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ON THE ZETA FUNCTION OF A HYPERSURFACE(I)

By BERNARD DWORK

This article is concerned with the further development of the methods of /?-adic
analysis used in an earlier article [i] to study the zeta function of an algebraic variety
defined over a finite field. These methods are applied to the zeta function of a non-
singular hypersurface § of degree d in projective n-space of characteristic p defined
over the field of q elements. According to the conjectures ofWeil [3] the zeta function
of § is of the form

(i) ^(^^^p^^-^' /nd-^)
/ i-o

where Pis a polynomial of degree d-^d— i)^1 + (— i)^1^—!)}, (here n>o, d^i,
for a discussion of the trivial cases 72=0,1 see § 4 b below). It is well known that this
is the case for plane curves and for special hypersurfaces, [3]. We verify (Theorem 4.4
and Corollary) this part of the Weil conjecture provided i = (2, p, d), that is provided
either p or d is odd.

In our theory the natural object is not the hypersurface alone, but rather the
hypersurface together with a given choice of coordinate axes X^, Xg, . . ., X^i. If for
each (non-empty) subset, A, of the set S =={ i , 2, . . ., n+ 1} we let§^ be the hypersurface
(in lower dimension if A+S) obtained by intersecting § with the hyperplanes
{X,=o}^, then writing equation (i) for ^, we define a rational function P^ by
setting

im( A)(2) ^, ^) ̂ p^-ir^i -q^t) n (i -^),
/ 1 = 0

where i + m{A) is the number of elements in A. If ̂  is non-singular for each subset A
of S and if the Weil conjectures were known to be true then we could conclude that P^
is a polynomial for each subset A.

Our investigation rests upon the fact that without any hypothesis of non-singularity
we have

(4.33) ^(^(i-^riP^),

(1) This work was partially supported by National Science Foundation Grant Number €7030 and U.S. Army,
Office of Ordnance Research Grant Number DA-ORD-31-124-61-095.
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the product on the right being over all subsets A of S and ^p is the characteristic series
of the infinite matrix [2] associated with the transformation a == 4'oF introduced in our
previous article [i] and studied in some detail in § 2 below. We recall that
j^(t) =XF(O/XF(^) anc^ t^le fundamental fact in our proof of the rationality of the zeta
function is that /p is an entire function on Q, the completion of the algebraic closure
of Q^, the field of rational j&-adic numbers.

In § 2 we develop the spectral theory of the transformation a and show that the
zeros of /p can be explained in terms of primary subspaces precisely as in the theory
of endomorphisms of finite dimensional vector spaces. In this theory it is natural to
restrict our attention to a certain class of subspaces L(6) (indexed by real numbers, b)
of the ring of power series in several variables with coefficients in Q. The
definition of L(6) is given in § 2, for the present we need only mention that if b'>b,
then L^cL^).

An examination of (4.33) shows that if the right side is a polynomial and if 6~1

is a zero of that polynomial of multiplicity m then (6^)-1 must be a zero of ^p °^
multiplicity m^^). This is « explained » by the existence of differential operators
DI, . . . ,D^i satisfying

(4.35) aoD,=^D,ooc

/n+l
The space L(6) S D,L(i) is studied in § 3 d (in a slightly broader setting than

required for the geometric application), for i /(^—i)^.<^/(^—i), the main results
being Lemmas 3.6, 3. lo, 3.11. This is applied in § 4 to show that if ̂  ls non-singular
for each subset A of S then the right side of (4.33) is a polynomial of predicted degree
and is the characteristic polynomial of a, the endomorphism of L(6)/SD,L(&) obtained
from a by passage to quotients. (Theorems 4.1, 4.2, 4.3) We emphasize that this
result is valid for all p (including j^=2).

The main complication in our theory lies in the demonstration (Theorem 4.4 and
corollary) that if i = = ( 2 , ^ , r f ) then Pg(^) is the characteristic polynomial of a8, the
restriction of a to the subspace of L(6)/2D,L(&) consisting of the image of 1^(6) under
the natural map, 1s {b) being the set of all power series in L(6) which are divisible
by X^Xg ... X^i. This result is of course based on the study (§ 3 e) of the action
of the differential operators on 1^(6). This study is straightforward for p \ d but for p \ d
the main results are shown to be valid only for special differential operators.

We must now explain that for a particular hypersurface we have many choices
for the operator a (see § 4 a below) but once a is chosen the differential operators
satisfying (4.35) are fixed. With a simple choice of a the eigenvector spaces lies

in L ( - — — ) while for a more complicated choice of a the eigenvector space is known
\ P I

to lie in L(——). The special differential operators referred to above in connection

with the case p \ d are those which correspond to the simple choice of a for which the
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eigenvector space lies in L ( '——). Unfortunately '——< ——— ifp = 2 (and fortunately,
\ p 1 P P—^

only in that case). Thus for p = 2, if 2 |d we cannot apply the results of § 3 e to determine
the action of the special differential operators on L(i/2).

Finally (§ 4 c) using an argument suggested by J. Igusa, we show that our
conclusions concerning P=Pg remain valid without the hypothesis that ^ ls non"
singular for each choice of A.

This completes the sketch of our theory. We believe that our methods can be
extended to give similar results for complete intersections. We note that the Weil
conjectures for non-singular hypersurfaces also assert that the polynomial P in equation ( i )
has the factorization P(^) == II (i —6^) such that

i

\Q^\=q^-l}ll2 for each i (Riemann Hypothesis)
O^-^"1^ is a permutation of the 6, (functional equation).

We make no comment concerning these further conjectures.
In fulfillment of an earlier promise we have included (§ i) a treatment of some

basic function theoretic properties of power series in one variable with coefficients in Q.
It does not appear convenient to give a complete table of symbols. We note

only that throughout this paper, Z is the ring of integers, Z^_ is the set of non-negative
integers and R is the field of real numbers.

§ i. P-adic Holomorphic Functions.

Let 0. be an algebraically closed field complete under a rank one valuation
x-^ord x. This valuation is a homomorphism of the multiplicative group, ft*, of 0.
into the additive group of real numbers and is extended to the zero element of ft by
setting ord o=+oo. Furthermore ord(A"+^)_^Min(ord x, ordy) for each pair of
elements x, y in ft and the value group, ®, of ft (i.e., the image of ft* under the
mapping x->ord x) contains the rational numbers.

For each real number &, let

r^=={xe0.\ordx=b}
U^=={xe£l\ordx>b}
C^={xeQ.\ordx>^b}.

As is well known, 0, is totally disconnected, and each of these sets are both open and
closed. However by analogy with the classical theory it may be useful to refer to the
set C^, (resp: U^) as the closed (resp: open) disk of additive radius 6.

U_ „ will be understood to denote ft and clearly T^ is empty if b does not lie in
the value group of 0.. We further note that U^ (resp: C^) is a proper subset of U^
(resp: G,) if b'>b. If W then U,=C,.
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The power series in one variable with coefficients in Q,

(1 .1 ) F^=SA,f
s=0

will be viewed as an Q. valued function on the maximal subset of 0. in which the series
converges. (This is to be interpreted as a remark concerning notation, the power
series and the associated function cannot be identified unless (cf. Lemma i. 2 below)
the series converges on some disk, U^,, 6>oo). It is well known that F converges
at xeQ, if and only if limA^c^o. An obvious consequence may be stated :

S->00

Lemma i. i. — F converges in C^ if and only if

(1.2) lim (ord A- +J&) = °°5
y->oo

provided be(5. The series converges in U^ if and only if

(1.3) liminf(ord A.)/;J>—b.
j->co

We may now prove the analogue of Cauchy's inequality as well as the analogue
of the maximum principle for closed disks.

Lemma 1 .2 . — Iff converges on C^ and bedS then

(1.4) MinordF(A;)= Min {ordA,+jb)a;er^ os$?<oo

Furthermore
Min ord F ( x ) == Min ord F(^).
xer, xec,

Proof. — Since I\ is not compact it is not immediately obvious that ord F(^)
assumes a minimum value at some point of F^. However the existence of the right
side of (i .4) is an immediate consequence of Lemma i. i. Let M == Min (ord A^-}-jb),
then ord (A^');>M for all xeF^ and hence ordF(^)>M on IV Let S be the set
of all j^Z^. such that ordAy+j6=M. By definition S is not empty and Lemma i
shows that S is finite. Let g{t) == S \.t\ f(f) = F ( ^ ) — g ( t ) . Lemma i also shows that

?ES

there exists s>o such that ordAy+J&^M+s for each j^S. Hence ord /(^)^>M+£
everywhere on 1 .̂ Let 7rer\, ^'el^ and let g^[t) =g(^t)|nf. Let B^ be the coefficient
of ^ in g^. For jeS, ord By = ord A +J 'b—M==o. Thus the coefficients of g^ are
integral and the image of g^ in the residue class field of Q. is non-trivial. Since the
residue class field is infinite there exists a unit x in Q such that ord^(^)=o. This
shows that ord g(^x) =M. However rcxeY^ and hence ord F(^) assumes the value M
on I\. This shows that the left side of (i .4) exists and is equal to the right side. The
assertion concerning C^ follows from the obvious fact that for b'>b^ we have
ord Ay 4- JV^, ord Ay-^-jb for each j'eZ^. and hence Min ord ~F{x) >: Min ord F(x),
which implies the assertion of the lemma. 6 &
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As in [i], the ring of power series in one variable, ^ with coefficients
in Q., ^{^}, is given the structure of a complete topological ring by letting the subgroups
{C^}+^2{^}}6eR,wez+ constitute a basis of the neighborhoods of zero. This topology
will be referred to as the weak topology of O.[t}. It may also be described as the
topology of coefficientwise convergence.

We now obtain an elementary, but useful relation between convergence in the
weak topology and uniform convergence in the function theoretic sense.

Lemma 1.3. — Letf^f^^ .. ., be a sequence of elements of 0.{t}, each converging in C ,̂,
Ae®.

(i) If the sequence converges uniformly on C^ to a function F then

a) The sequence is uniformly bounded on G^.
b) The sequence converges in the weak topology to fe0.^t} which itself converges on C^

and f{x)==F{x) for all xeC^.

(ii) Conversely, if

a) the sequence is uniformly bounded on C^,
b) the sequence converges in the weak topology to fe0.^t}

then f converges in U^ and for. each s>o the sequence converges uniformly to f on C^g.

Proof, — Let f,{t) = S A, ̂  for i== i, 2, ...
j=0

(i) Since the sequence converges uniformly on G^ and since, by Lemma 1.2,
f^ is bounded on C^, we may conclude that the sequence is uniformly bounded on C^,.
By hypothesis, given N>o there exists neZ,^, such that ord (fi(t)—./^))>N for
all teC^ and all z, i'>n. Hence by Lemma i .2, for z, i'>n and for alljeZ^

(1.5) ord(A,,-A^)^N-;A.

For fixed j, (5) shows that {A^J^^g is a Cauchy sequence and hence converges
to an element Ay of Q. It now follows from (1.5), letting i'-xx) that for i>n and
all jeZ^.

(1.6) ord(A,,-A,)^N-^.
00

Let f(f) = S A^. Ify does not converge on C^, then we may suppose N chosen such
j=0

that ordAy+^6<N for all j in some infinite subset, T, ofZ_^. Let i be a fixed integer,
i>n. Since f^ converges in C^, we know that ordA^+J&>N for all jeZ^.—T'
where T is a finite (possibly empty) subset of Z^_. For jeT—T', ord A^>ord A^
which together with (1.6) shows that ordA +J^^N. Hence T—T' must be empty,
a contradiction, which shows that f converges on C^. Lemma 1.2, together with
equation (1.6), shows that for i>n, ord{f^{t)—^))J^N everywhere on C^. In parti-
cular for fixed teC^, letting N->oo we conclude that f(t) ==limf^t) ==F(<). This

l—>" 00

completes the proof of (i).
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(ii) By hypothesis the sequence is uniformly bounded on C^ and hence by
Lemma i. 2 there exists a real number, M, such that

(1.7) ordA,,+j"A;>M
00

for all i.jeZ^.. Furthermore, writing f== S A '̂, we know that for each jeZ^,
y=0

limA^=A^. For each jeZ^., therefore, there exists i (depending on j) such that
ord (A^y—A^.)>M—jb. Hence by comparison with equation (1.7) we may conclude
that

(1.8) ordA,+^>M

for all jeZ^,. This shows that/converges in U^,. Now let s be a real number, s>o.
Given a real number N, let jo^=Z+ be chosen such that ^£+M>N. Then by (1.7)
and (1.8) we have

ord A, +j{b + s) > N, ord \,. +j\b + s) > N

for all ieZ^. and all J>JQ. Hence ord (A^—A,.)+j(&+s)>N for all j>j^
z'eZ., while since limA..==A,, we may conclude that there exists yzeZ, such

i-> oo " ' '

that ord(A^.—A,)+7(6+£)>N for all J<:JQ,i>n. Hence for i>n, jeZ+,
ord (A^,—A,) +j(& + s) >N and hence by Lemma i. 2, ord {f,(t) —/^))>N everywhere
on C^,, which shows that the sequence converges uniformly to/onG^g. This completes
the proof of the lemma.

With F(^) as in equation ( i . i) we define thej^ derivative ofF (for jeZ_^) to be the

power series f{j){t)= S; s{s—i) .. . (s—j+ I)A^S-? and let F^)— S (HAj8-^ where (s)
S=J 8=0

denotes the binomial coefficient of V in the polynomial (i +t)8. Clearly F^^jiF^,
the notation F^ being convenient if the characteristic of Q is not zero.

We now prove an analogue of Taylor's theorem.

Lemma 1.4. — If FeQ.[t} converges in C^ (6e©) then
(i) F is a continuous function on C^ and is the uniform limit of its partial sums.
(ii) F^ converges in C^for each jeZ^..
(iii) For fixed xeG^ the polynomials P )̂ = S F^)^—^)7 {n== i, 2, ...) converge

oo ?=0

^^ in 0.{t} to F(^). T^ element L(Y) == S F^Y^E^Y} converges for all YeC^
and F(t)==L(t—x) for each teC^. ?=0

Proof. — (i) In the notation of equation ( i . i), we conclude from (1.2) that given
N>o, there exists neZ^ such that ord A,+j6>N for all j>n. Hence by Lemma 1.2,

00

ord(F(^)—S A^)>N everywhere on G^. Hence F is the uniform limit on G^ of its

partial sums and thus continuity of F follows from the continuity of polynomials.
Assertion (ii) is a direct consequence of Lemma i. i.

10
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(iii) For jeZ^., let M, = Min (ord A, + sb). Since F converges on C^ Lemma i. i

shows that M^oo as j->oo. Lemma 1.2 shows that for xeC^^

ord F^) ̂  Min {ord (j) + ord A, + {s—j)b}.

Hence

(i.9) Min ord F^x) ;> My—jb, M^^ M,.

Hence by Lemma 1.1, the series L(Y) converges for all jyeC^ and hence by
part (i), P^) converges uniformly to L{t—x) on C^ (as 72-^00). Thus in view of
part (i) of Lemma 1.3, the proof is completed if we can show that P^(^) converges

n
weakly to F(^) as yz-^oo. Let P^) = 2; A^f. We must show for fixed s that
l imA^g=A^. From the definitions
n->ao '

(i. 10) A^SF^)^-^-8.

We now write F = F,, + G«, where FJf) = S A,;'. Clearly A^, = A^, + A,; „ where
y = = o

A^, (resp. A^,) is given by the right side of ( i . 10) upon replacing F by F^ (resp. GJ. Since
Taylor's theorem is formally true for polynomials, A^=A^ for s<,n, A^==o for s>n.
On the other hand for all jeZ^., ord {G^x)) >M^—jb and hence ordA^^M^—^.
Hence for n^s, ord(A^—A^J==ordA^^M^—^-^oo as n->ao. This completes
the proof of the lemma.

We can now give some equivalent definitions of the multiplicity of a zero of a
power series.

Lemma 1.5. — If F converges in C^,, meZ^. and xeC^ then the following statements
are equivalent

a) limF^)/^—^ exists.
t->x

(B) F^(A:)==o/or z=o,i, ...,m-i.
y) The formal power series, F(^)(i—^:)~w converges in C^ if x^o while if x==o,

r1 Ay^J F(^) 272 ^{^}.

Proof. — By Lemma i .4 for teC^, t^x, we have
W — l 00

F^/^—A:)"^ S Fl••](A•)/((—^CT-•+ S FM^)^—^)-'".
t=0 z==»n

Hence, by the continuity of power series, the limit exists if and only if ((B) is true.
Thus (a) and (?) are equivalent. If x==o then ((B) and (y) are clearly equivalent.
Hence we may suppose that x=^o. Let fe0.{t], f(t)(i —tlx^^F^t). Since the rules
of multiplication of formal power series and of convergent power series (in the
function theoretic sense) are the same, it follows that if/converges in C^ then as a function,
f{t) =F(^)/(i—tfx^ for all teC^—{x}. The continuity of convergent power series now

11
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shows that (y) implies (a). To complete the proof we show that (jB) implies (y). It follows
n

from (p) and Lemma 1.4 that in the weak topology F(^) == lim S F1^)^—^ and
n n-^^j^m

hence in that topology, F{t){l—t|x)'~m==(—x)mlim S Fm(A:)(^-—A:)?'-m. The coefficient
oo n-»-ooy=w»

B, of f is clearly B,== S F^)^-;^—^'--8 so that by (1.9),
f-m

ordB,>Min{M,—^}.

Thus ord B^-t-^^M^ and since M^-^oo with s, this shows that F ( ^ ) ( i — f i x ) " " *
converges in C^.

IfF converges in C^, ^eC^, we say that x is a zero of multiplicity m>_o if F111 )̂ = o
for z==o, i, ..., m—i, while F^A:) =)=o. In particular if H converges in C^, x^=o,
H{x) =|=o and F(^) == (i—^^H^) then A: is a zero of F of multiplicity m.

Let F be an element of O.[t} which converges in U^ for some &<oo (i.e., the
domain of convergence of F is not the origin). We assume with no loss in generality
that Fei +^{^}- In the notation of equation (1.1)5 the Newton polygon of F is the
convex closure in RxR (==two dimensional Euclidean space with general point (X, Y))
of the positive half of the Y axis and the points {j, ord A^.), j = o , i , . . . , it being recalled
that ord A. == + °° if A .̂ = o. The Newton polygon will have a second vertical side
of infinite extent if F is a polynomial of degree w>o. In this case the boundary of
the Newton polygon (excluding the vertical sides) is the graph of a real valued function,
A, on the closed interval [o, m]. Likewise if F is not a polynomial then the boundary
(excluding the vertical side) is the graph of a real valued function, h, on the positive
real line. In either case, h is continuous, piecewise linear with monotonically increasing
derivative. Furthermore equation (1.3) shows that the graph of h is asymptotic (if F
is not a polynomial) to a line of slope — b y where b is the minimal element of the extended
real line such that F converges in U^. If A: is not an end point of the interval on which h
is defined then h\x—o)<^h'(x-\-o). The points at which the strict inequality holds
are called the vertices of the polygon. The abscissa, j, of a vertex is an integer and the
vertex is then (j, ord Ay). Finally, if / is the line obtained by extending in both directions
a non-vertical side of the Newton polygon ofF then for each jeZ^., the point (j, ord Ay)
lies on or above the line /.

n n

Lemma 1.6. — Let F(^) = SA.^==r i ( i—^/oc j be a polynomial of degree n>o,
7=0 j==l

with constant term i. Let \<\<. . .<Xg be the distinct values assumed bjy orda^1 as i runs
from i to n and for ^=i,2,...,j, let r^ be the number of ̂ eros, a, off (counting multiplicities)
such that —ord a == Xy. The vertices of the Newton polygon off are the origin P(), and the s points

(i.ii) Pa-fSr,, ir^)
V=i =1 /

12
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Proof, — Let the zeros of F be so ordered that ord a^^ord a^'1^ . .. _<ord a^"1.
The proof may be simplified by letting TO=O, \ be any real number, say \—i. Then

( a a \
P^= S r^ S ̂ \) for a==o, i, ..., s. Let^ be the abcissa of P^, then A. is the sum

<=0 .=0 / ^ la

of all products of the o^'1 taken j^ at a time. This sum is dominated by II a,"1. Hence
, ; i==i
la Ja

ord A. == ord 11 a,"1 == S y.\. If ^o^Ja-i^J^Ja ihen/a i==i t=o
? a-l

ord A,^ord II a,-̂  S ̂ +X,(j-^_,)
»==! i==o

and hence the point (7, ord Ay) lies on or above the line P^_iP^ since the equation
of that line is

(*.'2) Y-S^VX-;,.,).
»==0

Thus the Newton polygon is the convex closure of the j+ I points PQ? PI? • • - 3 Pg and
the point (o,+oo). Equation (1.12) shows that the slope does change at the points
PI, Pg, . . ., I? s-i an<^ ^is completes the proof.

