we see immediately that E is ample if and only if E, is ample. Now since f is
a finite morphism, and E® =f"(E), our result follows from Proposition 4.3.

Definition. — Let E be a vector bundle on a scheme X over a field k of characteristic p= o.
We say that E is p-ample if for every coherent sheaf ¥ on X, there is an integer ny>o0 such that
for every n=n,, the sheaf FOE®P) is generated by global sections.

Proposition (6.3). — If X is projective over k, and if E is a p-ample bundle on X, then E
is ample.

Proof. — Let L be an ample invertible sheaf on X. Then for some n>o,
LY®E® will be generated by global sections. This implies that E®? is a quotient
of a direct sum of copies of L, and hence is ample (Proposition 2.2). Therefore by the
previous proposition, E is ample.
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Remark. — We do not know whether the converse of this proposition is true, except
in the case of line bundles (trivial) and in the case of curves (Proposition 7.3).

We leave to the reader the verification of the following elementary properties of
p-ample bundles, whose proofs are analogous to those of Propositions 2.2, 2.3, and 2.4.

Proposition (6.4). — a) Any quotient of a p-ample bundle is p-ample. The direct sum
of two bundles is p-ample if and only if each of them is.

b) If E, is a p-ample bundle, and if E, is a bundle generated by global sections, then E,®E,
is p-ample.

c) A bundle E is p-ample if and only if E® s,

Remark. — We do not know whether the analogues of Propositions 3.3 and 3.4
are true for p-ample bundles.

Lemma (6.5). — Let E be a direct sum of ample line bundles on X. Then every positive
tensor bundle of E (see definition in § 5) is also a direct sum of ample line bundles, and hence is p-ample.

Proof. — Indeed, let T be a positive representation of GL(r), where r=rank E.
Since E is a direct sum of line bundles L;®...®L,, it is sufficient to consider the repre-
sentation induced by T on the group H=~G], of diagonal matrices. Now the repre-
sentations of G,, are completely decomposable, and the irreducible ones are one-
dimensional and give bundles of the form L»®...®LM [4, exposé 4, théoréme 2].
Thus T(E) will be a direct sum of these, and they will all be ample since T is positive and
hence in each one, all 7,>0, and Xn>o.

Theorem (6.6) (char k=p=+0). — Let X be a projective scheme over k and let E be a
p-ample bundle on X. Then every positive irreducible tensor bundle of E is p-ample; also ®"E,
S*(E) and T*(E)=S"(E”)" are p-ample for n>o0, and A"Eis p-ample for n=1, . ..,r=rank E.

Proof. — Let L be an ample line bundle on X. Then for some n, L ®E® will
be generated by global sections, and hence E®” will be a quotient of a direct sum of
copies of L. If T is any representation of GL(r) defined over the prime field F,ck,
as for example any irreducible representation of GL(r), or any of the representations ®",
S*, I, A", then T commutes with the functor = of Proposition 6.1: T(E®)=T(E®),
Thus using Proposition 6.4 ¢), we may replace E by E®) and assume that E is a quotient
of a direct sum of ample line bundles.

So let E be a quotient of E;, which is a direct sum of ample line bundles and let E,;
have rank ¢. Let T be a positive irreducible representation of GL(r) corresponding to
the set of integers c¢=(ny, ..., n,) with n,>n,>...>n>0 in the classification of
Theorem A 7. Then the vector space V, on which it acts is a quotient of the sub-
representation of

SH(V)®. .. ®S*(ATV)

generated by the vector ¢;®...®(e;A...Ae,)" (using the notation of Theorem A 7).
Now let W be the standard representation of GL(t), and let T, be the action of GL(¢)
on the subspace W, of

SHW)®...®S7(A™W)
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generated by the vector f*®...®(f;A...Af,)" where f;,...,f; is the standard
basis of W. Then T, is a positive representation of GL(¢), and if one maps W to V by
sending f; to ¢;for i1=1, ..., 7, and f;to o for ¢>7, then V,is a quotient of W,, compa-
tible with the two group actions. Therefore T(E) is a quotient of T,(E,), which is
p-ample by the Lemma, and so T(E) is p-ample.

The last statement of the theorem follows similarly: one has only to note that ®"E,
S*(E), I'*(E) and A™E are quotients of ®"E,, S*(E,), I'*(E;) and A”E,, respectively.

Corollary (6.7). — If X is projective over k, and if E, and E, are two p-ample bundles,
then E,QE, is p-ample.

Progf. — This follows from the theorem applied to E,®E,, asin the proof of Corol-
lary 5.3.

Corollary (6.8). — If X is projective over k and E is p-ample on X, then every positive
tensor bundle of E is ample.

Proof. — We know by the theorem that the irreducible ones are p-ample and hence
ample. But any positive representation of GL(r) has a composition series whose quotients
are positive irreducible representations. So the result follows from Corollary 3.4.

§ 7. Vector bundles on curves.

In this section X will be a non-singular projective curve over £&. The fact that any
vector bundle has a filtration whose quotients are line bundles [1, Part I, § 4] enables
us to give quite precise statements. In particular for bundles of rank two in the charac-
teristic zero case we give necessary and sufficient conditions for amplitude.

We recall for convenience the following well-known proposition:

Proposition (7.x). — Let L be a line bundle on X. Then

a) L is ample if and only if deg L>o.

b) Given any coherent sheaf F on X, there is an integer d such that if deg L>d,, then FOL
is generated by global sections, and H(F®L)=o.

Proof. — a) The condition is necessary, because a line bundle of negative degree
has no sections. The sufficiency follows from 5).

b) Any coherent F is a quotient of a direct sum of line bundles. Hence we may
assume F is a line bundle, and we are reduced to showing that there is an integer d,
such that if deg L>d,, then L is generated by global sections, and H!(L)=o0. In fact
if g is the genus of X, d,=2g will do [1, Lemma 8].

Proposition (7.2). — Let r>0 be fixed. Then

a) There is an integer d, such that every indecomposable bundle E on X of rank r and degree
d>dy is ample.

b) Given a coherent sheaf ¥, there is a d, such that for ievery indecomposable bundle E of
rank r and degree d>d,, F®E is generated by global sections.

Proof. — If E is indecomposable of rank r, then E has a filtration whose quotients
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are line bundles L,, ..., L,, with deg L;>¢(deg E) where ¢ is a function which goes
to infinity with deg E [1, Lemma 7].

a) By choosing deg E large enough, we can make sure that deg L,>o for each 7.
Then each L, is ample by the previous proposition, and so E is ample by Corollary 3.4.

b) By choosing deg E large enough, we can make sure that F®L, is generated
by global sections and H'(F®L,)=o0 for each i. Then F®E is generated by global
sections and HY(F®E)=o.

Proposition (%7.3). — Let char k=p be different from zero. If E is an ample bundle
on X, then E is p-ample.

Proof. — By induction on r=rank E, the case r=1 being trivial. Let E be
ample of rank r. Using Propositions 2.2, 6.2, 6.4 and the induction hypothesis, we
may assume that E®) is indecomposable for every n>o. Now deg E>o, since the
degree of E is the degree of A"E, which is ample by Corollary 2.6, and an ample line
bundle has positive degree (Proposition 7.1). Hence

deg E®) =p" . deg E

grows indefinitely with n, and so E is p-ample by part &) of the proposition.

Corollary (7.4). — If E, and E, are ample bundles on X, then E,®E, is ample.

Proof. — In characteristic zero this is Corollary 5.3, and in characteristic p it follows
from the proposition and Corollary 6.7.

Now we restrict our attention to bundles of rank two, and try to characterize those
which are ample.

Proposition (7.5). — Let E be a bundle of rank two on X, and write

o—~L,~E—-L,—»o0
where Ly is a sub-line bundle of maximum degree. ~ Assume that deg L, <o and either a) chark=o0

and deg E>o, orb) chark=p and deg E> E(g— 1), where g is the genus of X. Then E
is ample. 4

Proof (due essentially to Mumford). — Let P=P(E), let = : P+X be the
projection, and let L be the tautological line bundle on P. By Proposition 3.2, we
need only show that L is ample, and to do that, we apply Nakai’s criterion (Propo-
sition 1.4) to the divisor class d of L on the ruled surface P. Recall that the divisor
class group of P is Z®Z, and is generated by 4 and the class f of a fibre of P over X.
To show that L is ample, we must show d®>o0, and d.e>o for every effective divisor
class ¢, and it will be sufficient to consider those ¢ which are the class of an irreducible
curve C on P.