Corollary. — The numbers {orda,"1}^ are precisely the slopes of the non-vertical sides
of the Newton polygon of'F. If\ is such a slope then the number of^eros a off such that ord a = — X
is the length of the projection on the X-axis of the side of slope X.

We now prove a refined form of a well-known theorem [4, Theorem 10, p. 41]
which states roughly that two polynomials of equal degree have approximately the
same zeros if the coefficients of the polynomial are approximately equal.

Lemma 1.7. — Let f and g be elements of Q\f\ and let X be an element of the value
group © of 0. such that

a) fW-gW^^
b) The number (counting multiplicities) of ^eros of f on I\ is a strictly positive integer^ n.

If N is a strictly positive real number such that

(1.13) Minord (/W-^W)>^N,xer^

then each (multiplicative) coset of i +GN contains the same number of ^eros off 'in I\ as of g.

Proof. — Let 04, ..., a^ be the zeros of/in I\, let y^, . . ., Ym be the (possibly empty)
set of zeros of/ in U^ and let S be the set of zeros of/ outside C^. Clearly for
aeS, orda<X and hence if [Bel\, ord (i —(B/a) ==o. Since ord v^>^, we have
ord ( i—p/y^ ) =ord (P/Y^) ==X—ord y^<o for i = = i , 2 , . . . , m if pel\. Since

m nfw = n (i -^). n (i - </Y.) . n (i -</a)
»==! i==l aGS

13
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n w
we may conclude that for [Bel\, ord/((3) = S ord (i —P/oc^) + S (X—ord Yi). Letting

m i==l i=l

c== S (—X+ord Yi)? we note that c is independent of [Bel\. Letting 04, ocg, ..., a^,
1=1

be the (possibly empty) set of zeros of ^ in I\ we conclude by the same argument as
above that there exists a constant c'J>o such that for [Bel\

(1.14)

ord /((B) = - c+ S ord (i - (B/ocJ
1=1

ord ^([B) =-^+ S ord (i-P/o^),
t=i

it being understood that ord^((B) ==-—^' i fn '^o. It is easy to see that TZ '+O for
otherwise ord ^(aj = —^^o<nN<ord(/(ai)—^(ai)) ==ord ^(a^), a contradiction.

Let Pi, . . .3 Re be chosen in I\ such that Ri(i +0^), . . ., Pe(1 +CN) are disjoint
and such that their union contains all zeros of f and g in I\. If ^>i,
ord ( i—p./pi)<N for ^=23 3, . . . e and hence there exists e>o such that

(1.15) o^ord(i—p,/Pi)<N—£ for 2^j<,e.

If ^=i , we interpret this condition to mean simply o<s<N. With s so chosen we
shall for the remainder of the proof let (B be a variable element of I\ satisfying the
condition

(i. 16) N—£< ord(i — Pi/p) <N.

We now show that if ae(^(i +Cy) then

(i..7) N>ord(I-P/oc)=ord(I-p/,pl) if i-1
v / / v > / / ord(i—-p,/pi) if z + i .

For z = i this follows from a/p= (a/Pi)(Pi/P)e(Pi/(B)(i +0^), while by (1.16)
(P, /P)^(I+CN). For ^2, we have a/[Be(PJP)(i +0^ = (PJPi)(Pi/P)(i +0^) while
by ( i . 15) and ( i . 16) ord (i — &,/Pi) < N — c < ord (i — @i/p). This completes the proof
of ( 1 . 1 7 ) .

In particular if a is a zero of/in I\ then, by ( i . 17), ord (i —-(B/a)<N and hence
by (1.14) since c>_o, ord/((B)<7zN. From (1.13) we now see that ord/([B) ==ord g(^)
and thus equation (1.14) shows that

(1 .18) -^+S ord(i-P/aJ=-r'+i ord(i+P/a;)
i=l t=l

For j= i, 2, ..., e, let ^ (resp. nj) be the number of zeros of/ (resp. g) in (By(i +CN).
Equations (1.17) and (1.18) now give

(1.19) (n^n[) ord(i-P/P,)=<;-^'+ S (n^n,) ord(i-(B,/iB,)
?=2

the right side being simply c—c' if e= i. As p varies under the constraints of ( i . 16),
ord ( i—Pi/P) varies at least over the rational points in the open interval (N—s, N)

14
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while the right side of (1.19) is independent of (B. This shows that n^==n[ and by
the same argument n^=n[ for i==2, 3, . . ., e. This completes the proof of the lemma.

As an immediate consequence we state the following corollary.

Corollary. — Let fand g be elements of^l\f\ such that f{o) ==g(o) == i • Let b be an element
of (5 and let m be the number (counting multiplicities) of ^eros offin C^.

1. If Minord (f{x)—g{x))'>o then the sides of the Newton polygon offof slope not
xec^

greater than —b coincide with the corresponding sides of the Newton polygon of g.
2. // N is a strictly positive real number and

Min ord(/(A:) —g{x))>mNxec^

then each coset of i + C^ in C^ contains the same number of ^eros off as of g.
We can now demonstrate the main properties of the Newton polygons of power

series.

Theorem 1 . 1 . — Let b/<b<oo, be(5 and let F be an element of Q.[t} converging in
U^, F(o) == i. Let m be the total length of the projection on the X axis of all sides of the Newton
polygon of F of slope not greater than —b. There exists a polynomial G of degree m, (G(o) == i)
and an element H of Q.U} such that the ^eros of G lie entirely in C^ and

(i) H converges in U^, ord H(^) ==o everywhere in C ,̂.
(ii) F=GH.
These conditions uniquely determine G and H. Furthermore :
(iii) The Newton polygon of G coincides with that of F for o^X^m while the polygon

ofti is obtained from the set: (Polygon ofF) — (Polygon ofG) by the translation which maps
the point {m, ord A^) into the origin.

(iv) If K is a complete subfield of 0. which contains all the coefficients of F, then GeK[<].
(v) If for each partial sum, F^, of F we write F^=G^H^, where G^ is the normalised

polynomial whose ^eros are precisely those ofT^ (counting multiplicities) in C^, then G^ converges
to G in the weak topology of Q.[t}.

(vi) If ne2^ and N is a strictly positive real number such that ord (F(^)—F^))>mN
everywhere on C^,, then each coset of i +C^ in C^ contains as many ^eros off as ofF^.

Proof. — We follow the procedure of part (v). For n^>_m the Newton polygon
of F^ coincides with that of F in the range o^X^m and furthermore all sides of the
polygon of F^ of slope not greater than —b occur in that range. This shows that for
n^m, F^ has m zeros in G^. Since the sequence {F^} converges uniformly on C^ to F,
we conclude that given N>o, there exists n^eZ,, n^>_m^ such that if n and n' are integers
not less than n^ then ord (Fy^—F^)>mN everywhere on C^. We may conclude from
the corollary to the previous lemma that each coset of i + G^ in G^ contains as many
zeros of F^ as of F^ and hence the same holds for G^ and G^. This shows that for n > m

m

we may write G^(t) = II (i —^/a^) where the zeros a^ i, .. .5 a^ w ofGy, are so ordered
i=i

15
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that lima^==a^. exists for z = = i , 2 , . . . ,m . This shows that G^ converges to G, a
n-»-oo '

polynomial of degree m whose Newton polygon coincides with that of Fy^ and hence
with that of F for o:<X;<m.

For each yzeZ^., H^(<) is a product of factors of type ( i—^/a) where ord a<A.
Hence

(1.20) ordH^)=o

everywhere on C^. G^ is a product of factors of type (i —^/oc), where aeG^, and hence if
ord t<b then ordG^)^o (equality holds if G^)==i). If then &"6®, b>btf>bf, then
ordG^)<o everywhere on F^ and hence ordH^)==ordF^)—ordG^)>ordF^)
everywhere on F^. Lemma 1.3 shows that ¥^{t) is uniformly bounded on F^. and
hence the same holds for H^). Hence by Lemma 1.2 the sequence H^, Hg, ... is
uniformly bounded on C^,. We show that the sequence H^, Hg, . . . converges in the
weak topology of Q{^}. This follows from the fact that i +^{^} is a complete multi-
plicative group under the weak topology. Certainly F^->F and G^->G in that topology
and hence H^=FJG^ converges weakly to the power series H=F/Gei+^{^}- It
now follows from Lemma i. 3 (part ii) that H converges in Vy, (and hence letting
b"->b\ in Vy) and that for each s>o, H^ converges uniformly on C^e to H. Using
equation (i .20), it is now clear that H(<) is a unit everywhere on C^,.

This completes the proof of parts (i), (ii), (v). Assertion (iii) has been verified
for G, its verification for H follows from Lemma 1.6 and the fact that H^->H.
Assertion (vi) follows from the construction of G, the corollary to Lemma i . 7 and from
the fact that the zeros of F in C^ are precisely those of G.

To verify (iv) it is enough to show that G^eK[^] for each /zeZ^. since then
G=limG^eK[^]. Since the valuation in a finite field extension of K is invariant under
automorphisms which leave K pointwise fixed, we may conclude that the coefficients
of G^ are purely inseparable over K. Thus we may suppose K is of characteristic p =f= o.
If a is a root ofG^ then it is a root ofF^ of the same multiplicity and hence the multiplicity
must be a multiple, mpr, of a power of p such that a^ is separable over K. This shows
that the coefficients of G^ are separable over K which now shows that G^eK[(], This
completes the proof of the theorem.

Part (v) of the above theorem has an important generalization which is the analogue
of a theorem of Hurwitz.

Theorem 1 .2 . — Let 6'<&<oo, be(S and let f^f^ ... he a sequence of elements
of Q{^}, each converging in Cy such that f^o) == i for each jeZ.^. and such that the sequence
converges uniformly on Cy to FeQ{^}. By the preceding theorem, F==Gtl, fj=gjhj where G
(resp. gy) is a polynomial whose ^eros are precisely those off [resp.f^) in C^,, and G(o) == ;̂(o) = i.
The conclusion is that G = lim g^ and that for i large enough, g^ and G are polynomials of equal

i->ao
degree.

16
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Proof. — Let degree G==m and for each ^eZ^., let F be thej^ partial sum of F
and let f^ be the j^ partial sum of f^. Let N be a strictly positive real number.
Pick jeZ^. such that

(1.21) ord(F^)—F,(^))>mN

everywhere on C^. Part (vi) of Theorem i. i shows that F has m zeros in C^. Pick i^
such that for each i>z'o

(1.22) ord(F—/,)>mN

everywhere on C^. Pick z/eZ^. such that for given i'>i^

(1.23) ord(^-/,J>mN

everywhere on C^. We may conclude from these three relations that

(1.24) ord(F,-/^)>mN

everywhere on C^, and the Corollary to Lemma 1.7 now shows that each coset
of i + CN in C^ has as many zeros of Fy as of/^ and in particular^ has m zeros in C^.
Equation (1.23) together with part (vi) of Theorem 1.1 now shows that^ has m zeros
in C^. Furthermore equations (1.21) and (1.23) and part (vi) shows that each coset
of i + GN contains as many zeros of F in C^ as of Fy and as many zeros of f^ as ofj^.
We may now conclude that each coset of i + C^ contains as many zeros of F in C^ as
offi for each z>^. It is now clear that gi->G and that deg gi===m for i large enough.

Corollary. — Under the hypothesis of the theorem^ for i large enough^ the ^eros <^ i? o^g, . . . a^
rf.fi m ^h may f)e so ^dered that lim a^ == a^, j == i, 2, . . . m and 04, . . ., a^ are the ^eros
of F in Cfi.

We conclude by recalling that in our previous article we left two propositions
unverified. Proposition 2 of [i] is contained by Theorem 1.1 above. We now
demonstrate Proposition i.

Proposition. — If b'<b<oo and F converges in U^ but is never ^ero in U^, then the
series i/F converges in U^.

Proof. — As before we may assume A()==I. The Newton polygon of F has no
side of slope less than —b and hence ord Ay^>—jb. The conditions \== i, ordA,,>—jb
define a subgroup of i +^{^} and hence are satisfied by the formal power series i/F.
This shows by Lemma i. i that i/F converges in U^.

§ 2. Spectral Theory.

Let Q '̂ be the field of rational j&-adic numbers, 0. the completion of the algebraic
closure of Q', the valuation of Q being given by the ordinal function x-^-ordx which
is normalized by the condition ord p = + i •

Let (7, n, d be integers q> i, d> i, n>o which will remain fixed throughout this

17
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18 B E R N A R D D W O R K

section. Let Z be the set of all U=={UQ, u^ .. ., ^JeZ^1 such that duo>,u^-{-. ,. -\-u^
The set, Z^4'1 may be viewed as imbedded in TZ+ i dimensional Euclidean space, R'14'1

and let a be the projection (^05^13 • • -^Jn)'"^ °f R714'1 onto R.
We formalize and reformulate in a manner convenient for our present application

the methods appearing in the second half of the proof of Theorem i [i].

( m \
Lemma 2 .1 . — Let c^ be the minimal value of S u^ \ as (^(1), . . ., u^) runs through

1=1 /
all sets ofm distinct elements of Z. Then cjm->co as m->oo.

Let yR be an infinite matrix with coefficients 9Jl^ „ (in £1) indexed by 3; X 2 which
have the property ord 9JI^.>XCT(<7M—v) where x is a strictly positive real number. When
convenient we write 9Jl(^, v) instead of 9?l̂  ^

Lemma 2.2. — (i) If^Sl' is any finite submatrix of 9JI obtained by restricting the indices {u, v)
to 2' X 2' where Z' is a finite subset of 2, then the coefficient y^, off in det(I —W) satisfies the
condition: ordy^x(^—i)^. Henceforte^ ord det(I—^TO')^Min(word^+x(<7-—i)<;),

w=0
an estimate depending only on ord t and the constants^ q, d, n, but independent ofW. In particular
for each bounded disk ofQ., det(I — W) is uniformly bounded as 3;' varies over all finite subsets of 3;.

(ii) If {u, ^eZ'xS^ then the minor of {u, v) in the matrix (I—tW) is a polynomial
SyJ^ v}^ and

ord^{u,v)^qKa{v—u)+K{q—i)c^

Hence/or ^e0, ord {minor of {u, v) in (I—W))>^qw(v—u) -}-c, where c is a constant inde-
pendent ofW and 27 ^ord t is fixed).

m
Proof. — (ii) The coefficient, Ym(^3 v) ls a sum °^ products P=dL II SO^M^, y^),

»==i
where {u, M^, . . ., u^} is a set of m + i distinct elements of 2' and {y, z/^, . . ., v^}
is a permutation of that set. Hence

w / in \ t m \
x-^rdP^ S G{quW-uw)==G{q^u+ S uw}—^v+ S vw}—(qu—v)}=

»=i \ 1=1 / \ »=i /

( w \
a{{q-i) v+ S ̂ ) -(^-,)}^^(.-^) + (<7-i)^.

i=i /

Lemma 2.3. — .For NeZ^., ̂  SJt̂  be the submatrix of 9JI obtained as in the previous
lemma by letting Z' =[ueZ\a[u}<^}. Let SK^ ̂  tne ^trix obtained from SR^ by replacing
^u v h ^ero whenever a{qu—v)>{q—i)N. Then lim det(I-^N) == lim det^—tWy),

' ' N-»-oo N-»-oo

the limit being in the sense of uniform convergence on each bounded disk of £2. The limit is an
00

entire function^ S y^^, and ord^^>^{q—i)x^.
M==0

The remaining proofs may be omitted since they are consequences of the methods
of [i]. Lemma 2.3 follows from Lemma 2 .2 and Lemma 1.3 (part (ii)) once it is
verified that the two sequences converge weakly to the same limit. However the details
concerning weak convergence are very similar to the proof of Lemma 2.2. (We note

18
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that the method used in [i, equ. (20.2)] to show weak convergence cannot be used
here as that proof made use of the geometrical application.)

Let Q. {X} be the ring of power series and £1[X] the ring of polynomials in
n+i variables XQ, X^, . . . ,X^ with coefficients in 0.. If U==(UQ,U^ . . ., z/JeZ"4-1,

n

let X" denote the monomial H X"1. Let ^ be the endomorphism of 0. {X} or Q[X]

as linear space over Q. defined by ^(X") == ° 1 . y
X^ if q \ u '

For each ordered pair of real numbers {b, c), let L(6, c) be the additive group of
all elements SA^ei^X} such that

(i) A^=o if u(f:Z
(u) ordA^buQ+c.

Let L{b) = U^L(&, c), & be the subspace of ^[X] spanned by {X^}^. For each

integer N;>o, let fl^ be the subspace of fl consisting of elements of degree not greater
than N as polynomials in Xo. Let £(&, c) =flnL(6, c), ̂ \b, c) =&W^L(b, c).

If He£2{X}, let ^oH denote the linear transformation ^->^(H^) of Q{X}
into itself.

Lemma 2.4. — Let [L be any mapping q/'OfX] into the real numbers such that for L En
S^{X}, ,eQ, r+o,

^(^2)^^(Sl) +^(^), (^(0) =-00

(2 -1 ) ^(^)<^)/^^^)=Ft(S)
^(^+^)^Max(^(y^(y).

7/'^ ̂  an integer, s^i, \ is a nonzero element of Q. and ^ is a polynomial such that

(2^) (I_^-i^oH)^=o, (H+o)

then
^)^(i(H)/(y-i).

The proof may be omitted as it follows trivially from the fact that for T]£^{X},

^^(HY]))^(^(H)+^(7]))/?.

In particular if A is a linear homogeneous function on R^+1 and if for each 7]er2{X},
(i(7]) is the maximum value assumed by h(u) as X^ runs through all monomials occurring
in T], then [i satisfies the conditions of Lemma 2.4. In particular if Hefi^-^ then
letting h(u} =^+ . . . +^—^ we may conclude that if ^ satisfies (2.2) then ^ lies
in fl and letting h(u) ==u^ we may conclude that ^ lies in fi^^

Thus the definition of det (I—^oH) appearing in our earlier work is unchanged
if (^oH) is restricted to fi^ for any integer TTZ>N.

Now let x be a strictly positive rational number. Let F = SA^X" be an element
ofL(x, o) which will remain unchanged in the remainder of this section. We associate

19
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with F a power series 7?, the characteristic series of^oF which generalizes the characteristic
polynomial appearing in the case in which F is a polynomial. For each integer NJ>o,

let TN be the linear mapping of L(—oo) into fi^ defined bv T^X")^ XM lf ̂ N.
' v / o otherwise

Let a^ be the mapping S->+(S(TN^_I)F)), and let o^ be the mapping ^->T^(^(^F))
of (say) fi^ into itself. If in the terminology of Lemma 2.3, we set 9Jl^ y==A ^_^ for
all (z/, y) e3; x 2, then relative to a monomial basis of fi^ the matrix form of a^ is 9.)̂
while that of a^ is SR^- Hence lim det (I —ty.^) and lim det (I —^) both exist and

N-^oo N-»-oo

are equal by Lemma 2.3. The characteristic series, /p, is defined to be this common
limit. Lemma 2.3 shows that ^p is entire and lies in 0{^}, 0 being the ring of integers
of 0

The mapping a : ̂ ->^(F^) of ^{X} into itself will now be examined. We
first show by a general example that a satisfactory theory cannot be obtained if we
allow a to operate on the entire space n{X}. If F has constant term i then let

G(X)=nF(X^). Clearly, F(X) =G(X)/G(X^) and hence if X+o, Xeft then
oo .̂

^ == S VX.^ /G(X) is a non-zero element of 0. {X}, while a^ =X^. Thus as an operator
? = o ' ' r

on Q{X} each non-zero element of 0. is an eigenvalue of a. We shall show that /p
can be explained by restricting a to L(^x). However to obtain a complete theory it
will be necessary to assume that the coefficients of F lie in a finite extension of Q '̂.

Let % be the field of rational numbers. The value group of 0. is the additive
group of Q. For X={XQ, x^ . . ., ^JeQ'14-1, let ord^=(ord^, ord^, . . ., ordx^e^1

if none of the ^ are zero.
If a and a' are elements ofQj1"^1, we define the usual inner product

n
(2.3) <?(a,a')= Sa.<.

a —nt==0

If ^eQ{X}, let S^ be the set of all ^eQ"4'1 such that ^ converges at x if ord A; == fl.
Writing

(2.4) S- S B.X-,
ueT^1

we have a generalization of Lemma 1.1 : If aeQ^^1 then aeSv if and only if
ordB^+p(M, a)->+°o as M->OO in Z!̂ .