1) I claim there is a section Y of P over X. Indeed, let M be any quotient line
bundle of E, as for example L,. Then P(L,)=2X, and there is anopenset UcX and
amap s:U—P such that mos=id [EGA, II, 3.5.1]. Now since X is a non-singular
curve, and P is complete, s extends to a section s:X—>P. We put Y=s(X).
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2) We use Y to conclude that d®>=deg E>o. Indeed, let the classof Y be d 4 mf
where meZ. Then we have an exact sequence of sheaves on P,
0—> Op(—d—mf) - Op — Oy — 0.
Or, tensoring by L=0p(d) we have
0> Op(—mf) =L > L®0y — o.
Now deg(L®0y)=d.(d+mf)=d*>+m (since d.f=1).
To calculate this we apply T, (noting that -rc*(0p(—mf ))=0x(—m) isaline bundle
of degree —m, and R'zm (Op(—mf))=0):
0— Ox(—m) - E - = (L®0y) — 0.
But = (L®0y) is isomorphic to L®0y via thesection s : X—Y. Hence, taking degrees,
we have
deg E=—m+(d®+m)=d>
Hence d?=deg E>o.

Note also that in this construction E was found to have a sub-line bundle of
degree —m. Hence from our hypotheses we conclude m>o, and so d.Y=d?+m>o
also.

3) Now let C be any irreducible curve on P. We wish to show that C.d>o.
Let the class of C be nd+mf. If n<o, we would have C.f<o which isimpossible for
an effective curve. If n=o0, then m=1 since G is irreducible. Hence C=f and
C.d=1>0. If n=1, then C is a section of P over X, and we use the argument of 2)
above to show C.d>o0. We are left with the case n>1, which we treat below.

4) We calculate the canonical divisor K on P, and show that the class of K is

K=—2d+(26—2+44d°f.
Indeed, for any curve C on P, we have the formula
2p,(C)—2=0C.(C+K).
Applying this to a fibre f we have
—2=f.(f+K),
so K.f=—2. Applying it to the section Y above, we have
26—2=Y.(Y+K)=(d+mf). ([d+mf+K),
or 2g—2=d*+om+d.K+mf.K,
s0 d.K=2g—2—d>
The formula for K above follows from this.

5) Let C=nd+mf with n>1, and suppose either chark=o0 or n<p. Then
we can apply the Hurwitz formula to the projection of C onto X, and find
2p,(C)—2=mn(2g—2)+(# ramification pts)
+ (contribution of singularities).
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In particular, 2p,(C)—22n(2g—2).

On the other hand, we can calculate p,(C) using the canonical divisor:
2p,(C)—2=C.(C+K)
=(nd+mf ) (nd + mf—2d + (2g—2 + d*)f)
=n(n—2)d®+n(m+2g—2 +d* +m(n—2)
=n(n—1)d®+n(2g—2)+2m(n—1).

Combining, we have (n—1)(nd®+2m)>o.
Since n>1, this implies nd*42m>o0
or nd®+m>—m.

We wish to show C.d=nd>+m is positivee. We know n>o0 and d®>o. Hence
nd*>o, soif m>o0, nd®*4+m>o0. On the other hand, if m<o, we have nd®+m>—m>o.
Thus C.d>o in any case.

6) Finally, suppose char k=p+o0, and n>p. Then we cannot apply the Hurmitz
formula to C=nd-+mf, but we have the weaker inequality

2p,(C)—2>2g—2.

As above, we deduce (n—1)(nd®*+2g—2+2m)>0
and therefore nd®>+42g—2-+2m>o0
or nd®*+m>—m-—2g+2

We wish to show that C.d=nd®>+m>0. We have the additional hypothesis that
d?=deg E>§(g——1) and n>p. Hence nd®>2g—2. So if m>—2g+2, then
nd®*+m>o0. On the other hand if m<-—2g-+2, then
nd®+m>—m—2g-+2>o.

7) In conclusion, we have shown that d®*>o0, and C.d>o0 for every irreducible
curve C on P. Hence L is ample, and therefore E is ample.

Corollary (7.6). — Let chark=o0. Then a bundle E of rank two on X is ample if
and only if deg E>o0 and deg L>o for every quotient line bundle L of E.

Proof. — The condition is clearly necessary. To show that it is sufficient, choose
a sub-line bundle L; of maximum degree of E, and write

o—-»L;>E—-L,—o.
If deg L,>o0, we have also deg L,>0 by hypothesis, so E is an extension of two ample

line bundles, and hence ample. If degL;<o we are under the conditions of the
Proposition, so E is ample.
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Corollary (7.7). — Let chark=p. If E is a bundle of rank two on X and
deg E>;(g—~1) and deg L>o for every quotient line bundle of E, then E is ample.