It is convenient to introduce a partial ordering of Q^4'1. If a and a' are elements
ofQ^4-1, we write a'>a if ^.><^ for i==o, i, . .., n. It is clear that if a'>a and <zeS^
then a'eS^ We easily check that for ^, T)£Q{X},

S<^) D^^
(2.5) S^ DS^nS,

S,^DS,nS,

^<?
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Let g be a mapping of Z^+1 into the set of two elements, {o, 1} in 0 Let y be
the 0. linear mapping of D{X} into itself defined by

(2-6) ^XU)=g(u)X\

For such a mapping we have

(2.7) S^pS,.

For each aeS^, let
M(^,a)= Minord^).

ord a; = a

The generalization of Lemma i. 2 may be stated without proof.

Lemma 2.5. — For aeS^, ̂  as in (2.4),

M(^,a)= Min (ord B^+p(u, a)).
uez^-1

If a'>a then
M(S,a')^M(^,a).

We easily verify for S, ^en{X}, y as in (2.6) that

(2-8) M(^,a)^M(S,a)+M(7),a) if aeS.nS,
(^S) M(yS,a)^M(^) ifaeS,
(2-10) M(^,a)^M(^a/y) ifa/yeS^
(2-") M(S+7),a)>Min{M(^a),M(y),a)} if aeS^nS,

and equality holds in (2.11) if M(S, a) + M(v), a). Let

S^aeQ^lfl^—yx, ̂ +^> —^ !•= i, 2, ..., %}

Elementary computations show that if c is a real number, 7]eL(^(, c) then

(2.12) j^?8

(M(T), a)>_cfor aeS,
and

(2.13) (SF=>rls

(M(F,a/y)^o if aeS.

It follows from (2.8), (2. io) and (2.13) that

^•'^ M(^,a)>M($,^) ifaeSnyS,.

This relation remains valid if a is replaced by aoy or yooc, the composition of a with y
on either right or left side.

Let 0{X} be the ring of power series in Xy, ..., X,,, with coefficients in 0, the
ring of integers in 0 Let L' be the space of all elements of 0 {X} which converge
in a polycylinder of radii greater than unity (i.e. an element ^eQ {X} lies in L' if and
only if there exists a rational number b>o such that {—b, —b, ..., —b)eS ). We

21
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note that L/DL(6) for all b>o but L/ is not the union of such subspaces since the
monomials, X", in L' need not satisfy the condition ueZ.

Lemma 2.6. — Let 7]eL(^x, —q{q—1)~1 ord X), where \ is a nonzero element of 0.,
and let ^ be an element of I/n0 {X} such that

(2.15) aS==^+^).

We may then conclude that ^eL(yx, —q{q— i^ord^).

J^ote. — The same conclusion would hold if a in (2.15) were replaced by aoy or
by yoa, with y as in (2.6). In particular, a may be replaced by oc^.

Proof. — Writing (2.15) in the form S=—fl+'^~1^ we see from (2.5) that
SpS^nS^DS^nySF^DS,,nySFnyS^, and hence by (2.12) and (2.13) we have

(2.16) SpSnyS^.

By hypothesis, ^eL' and hence there exists b>o such that ^^—6, —b, ..., —b)eS^.
If aeS then there exists an integer, r>o, so large that q~ra>aw and hence

q~raeS^.

Let r be the minimal element of Z .̂ such that the displayed relation holds. If aeS
then <7~1^ q~2^ etc., lie in S and hence if r^i then q'^'^a lies in S as well as in qS^
so that by (2.16) we have q~{r~l)aeS^ contrary to the minimality of r. This shows
that r=o and hence ScS^. Since y^ScS, we may also conclude that ScqS^.

Equations (2.14) and (2.15) show that
(2.17) ordX+M(S+7],a)^M(^,^) if fleS.

We write S; as in (2.4) and we assert that for aeS, veZy1^
(2.18) ordB^^^^a^—^—i^ordX.

To prove this we think of a as fixed and consider two cases.

Case L — M(^, a)^M{^ a)
In this case Lemma 2.5 and equation (2.12) give a direct verification of (2.18).

Case 2.—M{^a)<M{^a).
Here we may use (2.11) and deduce from (2.17) that

(2.19) ordX+M(^, a)^M{^ a\q).

Lemma 2.5 shows that there exists a particular element, ueZy'1 (depending upon a)
such that

M(S,^)=ordB,+p(^^).

On the other hand M(S, fl):<ord B,,+p(y, a), for each veZy'1. Thus we have

(2.20) ordB,,+p(y, a) +ord X^ord B^+p(^, afq),

22
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for a particular u and for all z/eZ!}.4'1. In particular (2.20) holds for v==u and this
gives
(2.21) ord^(<7'~1—i)p(^, a).

We recall that by hypothesis ^eO{X} and hence ord B^o. Equation (2.18) now
follows from (2.20) and (2.21). This completes our verification of (2.18) for all aeS.

Now let c be a rational number, c>o, let a^ a^ ..., a^ be rational numbers,
a^>—qv.^a^=c—d^^qy.-^-ao) ^or ^ = = 1 3 2 , . . . , ^ . Then a= (^3 a^ . . ., aJeS and

( n \ n
p(y,a)==^o ^--flrls v^+^c—d^qK) S y,,

i=l / »=1

n
which shows that if VQ<^d~lTl ^ then p(z/, a)->—oo as ^o—»-+oo if c is kept fixed.

l̂ n
Applying this to (2.18) we see that ordB,,==+oo if ^<rf~1 S ̂ , i.e.

(2.22) B,=oif^2;.

With c>o as before, let OQ=—yx+c,^==o for i== i, 2, ..., n. Once again
a-=-[a^a^ . . . ,^)eS and thus (2.18) shows that

ord B,,>^o(yx—<:)—q(q—1)~1 ord X

for each c>o. Taking limits as c->o,

(2.23) ord'B^>qy.VQ—q{q—i)"'1 ord X.

Relations (2.22) and (2.23) show that ^eL(^x,—q[q— i^ordX), as asserted.

Note. — I f7]==o in the statement of the lemma, then equation (2.19) is valid
for all aeS. Since (0,0, ..., o)eS, it follows that ord X>:o.

Theorem 2 .1 . — Let \, ...,\ be a set of non-^ero elements of 0 and let
s

e== S ord \+ [q—1)~1 Max ord \.. Let ^ be an element of^L'nO{X} such that
t=l l^t'^S

(2.24) n(i-\-^a)^=o,
^TZ ^eL(yx, —^).

Proof. — The theorem is a direct consequence of the previous lemma if s == i.
Hence we may suppose s>i and apply induction on j. Let ord \> ... >ord \y

s==l
and let 7]=(a—XgI)S. Since Y]eL'nD{X} and II (I—Xi~ la)7]=o, we may

1 = 1
conclude that Y)eL(yx,—^), where ^ '==^—ord\. We may choose ye^ such
that o rdY==^ '— {q— I )~ l ord^ . Clearly ^^^eL^qK,—q{q—I)~lordX^), while
a(yS) ==^s(Y^+T^71'y!)• Since Y^71e0, we may conclude from the previous lemma
that Y^eL(yx,—q{q—i^ord^,). The proof is completed by checking that
—ordy—q{q—1)~ 1 ord\==—e.
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Note. — Although not needed for our applications, we note that we had shown
with the aid of Lemma 2.4 that if Fefi^"^ and i; is a polynomial satisfying (2.24),
then ^ lies in fl^. We can now show that if ^ is known to satisfy (2.24) and is known
to lie in I/ then it must be a polynomial (and hence lie in S^). If Fefi^-^ then
there exists yeO such that y^^X] and hence if reZ^^-^yFeL^, o). If

s
(B^^o^'-yYF, then II (I—\^p,)^=o, where \ ^X.y^te-1) and hence the theorem

i==l ' *
shows that S lies in L(yr,—<?—(.?+1) (ordy+rN^—i))). Hence ^SB^, z/e3:
and ordB^>_qruQ—e—{s—i)ord^—rN(q—i){s+i) for each reZ^.. Letting r -^oo,
it is clear that B^==o if Mg>N(<7—i) ( j+ i ) / y , which shows that ^efi.

Theorem 2.2. — 7/' ̂  coefficients of F /^ m <2 ^/z^rf, K.o, of finite degree over Q' <77zrf
z/'X"1 is a ^ero of order (JL ofj^, then the dimension of the kernel in L(^x) of (I—'>~loL)v• is not
less than [JL, indeed the kernel contains p. linearly independent elements which lie in L(yx) nK^XUX}.

Proof. — We may suppose that [L> i. Since XF^W? Zp(0) = i? we may conclude
from Theorem 1.1 that XeD. Let y^{t) ==det(I—toL^). We recall that Lemma 2.3
shows that /N~^XF uniformly on each bounded disk. There exists a real number,
p>o so large that ^p has no zero distinct from X"1 in X'^i+Gp). The proof of
Theorem i. 2 shows that for N large enough (as will be supposed in the remainder of
the proof) there exist (counting multiplicities) precisely [L zeros, X^, . . . , X ^ N of
/N in X"^! +Cp). Since ^p, /^ an(! tne set ^--1(I +Cp) are all invariant under auto-
morphisms of t2 which leave K.o(X) pointwise fixed, we conclude that the polynomial

V-

f^(t)==H(i—\yt) is also invariant under such automorphisms and hence lies
»=i

in Ko(X)[(]. Let K be the composition of all field extensions in Q of K(X) of degree
not greater than pi. Theorem i. i shows that X is algebraic over K(), hence
deg (Ko(> )/Q;)< oo. This shows that deg (K/Ko)<oo and hence deg (K/Q;) < oo.
The conclusion is that \^eK, lim\^==\ for i== i, 2, . . ., ?JL and that K is locally

' N->oo '

compact. Furthermore/N 1s relatively prime to /,N//N-
We now restrict a^ to K[X] nfl^. This does not change the characteristic equation

^
of ON and letting W^ be the kernel in that space of (BN= II (I—^a^), we conclude

1=1
that the dimension of W^ (as K-space) is |JL. An element, ^, of W^ will be said to be
normalised if it lies in 0{X} and at least one coefficient is a unit. If ^ is such a normalized
element of W^ then by Theorem 2.1, ^L(yx, —e), where <?= (pi+ (?—i)~"1) ord X.
If we write ^ = SB^X" then ord 'Bu>.(lxuo~e aud hence B,, must be a unit for at least
one element ue^={veX\Vo<,el{qK)}. Conversely if B^ is a unit then ueZ^.

It is clear that a subspace W of K[X] of dimension (JL has a basis ^, . . ., ̂  in
0[X]nK[X] for which there exist distinct elements u^ . . ., u of Z .̂4"1 such that the
coefficient of X"1 in .̂ is the Kronecker S^j{i,j= 1,2, . . ., |ji). Hence for each N there
exists a set of [L linearly independent elements {^N}i==i 2.... y. m ^N corresponding to
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which there exist |JL distinct elements, {^N}t-i,2,...,(ji ln ^i such that ^N£D[X] and
the coefficient of X"^ in ^ ^ is 8 .̂ for z , j = = i , 2 , . . .3 [JL. Since 3^ (and hence 3^)
is a finite set, there exists by the pigeon hole principle, an infinite subset, 91, of Z_^ such
that ^==^N ls independent ofN for each N in the subset and i= i, 2, .. ., pi. In the
following N will be restricted to this infinite subset.

Now let 23 ==K{X}nL(<7x,—e). Generalizing the definition of § i, we may
define the weak topology of K{X} and by the local compactness of K and the theorem
of Tychonoff, 23 is compact under the induced topology. Thus 95 ,̂ the [L fold cartesian
product of 93 is also compact under the product space topology. Clearly the ordered
set ^= (^ N, ^ N, . . ., S^N^®^ an(! hence an infinite subsequence of the sequence
{^^NeM must converge. Hence there exists an infinite subset, 21' of 91 such that
{S^NG^ converges to an element (^, .... y^S^. For j= i, 2, ..., (JL we have
{^^Ne^r""^ anc^ since the coefficient of X"^ in ^ ^ is 8^,5 the same holds for .̂. This
shows that ^ , . . . ,^ are elements of 23 which are linearly independent over Q..
Furthermore (B^N^0 ^or eacn Ne9T and hence taking limits as N->oo in 21', we
conclude that ^, . .., ̂  lie in the kernel of (B= (I—X^a)^ in L(gx).

Now let co^, .... (o^ be a minimal basis of K over Ko(X). If 7]eK{X}nL(^x, —e)
m

then there exist T^, . . ., 7]^eKo(X){X} such that T] == S 73^ and since the basis is
i = 1 w

minimal, ^eL(^x, — ^ — i ) for i= i, 2, . . ., m. I fo==p7] then o= S co^P^ and since
i=l

P^eKo(X){X} for z = i , 2 , . . . , m , we can conclude that ^ lies in the kernel of p.
Applying this argument to ^, . . ., ̂  we conclude that the D-space spanned by them
is spanned by elements of the kernel of (B in L(yx) nK.o(X){X}. This completes the
proof of the theorem.

To complete our description of /p in terms of a spectral theory for a, we must
prove a converse of the previous theorem.

Theorem 2.3. — Let [L be an integer^ |JL^>I and\ a non-^ero element in Q. The dimension
of the kernel in L/ of (I—X^a)^ is not greater than the multiplicity of\~1 as ^ero of^p-

We defer the proof except to note that we may assume that the kernel of (I—X^a)^
in L' may be assumed to be of non-zero dimension and to show that XeO. If the kernel
of (I—\~^v.Y is not {0} then by an obvious argument, the same holds for the kernel
of (I—X^a). Hence there exists i;eL' such that a^=X^,^4=o. Since ^eL/ there
exists Y e ^5Y+ o such that yS^^X}. Hence it may be assumed that ^eO{X}.
Thus X r^==oc rS for each reZ_^ and since amapsO{X} into itself, we conclude that
^4=0, X^eC^X} for all reZ^.. This shows that XeO. Theorem 2.1 now shows that
we can replace L' in the statement of the theorem by L(^x).

Before resuming the proof we must recall some formal properties of matrices.
Let A be an m xm matrix with coefficients in some field of characteristic zero. For
each subset H of { i , 2, ..., m], let (A, H) be the square matrix obtained by deleting
the j^ row and column of A for each jeH. Let [H] denote the number of elements

25
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in H and let t be trancendental over the field, K, generated by the coefficients of A.
If [H]=m, we define det (A, H) = i and for o<,[H]<,m, I—^(A, H) denotes
((I-^A),H).

Lemma 2.7. — For i^r<^m

(2.25) rn^-^-z^detO-^A)^^!)^! S det(I-^(A,H)),
\i=0\ dt / / [H]=r

the sum on the right being over all subsets^ H,o/'{i,2,...,m} such that [H] = r.

Proof. — We recall the classical result that if B is an m x m matrix whose coefficients
are differentiable functions of t then

m

(2.26) detB== S detB,

where By is the m x m matrix obtained from B by differentiating each coefficient in thej'^

row and leaving the other rows unchanged. Thus — det(I^—A) == S det(D— (A, H)).
dt [H]=I

However ^-m det(I-^A) ^det^I—A) and therefore

—mt-m-ldet{I—tA)+t~md-det{I—tA)=—t-2 S det^-'I-^A, H)) =
dt [H]=I

_t-^-^-i) ^ det(I—^(A,H)).
[H]-l

The assertion for r = i follows immediately. We may therefore suppose r> i and
use induction on r. Hence

(2.27) r^nft^m-i^detil-tA)^\i=o\ at j i

(-i)'-1^1^^-^-^-!))) 2 det(I-^(A,H)).
\ dt /[H]-r-l

The lemma is known to be true for r == i and hence for given H such that
[H]=r—i, since (A, H) is an ( m — r + i ) x ( m — r + i ) matrix,

it^-(m-r+ i)) det(I-^(A, H)) =-^det(I-^((A, H), H")),

the sum being over all H"c{i, 2, . . ., m}—H such that [H"]==i. However
((A,H),H")=(A,H') where H'==H"uH and hence the sum over H" may be replaced
by 2 det (I —<(A, H')), the sum now being over all H' such that H'D H, [H'] = r. Thus

H'
the right side of (2.27) is (—i^r'^SSdet (I—^(A, H')), the sum being over all H

H H'
such that [H] = r — i and over all H'DH such that [H'] ==r. But given H' such that
[H'] ==r there exists exactly r distinct subsets H of H' such that [H] = r — i . Thus the
right side of (2.27) is (—i) 7 ' S det(I—^(A, H')), which completes the proof of the
, [H'] == rlemma.
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With the previous conventions, let S{j}(A),j==o, i, . . . , w denote the elements
of the field K generated by the coefficients of A which satisfy the formal identity

m
(2.28) det(I +tA) == S S^A)^'

?==o
We observe that

(2.29) S^(A)= S det(A,H)J=o, i, . . . ,m-i
[H]=?

the sum being over all subsets H of { i , 2, . .., m} such that [H] ==j.
Let [L > i be a rational integer, let co be a primitive ^th root of unity in some

extension field of K. For (^, i^ ..., i^eZ^, let g(i^ i^ .. ., ^_i) ==0^ where
IA-1 (Jl-1

r=S;^. Since det^—^A^^IIdet^—^-'A), we have
S=l 8=0

m (A—I w(2.30) s W^—A^ n s ̂ ^(—(O-^A).
j==0 s=0j==0

For o^i_<m, by comparing coefficients of ^/w-l) on both sides of (2.30), we conclude
that

(2.31) s^-w = (S^-^A)^ (-i)^-1^'^,..., ̂ .^'ns^-^A,
s=0

tA-l
the sum, S', being over all (z'o, . . ., ^_i)eZ^, Zy^m such that S ^==^ but
^=^== .. . ==^^==t is explicitly excluded.

Proo/' (Theorem 2.3). — We first outline the proof. Let W be the kernel of
(I—X^a)^ in L' (and hence by Theorem 2.1) in L(^x). Suppose dimW,>r>o for
some reZ^.. We must show that •^~~l}(\'~l) ==o for j = = i , 2 , . . . , r . Let W^ (for
each NeZ^.) denote the matrix relative to a monomial basis corresponding to the linear
transformation (XN^TNOOC of fi^. Explicitly, for each veXy, a^X") ==^^(11, ̂ X",
the sum being over all ^e^N.

Let )CN^)==det(I—^N). We know that for all jeZ+, lim /^(X-1) ==^(X-1)
N->oo

and thus we must show that lim x^"1^"1) ==0 f011 J= I5 25 • • • ? r- Letting N' be the
N-»-oo

dimension of S ,̂ equations (2.25) and (2.29) show that it is enough to prove that

(2.32) lim S^-^I—X-1^) ==o for i=o, i, .... r— i.
N-*»oo

We shall prove the existance of a constant c independent of N, such that for
z==o, i, . . ., r— i

(2.33) ord S^-^I-^m^^c+^q-i)^

and prove (2.32) by using (2.33) and (2.31) to deduce the existence of a constant c '
independent of N such that for z'=o, i, ..., r—i

(2.34) ord S^-^d—^m^^+^q—i)^!^1.
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Let ^== (I—x"1^)^ We may view Wy as a matrix whose rows and columns are
indexed by the set 3;̂  of all ME 2 such that ^N- If H is any subset of 2:̂  U+^N?
we may, following our previous convention, denote by (SOt^, H) that square matrix
obtained from SR^ by deleting all rows and columns indexed by elements of H. We
shall show that if H is any set of not more than r—i elements of 2 then c may be
chosen independent of H and N such that

(2.35) orddet(9[R^H)>^+x(^—i)N

whenever H (if not empty) is contained properly by %^. Equation (2.29) shows that
equation (2.35) implies (2.33). Our first object is the proof of equation (2.35).

Let H be a set of no more than r—i elements of 2. We know that there exist
^i, . . ., Sr 5 a set of r linearly independent elements in W. Let L=2B^ .X^j^i, 2, .... r,

r
the sum being over all ueZ. The (possibly empty) set of [H] equations S <z.B^ ==o

for each ^eH, in r unknowns a^ ^, ..., a^ certainly has a non-trivial solution in Q.
r

(since r>[H]). Since ̂ , . . ., ̂  are linearly independent, we conclude that ^ = S a-^
7=1

is a non-trivial element ofW. Since o =1= ^eL(yx), ^ may be normalized so that ^e£){X{
and at least one coefficient of ^ is a unit. Thus there exists a normalized element
S^SB^X" in W such that B^=o for each ueH. Theorem 2. i shows that, for all ueZ,

(2.36) ord^>qxuQ—e,

where <?==^ordX+ (y—i^ordX. Hence if N>No==^A:, we may conclude that
TN^ is also normalized and the coefficients of ^^T^S satisfy (2.36).

For typographical reasons we shall when convenient denote the coefficient of X"
in ^ (resp. F) by B(z/) (resp. A(z/)) instead of B^ (resp. AJ. For given integer j>i ,

(a^T^- (TNoa)^S=2X?o')B(^o))A(^^-^)A(^-^) . . . A(^-^'-1))

the sum on the right being over all (w^, ^(1), . . ., w^) eZ^1. We may write T^a^) as
a similar sum except in this case the sum is over all ((w^, w^, . . ., w{j~l}}, w^) e3? x IN-
Since ord A^>XM() for all ^e2, we have by (2.36),

x-lord{B(^)A(^l)—^o)) . . . A{qw(j)—w{j-l))}^—y.-le+alqw{o}+^ {qw(i+l}—ww)\=
\ i==Q I

/ ?-1 \
—K-le+G(qw{i}+{q—l) S^W .

\ 1 = 0 /

(y-l \

If w^.w^, ....w0 '-^ do not all lie in 2;̂  then certainly a Sz^RN. Thus we
can conclude (using only the fact that ^eL(yx, —e)} that l==o

(2.37) T^(a^) = (T^o^^S mod S X^x^o-^ (?-i)xN),
ue^

^^
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where for each real number, b^ C(b) is used in the sense of C^ in § i. Since

0= (I-X^a)^ S (-^"(pa^
?=o

we have

o = S (?) (-X- l̂̂ o^) = £ (?) (-X') (Tnoa)'T^ =
,=o »-o

(I—X-^N^TNS mod S; X"C(xy«o—2<'+(^—i)>cN).
ueXy

For each element (a, v^tyX'Z.y, let SKu^? o) denote the coefficient of the matrix TON
in a"1 row and Vth column. We have for each veZy, (I—X-laN)'lX<'=S9)lI '̂(", »)X",

M

the sum being over all ueZ^. Thus (I—X-^^T^—SB^SgjiN^^X^ the sums
v u

being over all ueZ^ and all veZ^. We conclude that for each ueZ^y

^W^{u, v)B^o modC(x^o—2 <?+(?—i)xN),
»

the sum being over all veZy We recall that B,,==o for yeH and hence ifN" is the
number of elements in 3^—H, the system ofN" congruences indexed by ueZ^—H,

(2.38) ^p-^9^^ y)B,=o mod C (—2^+(?—i)xN) ,
v

(the sum being over all ve%y—H), has a non-trivial solution if N>N() since B,, is a
unit for at least one veZ^—H. The ring of integers, 0, of tl is not a principal ideal
ring, but finite sums of principal ideals are principal. Hence the theory of elementary
divisors may be applied to the matrix E^ indexed by (3^—H) x (2^—H) whose
..general" coefficient is E^M, v) ==p~Kquo<Sl^(u, v). If Si l^l - • • \e^" are ^he elementary
divisors of E^ then (2.38) shows that

(2.39) CN" == ° mo(^ G(—2 e-\- [q—i)xN).

Since our object is to prove (2.35), we may assume de^SR^? H) 4= o. Hence o =(= det E^,
O+SN". If u and v lie in 3^—H, let (E^, (^, u)) denote the matrix obtained from E^
by deleting row u and column v. Let ((SO^'? H), (^, ^)) denote the corresponding matrix
associated with (SR^ H)* ^ follows from the definitions that

(2.40) det(E^, („, ,))/det E^p^det{{m^ H), (^ z0)/det(9^, H).

Ideal theoretically, (det E^) = (?N")^(det(EN, (M, y))), the sum being over all
(M, v) e(3^N—H)2- Thus — ord £j^ == Min ord det(E^, (u, v)) — ord det E^, the mini-
mum being over all {u, v)e{Zy—H)2. This together with (2.40) shows that

(2.41) —ord £N-=Min{x^o+ord det((9?l^ H), (u, y))}—ord det(9J^ H),

the minimum being over the same set as before. This together with (2.39) would
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give the proof of (2.35)5 if it were known that c may be chosen independent ofN and H,
u and v such that
(2.42) x^o+orddet((9KN.H), (u,v))^c+2e.

Thus the proof of (2.35) has been reduced to that of (2.42).
We observe that yRy(u, v) ==A^_y and hence ord VH^^ v)>_y.a{qu—v). It is

easily verified that if two square matrices (each indexed by Zy) satisfy this estimate
then so does their product since y.a{qu—w)-{-Ka(qw—v)>^xa{qu—v). Thus

m'^^-^m^^i+m^-^
where SOl^' ls a square matrix indexed by 2^—H satisfying the condition

(2.43) ord m^{u, v)>w{qu—v)

for all {u, v)e(ft^—H)2. Equation (2.42) now follows directly from Lemma 2.2 (ii).
This completes the proof of (2.42) and hence of (2.35). As we have noted previously,
this implies the validity of (2.33). We must now show that (2.33) implies (2.34).
This is clearly the case for r== i . Hence we may assume that r>i and that (2.34)
has been verified for z==o, i, ..., r—2. Replacing A by I—X^SOl^ in (2.31), we have
(S(N'-(r-l))(I_^-lg^))^

s(N'-(r-i))((i_^-i^).)_2^(,^ ..., ̂ .^n's^-y^-x-^)
••0

the sum, S/, on the right being over all ^, ^, . . . ,^_i in {1,2, . . . ,N'} such that
tji-i
S ^=(JL(r—i), but ^=^= ... ==^_i is excluded. In each term in the sum, S', at

8=0

least one factor S^'-^I—X"1^^) occurs such that iy<r—i, while the remaining
factors are [L—i in number and each of type S^"7^!—X^SOl^)? J^^—I)* The
assertion follows from the induction hypothesis provided we verify the existence of a
finite lower bound for ord S^^'^I—X-^N) independent of N and valid for J_<p.(r—i).
The existence of such a lower bound is an obvious consequence of equation (2.29) and
Lemma 2.2 (i). This completes the proof of the theorem.

Note. — No use has been made in Theorem 2.3 of compactness and no hypothesis
concerning the field generated by the coefficients of F is needed. On the other hand
we do not know if Theorem 2.2 is valid without that hypothesis.

We now summarize some of our information.

Theorem 2.4. — For each non-^ero element, X, of Q., let s-^ be the multiplicity of \~1 as
aero of %p. If the coefficients of F lie in a finite extension, Ko, of Q ,̂ then for s>s^ the space
Vf^==kernel in L' of (I—X^a)8 is independent ofs, lies in'L(y.q) andis of dimension ̂ . Further-
more W^ has a basis consisting of elements of K^(X) {X}.

Proof. — For given Xeti*, let W^ be the kernel of (I—X^a)8. Theorem 2.2
shows that for s>s^ dimW^^j^, while Theorem 2.3 shows that dimW^^^ for all

30



ON THE ZETA FUNCTION OF A HYPERSURFACE 31

j>:i. Since W^cW^^ for all s^i it is clear that W^ is independent of s and has
dimension s^ for s>s^. The remainder of the theorem follows directly from Theorem 2.2.

Corollary. — If G is an element ofK^X.) such that/or some real number b>o both G and
i/G lie in L{b) and if H(X) =F(X)G(X)/G(X<^) then XF-XH. it being understood that F
and KQ satisfy the conditions of the theorem.

Proof. — Let c==Min (x, b). It is clear that S->G.$ is a mapping of L{c) onto
itself. The corollary now follows from the theorem and the fact that each ^eL(c),
^H^^GW-^^.GW.

We have shown that the zeros of /p can be explained in terms of spectral theory
if F satisfies the condition of Theorem 2.4. If it were known (as is the case in the
geometrical application) that the coefficients of F and the zeros of ^p all lie in a finite
extension, H), of Q/ then the zeros of ^p can be explained entirely on the basis of the
spectral theory of a as operator on L"=Qo{X}nL(^x). We make no assertion of the
type: L" is a sum of primary subspaces corresponding to a. Our next result serves as
a substitute for a statement of this type.

Theorem 2.5. — If\ is a non-^ero element of 0. which is algebraic over (̂ ', if \~~1 is
of multiplicity pi as a ^ero ofj^, if the coefficients ofF lie in a finite extension, K(), of<^ and ifK
is any finite extension of K()(X) then

(2.44) (I-X-^^KlWnL^)) = (I-X-^iqXjnL^)).

In particular if pi=o (i.e., Xp(X-1) +o) then K{X}nL(^x) = (I—X-^aKiqX^L^x)).

Proof. — Let K' == K()(X) . By hypothesis K is a finite extension of K'. For given K
we show that (2.44) holds if and only if it is valid when K is replaced by K'. Let
<0i, ..., co^ be a minimal basis of K over K'. Suppose (2.44) is valid with K replaced

m

by K'. If ^eK{X}nL(<7x) then ^= S <^, where ^eK'{X}nL(^x), i= i, 2, . .., m.
i=-l

Hence by hypothesis there exist r\^ . .., T]^ each in K'{X}nL(yx) such that

(I—X-^+^^I—X-1^^, i== i, 2, . . ., m, and hence T] == S; co^eK{X}nL(^x)

and furthermore (I—X-^a)^1-/]^!—^-1^. This shows that

(I-X- la)(A+l(K{X}nL(^))^(I-X- la){A(K{X}nL(^))

and since inclusion in the opposite direction is clear, we may conclude that (2.44) is
valid for K if it is valid for K'. Conversely if (2.44) is valid for K, then given
SeK'{X}nL(yx) there exists 7]eK{X}nL(^x) such that {I—\-1^+1^== (I—\~1^^.
The relative trace, S, which maps K onto K' may be extended to a mapping of K{X)
onto K'{X) in an obvious way. The trace, S, commutes with a and hence
(I—^ia^^a—X-1^4-^/^) since S(^)==^. Since S(7])eK'{X}nL(^x) we
may conclude that (2.44), if valid for a given K, is also valid for K'.
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We have shown that it is enough to prove the theorem for one finite extension,
K, of K\ If X"1 is not a zero of ^p, let K = K'. If \~1 is a zero of /p then following
the procedure of the proof of Theorem 2.2, let ^(0 =det(I—^c^), let p be real, p>o
such that ̂  has no zeros in ^(i +Cp) distinct from X~1. For all N large enough,
/^has precisely (JL zeros X^, ..., 7^ in X'^i +Cp), these are zeros of a polynomial f^
of degree (JL which divides /^ ̂ d is relatively prime to ^N/./N- Let K be the composition
of all extensions of K' of degree not greater than [JL. We know that X^, ..., X^
lie in K, approach X~1 as N—^oo and are distinct from all other zeros of^. In the
following ON will be restricted to K[X]nfiW.

(A

Let (BN be the endomorphism 11(1—^0^ of KtXjnfi^ ((BN=I if [x==o).1=1
Since ̂  annihilates the primary components of KpCjnfi^ relative to a^ corresponding
to the eigenvalues \y, ..., X^? it is clear that ^(K^Xjnfl^) is the direct sum of
the primary components of K^Xjnfl^ corresponding to the remaining eigenvalues
of a^. Hence if a^' denotes the restriction of a^ to (^(K^Xjnfl^), we can conclude that

(2.45) det(I-^)=det(I-^)/n(i-^^).
/i=l

Let ^ be a given element of K{X}nL(yx). We must find T] in the same space
such that (I-—X~ la) lA+17]==(I—X - la) l^. We may suppose that ^eL(^x, o). Let
SN=TN^. Since X is not an eigenvalue of oc^, there exists YjN6^^]0^^ such that

(2.46) (I-^^MN^NSN-

Eventually we shall complete the proof by taking the limit of this relation as N->oo.
The main problem is the demonstration that T]^ may be chosen such that its limit lies
in L(yx). We note that PN^N ls uniquely determined by (2.46) and hence 7]^ is uniquely
determined modulo the kernel, W^? of (B^ in KI^X^S^, a subspace of dimension (JL.
We shall show that there exists a real number c ' independent of N such that r\^ can be
chosen so as to satisfy the further requirement

(2.47) ^EK[X]nL(yx,^

for an infinite set of integers, N.
We first construct a basis of [B^r^]0^)- For each uety, let Y^^i^X^

The set {Y^} indexed by ueZy, spans ^^(KfXJnfi^) but does not (unless pi=o)
constitute a basis of that space. In the proof of Theorem 2.2, it was shown that there
exists an infinite subset, 91, ofZ^. and a set S o f ^ elements of 2 such that for each Ne%,
the kernel, W^, of ^ in (K^jnfi^) has a basis {^N}ues consisting of elements
of Kpqnfl^^x, —^)nO[X] indexed by S such that for each veS the coefficient of
X^ in g^ is the Kronecker 8 .̂ (In the previous remark, e-={\L-{-[q—1)~1) ord X,
precisely as in the proof of Theorem 2.2.) Thus for each ueS, we have (N being assumed
in the remainder of the proof to lie in 91),

(2.43) ^-X^+SE^^^X-,
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the sum being over all weZ^—S, and furthermore ord E^(^, u)^>_qy.WQ—e. We may
now conclude that for each ueS, since O==(B^Q^N), that

(2.49) -Y^-SE^^)Y^,

the sum being over all weZ^—S. Thus the set {Y^} indexed by 3^—S spans
(^(KpCJnfi^) and hence must be a basis of that space, since it contains the correct
number of elements.

We have noted that ify^ is a solution of (2.46)3 then the sum of^ and any K-linear
combination of the g^ is also solution of (2.46). Equation (2.48) shows that T^ may
be chosen such that the coefficient of X1* in 7^ is zero for each ueS. (In fact these
additional conditions uniquely determine Y^). Thus we may write T^^SB^X^
the sum being all veZ^—S. By hypothesis S^L^x, o) and we write i^SG^X^ the
sum being over all veZ. Thus ^ == T^ == SG^X", the sum now being over 3^? ^d
ordG^^o. Thus P^N-S G,Y^- S G,Y^+SG,Y,N. Applying (2.49)' V •U.I, v ^.^ •ve3:N ve^N-s MESiic-'f— ncrT,._ff ' <,c-ff '

we now obtain P^N^^^^G^— S GJLy{v, u)}, the sum being over all veZ^—S.
' MRSuGS

Thus P^N^^G^NY^N) tne sum being again over all veZ^—S. Here

G^=G,-SE^^)G,
ues

and hence ordGy^>yxz/o—c, c being a real number independent of N.
We now determine the matrix of a^' relative to the basis {Y^^J^ex -s °^

P^K^Xjnfl^). Since a^ commutes with R^, we have

^NX,N=^PNXl5=P^NXV=PN S A^X^
we2:N

With the aid of equation (2.49), it is easily seen that for veZ^—S

(2.50) a^=SA^,.)Y^

the sum being over all we%^—85 where for {WyV^e^^—S)2,

A^w, v) ==A^_,— 2 E^(w, u)A^_,.
MGS

It is easily verified that ord A^{w, v)'>_y.a{qw—v)—e.
Let A^ be the square matrix indexed by 3^—S whose w, v coefficient is

Ay{w, v). Equation (2.50) shows that det(I—^A^) ==det(I—X"^'). Since
/p(^) = li111 det(I—toLy), we conclude from (2.45) that lim det(I—^AN) is the value

N-^ oo N->- oo

assumed at ^==X~1 by /p(^)/(1—x^)^ This value is not zero since ^ is the multiplicity
of X~1 as zero of ^p and hence for N large enough, det(I—^A^) is bounded away
from zero. Explicitly there exists a rational number c" such that for N large enough,

(2.51) ord de^I—X-^AN)^.

33
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Equations (2.46) and (2.50) show that the set {B^} indexed by ve^—S i
a solution of the system of equations indexed by weZ^—S

is

O^) S^-X-^A^, v))B^=G ŵ , N ?

the sum being over yeS^—S, it being understood that 8^ is the Kronecker 8 symbol.
To verify equation (2.47), we apply Gramer's rule to equations (2.52) and estimate
ordB, N for each ye^—S. For each element (w, v) of (3:N—S)2, ^((I—X-^), (w, v))
be the square matrix obtained from I —X^A^ by deleting row w and column y. Clearly

B^.detCt-X-^) -SzfcdetOI-X-^), (^ v))G^

the sum being over all weZ^—S. In view of (2.51) it is enough to show that there
exists c " 1 independent of N such that

(2.53) ord det^I—X-^), (w, v))+ord G^^q^-c'"

for all (w,v)e{Z^—S)2. Equation (2.53) is however a direct consequence of
Lemma 2 .2( i i ) and our estimates for ord G^ ^ and ordAy(w,v). This completes
the proof of (2.47).

Since K{X}nL(yx, c ' ) is compact, we conclude that the infinite sequence {7^}
has a limit point T] in L^x,^). Taking the limit of equation (2.46) as N-^oo over
a suitable infinite subset ofZ^, we obtain (I—X"^)^4'1^ =(I—X^a)^. Thus we have
shown that (I—X- la) (A+ l(K{X}nL(^x))D(I—X- la) (A(K{X}nL(^x)). This completes
the proof of the theorem.

Corollary. — In the notation of the theorem, let K == K{X}nL(^x) and let W be the kernel
of (I—X^a)^ in S{. For each integer j, J'^>i we have

^ 54)
^W+^—X-1^
Wn^—X-1^^^ (I—X-^W.

7/' ( I—X- l a) V W=={o} ^^

(2.55) (l—x-^^^l—x-1^.

Proo/. — For simplicity let us use the symbol 6 for (I—X^a). The theorem
shows that given T]G^ there exists ^e^ such that 6^7] = 6^+1^, which shows that
6^(7]—6^)= o and therefore 7]eW+6^. This shows that ^cW+6k and hence using
the fact that 6WcW we easily see that ^cW+6^ i f j> i . This proves the first half
of equation (2.54). Writing this with j == i and applying 6" to both sides we obtain
y^O^W+O^1^, which proves (2.55), since 6'W-o.

If ̂  and e^eW then Q^^WW^^} and using Theorem 2 .4 we see that
SeW, which shows that O^^'W. This completes the proof of (2.54).

34



ON THE ZETA FUNCTION OF A HYPERSURFACE 35

§ 3. Differential Operators.

a) Introduction

In this section we modify the notation of the previous section so as to facilitate
the application of our results to projective varieties. Let Q^ and 0 be as before.
Let H) be a finite extension of ( '̂ in 0., whose absolute ramification is divisible
by p — i . Let n>o, d>_ i be fixed integers as before. Let Z now be the set of all
u== (u^y u^, . . ., u^^^)eZy2 such that ^o=Ml+ • • • +^n+r The definitions ofL(i, c),
L(&), fi, &^\ 8^\b, c) are now precisely as in § 2 except that the set 2 is given a new
meaning and furthermore these additive groups now lie in ^{X^ X^, ...,X^i}
instead of ^{Xg, X^, . .., Xyj. Let S be the set { 1 , 2 , . . . , % + i}. For each subset A
of S (including the empty subset), let M^ be the monomial FIX^ (M0==i) and let

iCA
L^,^), L^^fi^fi^^fl^^ (&,(:) be the subsets of the previously defined sets which
satisfy the further condition of divisibility by M^ in ^{X^, X^, . . ., XyJ.

Let S'={o, i, . . ., n+i}, ^'=={0, i, . . . ,%}.
Let Oo be the ring of integers in D.Q and let K be the residue class field of H).

r^f

Let E, be the derivation $->X,.y of H){XO, . . . , X^^^}, z ' = = o , i , . . . , 7 z + i ^ A homo-
^^i

geneous formyin £)o{Xi, ..., Xy^i} will be said to be regular (with respect to the variables
Xi, . .., X^J if the images in K[Xi, ..., X^J of the polynomials /, EJ; . . ., E^J
have no common zero in Tz-dimensional projective space of characteristic p.

Let TT be an element ofO^ such that ord n = = i / { p — i ) , f a form of degree d in
Oo[X^, . . ., X^J which is regular with respect to the variables X^ ..., X^i ^nd
let H be an element of L( i / ( j&—i) ) such that

HeQo{X}
H=TcXo/modX^

H,-E,HeL(j&/(^—i),—i),z-o, i, . . . , T Z + I .

For i=o, i, . . ., 72 + I? let D^ be the differential operator ^-^E^+S-H,, mapping
L (—00) into itself. It is easily verified that dD^ == D^ + . . . + D^^_^ that D.oDy = Dy.oD^
and that D^ maps L(&) into itself for b ^ p / p — i . The object of this section is the study

n+l
of the factor space L(6)/ S D^L(&). To make use of the regularity of^we must recall

i =1
some well-known facts about polynomial rings.

b) Polynomial Ideals.