Proof. — The same as for the previous corollary.

Corollary (7.8). — An indecomposable bundle E of rank two on an elliptic curve X (in
arbitrary characteristic) is ample if and only if deg E>o.

Proof. — Using the two previous corollaries, we need only show that deg L>o
for every quotient line bundle of E. Suppose to the contrary there is an exact sequence

o->L;-E—-L,—>o0

with deg L,<o. Then degL;>o0 since deg E>o. The extension will be classified by
an element of HY(L,®L;"). But this group is zero since deg L,®L; >0, and X is
elliptic (2¢—2=0). Therefore the extension splits, and E decomposes, which is a
contradiction.

Examples. — 1. On the projective line, every vector bundle is a direct sum of line
bundles, so the ample ones are just the sums of ample line bundles.

2. For indecomposable bundles E of rank 2 on a curve X of genus g>1 there
is no numerical criterion on deg E for E to be ample. We show this by constructing
two indecomposable bundles of degree 2g—2, one of which is ample, and the other of
which is not.

a) Let K be the canonical divisor on X, and choose a non-trivial extension

0>K—+E—-0—o,

which is possible since H'(K)=k+o0. If E should decompose into the direct sum of
two line bundles L;, L,, then at least one of them, say L;, has degree>o, since
deg E =2g—2>0. Thus there are no non-zero homomorphisms of L; into ¢. Therefore
there must be a surjection of L, into @, so L,=~0. Hence L,=~K, and the extension
above splits, which is a contradition. Thus E is indecomposable. And E is not ample,
since it has as a quotient ¢, which is not ample.

b) Let F be a non trivial extension

0>0—->F—->0-0
which exists since H!(0)#o0. Then reasoning as above, we see F is indecomposable.
Let L be a line bundle of degree g¢—1, and let E=F®L. Then E is also indecompo-

sable, and being an extension of L by L (both ample line bundles) it is ample. Its
degree is 2g—2.

§ 8. Two applications.

In this section we give two elementary applications of the theory of ample vector
bundles. One says that certain cohomology group of coherent sheaves on the complement
of a closed subscheme of projective space are finite dimensional. The other says that
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there are no non-constant holomorphic functions in the neighborhood of a non-singular
subvariety of positive dimension of projective space.

Theorem (8.x). — Let X be the projective space Py, and let Y be a non-singular closed
subscheme of X (not necessarily connected) of codimension p. Assume either that char k=o
or that Y is a curve. Then

a) For every coherent sheaf F on X—Y, and forevery i>p, the k-vector space H(X —Y, F)
is finite-dimensional.

b) For every locally free sheaf F on X, and for every i<r—p=dim Y, the k-vector
space H‘(X, F) is finite-dimensional, where X is the formal completion of X along Y, and Fis
the completion of F (see [EGA, ch. I, § 10] for definitions).

Lemma (8.2). — Under the hypotheses of the theorem, let ¥ be a locally free sheaf on X,
and let 1 be the sheaf of ideals of Y. Then for each 1>p, there is an n, such that for n>ng,

Exth (I"/I"*+%, F) =o.

Proof. — This Ext group is the abutment of a spectral sequence whose initial term is

Eft= Extg (I"/I"*Y, Extg (Oy, F)).

Now since Y being non singular is locally a complete intersection of codimension p,
we can calculate locally with a Koszul resolution [FGA, exp. 149, § 3] and find

so for i£p.

Exty (Oy, F)=
wog (O, F) [G, a locally free sheaf on Y, for i=p.

Therefore the spectral sequence degenerates, and
Ext@x(l”/l”“, F) =~ Extfg;p(l”/l”“, G)
for each .

Let E be the normal bundle to Y in X, namely (I/I?)’. It is a bundle of rank p
on Y. From the exact sequences

0 O0g - Oxg(1)"*t > Ty —o0

and o0—>Ty > Tx®0y - E —o,

where Ty and Ty are the tangent bundles to X and Y, respectively, we deduce that E
is a quotient of Oy (1)"*!, and hence is ample.
Since I"/I"*! is isomorphic to S™(I/I%), it is locally free on Y, and we have

Exth, (I"/I"*1, G) = Ext}_(0y, G® (I"/I"*1)") = H¥(Y, G® (I"[I*+1)").