If A is any set and G is an additive group then a set of elements ^ y in G indexed
by Ax A will be said to be a skew symmetric set in G indexed by A if ^j=—^j, ^==0
for all iyjeA.

Let S{ be a field of arbitrary characteristic, and let a be a homogeneous ideal
in ft[X]==^[Xi, ...,X^J. The ideal a has an irredundant decomposition into
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r

homogeneous primary ideals, a== riq^. The dimension of a is defined to be
i=l

Max dim c .̂ and dimension here is in the projective sense. We recall [5],
I. If ^e^[X] then (a : g) =a if and only if gfq^ i= i, 2, . . . r.

II. If g is a non-constant homogeneous form then dim (a+ {§)) ==dim a— i
if g lies in no primary component q^ of maximal dimension, while otherwise
dim(a + (g)) == dim a.

III. (Unmixedness Theorem): If a= (^, ^3, . . ., g t ) , t<n-\-1 and dim a==n—t
then each primary component of (X is of dimension n—t.

Lemma 3 .1 . — If g^, ' ' ' 7 Sn+i are ^on-constant homogeneous forms in ^[X^, . . ., X^J
with no common ^ero in n-dimensional projective space of characteristic equal to that of S{ and if
{PjieA ls a set of polynomials indexed by a subset A of S=={i, 2, . . ., yz+i} such that
S P,&== o then there exists a skew symmetric set n, • in .ft[X] indexed by A such that P. == S f\^g.

tEA " ?(=A

for each ieA. Furthermore ^{P^^A consists of homogeneous elements such that deg(P^)==w
is independent of i, then each T .̂ may be chosen homogeneous of degree m—degQ^gy).

Proof.—Let d,==(g^, . . ., ̂ ), i^:r<^n-{-1. By hypothesis d i m a ^ + i = = — i , while
by II, dim a^—i<dima^i^d ima^ for r== i, 2, . . ., n. Also by II, dima^n—i.
These inequalities show that d ima^==^—r for r = = = i , 2 , . . . , ? z + 1 ^d that
dim dy 4.1== dim a,.—i for r<,n. Hence by III, the primary components of a^ are all
of dimension n—r and by II, gy_^^ does not lie in any primary component of a^ for
r== i, 2, . . . , % . Hence by I, (a^. : <^+i) = c^.. Furthermore since dim a^ == ^— i, we
know ^i4=o. If A = = { i } then P^=o and hence we can assume A = = { i , 2 , . . . , r + i } »
r>i. Since (a^ : ̂ r+i)^^? ^r+lear and hence there exist polynomials h^ h^, . . ., hy

r r

such that P^ . i == S ̂ ^. Thus S (P^+^^r+i)^^0- Using the obvious induction
i=l i=l

hypothesis on r, there exists a skew symmetric set -^ j in ^[X] indexed by { i , 2, . . ., r}
r

such that P,+^+i== ST]^, for z = i , 2 , . . . , r . Let 7],.^==^, T^,^ =—^, for
?=i

i= i ,2 , ... r and let 'y]r+i ,r+i3 r==o- ^le assertion follows directly.
The valuation of O.Q can be extended to a valuation of the polynomial ring H)[X]

in the usual way, if g{x) =2^^, let ord g== Min ord ^.
u

Lemma 3. a.—Let g^y • • • 5 ^ 4 - 1 be non-constant homogeneous forms in Oo[Xi, ...,X^J
wAo^ images in K[X] A<z^ o^/)/ ^A^ ^ny^Z common ^ero. Let A be a non-empty subset of S a^rf
fe^ g be an element of the ideal S (^) o/' H)[X]. Then there exist elements {Aj,^ °f ^oE^-]

i£A

^McA that g= S ̂ A^ flW j^A ^a^ ord A^ ord g for each ie A.
iGA

Proo/'. — We may suppose that g =1= o and hence that ord g == o. By hypothesis
g == Ti g.h., A,eiUX]. Let e be the absolute ramification of 0,o and let — b == e. Min ord h,.

»GA ^
Clearly b is an integer and we complete the proof by showing that if b>o then there
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exists a set of elements {^} -^ indexed by A in H)[X] such that g== S ̂ ' and such
i(=A

that ^ .MinordA^—b+i. Let 11 be a prime element of Q^. By definition,

n^.cOJX] for each jeA and if b>o then S ̂ n^= II6,? == o mod(II). Let G.
iEA

be the image of^ and let ^ be the image of T^h^ in K[X] for each zeA. Thus in K[X],
o== S G^ and so by Lemma 3.1, there exists a skew symmetric set, {^J? in K[X]

i£A

indexed by A such that ^ = = S ^ y G , foreach zeA. We now choose a skew symmetric set
i£A

{7^ J in Oo[X] indexed by A such that 73, y is the image in K[X] of 7^, for each (i, j) eA x A.
Hence n6^ == 2 T]^^-mod(II) for each zeA. We now define a set of elements

)'£A

{A;}^ in °o[Xl by the equations IP^= II6^' + S T];^. for each zeA. Clearly
?'€A

II6^'== o mod(II) and hence ^.MinordA'^—b-\-i . On the other hand the skew
? GA /

symmetry of the set T]̂  shows that g== ̂  g^h[ which completes the proof of the
lemma. IEA

Corollary. — If ̂ , . . .,gn+i ^tisfy the conditions of the above lemma and {P»},(=A ls

a set of elements of H)[X] such that S P^^ == o, then the skew symmetric set ̂  of Lemma 3. i
iGA

may be chosen such that Min ord ̂  •> Min ord P^.
», / i

Let y be the form of degree d in Oo{X^, ..., X^i} which is regular with respect
to the variables X^, Xg, . . ., Xy^. Let ,/o ==/,,/!= E^/ for z== i, 2, . . ., /z+ i. Since
4fo=fi+f2+ ' ' • +X+i5 it is clear {^^gfi be the image off, in K[X^, . . ., X^J)
that the regularity of^is equivalent to

(i) f offi 9 ' ' ">fn have only the trivial common zero
(ll)fl9f29 ' - " » f n + i have only the trivial common zero if p\d.
Condition (ii) is simpler for most of our applications but will not be used since it

would limit our results to the case in which d is prime to p. However we do note that in
any case the regularity ofy implies the triviality of the common zeros in Q of f^f^ .. •?,/n+r
Thus Lemma 3. i shows that f^yf^, .. .5^4-1 are linearly independent over S.IQ (and £1).

The following lemma refers to ideals in either H)[X] or in K[X]. To simplify
the statement we use the same symbol for f^ and f,.

Lemma 3.3. — Let IS be a non-empty subset of S=={i, 2, . . ., n-\-1}.

(i) (MB)nS(^)= S (MB^)+ S (M^/X.)
tEA tGA—B t'EAnB

if A is any non-empty subset ofS, provided the characteristic does not divide d (i.e. the assertion holds
in any case in H)[X] and ifp\d in K[X]).
(ii) In either characteristic^ if A =t= S then

(MB)n((/o)+S^))-(M^)+ S (M^)+ S (M^/X,).
i£A I'GA-B ieAOB

unless both AuB==S and A contains n elements.
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Proof. — In both statements the ideal on the right side clearly lies in the ideal
on the left side. To prove (i) it is clearly enough to show that if Mp.AeS^) then

(3.i) he S (^)+ S (^/XJ
zEA—B iCADB

Let B n A = C, B' = B — C. Let h1 == M^. We first show that h' e S (^). This is clear
iCA

if B' is empty, hence we may use induction on the number of elements in B'. If jeB',
then letting B" =B'-—{j}, h" === M^,,h' then Xyh^^M^h'e S (^) and if we can show

iEA

that h" e S (^) then by the induction hypothesis we may conclude that the same holds
iCA

for h ' . Thus we consider j^A,X^"eS (^) and recall that Xy,{j^},^^s is a set
iEA

of 72 + i non-constant polynomials with no non-trivial common zero (since the charac-
teristic does not divide d) and hence Lemma 3.1 shows that A^eS (^). Hence

iCA

MpAeS (^) as asserted. If d== i then if C is empty, (3.1) is trivial, while ifjeC,
iGA

then y-/X is a non-zero constant which again shows that (3.1) is trivial. Hence
it may be supposed that d>i, in which case f[ ==^./X^ is a non-constant form for
eachzeS. We may assume that C = = { i , 2, . . ., r}, A = { i , 2, . . ., t], r<t<^n-{-1 Thus

i t
X^Xg. . .X^Ae S (^) and hence for some polynomial A ^ , X^X^. . .X^A—f^h^e S (^).

i=l z=2

We now apply Lemma 3. i to the n+ i polynomials, X^,^, . . .,^,^+1, . . -,fn+i 3in^
t

conclude that X^. . .X^Ae(^) + S (^) (the left side is h if r= i). Now suppose for
i==2

s t
some s, i <J< r, Xg^^X^g. . .X^Ae S (^/) + S (^). Then there exists a polynomial,

i==l j-=s+l

A,^, such that X,^(X,^. . .X^-^,,/;^)61 (/;) + S (̂ .). Then+i poly-
i -1 j == s + 2

nomials ̂  ,^.... ̂ .Vg', Xg ^ ^ ,^ _^ g, . . . ,/^ ^ ^ are non constant forms satisfying the conditions
s+l (

of Lemma 3. i and hence X,^. . .X^Ae S (//) + S (^). This completes the proof
i - 1 ^ =- s + 2

of (3.1)5 and hence of the first part of the lemma.
(ii) Here it is enough to show that if M^he(fo) + S (f^) then

iCA

(3.^) Myo)+ s (^)+ s (^).
zGA-B z e A O B

Let C and B' be defined as before and let h' ==M^h. We first show that

(3.3) ^(/o)+S(./D.
i£A

To show this, it is enough (as before) to show that if i^A and Xj^'e S (^) 4- (y^) then
tGA

the same holds for A". By hypothesis B is empty if A contains n elements and hence
for the proof of (3.3) it may be assumed that A does not contain n elements. Thus
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Au{i} contains at most n elements. Let C' be a subset of S disjoint from {1} which
contains A and consists of exactly n— i elements. The n -\-1 polynomials, ^/o, X^, {fi}iec
satisfy the conditions of Lemma 3.1 and hence h"^ S (^)+(Vo)* This proves (3.3).

zGA

If C is empty then (3.2) is trivially true, hence we may assume C not empty. If d= i
the f^ == i for each z'eAnB=t=0 and hence it may again be assumed that fif>i. We
may now let C={i , 2, . . ., r}, A = = { i , 2, . . ., ^}, r<t<,n. Since (3.3) now shows that

<
X . . . . X A e ( / n ) + 2 (y.), we have for some polynomial, h^

i==l

x,(x,.. .x^-v/)E(/o) + S (/j.
i=2

The set of yz+ T polynomials, (^, X^,^, . . .,^) satisfy the conditions of Lemma 3. i
<

and hence Xg.. .X^Ae(/^) + (^')+ S (^). We now suppose that for some s, i<^<r,
i=l

s t

we have X^^. . .^he(fo) + S (^/) + S (j^). Then for some polynomial
i=l t=s4-l

^,X,^(X^...X^-/-;,.A+iM/o)+S (/.')+ S (^). The n+i polyno-
t=l i==s4-2

mials fo,f^ ...,//, Xg^.^,^ ̂ .2, ...,^ satisfy the conditions of Lemma 3.1 and
s+l (

hence Xg^g. . .X^e(^) + S (j^') + S (^.) which completes the proof of (3 .2)
and hence of the lemma.

c) P-adic Directness.

Let W be a vector space of dimension N over O.Q which has a« naturally » preassigned
basis. For the purpose of the immediate exposition, we may let W be the space all
N-tuples, Q^y with coefficients in Qg. However in the applications in the following parts
of this section, W will be a subspace of H)[X] whose « natural » basis is a finite set of
monomials.

Let 9GB be the Do-module, 0^, in W and let 9 be the natural map of 2B onto the
K-space, W*== K^. For each subspace W^ ofW there exists a subspace, W^ = 9 (W^ o SB),
of W*. The correspondence Wj^W^ maps the set of all subspaces of W onto the set of
all subspaces of W* and preserves dimension. If W^ and Wg are subspaces of W then
(W^nWg^cW^nW^, but equality need not hold Ifhowever W^nW^={o}, then equality
must hold and hence WinW2=={o}. We shall say that W^+Wg is a p-adically direct
sum, written Wj+]Wg, if W^nW^^o). In particular if Wj+]Wg==W then we
shall say that Wg is p-adically complementary to W^ in W. It follows from the above remarks
that given a subspace W^ of Q, there exists a subspace of W which is p-adically comple-
mentary to Wj^ in W.

The notion of j^-adic directness is introduced because of the metric naturally
associated with W. If w == (w^, . . ., w^) is an element of W then let ord w = Min ord w^.
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If ^eW'+W", (W and W" being subspaces of W), then w=wf+wft where w'eW,
ic/'EW". Certainly ord w>^Min(ord w\ ord w"), but if the sum W' 4-W" is radically
direct then ord w=Min (ord w\ ord w") and hence ord w'>ord w.

d) General Theory,

Let 91 be the ideal {fo,f^ . . .,^) in H)[X^, . . .3 X^J. For each integer m>^o,
let W^ be the space of forms of degree rfm in ^[X^, .. ., X^J, let ^I^W^n^ and
let V^ be a subspace of W^ j^-adically complementary to ̂  in W^, with respect
to the monomial basis of W^. Since {fo,f^y . . .3^) have no common nontrivial zero
in Q, 91 must contain all homogeneous forms of high enough degree and hence there
exists an integer, N(), such that ^^=[0} for m>No. We shall show eventually that
we may take No to be n. We note that V0^^.

oo

We now let V = S X^V^, a subspace offi^, and for each pair of real numbers b, c,
m=0

let V(6, c) =VnL(&, c). It follows from Lemma 3.2, the construction of V and the
regularity of the polynomial f that if Q^ is a homogeneous form in Q()[X^, . . ., X^J

of degree dm, then Q==P+ S P,/,, where PeV^, PQ, P^, . . ., P^ each lie in W^-^
1=0

and ord P^ord Q^, ord P^>ord Q, for z=o, i, . . ., n.
We now proceed with the analysis of the differential operators introduced in

part a) of this section. We recall that H^ e L ( p f (p — i), — i), and that H^ has no constant
term. It follows easily that if b<pj{p—i) then H,eL(6, —e), where e==b—(p—i)~1.

Lemmas. 4.— L{b,c) =V(6, c) + S H,L(6, ^+^) ^ b^pKp— i),e==b— i /(^— i).
1=0

Proo/'. — It is clear that the left side contains the right side. If ^ is an element
of L(6, c), we show that for each NeZ^. there exists 7]^eV(&, ^n^^ and a set S^N-I
of elements in 'L{b,c-\-e) indexed by ZES"^^, i, . . . , 7 2 } such that

(3.4) S=Y]N+ iH^^_,mod(XoN+l)
-' —ni=0

^N-i ^^"^odX?
v——7 ^,N-1 = ̂ ,N-2 mod X?-1 for each ieS-.

Let P^ be the constant term ofS, then (3.4) holds for N=o if we set T^P^EV^, c)
and ^ -i==o for each ZES". We now suppose N>o and use induction on N. Then

^ ( N ) ^ _ L _ ^ _ p f; H^N-2'1 ŝ in L(&, (:) and is divisible by X?. Let P^ be the
\ i=0 ' /

coefficient of X^ in ^(N)- Clearly ordP^^&N+c and as noted above there exists
Q;N)^V(^P^-D, ...^N-i) each in W^-^ such that P^^Q^+STdf-^,
where ord(^}>_bN+c,ord'P^~l)>_b^+c—{p—I)~l={b—l)N-}-c+e for each ZES".
We now let ^==^_^+X^Q^}e'V{b, c), and for each ieS" let

^N-l==^N-2+X^lPiN-l^L(6,.+^

4^
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and compute

^-(^+iH^,N-i)=
\ i=0 )

E;W_x?QW-X?-1 1 H,Pr-1) = X^P^-Q^-TT i/^-^ = o mod X^1.
z=0 \ -•=0 /

This completes the proof of (3.4) and (3.5). The proof is completed by taking weak
n

limits, ^N->^eL(&, c+^) for each ieS", ̂ -^^eV{b, c) and hence ^==Y]+SH^.
i==0

Lemma 3.5. — Vn S H,L(6) ={0} if b^pl{p—i).
i=0

Proof. — Let ^ lie in the intersection, then S;== S H^, i^eL(6) for each ieS".
i=0

Let m be the minimal integer such that the coefficient P^ of X^ in ^ is not zero for at
least one zeS". For given ^ it may be assumed that ^o, . . . 5 Sn have been chosen in L(&)
such that m is maximal. For m'<m + i it is clear the coefficient of X^ in ^ is zero. Let

Q^ be the coefficient ofX^1 in S. Clearly Q^+^TC S/.P^eV^-^^n^+i ={o}.
i==o

It follows from Lemma 3.1 that there exists a skew symmetric set {B, } indexed

by S" in W^-^ such that P^=^S^, for each ieS". Let 7^.=B^.X^-1,

^ '=^— 2 H,^,eL(6), then ^= S H^= S H '̂ and for each ieS" the coefficient
?'==0 1=0 i=0 „

of X^' in ^ is zero for m'<m and the coefficient of X^ is P^—TT S^B,, =o, contra-
dicting the maximality of m. ?=0

Lemma 3.6. —

L(&,,) =V(6^) + S D,L(^+^
i==0

I/ (^-I)-1^^^/^-!)^-*-!/^-!).

Proof. — Certainly L(6, <:) contains the space on the right side. We first prove
inclusion in the reverse direction if e>o (i.e. b>il(p—i)). Given ^eL(6, c) we
construct a sequence of elements indexed by reZ^.,

^\ ̂ \ ̂ \ . . ., ̂ )eL(b, c+re) xV(6, ,+r,) x (L(^ ,+ (r+ i)^))^1

by letting ^(Q) =^ and the following recursive method. Given S^eL^, c-^-re) we
choose by Lemma 3.4, -y^eV^, c+r^) and ^^^-(^ ̂  (y+ i)^) for x'==o, i, . . ., n

such that ^=^+ S H^. We now define ^(r+l) by

(3.6) ^+D=^)_^)_.^^M_

41
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We must show that ^{r+l) eL{b, c+{r+i)e). We note that

^+D=_ S E^eL(^+ (r+ i)^)
1=0

and this establishes our recursion process. Writing equation (3.6) for r==o, i, . . ., h
and adding, we obtain

(3.7) ^^^-s^-sns^).
r = 0 1=0 r = 0

CO 00

For e>o, S T]^ converges in V(6, c) and S ^r) converges in L(&,<:+^) fo1' each
r=0 r=0

ieS". Furthermore ^^—^o as A-^oo and thus taking limits as A->oo, equation (3.7)
shows that i; lies in the right side of the equation in the statement of the lemma.

We now consider ^eL(^, c), b = i /(^— i). If NeZ+, s>o, ̂ N then
j(s/N+&) +c—z^sb+c and therefore T^eL^^b +S/N, c—i), which shows since
6+£ /N>i / (^—i) that there exists 7](N)eV(£/N+^ c—e), ̂ (=L{b +S/N^—£+£/N)
for each zeS" such that

(3.8) T^^^'+SD^W

The space V{b,c—z)x(L{b,c—c))^1 is compact in the weak topology, which
shows that the sequence (v^, ̂ w, . . ., ^^N=0,1,...? has an adherent point
(Y)00, ^E), . . ., SL^) ln ^at space. Hence taking limits we obtain from equation (3.8),

(3.9) ^TiM+SD.^.
i=0

We now let e run through a monotonically decreasing sequence of positive real numbers
with limit zero. The use of compactness shows that the sequence (T]^, ^s), . . ., ^£))
indexed by s has an adherent point. Restricting our attention to a converging subsequence
we conclude that the adherent point (•/], So, Si? • • • ? Sn) lies in V(6, ^—s) x (L(&, <:—z))n+l

for each e in an infinite sequence of positive real numbers with limit o. Thus taking
u

limits in equation (3.9) we obtain S=7] + S D^, 7]eV(6, c), ^eL(&, c) for each zeS".
This completes the proof of the lemma.