But (I"/I"*)'=(S*(E’))’=T"(E). So our problem is to show that for large enough =,
and i>o,
HY(Y, G®T™(E))=o.
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In case char k=o, I'*(E) is isomorphic to S*(E), so we are done, since E is ample. In
case Y is a curve, there is only the group H! to consider, and H! is a right exact functor.
Hence it is sufficient to observe that I'"(E) is a quotient of TI'"(Oy(1)"*)=S"(Oy(1)"*?)
and again we are done, since Oy (1)"+! is ample.

Proof of theorem. — a) We may assume that F is the restriction of a coherent sheaf F
on all of X. First we reduce to the case F locally free. Indeed, suppose it is true for
locally free sheaves, and suppose also by induction it has been proven for j>:¢ (the case
i=r-+1 being trivial, since all cohomology groups vanish then). Write F as a quotient
of a locally free sheaf L :

0—»>R—-L—+F—o.

Then we have an exact sequence
. > HX~-Y,L) - H(X—-Y,F) - H*}X—Y,R) - ...

Since the two outside ones are finite-dimensional by hypothesis, so is the middle one.

Next we use the exact sequence of local cohomology [10, § 1]:

... > H(X,F) - H(X—Y, F) > HYY(F) > H*YX, F) - ...
Since the two outside ones are known to be finite dimensional by Serre’s theorems, it
will be sufficient to prove that HY''(F) is finite-dimensional. Now
HY(F)= ll_n;l Exté,x(@x/l”, F)

[10, Theorem 2.8]. Since these Ext groups are all finite-dimensional, it will be sufficient

to show that the maps in the direct system are eventually all surjective. The maps in
the direct system are derived from the exact sequences

o —I*I"*! — @/I*"*! - O/I" — o,
which give
. = Ext{(0/I", F) — Ext(0/I"*}, F) — Ext!(I"/I*"*4 F) — ...
Thus using induction on 7, we must show that
Extfgx (I*/I+1F)

is zero for large n, and for :>p. This is proved by the Lemma.
b) Let F be locally free on X. Then

H(X, F)= 1(1_:3 H{(X, F® Oy /I
by [EGA, O, 13.3.1]. To show it is finite-dimensional for :<r—p, it will be sufficient

to show that the groups on the right are finite-dimensional, and that the maps of the
inverse system are all eventually injective. By duality on projective space,

Hi(X, F®0 /1"

342



AMPLE VECTOR BUNDLES 87
is dual to Extp " (FO Oy I", @) = Exti (05 /1", F'®@w)

where  is the sheaf of n-differential forms on X. The inverse system is transformed
into a direct system, and we are reduced to the proof of a) above, since i<r—p is the
same as r—i>p.

Proposition (8.3). — Let X =P}, and let Y be a connected, non-singular closed subscheme
of X of positive dimension.  Then there are no non-constant holomorphic functions in a neighborhood
of Y, ie. T(X, Og)=F.

Proof. — Let I be the ideal of Y. Then we write

I(&, 0g)=lim T'(X, Oy /I"),

and we prove by induction on n that I'(X, Ox/I")=k. For n=1 wehave I'(X, Oy)=%
since Y is reduced and connected. For n>1 we use the exact sequence
0 —> I"/I"+1—> @X/In+1_) wx/ln_) o

whence o — [(I*I"*t1) — T(Ox/I* 1Y) — T'(Ox [I™) — . ..
We will show that I'(I"/I"*!)=o0 for n>1. Then since the middle group contains £,
and the right-hand one is £ by induction, we will have that the middle one is £.

Now since Y is non-singular, I/I? is locally free on Y. Since its dual is a quotient
of Oy(1)"*! as in the proof of Lemma 8.2 above, it itself is a subsheaf of Oy(—1)"*1,
Hence

I"[I" 1= S™(I/I) € S™(Oy (—1)"* 1) = Oy (—n)".
Thus to show I'(I"/I"*')=o0, we have only to show I'(0y(—n))=o0. LetH beahyper-
surface of degree n which contains no component of Y. Then we have
0—>0y(—n) > Oy — Oy g —>0
where YnH is the scheme-theoretic intersection. Since Y is of positive dimension,
YnH is non-empty. Now
0 > I'(Oy(—n)) > I'(0y) > T'(Oynn) ~ - .-

But I'(Oy)=#k, and the map I'(0y)—>T'(0Oy,y) is non-zero, so I'(Oy(—n))=o.

APPENDIX
REPRESENTATIONS OF GL(r)

In this appendix we give a classification of the irreducible finite-dimensional
algebraic representations of the general linear group GL(r) over a field £, which for
convenience we will assume to be algebraically closed. In the case of characteristic
zero, the representations of GL(r) are well known [4; 5; 12]. In the first place,
every finite-dimensional representation is a direct sum of irreducible representations
[12, exposé 7, théoréme 2], and in the second place the irreducible representations are
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classified by the character associated with an eigenvector for a Borel subgroup of GL(r),
[12, exposés 17, 18, 19]. In the case of characteristic p=#o0 it is no longer true that
every finite-dimensional representation is completely decomposable. However, we can
still give a classification of the irreducible representations analogous to that in charac-
teristic zero. These results are contained in [4, exposés 15, 16], yet we feel that it is
useful to have a self-contained elementary treatment for the general linear group. Our
exposition follows closely that of Godement [5, Appendix], except that the proofs are
algebraic, and slight changes have been made for the case of characteristic p.

We recall for convenience the basic definitions. A representation of G =GL(r) is
an algebraic action of G on a (finite-dimensional) £-vector space V, i.e. a homomorphism
T : GL(r) >GL(V) of group varieties. We will denote the action of a matrix geG
on a vector veV by T(g)o. A morphism of representations is a linear map of the corres-
ponding vector spaces, compatible with the action of the group. A representation is
irreducible if the vector space has no proper stable subspaces.

Examples. — 1. Let V be an r-dimensional £-vector space with basis e, ..., e,.
Then G=GL(r) acts on V in the usual way. This is the standard representation of G.

2. If V is the standard representation of G, then the symmetric powers S*(V),
the tensor powers ®"V and the exterior powers A"V are also representations of G.

3. IfT is a representation of G on a vector space V, then we have the contragredient
representation T’ of G on the dual vector space V' defined by T'(g)='T(g™1).

4. Let A(G)=TI'(G, 0gz) be the (infinite-dimensional) k-vector space of regular
functions on G. Then G acts on A(G) by right translation: if 6eA(G) and geG,
then

(T(£)8)(¢")=0(g’8)-
For any 6€A(G), the translates of 6 generate a finite-dimensional subspace of A(G),
since they are all polynomials in the g;;and 1/det(g;) of some bounded degree depending
on 0 (see also [4, exposé 4, lemme 2]). Furthermore, this vector space is stable under
the action of G, and hence is a representation of G. We will see that every irreducible
representation of G arises in this way.

From now on we will use the following notations:

k is an algebraically closed field
G=GL(r, k)
A(G)=TY(G, Oy) is the vector space of regular functions on G
H =diagonal matrices A=(%, ..., 4,)eG
P =upper triangular matrices in G
X =upper triangular matrices with 1’s on the diagonal
Q =lower triangular matrices
Y =lower triangular matrices with 1’s on the diagonal

Thus P and Q are solvable algebraic groups, with commutator subgroups X and Y
respectively, and P/X, QY are isomorphic to H.
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Defimition. — Let T be a representation of G on a vector space V. A coefficient of T is
any function 9cA(G) of the form

6(g)=(T(g)z, v')
where v is a fixed vector in V, v’ is a fixed vector in the dual space V', and where ( , ) is the scalar
product.
(Note: Since G is a reduced scheme over an algebraically closed field, we allow

ourselves to use the old-fashioned terminology of ¢ function on G ” for an element of A(G),
and we define such functions by giving their values at the rational points of G.)

Lemma A 1. — Let g=(g;;) be an element of G. Let gy=1, and for each i=1, ..., r,
let

u - S1s

g;=det

03 Y-

If all the g; are different from zero, then g can be written uniquely as g=yhx with yeY, heH,
and xeX. Furthermore, in that case h,=g;lg,_ for i=1,...,71

Progf. — Left to the reader.

We denote by G, the subset of geG for which all the g; are different from zero.
It is an open Zariski-dense subset.

Proposition A 2. — Let T be a representation of a connected solvable linear algebraic group B
on a non-zero vector space V over k.  Then there is a non-zero eigenvector veV jfor B, i.e. a vector
such that for every beB,

T(b)o=x(b)o,

where y : B—k" is a suitable character of B.

Progf. — This is a consequence of the Borel fixed-point theorem [2, Proposi-
tion 15.5; 6, theorem 2] as follows. Let V be the projective space of lines through the
origin in V. Then B acts on V, which is a complete variety, hence there is a fixed
point. Any non-zero veV lying over this fixed point will be an eigenvector for B.