We defer for the moment the discussion of Vn S D^L(6).
»=o

Lemma 3.7. — Let p, c, b be real numbers, b<^pl{p—i), N an element of Z^.,
e==b—il{p—i), p -{-e>_c and let A be a proper subset ofS', A=hS. Let {^}^A ^ a set °f
elements in X^tio{X}nL(6, c) indexed by A such that S H^eL(A, p). TA^TZ ^r^ exists

t£A

a j^ o/' elements {•^(=A ^ (X?^o[^i? • • - 5 ̂ n+i])0^^ P+^) indexed by A, flW a
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skew symmetric set T)^ in (X^""1^^!, . . ., X^i])nL(&, c+^) indexed by A jizcA ^Afl<
i/' we set

(3.io) S—^-(^+SH,^,)
\ ?'GA /

^/or ^flfA z'eA then S H^eL(6, p) ayzrf ̂  lies in L(6, ^) and is divisible by ^K^+lfor each ieA.
ie A

Proof. — It is quite clear that if the elements T]^ are chosen in L(&, p+^) a-nd
the 7]̂  • are chosen in L(6,c+^) then ^ as given by (3.10) certainly lies in L(6, c)
and S H^ ==2H^—2H^eL(6, p). Thus the only important condition to be satisfied

iEA

by ^ is that of divisibility by X^1.
For each ieA, let P^ be the coefficient ofX? in ^ and let Q^+1) be the coefficient of

X^in S H,^. Hence ord P^^N^+c, ord Q^1^ (N+ i ) & + p , Qi^74-1^^ 2/,P^.
iGA tGA

Lemma 3.2 now shows that there exists a set of homogeneous forms of degree rfN, {Cj^^
such that Qi^ = TT S^G,, ord C^ N6 + p + e. Thus o - S^(C,- P^^) and hence

iEA -iGA

by the corollary of Lemma 3.2 5 there exists a skew symmetric set of forms of degree
r f (N—i) , {B^y} indexed by A such that for each z'eA.

(3-") pf^n+^SB^
?'£A

and ord B^ (N— i ) b+c+e (since by hypothesis, p -}-e>_c). We now let ^^B^^X^"1

for each (i,j)eAxA and T],=C,X^ for each zeA. It is clear that X^ divides ^ (as
given by equation 3.10), while the coefficient of X^ in ^ is P^—G,—•3rSB,^=o.
This completes the proof of the lemma.

Lemma 3 . 8 . — L e t b, c, p be real numbers, b < ^ p l ( p — i ) , e^b—il(p—i), e-{-^>_c.
Let A be a proper subset of S', A 4= S and let {SJ^A ^^ ^ se^ of elements of L(6,6;) indexed by A
JM^A ^Afl^ S H^eL(6, p). TA^TZ <^r^ exists a set of elements {v]j in L(&, p +^) indexed by A

tEA

anrf a j^w symmetric set ̂  y in L(6, c-^-e) indexed by A ^cA that

S(=Y1,+2:H,7).,
? £A

for each ie A.

Proq/'. — Let ^^^ for each z'eA. It is clear that Lemma 3.7 gives a
recursive process by which for each NeZ^ we may construct a set {^N)} in
(X^QoP^ •••?X^i])nL(&, p+<0 indexed by A and a skew symmetric set {•y^"11}
in (X^QopC^ . . ., X^J)nL(6, c+e) indexed by A such that for each zeA,

(3.12) ^+l)=e)-(^N)+2H,<)\
\ ?'GA /

^N)eL(i,<:), X? divides ^N), S H^ is divisible by X^ and lies in L(i, p). Let
oo oo ^A

v], = S •^N), ^ , == S •^N) for each i,jeA, convergence being obvious in the weak topology.
N=0 ' N=0
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Clearly ^eL(&, p +^), •y^eL(&, ^+^). For yeZ^, we write equation (3.12) for
N==o, i, . . ., r and add. This gives

^^^-S^+SH,!:^
N=1 ;eA N=1

The lemma now follows by taking limits as r->oo since lim ^r+l) == o in the weak topology.
r-»-oo

Lemma 3.9. — Let b^ c, p be real numbers such that p^6:, i/(^— ̂ ^^^PKP— I) an(^
let e ==b— il{p— i). Let A be a proper subset of S', A 4= S and let ̂  be a set in L(&, c) indexed
by A such that S D^eL(6, p), ^TZ there exists a set {y]j in L(&, p +^) indexed by A aW a

t£A

jA;̂  symmetric set {-y^-} ZTZ L(6, c-\-e} indexed by A JM^ ^A^ ^=7^4- S D^^y.
?eA

Proo/'. — There exists a unique element N of Z^_ such that (N— i )^ + c^p<N^ + c.
For each integer r, o^r^N we construct a set {^r)} m L(&, 6:+^) indexed by A and,
for o<r<N a set {^r)} in L(&, ^+( r + I )^ ) indexed by A and a skew symmetric set
{7]^} in L(&, <; + (r+ i)e) indexed by A such that (letting ^ == S D,^)

i€A

(3.13) ^=SD,^ for o^r^N,
iGA

(3.14) ^^r+SH,^. for r<N,
7£A

(3.15) ^'^'-SD,^' for r<N,
? £ A

and such that ^0) ==^ for each xeA. Suppose the set {^^A ln L(6,c+^)
satisfying (3.13) is given for some integer r, o^r<N. We then have

S H.^'=^- S E.^eL^, p) +L(b, c+re) =L{b, c+re).
iGA tEA

Hence by Lemma 3.8, elements ^r) in L(A, ^+^(^+1)) and 7 .̂ in L(6, <:+(r+i)^)
may be chosen such that equation (3.14) is valid for each zeA. If ^r+l) is
now defined by equation (3.15) then certainly ^= S D^4'^ and furthermore,

t(=A

^+D=^)_ S E^.6L(6,c+(r+i)^). This completes the construction of ^r) for
?eA

r=o, i, .. ., N, since ^0) is specified, and also of T]^ and T]^ for r = o , i , . . . , N — i .
In particular, ^eL^, ^+N^) cL(6, p) and therefore S H^^— S E^eL^, p).

•ieA tGA

Since p+^^+N^, we may conclude from Lemma 3.8 that there exists a set {^N)}
in L(^ ,p+^) indexed by A and a skew symmetric set {^N)} in L(^, < :+(N+i)^)
indexed by A such that equation (3.14) is valid for r==N. If now we define for each
t'eA, ^.N+l) by setting r=N in equation (3.15) we have

^N+l)=^N)-SE^.N)EL(6,p+^)+L(&,.+(N+I^)=L(&,p+^).
?eA

44
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If now we write equation (3.15) for r=o, i, . . . , N and add, we obtain after
/ N \

obvious cancellation, ^N+l) == ^— S D ( S rf^]). The lemma follows directly by setting
j E A \ r=0 /

7^N+l)eL(A,p+^) and T^.-£ ̂ ,eL(^+.).
r=0

Lemma 3.10. — If A zj a proper subset of S' .A+S;^,^ ar^ mz/ numbers^
i l { p — i)<b<pl(p— i) and if{^} is a set in L(6, c) indexed by A such that S D^==o then

i£A

^r^ m.ŝ  a skew symmetric set {^j} in L(&, c-\-e) indexed by A such that ^= S D,T^ ^ ^or
^^A zeA. ?e

Proof. — Let p be any real number, then S D^eL(6, p) and hence if p><; there
t£A

exists a set {^p)} in L(6,p4-^) indexed by A and a skew symmetric set {^} in
L(6,^+^) indexed by A such that

(3.i6) S-^+SD^
?EA

for each zcA. Let p run through an infinite sequence of real numbers towards +00,
then by the compactness of the cartesian product of copies ofL(6, o) indexed by A and
of copies of L(&, c-\-e) indexed by Ax A there exists an infinite subsequence such that
if p is restricted to the subsequence, then, as p—^oo, T]^ converges (necessarily to o) and
7]̂  converges to 7]^eL(6, c-}-e). Clearly the set {7]^} is skew symmetric and taking
limits in equation (3.16) as p-^oo, the assertion is proved.

Lemma 3.11. — For 6> i / ( ^—i) , Vn S D,L(6)={o}.

Proof. — Let ^ be an element of the intersection. It may be assumed that
i l ( p — ^^b^pKp— i). With b fixed in this range, let p be chosen such that ^eL(6, p),

n
^L(6,p+^) . If ^4=0 then p certainly exists. Since ^eSD^L(6), Lemma 3.9

i==0 n
shows that there exist T](), T^, .. ., T]^ in L ( A , p + ^ ) such that S= S D^. Thus

n n i=0
S— S H^= S E^eL(6, p+^) . Lemma 3.4 shows that there exists ^'eV(6, p+^) ,

t==0 i-O n n

7]o, . . . , 7]^ in L(&, p + 2<?) such that S— S H ,̂ == ^' + S H^o. This shows that ^— ̂
„ 1=0 z=o

lies in Vn S H,L(6), and hence by Lemma 3.5, ^—S'==o. Thus ^==^'eL(&, p+^) ,
1=0

which contradicts the choice of p. Hence S==o.
This completes the « general» theory of the differential operators. We note that

if b<_pl(p—i) then for each subset A of S, the subspace L^A) of L(&) is invariant
under each D^. The action of the differential operators on these subspaces must now be
discussed in greater detail.
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e) Special Theory.

In this section we cannot avoid distinctions (1) depending upon whether or not p
divides rf. Furthermore some of our results will be valid only if H and the H^ == E^H
are subject to further restrictions. To avoid confusion, for each zeS, let H^=7r'X^,
and let £), be the mapping S-^E^+^H^, where TT'G^, ord n = i / ( j & — i ) .

For each subset, A, of S ={ i , 2, . . ., n-\-1}, let X^ be the set of variables {Xj^^.
The ring, H)[XJ, of polynomials in the variables X^ with coefficients in H), is viewed
as a subring of ^o[^-s] = H)[XI, . . ., X^J and in particular if A is empty then H)[XJ
is the field H). Let 3^ be the homomorphism of ^[Xg] onto H)[X^] defined by

^{^\ ^xi if ieA3A(X,)=^ ^ ^

As before W^ denotes, for each meZ^., the space of forms of degree dm in
QoEXg]. For each subset A of S let W^S^W^) and for each subset B of A, let
Wl^^W^r^M^), where (Mg) denotes the principal ideal in U)[Xg] generated by
the monomial MB=riX, . (Unfortunately, our notation permits the same space to

iEB

be designated by several symbols. Thus ifo is the empty subset ofS, then Wj^^W^'^
and W^^W^W^).

For each subset A o f S let ̂ (m} be a subspace ofWj^'^ which is radically comple-
mentary (with respect to the monomial basis of Wj^) in W^ to W^nS^)-

Thus we have
(3.17) W^ ̂ 1'^M (Wi'^na^W)

For each subset, A, of S, let
(3.18) 93^^==S93^^,

B

the sum being over all subsets, B, of S which contain A.

Lemma 3. i2. — Let A be a subset of S.

(i) Wjl'̂ ^ S W^'^, the sum being over subsets, B, ofS which contain A.
A3B

(ii) Wf^n (Kernel of 3J = s W^^^, the sum being over all subsets, B, ofS which
contain but are not equal to A. +

(iii) W^n^^-SA^W^).

Proof. — The first assertion is trivial. For (ii) we observe that a polynomial, ^,
lies in the kernel of 3^ if and only if each monomial, X^ appearing in ^ is divisible by at

(1) The theory in the case p\d is hampered by the fact that Lemma 3.3 fails to give an explicit basis for the
n+l

ideal (Mg) 0 (^,^» .. .,/n) in K[X]. This ideal contains but is not necessarily equal to (Mg^) + S (Mg^/X,),
»=1

a counter-example being given (for n = 3) by S ̂ f^i^—1)/^ +^i(I—^A—f^i^fz^ where for i = i, 2, 3, 4,
8^ is the specialization of K[X^, Xg, X.^, XJ defined by 8 -̂ = o, 8,Xy = X, for j + z.
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least one variable X^ such that ieS—A. If X" is also divisible by M^ then certainly
there exists a subset, B, of S containing A properly such that Mg divides X". For the
proof of (iii), we use Lemma 3.3 (i) which shows that as an ideal in ^[XJ,
(MJ nS^W = s (H^SA^/X,). Intersecting both sides of this last relation with Wj^,

ieA
we see W^'^nS^^l is the set of all homogeneous polynomials of degree dm of the form
^ &M^(3^/,)/X,, the g, being elements of QJXJ. By homogeneity it may be assumed

iEA

that ^M^/X, is a form of degree dm in ^o[XJ and hence lies in SInW^'^. This shows
that the left side of (iii) lies in the right side, which completes the proof since inclusion
in the reverse direction is trivial.

Lemma 3.13. — Let A be a subset of S
(i) 93^^ =2:[+]93j'(w)3 the sum being over all subsets B of S which contain A.
(ii) W^^ ̂ ^^©(^InWt^) W ̂  ̂ m ^ p-adically direct if p \ d.

Proof. — (i) The definition of S?^'^ shows that it is enough to prove the ^-adic
directness. For each set B containing A, let SB be an element of Vjl'^ such that
ord (S^)>o. Let C be a minimal subset of S which contains A such that ord ^c^.0-
Glearly ord ^=ord(3cS^g)^ ord(2S;g)>o, which shows that ord^g>o for each B.

(ii) We first prove this assertion without any claim concerning directness. The
assertion is equivalent to equation (3.17) if A=S. Thus we may assume that
A 4=8 and use induction on the number of elements in A. By Lemma 3.12 (i),
W^'^ == Wj^ + S Wl'^. Equation (3.17) and Lemma 3.12 (iii) show that

BDA

W^^Sj^+SA^0^^ and since SA acts like the identity on Wf^, we may
conclude that W^cS^ +91 oW^^- (Kernel S^W^- Lemma 3.12 (ii) now
shows that W^(w)c93i'(m)+9InW^(m)+ S Wj^ and it is clear from the previous relations

B^>A
=(=

that W^'^ also lies in this space. The induction hypothesis now shows that
^,(m)^^,(m)_^_^^^,(m)_^ ^ (^jW 4. ̂  Wj^). Equation (3.i8y now shows that

B3A
=(=

W^c^^+^InWt'^ and equality is clear.
To show directness (in the ordinary sense) of the sum, let ^ be an element in

St^n^nW^^). Equation (3.18) shows that for each set B containing A, there
exists SB^E'^ sucn Aat S;=S^g. Let C be a minimal set containing A such that
^+o. Clearly SC-SC^G^I and hence ^W^n^^n®^, which shows by
equation (3.17) that Sc = °- This contradiction shows that ^g === o for all B and
hence S == o-

Let ^ be an element of 93^ and T] an element ofW^n^I, both in Dol^s] such

that ord (^—T^)>O. To complete the proof of the lemma, we must show (if p ^ d )
that ord ^>o. By definition, for each set B containing A there exists ^a^^'^ suc!1

that ^==S^g. We show that ord ^g>o for each B. Suppose otherwise, then there
exists a minimal set C containing A such that ord^^0- Then ord(^c—3^)>o,
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while ord^—Sc7])^01^—^)^. Thus ^eDo[Xc] and ord(Sc—3c7])>o• Let
^ be the image of ^ ln K-E^-c] under the residue class map. Clearly ^ is divisible
by M^ and lies in the image in K[Xc] of OoP^c]0^!^- Using the asterisk to denote
images in K[Xc] under the residue class map, we may conclude from Lemma 3.3 (i)
(since p \ d ) that there exist a set of forms of degree dm, {^} in K[X(;] indexed by C
such that ^== S ̂ M^S^^/X^ Choosing forms G^ of degree dm in JO^X^] which

iEC

represent the,?, and setting ^= ̂  G.M^SV^/X^W^nac^ wehaveord (Sc—^c)>o-iec
Since ^eSS^'^, this contradicts equation (3.17) and so the proof of the lemma is
completed.

For each subset A of S, let V^^SS^ if p \ d , while otherwise let Vf'^ be
chosen in Wjl'^ radically complementary to (SInW^^). (Clearly we may let
V|1 (w) = 93|'(w) in any case.) It follows from the definitions and Lemmas 3.2, 3.3
and 3.13 that if AcS^nS and PeWf'^ then there exists Q^eVf'^ and a set of
homogeneous elements {Pj indexed by S" in Qo[Xg] such that

(3.'9) P=QW+SP</.M,JX,+ S P^M^,
iCA ieS"—A

ord Q^ord P, ord P,>ord P. If A is any subset of S, there exists Q^eSi^ and
a set of homogeneous elements {P^} indexed by S in ^o[Xg] such that

(3.20) P=(^+SPJ;HJX,+ S P,/^
t£A tG S —A

but in this situation the previous estimates for ord Q^ and ord P^ do not hold unless p
does not divide d.

Finally let Vf= S; Vf'^X^ 93^== 2; 931'̂ X^ V^(6, ^ =V^nL(6, <;). In parti-
m =0 w==0

cular the space, V, defined previously, may in our present notation be written V|. We
shall write VA (resp. 9^) instead of Vf (resp. 93^) and likewise V (resp. 93) instead of V0

(resp: 930) whenever there is no danger of confusion. In particular 93==S93f, the sum
being over all subsets A, of S. We note that for each subset A of S, V^ and 93"^ lie
in fi^^ and have equal dimension.

Lemma 3.14. — If b<_pl{p—i), and A is any subset of SnS" then

If p \ d then

L^, c)=V\b, c) + S H^-^^c+e) + S H.L ,̂ c+e).
zGA i'eS"—A

L^, .) ^V8^, .) + S H^-^, ,+^.
zes

The proof is a step by step repetition of that of Lemma 3.4 and therefore may be omitted.
We note that the statement of Lemma 3.4 is obtained from this lemma by setting A== 0.

Lemma 3.15. — If {p—!)~l<^b<ip|(p—i) and if A is any subset of SnS" then

LA(^)=VA(^)+:S^LA-W(^+^)+ 2 D^c+e)
iEA ie^"-A
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If p \ d then
L^b, c) ̂ V^, .) + S D^-W^, c+e).

tGS

This generalization of Lemma 3.6 follows from Lemma 3.14 in precisely the same
way that Lemma 3.6 follows from Lemma 3.4.

We must now overcome some of the difficulties caused by the incompleteness
of Lemma 3.15.

Lemma 3.16. — For each subset A of S and each NeZ^., N^No,
^A,(N)^^A_^ ^;^^A-{i},(N-l)^_ ^ ^^A,(N-1)

t£A l t£S-A

and the equality remains valid ifS^ is replaced bjy V^

Proof. — Since the left side of our assertion clearly contains the right side it is
enough to shows that the right side contains the left side. We show this inclusion for
each NeZ+. This is trivial for N=o since fl^W^a^fo^v^^o} (resp. Qo)
if A 4=0 (resp. A==o). We now suppose that N>o and use induction on N. Let
^A,(N) ̂  ̂  p ̂  ̂  coefficient of X? in ^ Let homogeneous forms Q^, {Pj,es
be chosen as indicated by equation (3.20) (with m replaced by N). Let
^X^MJVX, forzeAand ^X^MJ^ for zeS-A. Let T^O^X?^ and

then S— (-y] +nS<S^i) efl^(N-1). This shows that
»=i

^A,(N)^^(A)^_ ^;^^A-{t},(N-l)_^_ ^ ^). f iA,(N-l) ,^A,(N-l)
i€A l »eS-A

and the assertion now follows from the induction hypothesis. The above argument
can be used for 2^ replaced by V^, since Q^ may be chosen in V^^ instead of^^^.

The following lemma is a special case of Lemma 3.11 unless p divides d.

n+l
Lemma 3.17. — For b> il(p— i), 93n S 2),L(6) ==o.

i==l

Proof. — The previous lemma shows that V cfi^ == 25 +nSlD,fl(N<) -1) c93 +ni;lD,L(&).
l=l i=i

We may assume that b<_pj{p—i) and use Lemma 3.6 which shows that
n+l n+l

L(&) ==V+S S)zL(fi) and thus conclude that L(&) =93 + S 2),L(6). Lemma 3.11 shows
i=l i==l

that V w L(6)/nS 2),L(&) ^ ̂ /(Sn^ ^L(&)). Since V and 33 are vector spaces of the
i-i 1 = 1

same (finite) dimension, this completes the proof of the lemma.
Our next lemma is a weak form of Lemma 3.15 of interest only if p divides d.