Definition. — Let T be a representation of G on a vector space V. Since P is a connected
solvable linear algebraic group, which acts on V through T, there must be an eigenvector for P,
i. e. a non-zero veV and a character A : P—k" such that for every peP,

T(p)o=2nr(p)o.
Such a character N is called an upper weight of T.
(Note that since £ is commutative, and X is the commutator subgroup of P, x is

identically 1 on X, and so is determined by its restriction to H=P/X.) Define also
a lower weight of T by taking an eigenvector for Q.
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Proposition A 3. — Let T be an irreducible representation of G on a vector space V. Then T
has a unique upper weight, and the eigenvectors for P form a one-dimensional subspace of V.

Proof. — Let A be an upper weight of T, corresponding to an eigenvector veV
for P. Let T’ be the contragredient representation of T, and let u be any lower weight
for T’, corresponding to an eigenvector »'eV’ for Q. Then we will show that A is
determined by w. But since A was arbitrary to begin with, this will show that any two
are the same, and so T has a unique upper weight.

Consider the coefficient 6 of T defined by the two vectors v, v':

b(¢)=(T(g)z, v').
For any geG,, we can write g=yhx as in Lemma A 1, so that
6(g) = (T (ph)v, v').
Now transposing the T(») and using the fact that v, " are eigenvectors, we have
6(g) =(T(hx)o, 'T(»)v)
= (A(kx)2, u(»y™")v')
=(M#)o, ¥')
=x(h).0(e),

where ¢eG is the unit element. But also

6(g)=(T(x)v, “T(yh)v)
—a(h1).0(e).
Therefore we have A(R).0(e)=w(h™Y).0(e)

for all heH, since HcG,.

Now I claim that 6(e¢) is not zero. Indeed, if it were, then by the above calculation,
0(g) would be zero for all geG,, and hence 6 would be identically zero since G, is dense.
But this is impossible, since »'#o0, and the vectors T(g)v for geG generate all of V
since T is irreducible by hypothesis. So we deduce that A(k)=u(h~'), which shows
that A is determined by p and so is unique.

To show that the eigenvectors for P form a one-dimensional subspace of V, we will
define a map f:V—>A(G), as follows. Let eV’ be the eigenvector for ) chosen
above, and for each »eV, let f(v) be the coefficient of T defined by v and v':

f0) () =(T(g)o, v').

As above, the irreducibility of T implies that whenever v%o0, then also f(v)%o,
i.e. fis injective. Therefore it is sufficient to show that the coefficients 6 =f(v) coming
from an eigenvector veV for P form a one-dimensional subspace. But by the calculation
above, any such coefficient satisfies

B(g)=2(k).6(e)
for all geG,, and thusis determined by the choice of 6(¢) which is a scalar. q.e.d.
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Proposition A 4. — If \ is the upper weight of an irreducible representation T of G on a
vector space V, then N(x)=1 for all xeX, and there are integers n,>ny>...>n, such that

)\(h)_—_-hi'l . o }l:lr
Jor all h=(hy, ..., h,)eH.

Progf. — We have already seen that A(x)=1 for every xeX. On the other
hand, it is well known [4, exposé 4, théoréme 2] that every character of H=(£")"
is of the form A(R)=~h{---A} for suitable n,eZ. Hence we have only to show
that n,>n,>...>n,.

As in the previous proof, we can choose vectors veV and »'eV’ so that the
corresponding coefficient 6 of T satisfies

6(g)=n(k).8(e)

for every g=yphx in G,. Furthermore, multiplying »" by a scalar if necessary, we may
assume that 0(¢)=(v, v’)=1. Defining g, for i=o0, ...,7 as in Lemma A 1, we have
O(g)=Hy'-- - hy
=g gt &
for each geG,. Now our result is a consequence of the following Lemma.
Lemma A §. — Let integers sy, ..., s, be given. T hen there is a function 0 in A(G) which
Jor each geGy, is of the form

b(g)=g1---&7
if and only if sy, ...,5,_y=0 (with no restriction on s,).

Progf. — Suppose first that there is such a function 6. Then we proceed by induc-
tion on . If r=1 there is nothing to prove. If r=2 we consider the matrices

gx)= (x_I (I,)

for each xek, and define a function ¢ from £ to £ by ¢(x)=0(gx)). For x+o0 we have
g(x)eG,, and so ¢(x)=x". Since the algebraic functions from £ to % are the polyno-
mials in x, we deduce that s;>o0.