Lemma 3.18. — If A is any subset of S and if i / ( j & — ^ ^ ^ p K p — i ) then

L^ca^+^D.L^).
i= l
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Proof. — By Lemmas 3.15 and 3.16 we have if A=t=S,

LA(b)cVA+n^ D.L^cfi^+'S D.L^c^+^^L^).
i =--1 z= 1 i == 1

To prove the lemma for A==S, let B=={ i , 2, . . ., n] and let 3^i denote the mapping
ofQ^Xg) onto ^{Xg} obtained by replacing X^i by o. For each zeB let 2),' be
the mapping ^E^+%+iH' of ^{Xg} into itself. For ^e^{Xg}, zeB we have
3^.,S),S=D;3,^^, while 3^£)^^=o. If SeL8^) then from the part of the lemma

n+l
already proven, there exists r^eS^ such that S^+ S 2),Lg(6). Applying 3^i to this

n i= l

relation we have o ==3^+i7] + S D^Lg(&). However equation (3.18) shows that
i==l n

^==®!+®1 andhence 3^+i7]e9SJ and hence lies in ^n^^L^b), which according

to Lemma 3.17 (with S replaced by B) is {0} since b>ij{p—i). Thus 3^_^7]==o, which
shows that Y)e93|. This completes the proof of the lemma.

f) Exact Sequences.

The object of this section is the computation of the dimension of the space V|
defined in the previous section. For this purpose we shall need a theorem concerning
exact sequences which will be used again in the geometric application of our theory.

Let ft be a field of arbitrary characteristic and let W be a vector space over ft
with an infinite family of subspaces indexed by both Z and by the subsets of
S={ i , 2, . . . , n+i}. That is, for each teZ and each subset, A, of S, let W(A, t) be
a subspace of W. Let 9i? . • . 5 (pn+i be a commutative set of endomorphisms of W
with the property

(3.2i) 9.W(A^)cW(Au{Q,^+i)

for each zeS, teZ, and each (not necessarily proper) subset, A, of S.
For each reZ^ and each pair of subsets A, B of S such that e+A^B, let

gr(^ r; A, B) be the space of all antisymmetric functions g on A"" such that
g{a^ .. ., <z,)eW(—^—r, B—{<^, ̂ , .. ., aj), it being understood that g(^ o; A, B) is
to be identified with W(-—^B). For r> i , let S(t, r; A, B) be the mapping of
g(^, r; A, B) into g(^, r— i ;A, B) defined by
(3-22) (8(^, r; A, B)^)(^, . . ., ̂ _,) == S 9^, . . ., a,_,,j)

JEA

for each ge^{t, r; A, B). This mapping shall be denoted by 8 when no confusion can
arise.

Theorem 3 .1 . — If the sequence

^(t, r+2; A, B) -i ̂  r+ i; A, B) ̂  g(^ r; A, B)

is exact when r==ofor all pairs of subsets A, B of S such that 0+AcB then the sequence is
exact for all reZ_^..
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proof. — We must show that Kernel S{t, r + i ; A, B) = Image 8(^, r + 2; A, B).
We show that the right side is contained by the left side by showing that
S ( ^ r + i ; A , B ) S ( ^ , r + 2 ; A , B ) = = o . Let ge^(t, r+2, A, B), then

(S(^r+i;A,B)8(^r+2;A,B)^)(^,^, ...,^)=

S <p,(S(r+2; A, B)^)(^, . . ., a,,j) = S w,g(a^ . . ., a,, j\ i) =o
ycA i,?eA

by the commutativity of the endomorphism 9, and the skew symmetry of g.
To complete the proof we must show:

Kernel 8(^ r + i; A, B) c Image S(^, r + 2; A, B).

This is true by hypothesis for r==o and hence we may assume that r>_i. Antisymmetry
shows that if A contains just one element then g(^, r + i; A, B) == ̂ {t, r + 2; A, B) == o
for r>_i. The assertion is thus trivial if A contains only one element. We now
may assume that A contains at least two elements, that r> i and we use induction
on r for all t. Let ge Kernel S{t, r + i ; A , B ) . Renumbering the elements of S if neces-

s

sary we may suppose that A = { i , 2, . . ., s}, J>2 and hence o== S ?^(^i, . • ., a,,j)
j = l

for all (fli, .. ., a^eA^ With ^ fixed, say a^==i, we consider the mapping
(ag, . . ., ^,4-1)->.?(i, ^25 • • • ? ^r+i) as a function on (A—^i})', indeed as an element
of g(^-}- i, r; A — { i } ? B — { i } ) since it is skew symmetric in the « variables » flg, ...,^^
and ^(^^•• •^^^(—^—^^—{^—{^•••^r+i}) - In this sense the

mapping lies in Kernel S{t+ i, r; A— {i}, B—{i}) and hence by induction on r
there exists A'eg(^+ i, r+ i; A—{i}, B—{i}) such that

(8(^+1^+1 ;A——{l},B——{l})^)(^, ...,^+l)=,§^(I^2. •••^r+l)

for all {a^ ..., a,^)e{A—{i}Y. Let A be the function on { i}x (A—{I}) r + l defined
by h(i,^, ̂ ^a^=hf{a„ ..^a^,) for all (^, . . ., ^+l)e(A-{I}) r+l. Let \ be
the set of all (b^ b^ .. ., &,+2)eA r+2 such that at least one « coordinate » is i. By
anticommutativity, h may be extended uniquely to a mapping (again denoted by A)
ofAi into W. Furthermore it is easily verified that if (b^, .. ., 6,+i) X AcA^ (i.e. at least
one b,== i) then g(b^ b^ . . ., 6,4.1) == S 9,A(6i, b^, .. ., 6, .i,j). If (61, . . ., b,^)eA

?£A

then A(6i, &2, . . ., b^^eVf^—t— (r+2), B—{^ , . . ., b,^}) as follows directly from the
corresponding property of h\

For each integer m, i<,m<s, let A^=={(^, . . ., ^+2)eA r 4-2 |^e{I, 2, . . . , m } for
at least one z e { i , 2, . . ., r+s}}. Let A^={(^, . . ., f l^l)eA r+ l[^e{I, 2, .. *, m} for
at least one ze{ i , 2, . . ., r+ i}}. Suppose (second induction hypothesis) that h has been
extended to a skew symmetric function on A^ such that for all (<^, . . ., a^^)eA^ and
(&i, . . ., ̂ .+1)^ we have h{a^ . . ., a,^)eW{—t—{r+2), B—{^, ̂ , . . ., a,^}) and
^(^i, • • •, ^r+i) == 2 9,̂  • • • . ^r+i^')- If ^=^ we are done, i.e. he^(t, r+2; A, B)

?'eA
and S(^, r+2; A, B)A=,§^. Hence we may assume that i<,m<s. If m = = ^ — i then
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since r+ 1^2, g{m+i,a^ . . . , ̂ ) =o unless (^+i,^, . . ., a,^)eA;,. LikewiseAis
defined on A^ and can be extended to an anticommutative mapping ofA^2 into W by
letting h map elements of A7'4-2 not in A^ into o. Thus for (w+ i, ̂ , . .., a^^eA^1,
^ (m+i , a^ . . ., a^) == S 9^(m+i, flg, . . ., a,^^ i) since this is certainly true if

tGA

(m + i, a^, . . ., ̂ ) eA^, while otherwise 772+1==^= ... == <z,^ and hence both sides
are zero.

Thus our second induction hypothesis may be applied to the case in which
i^m<s—i. We know that S <p^(w+ i, a^ . .., a,J) =o for all (^, . . ., a^eA^.

? £A

We restrict (^, ...,0 to (A—{i, 2, ...,^})r-l. For j<_m, the second induction

hypothesis gives g{m+ i, ^, . . ., a,,j)= S (p^(w+ i, ^, . . . , ^,j, z) and hence
i==i

w s g

0=.S.S;,^•(P^A(W+I? a^ • • •^ r»^ ^ )+ S 9,<?(^+I,^2. •••^r^')-
?—l t== l j==wi4-l

The anticommutativity of h on A^ shows that
m m

o=S S 9,9^(w+i, ^2. • • • , ^ J , i )
j == 1 i = 1

and hence
s ^ m j

o=,^+l(?il&{m+l' a2> ' • • ' ffrj) +,S9.•A(OT+ I' ̂  • • ., ̂ , i,j) .

Since CT+I<J, this last relation may be written o= S ^'(»z+i, ffg, ..., a , ? ) where?'
j=m+2 „

is the mapping (flg, ..., a^J -^ ̂ 4- i, a^ ...,a^,)—S ̂ (m+i,^, ..., a .,,!•),
1=1

of (A—{i , 2, . . .,m+i}Y into W. It is easily verified that

^'e2r(f+ i, r; A—{i, 2, ..., m+ i}, B—{m+i})

and we have just shown that g ' lies in the kernel of

S ( ^ + i , r ; A — { i , 2 , . . . , O T + i } , B — { w + i } )

and hence by induction on r, there exists

h"e^f{t+ i, r+ i; A—{i, 2, ..., m+i}, B—{w+i})

such that S(f+i,r+i;A—{i,2, ..., OT+i}, B—{OT+i})A"=,g'. Thus
m ,,

,?(w+i,a2, ..., a,+i)=2 y.A(OT+i, aa, ..., a^^, ;•) + S y^"^, ..., a,,i, k)
^==l k==m+2

for all (fla, ..., a^^)e(A—{i, 2, ..., i +m}Y. We now define for all

(a^, . . . ,a^^)e(A-{i ,2, . .., m+ i})^1, A(OT+ i, a,, ..., a,^, a,^)=h"(a^ ...,a,^)

and extend h by antisymmetry to r={(^, ..., a^)e(A—{i, 2, ..., m}Y+2 such that
at least one a,=OT+i}. (We note that FnA^=0 while ruA^=A^+J. Thus A is
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now well defined and antisymmetric on A^.^. If now {a^ . .., ^r+i)6^*-^! then
g{a^, . .., ^4.1)== S 9,A(^, . . . 3^ ,1 ,1 ) since this is known by the induction hypo-

i(=A

thesis to be true if (^, ..., fly^eA^ and hence we may assume that

[a^ ...,^)e(A—{i,2, ...,m}Y^

and that at least one of the ̂  is w + i in which case we may use our relation involving A",
our extension of h and the antisymmetry of both h and g. Finally we note that for
(fli, . . ., fl.^eA^i, h{a^ ..., a^^)e'W{—t—r—2, B—{^, .. ., fl^J) since this holds
by the induction hypothesis if (^, ..., o^^eA^, while otherwise we may suppose
^ = = m + i , (^ . . . , a ,+ i ) e (A—{i ,2 , ...,m+i}Y so that

A(^, . . ., ̂ ,+2) =h"{a^ ..., ^+2)

which lies in the asserted space since A'^e^K^+i, r+ 1 3 A—{i , 2, . . ., w+i}? B—{w+i})-
This completes the proof of the theorem.

For subsequent applications it is convenient to make available a weaker form of
the theorem. Let W now be a vector space over K with an infinite family of subspaces,
W(^), indexed by teZ,. Let <p^ . . ., ^n+i ^e a commutative set of endomorphisms ofV
with the property 9^W(^) cW(^+1) for each zeS, teZ,. For each reZ^. and each
non-empty subset. A, of S, let 3K^, r; A) be the space of all antisymmetric functions,
g, on A'' such that g(a^y .. .3 ^)eW(—^—r), it being again understood that 3K^ o; A)
is to be identified with W(—t). For r>_i, let S[t, r; A) be the mapping of 3K^ r\ A)
into gK^, r— i; A) defined as in equation (3. 22). The second corollary follows directly
from the theorem.

Corollary. — If the sequence

^{t, r+2; A) -^ ̂  r+ i; A) -^ ̂  r; A)

^ exact when r=o for each non-empty subset A of S ^TZ ^ z'j ^z^ yi?r all reZ^..
For our final result of this section we use the notation of § 3 e.

Lemma 3.19. — Consider the polynomial, Y^^i —Y^-1)^1/^ —Y)^1 =2 '̂ ^ o^
variable, Y. TA^z yi?r ^a^A weZ,

dim 93|'(w) = Yma ? and hence

dim93|=rf-l{(rf-I)n+l+(-I)n-t-l.(rf-I)}.

Proo/1 — In the notation of Theorem 3.1, let W==fl and let W^A^Wf'^
for each ^eZ and for each subset A of S. For each zeS, let 9^ be the mapping ^->f^
ofW into itself. It is clear that condition (3.21) is satisfied. To apply the theorem we
must verify that if 0+AcBcS then Kernel S[t, i; A, B) = Image 8(^, 2; A, B). This is
equivalent to the assertion that if h^ is a set of elements of W^"^ indexed by A such
that ^e(Mg/X^) and such that S h^=o then there exists a skew symmetric set {7]^}

i(=At£A
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in Ws"^"^ indexed by A such that ^ = S ̂ fy for each zeA and such that T], ,e (MB/X,X^).
?eA

This assertion may be proven without difficulty by means of Lemma 3.3 (i), using the
fact that the proof of Lemma 3.1 shows that (/i, ... ,/y) ^/r+i= C/i.3 ' ' " > f r ) ^or

r= i, 2, . . ., n. Thus, Theorem 3.1 may be applied and denoting 8(—w, r; S, S) by
8y for fixed m, and g(—m,r$S, S) by ^, we may conclude that

(3 • 33) Kernel 8, == Image 8,̂

for r = = i , 2 , ... Furthermore gr^ being the space of all skewsymmetric functions, g,
on S' taking values in W^"^ such that g{a^ .. ., a,) eW^^-^^"^, we easily compute

(3.34) dim^^;1)^-^-1)

Since Image 8^ ̂ y /Kernel Sy and since ^y is of finite dimension, we have

(3.35) dim ̂  = dim Kernel S,. + dim Image S^.

Writing [Im 8J (resp: [Ker 8J) for dim Image 8^ (resp: dim Kernel 8,.), we now have

as power series in Y, S Yr dim y == S Y^Im 8J + S Y^Ker 8,]. Equation (3.33) now
r=l r=l r=l

gives
00 °0

(3.36) S Y'-dim^YCIm^+^+Y-1) S Y^In^J.
r=l r = 2

Since dim^=o for r>n+i , this equation is a relation between polynomials and
00

hence setting Y = = — i in (3.36), we have —[Im8J= S (—lydimg,. By definition
r=l

aSl'^ is isomorphic to the factor space WJ'^/^nWl'^) and Lemma 3.3 (i) shows
that anWJ^^—Image 81. Furthermore ^^WJ'^ and hence

dim 931*^ = dim go—[Im 8J.

We may conclude that

(3.37) dim ̂  = S (-1 / dim ̂ .
r=0

It is easy to verify with the aid of (3.34) that the right side of (3.37) is the coefficient y^
ofY^ in the polynomial

A(Y)=Yn4- l(I—Yd- l)n+ l/(I—Y)n+l=Yn4- l(I+Y+ ... -pY^-2)^.
00

Clearly dim93|= S y^^^"1^^)? the sum being over the rf^ roots of unity. Clearly

i—^-^—o^fi—co) andhence A(co) = (—i)^1 i f c o + i , while A( i ) = (rf—i)^1.
This completes the proof of the lemma.

We now observe that dim V == dim 93 == S dim 93^, the sum being over all subsets A
A

of S. In particular for A==0, dim 93^= i and this coincides with the formula of the

64



ON THE ZETA FUNCTION OF A HYPERSURFACE 55

previous lemma if we replace n + i by o. It is easily verified that dim V = fi^, a result
that could have been obtained directly by an argument similar to that of the lemma in
which the corollary of Theorem 3. i is used instead of Theorem 3.1.

Since the polynomial h in the proof of the previous lemma has the property

/^^Y^-^ACY-1)

it is clear that Y^n+^-^Y? ^or au J ^ ' ^n particular

Ywd === Y(n+l—w)d

for all 772, a result which may be related to the conjectured functional equation of
the zeta function. We also note that Yd==0 ^ ^d ^Y ^ d<n-{-i, a fact related to
the results of Warning.

§ 4. Geometrical Theory.

The notation of § 3 shall be used whenever possible. In this section g ^ p " , aeZ_^,
aj> i. The first subsection involves power series in one variable, t, with coefficients in £2.
Such a power series, Sy^, will be said to lie in L(&, c) if ord Ym^^ Jrc ^or au me^•+ •

a) Splitting functions.

In [i] we gave two examples of a power series, 6, in one variable satisfying the
conditions

(i) 6eL(x, o),x>o.
(ii) 6(1) is a primitive p^ root of unity.
(iii) If y^^Y ^or some integer ^, s>o then

s^pj

r^Y^^i)7'0 .
? = o

(iv) The coefficients of 6 lie in a finite extension of Q^.
A power series in one variable satisfying these four conditions will be called a

splitting function. We shall construct an infinite family of such functions indexed by
Z* ==[+oo}u{seZ\s>_i}. Indeed the theory of Newton polygons shows that for each
jeZ*, the polynomial (or power series),

S Y '̂
?=o

has a zero, Ys? such that ord Yg == i/(j^— i)" While there are p— i such zeros, we shall
suppose one has been chosen for each jeZ*. For each seZ,* we now set

(4.1) e,(<)=exp iWlpt
f-o }
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Lemma 4.1. — For each seZ*, Qy is a splitting function.

Proof. — In the following the symbol y shall denote a parameter to be chosen in 0
subject to the condition ordj/= I /Q&—I) . For each seZ^., let gs{t,y) == exp{~ {ty)P8 Ip8}.
It is easily verified that ^eL(^, o), where

(4.2) ^^-ir'-r^+^-ir1)
for jeZ^., while a^ is taken to be {p—1)~1 for later use.

00

For seZ.^. let Gg(^) == n ^-(^j0- Since ^+i>:^. for each jeZ^. 3 we conclude
J-8+1

that G,(^j/)eL(^^.i, o). Let E(^) denote the Artin-Hasse exponential series

(4.3) E^)=expj2;^!.
f ;=o j

It is well known that
(4.4) E(^)eL(o,o)

E(^)= i+^mod^%'{^}.

Let A^,jO=E(^) and for jeZ^.,^^1 let

(4.5) ^,jO=U^)G,(^)

and so for jeZ*

(4.6) ^(^j/)=exp t^lp1.
j ^ O

Clearly h^{t,jy)eL(a^, 6) and for seZ,s^>i, equation (4.5) shows that

(4-7) ^(^)£L(^+i.°)-

Since a^== (p— i)//?2^, we may conclude that h,(t,jy) converges for ord C>o. Further-
more equation (4.5) shows that

(4.8) h^) + W^lp^1 - h^) mod ̂ ^^{t}.

Combining this relation with (4.7) we conclude that for s^i

(4.9) ord(^(I^)+ys+l/^+l-^(I^))^^^(I+^+l).

Since A^(i,j/) =E(j^), we conclude with the aid of (4.4), and (4.2) that for seZ^.,
s^i

(4.10) ord(^( i ,^)—i)==i / j&—i

and (4.4) shows that (4.10) is valid for all seZ*. Furthermore equation (4.6) shows
that for seZ*

(4.11) iog^(i,j0=s;y^'
1=0

and hence log ^(i, yj == °-
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Since 6^) ==h,{t, yj, we conclude from (4.7) that Q,eL{a^^, o), and from (4.11)
that 6g(i) is a pr—th root of unity for some r while (4.10) shows that 6^(1)is a primitive p^
root of unity. ^ r^1 p?

Ify^^y^^^here reZ, r^i then as a power series injy, 11 ̂ (y^jQ ==^s(I?J ;)^o

y - o
as may be seen from equation (4.6). Replacing^ by Ys we conclude that Qg satisfies
condition (iii) in the definition of a splitting function. We have already verified
conditions (i) and (ii). Finally we note that Q/(yJ is a purely ramified extension ofQ^'
of degree p—i, while condition (ii) shows that Q/(Ys) contains a primitive p^ root of
unity. We conclude that for each ^eZ* the coefficients of6g lie in the field of p^ roots
of unity. This completes the proof of the lemma.

00

If gei -}-tQ.[t}, let g{t) = 11^(^)3 an infinite product which converges in the
j=0

formal topology of n{^}. Clearly g{t) ==^)/^) and if q=-p\a>i then

(4.12) n^^i^/iOT.
?'=!

It follows from the definitions that for each jeZ*

(4.13) e^=expis\,^,(? '=o
where

(4.14) ^—SA-1=0

It is worth observing that

(4.15) ordY^•=^-I)-V'+l-0•+l)

In particular 6^==exp (y^). In the application use will be made only of Q^ and 61.
b) Let/(X) be a homogeneous polynomial of degree d in n+i, (n^.o) variables,

X^, Xg, ..., X^i whose coefficients are either zero or {q— i) —th roots of unity in Q.
We may write

(4.16) /(X)=SA,M,,i==i

where A^=A^ and M^ is a monomial in X^ . . ., X^^.^ for z= i, 2, . . ., p. Let £>„
denote n dimensional projective space of characteristic p and let § be the variety in £>„
defined over the field k of q elements by the equation /(X) ==omod^. For 72=0,
extending in the obvious way the usual identifications associated with projective
coordinates, GQ consists of just one point which is of course rational over the prime field.
In any case §=(5^ if,/is trivially congruent to zero modj&. If /is not trivial mod?
then § is a hyper surf ace in ©„, to which we attatch the conventional meaning if 7^2,
while if n = o then § is empty and if n = i then § is a set of at most d points on the
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projective line which are algebraic over k and closed under field automorphisms which
leave the elements of A: fixed.