For r>2 we consider the following two subgroups of G:

0 1 [0}

7 I
/ ~GL(r—1) and . = GL(2)
%

0 I 0 VA
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Restricting 0 to these subgroups, we get
a) a function 6" on GL(r—1) of the form

0(g)=gr' g ag "y
for geGL(r—1),, and
b) a function 0" on GL(2) of the form

0" (g) =g gy

for geGL(2),.

We deduce from a) that s, ...,s,_,>0, and form &) that s,_,;>o0.

Conversely, suppose that the integers s, ..., s, satisfty s, ..., s,_;>0. Then the
formula given for 6 defines a function for all geG, because g,=det(g,;) is invertible.

Now we show how to construct an irreducible representation of G with given upper
weight.

Proposition A 6. — Let a set of integers ¢c=(ny, ..., n,) with ny>n,>...>n, be given.
Let 6,c6A(G) be the function given by

0.(g) =gt - &7

where s;=mn,—mn,,, for i=1,...,7—1, and s,=n,. Let V be the subspace of A(G) gene-
rated by the right translates of 0, (as in example 4 above). Then V, is an irreducible represen-
tation of G with upper weight \ given by

AR) = hl- - .

Furthermore, any other irreducible representation of G with the same upper weight is isomorphic
to this one.

Proof. — First we show that 6, is an eigenvector for P with upper weight A. Indeed,
note by calculating with matrices that if peP and geG, then 0,(p)=2xr(p), and for
each ¢, (gp);=gp;- Thus

(T(£)9,)(8) =0,(gp) = (gp)i* - - - (gp)7
(

=x(p)-6,(g)

as required.

Thus V, is a representation of G containing an eigenvector for P with the correct
upper weight. If it is not irreducible, we can divide it by a maximal stable subspace
not containing 0,, and thus deduce the existence of some irreducible representation
of G with the correct upper weight.

Now let T; be any irreducible representation of G with upper weight A, on a
vector space W. Let T} be the contragredient representation on the dual vector space W’,
and let w'eW’ be an eigenvector for Q). Define a mapping f: W—A(G) as in the
proof of Proposition A g by sending each weW into the coefficient of T; determined
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by w and w’. Then, as above, f is injective and is compatible with the action of G.
Furthermore, if weW is an eigenvector for P such that (w, w’)=1, then the calculation
of the proof of Proposition A 4 shows that f(w)=6,. Therefore f(w)cA(G) is an
irreducible representation of G, containing 0,. It follows that f(W) equals V,; which
proves that V is indeed irreducible, and that f is an isomorphism of W onto V,.  q.e.d.

Example. — In characteristic p<o0 it may happen that a representation of G is
generated by an eigenvector for P without being irreducible. For example, let p=r=2.
Let V be the standard representation of GL(2), with basis x, . Consider I'*(V)=S*}(V’)".
Then I'?(V) has for a basis the symbols x%/2, xp, »*/2 with G acting in the obvious way.
I'%(V) is reducible, since xy generates a one-dimensional subrepresentation isomorphic
to A’V. On the other hand, #?/2 is an eigenvector for P, and generates the whole
vector space under the action of G.

In conclusion we can state the following theorem.

Theorem A 7. — Let k be an algebraically closed field, and let G=GWL(r, k). Then the
isomorphism classes of irreducible algebraic representations of G are in one-to-ome correspondence
with sequence of integers ¢=(ny, ..., n
that

) with ny>ny>...>n,. This correspondence is such

a) The upper weight N of the trreducible representation V, corresponding to ¢ is given by
MR =AY
for all heH, and
b) if V is the standard representation of G, then V, is a quotient of a subrepresentation of

S (V)®SH(A2V)® . . . ®S*(AV)

where s;=mn,—mn, , for i=1,...,r—1 and s,=n,. (Notethat A"V is aone-dimensional
representation, so that expression above makes sense also for negative s,.)

Proof. — Everything is already proved except for 4). Let e, ..., ¢, be the basis
of V with respect to which G acts. Then the vector

@6, Aeg)*® ... ®(eyA ... Ne,)

in the representation above, is an eigenvector for P with upper weight A. Hence V,
is a quotient of the subrepresentation it generates. (In characteristic zero, V, is isomor-
phic to the subrepresentation it generates.)
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