For n^o we say that § is a non-singular hypersurface of degree d in ©„ if the
f'' •/' ^ -c

polynomials /, 7-. , . . ., -r^r—— (mod p) have no common zero in S,,. For n > 2 this
C^ °-^n+l —

coincides with the usual definition, while for n == i it means that § is a set of d distinct
points and for n==o, it means that § is empty (i.e./is not trivial modp).

Let ^(§31) be the zeta function of § as variety defined over k and let P($, t) be
the rational function defined by

(4.17) P($^)(-l)n=^:(§^)(I-^)-l^(I-^)
According to the Weil hypothesis, if n^2 and § is a nonsingular hypersurface of degree d
in S^ then P(§, ^) is a polyi^mial of degree d-l{(d—l)n+l+{-l)n+l(d-l)]. Using
the above conventions this hypOL'<esls is easily verified f( r n==o, i as for n=o,

(418 ) ^,t)= ; ^ '^is-pty
( l — — ^ ) if §)==©

while i f / z = = i and § consists of d distinct points, then § i- s union oi e disjoint sets of
points, the 1th subset consisting of ^ points conjugate ovei ^ .n.d each point generating

e

an extension of A of degree b,. In this case d= S ̂  and
t==i

(4-19) ?:($,<)= A (i-^-)-1
z==l

Thus if ^ is a non-singular hypersurface of degree d in ©„ then

(4•2<>) ^•"^(rK,-^)/!,-.) ^^°,
^ \l=l /

which is precisely the Weil hypothesis in these trivial cases.
We know from [i] that the zeta function of 5 is related to the linear transformation

^oF, where

(4-ai) F(X) = ̂ a^Q((X,\M,)P'),
i = l j == o

6 being any splitting function. If 6 is defined as before then since A^=A,,

(4.22) F(X)=F(X)/F(X^)

where

F(X)=ne(A,XoM,)
»=i
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If we take the splitting function to be 6,, s= i, 2, .. ., +00, then F takes the
form

-i
I S, J -(4.^3) F,(X) =expj Sj,,Xy(X^)j,

where T is the Frobenius automorphism over Q/ of a sufficiently large, unramified
extension field.

Since O^eL^i, o), equation (4.12) shows that 6^)/6^)eL(^.^, o). It
follows without difficulty that F,(X) = F^/F^X^eE^.^, o) in the sense of § 3,
a^^ being given by (4.2).

We now recall and clarify the geometrical significance of the characteristic series,
^p, where F is given by (4.21) If ge0.{t], let g^ be the power series g{qt) and if
gei +t0.{t}, let g^ be the power series g1-^ ==g{t)lg{qt).

n+l

If §' is the « hypersurface », ItX^o in ©^ then by [i, equation (21)]
i ==1

(recalling that although F now involves a total of n + 2 variables, we are now counting
points in projective rather than affine space)

(4.24) ^-^^-^(i-^-8'"

For each non-empty subset A of S ={ i , 2, . . .,-n+ i}, let i+m(A) be the
number of elements in A and let §^ be the variety in Q^ defined by the equation in X^,

3^/= o modp

and let ̂  be the hypersurface II X,==o in S^(A). Let A^ be the power series in one
variable defined by

(4.25) ^-^, ̂ Art-8'1^!-^-8'^

The precise formulation of A^ as a characteristic series in the sense of § 2 does not concern
us here, except that we observe that ^"^^S^F- To simplify notation let P^)
denote P($A^) as defined by (4.17), so that

, . w(A)w(A)l ^ (
i=0

(4.26) p^-1)W(A)-^, ̂ (i-^^-^n (i-^<).
If B is a non-empty subset of S then

(4.27) ^B=^(^-§I),

a disjoint union indexed by all non-empty subsets, A, of B. We may conclude with
the aid of (4.25) that

^B, ̂  = n ̂ -^i, qt) = n {A^-8^"^!-^-8 '̂}.
ACB ACB

But an elementary computation gives S —(—S^^S"'^14^^—!) and hence
BCA

(4.28) ,̂, ,<) = (i-o8-1^1^-^) n ̂ l+mw,
ACB
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while equation (4.26) shows that

(4.29) ^B, qt} ̂ P^-^i-^-^-^f

comparing (4.28) and (4.29) we obtain

(4.30) (i-w^-1)"^ n A^-8)1^
ACB

Relations such as (4.30) can easily be inverted by an analogue of the Mobius inversion
formula. Explictly if A^©^ is a mapping of subsets ofS into a multiplicative abelian
group and if for each subset B of S

(4.3i) GB=II®^
ACB

the product being over all subsets. A, of B, then

(4.32) ©^riGi-1)^"^
ACB A

The inductive proof of (4.32) may be omitted since it depends entirely on the well
r

known fact that S (^(—i)^—! for each integer r^i. Applying this to (4.30)

and letting B=S, we obtain A^(-s) l+n=^{P^^)y(- l)M(A)(I-^}(-l)n-w(A). Since
^F == Ag we obtain

(4.33) xr'-c^np^),
the product being over the non-empty subsets, A of S. (A similar formula appeared
in an earlier work [6, equation 21].) We believe this equation is quite significant
since %p is entire even if § is singular.

Since S(^, t) is rational, P^ is also rational and hence (4.33) shows that the zeros
of ^p and the {q—i)p roots of unity generate a finite extension, Q(), of (^/. With this
choice of ^, the results of § 2 show that the zeros of ^p are explained by the action
of^°F as linear transformation ofL(yx) ifFeL(x, o).

We now fix seZ\ let F=F^ so that ^==M+i/^ F=exp H, where
S—1

H= S YsjX^/^X^), We shall assume unless otherwise indicated that/is a regular
y=0

polynomial (1). Equation (4.15) shows that H satisfies the conditions of § 3. It
follows from (4.22) that a=<j/oF, may be written

(4.34) a^F-^oF,

while with this choice of H, the mappings D^ of § 3 are simply ^-^F^E^F). Since
^E^o^=^oE,, we conclude for t==o, i, . . . , 7 z + 1 that

(4.35) aoD,=^D,oa.

(1) This condition on / is equivalent to the condition that ^ is non-singular for each non-empty subset,
A, of S. It will be shown that this condition involves no essential loss in generality.
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If X is any non-zero element of QQ, let W^ be defined as in Theorem 2.4,
i.e. W^={o} if X~1 is not a zero of ^p? while W^== Kernel of (I—X"'1^ in L(^x)
if X~1 is a zero of multiplicity pi. We note that x, a, F, the D^, H, and the spaces W^
depend upon our choice of s. The maximum value of qy. is p l { p — i ) and corresponds
to s=co. The minimum value of qy. is {p—i)lp and this exceeds i / (^—i) unless
p==2. This minimum value of qv. corresponds to s= i. It is assumed in the following
that ^>i/( j&—i).

Lemma 4.2. — If A is any subset ofS and o<b<,qy. then

W,n2;D,LW=SD.W^W,n S D,L(&) = S D.W,
t£A tGA

Proq/'. — Let {^} be a set of elements in L(6) indexed by A such that S D,^ = ̂ eW^.
iEA

Let |ji=max{dimW^, dim W^}. It follows from the corollary to Theorem 2.5 that
for each ieA there exists ^eW^ and ^e'L(b) such that

^=^+{I-W1^.

Thus (I-r^a)^ S D,^= S D,^- S D,T],=S- S D,^, which lies in W. by hypothesis,
t£A »eA t£A tGA

choice of the T]̂  and equation (4.35). We may now conclude from equation (2.54)
that (I-X-^)^ D^EW^I-X-^L^^I-X-^W^o}. This shows that

i£A

S- S D,T],=O and hence ^e S D,W^. Thus W^n S D,L(6) c S D.W./, and equality
iEA iCA t£A tGA

follows without difficulty.

Lemma 4.3. — If A is a non-empty subset of S and {^}^A ^ a set °f ^ments in W^
such that S D^==o ^w there exists a skew symmetric set {7^} in W^ indexed by A such that

»GA
^= S D^T]^ yor ^^A zeA.

yEA

Proo/'. — Let A = = { i , 2, ..., r}, i<r<^n+ i- I f r= i then DiSi=o, ^eL(^x) and
hence Lemma 3.10 shows that ^i==o. We may therefore assume r>i and use
induction on r. Lemma 3.10 shows that there exist ^, .. ., ̂ ^ in L(^x) such that

î SD .̂
i =1

Since ^eW^, the previous lemma shows that the '̂ may be chosen in W^g. Hence
r-l

0= SD^(^+Dy^) and since ^+D^eW^ for 1=1,2, . . . , r — i , the induction hypo-
i==i

thesis shows the existence of a skew symmetric set {^y} in W^ indexed by {1 ,2 , . .., r— i}
such that for z= i, 2, ..., r—i

^+D^=^D^
j = l
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We now extend the skew symmetric set by defining T^ ̂  = — ̂  = —T^ ̂  for i === i, 2, .. ., r— i
and T]^ ̂ .=0. It is readily seen that the T]̂  satisfy the conditions of the lemma.

Let X be an eigenvalue of a. We now compute the dimension (as vector space

/n+l

over H)) of the factor space W^ S D^W^.
i ==1

Lemma 4.4. - Dim(w,/̂ D.W^) ̂ ("^(-i^ dimW^..

Proof, — In the statement of the Corollary of Theorem 3.i, let W == L(yx) and for
each teZ,, let W(^)=W^, cp^===D^ for z = = i , 2 , . . . . n^ - 1 - The previous lemma shows
that the sequence of the Corollary is exact when r == o and hence the Corollary may be
applied. In this application ^(o, r; S) is the space of all skew symmetric maps of Sr

into W(—r) = W^r and hence dim g(o, r; S) == (n^1) dim W^r.
The corollary may be used to obtain an identity similar to equation (3.36),

where ^==^(0, r; S), S^.==S(o, r; S) and the assertion follows without difficulty since

dim^W./^nW^^dimgo-EImSJ^ S (-i^dim^.
\ / i=l / r=0

We can now show that yj n is a polynomial.

/n+l

Theorem 4.1. — .For each Xe^, fe^ ^=dimW^ S D,W^ then

^r"=n(i-^^
^ product being over all eigenvalues \ of a.

Proo/l — Let X be an eigenvalue of a with the property that \|qr is not an eigenvalue
for any r^i. For each eigenvalue, X', of a, there exists an eigenvalue X with this property
such that X '==^X for some zeZ^.. Let ^==dimW^ for each jeZ^.. The factors
of^ corresponding to terms of type (i—X^), reZ_^. may be written

00

H,(?) = n (I-^t)a(=(I-<x)*•s"a<Tt.
i==0

The previous lemma shows that

^<=^(-i)'(»^)^_,
and hence

(i-^S^^S^v.
t=0 1=0

It follows that

xn+1 s ̂ '^
H^)8 =(I-^)-° .

This completes the proof of the theorem.
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Equations (4.26) and (4.33), together with the known rationality ofzeta functions,
show that ^ n is a rational function. The theorem shows that the function is entire
in the j&-adic sense and hence it must be a polynomial.

n+l

Let 2B be the factor space L(^x)/ S D,L(^x). For ^x> i / (^—i) , we have shown
n+l t==l

in § 3 that dim 28==^. Since S D,L(^x) is a subspace of L(yx) which is invariant
i==i

under a, there exists an endomorphism oc of SB deduced from a by passage to quotients.

Theorem 4.2.
xF^ det (I-ta),

provided ^x>i/(^—i).

Proof. — It is quite clear that the characteristic equation of a is independent
ofU, and hence it may be assumed that H) contains the zeros of det (I—^a). For each
non-zero element X of H), let 2B^ be the primary component o f X i n S B with respect to a.
To prove the theorem it is enough in view of Theorem 4. i to show that

(4.36) dim 2B,-dim (w^SD.wJ
\ i =--1 /

Under the natural mapping, J, of L(^x) onto SB, W^ is mapped into $B^ with kernel
n+l n+l

W^n S D,L(^x), which by Lemma 4.2 is S D,W^. This shows that dim 2B^ is at
1=1 i=--l

least as large as the right side of (4.36). To complete the proof it is enough to show
that 28^ is the image ofW^ under J. To prove this let S'^SBx? hence there exists r^i
such that (I—X^ay^^o. Let ^ be a representative of ^ in L(^x), then

n+l
(I—X^a^e S D,L(^x). Hence there exists elements -^, . .., •y^i in L(^x) such that

z==l

(I-X-^-TD^.
1=1

Let \L be the multiplicity of (^/^)~"1 as zero of ^? ^en
n+l

(I-X^a)^- S D^I-^-^)^,.
i=i

Theorem 2.5 shows that there exist T\[ , ..., T^ i in L(^x) such that for 1=1,2, ..., n + i

(I-^a)^^!-^-1^.

The last two displayed formulas show that

(I-X-^^-^-TD^-O.
\ 1=1 /

n+l

This shows that ^eW^+S D,L(yx) and hence S'=J(S)^J(W^), which completes the
t = i

proof of (4.36) and hence of the theorem.
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Theorem 4.3. — The mapping, oc, is a non-singular endomorphism of 2B {and hence
/81+n is a polynomial of degree rf").

Proof. — It is enough to show that a (SB) == 2B, which by Lemma 3.6 is equivalent
to the assertion that

(4.37) aV+TnU^DV.
i= 1

We recall that a depends upon the choice of seTi* in our construction of F=Fg, but
the degree of ^81+n is clearly independent of s and Theorem 4.2 therefore shows that
dim o'(2B) is independent of s provided <yx> I/Q&— i). Since dim 2B is also independent
of s (subject to the same condition) we conclude that if equation (4.37) holds when
s == oo then it holds for all s such that qy.> i l{p— i). We may suppose in the remainder
of the proof that ^==00. Let T be an extension, which leaves fixed a primitive p^ root
of unity, to O.Q of the Frobenius automorphism over Q^ of the maximal unramified
subfield of H). Our proof is based on the fact that while F(X)/F(X9) lies in
L(^^-I),o),F(X)/FT(X^) lies in L(i/(^-i),o).

Let ^y denote the mapping ^ with q replaced by p, (i.e. <j/=^). Let Op be the
mapping X^—^X^ of H){X} onto itself. Let o^, (B^ be the Q^'-linear mappings of H){X}
into itself defined by

ao=F-loT-lo^oF
(B^F-^ToOpoF

We note that o^ and (B^ are endomorphisms of H){X} as Q'-space, not (necessarily) as
H)-space. In view of our previous remarks we easily verify since F (X) /F^X^) e L (i / Q&-— i))
that

(BoL(^-i))cL(i/(^-i))
(aoL(i/0&-i))cL(^-i))(4.38)

and since ^oOp = i, we conclude trivially that

(4.39) aoo^==i.

Since r0 leaves F invariant, the definitions show that

(4.40) a^oT^T^.

Equations (4.38) and (4.39) give

LW(^-I))=:^PoLW^-I))caoL(I/^--I))cL(^(J&-I))

which shows that

(4.41) aoL(i/(^-i))=L(^-i)).

Furthermore, the definitions show that for z'==o, i, ..., n+ i

(4.42) aooD,=^D,ooco.
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n+1
Lemma 3.6 shows that L (i / Q&— i)) = V + S D^ L (i / {p— i ) ) ; applying y.o to both sides of

< = = i
this relation and applying (4.41) and (4.42) we find

(4.43) L(^(^-i))caoV+^D,L(^^-i)).

(4.44) aofs'D.L^/^-i)))^ D,L(^-i)).
\i==l I i=l

Since VcL(/?/Q&—i)), we may conclude that for j=o, i, . . . , a—i
n+l

^Vc^^V+SnL^/^-i))
»=1

an elementary consequence of which is

VcaSV+^HL^/^-i)).
1=1

Since L(^/(^—i)) is stable under T and V may be assumed to have been constructed
so as to be stable under T^ equation (4.40) and this last relation give

VcaV+^D.L^/^-i)),
i=l

which is the form taken by (4.37) when ^==00. This completes the proof of the theorem.
We have thus shown that if/ is a regular polynomial then {i-t)YlP^(qt) (the

product being over all non-empty subsets, A, of S) is a polynomial of degree rf"; and
if s is chosen such that yx>(^—i)~1 then this polynomial is simply the characteristic
equation of a. Since x ==p^s+il^9 equation (4.2) shows that yx certainly exceeds {p— i)"1

if s^i (resp. ^3) when p>2 (resp. ^==2) .
We now propose to investigate the factor Pg(^) under the restriction that the

hypersurface is of odd degree if the characteristic is 2. To do this we now specialize s.
Up divides d let s == i. Ifp does not divide d let s be so large that yx> i / {p— i) (say s==co).

For each subset A of S, a ring homomorphism, 3^ °^ ^oE^-s] onto ^o[XJ was

defined in § 3. We now use the same symbol to denote the extension of this homo-
morphism to one of Hj{Xo, Xg} onto H){X(), X^} which is defined by 3^(Xo)=Xo.

For each subset, A (including the empty subset) of S and for each subset B of A
and each real number 6, let

L^b)=^L{b)
Li{b)={^eL^b) such that Mg divides ^}.

For zeAu{o}, let D, ^ be the mapping S-^D^ of H){XO, X^} into itself. Let o^
be the mapping S-^^^) °^ L^(^x) into itself. Using an obvious analogue of
equation 4.35, the subgroup S D^L^(yx) of L^(^x) is mapped into itself by oc^ and

ieA ' _
hence by passage to quotients we define an endomorphism o^ of the factor space
$BA •== ̂ (^ / ̂  n A^^) • (Thus in the notation of Theorem 4.2, SB == SBg, a = ocg).

/ i€A
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Now let 2Bl be the image in 2B^ of Lj^yx). We note that L^(yx) is mapped into itself
by a^ and hence a^ maps SOBf into itself. Let a^ be the restriction of oc^ to 2C^.

For the empty subset, 0, of S, we have 3^= i, Lg^) =^05 DO ̂ Lo^x) =={o},
2B0=2B^H), a0 is the mapping ^->^ of ^ into itself. Clearly ocg operates as the
identity mapping on O.Q and hence

det(I-t^)==i-t.

Theorem 4.4.
det(I-^a) ==ridet(I-^),

A

the product being over all subsets^ A, of S.

jFW/. — Lemmas 3.11, 3.15, 3.I7, 3.18 show that under the natural mapping
of L^(^x) onto 2B^, 93 ̂  is mapped isomorphically onto 2B^. The proof of lemma 3.17
shows that 908 w 93 == S93j^ an(! ^ere tne isomorphism is given by the natural map of
Lg (yx) = L(yx) onto 333. For each subset A of S, let ̂  be a basis of93i and let ^3 = u ̂ .
Lemma 3.13 shows that ^3 is a basis of 93. We use this basis to construct a matrix
corresponding to oc. For each coe^ we may write (by virtue of Lemmas 3.15 and 3.18)

(4.45) a((o)e S aK^co^o'+SD.L^x),
o'e^ zes

where 9Jl(o), (o^eQo. It follows from Lemmas 3.11 and 3.17 that this relation
uniquely determines ^((x), o/). If M^ divides co then a(co)eL^(^x) and hence by
Lemmas 3.15, 3.183 S 9K(o), ^/)6)'E93A, which shows that 9Jl(o), co') ==o unless M*

<o'e^
divides co'. We now order the elements of ^3 so that the elements of ̂  preceed those
of ^PB ^ tne number of elements in B exceed the number in A and such that for A 4= B
no element of ^3g lies between two elements of ̂ . Let 9JI be the matrix indexed by
^3 x ^P with general coefficient 9Jl(co, o/) and with the elements of ^3 ordered as indicated.
Let 9Jl^ be the submatrix obtained from 9JI by restricting (co, a/) to ̂  x ^3^- I1 ls clear
that 9Jl̂  is a square matrix, its diagonal lies along the diagonal of 9JI and the coefficients
of9?l lying below 9?l̂  are zero since these coefficients are of type 9?l(co, o/), where (o'e^
and co is divisible by Mg for some B not contained by A. It now follows that

(4.46) det (I-tm) == n det(I-^J,

the product being over all subsets, A, of S. It follows from (4.45) that
det (I—/oc) =det (I—^Ut). For coe^ if we apply 3^ to both sides of equation (4.45)
we obtain

ai(o))=a^)=3,(a^)e S 9[R((o, co>'+ S D^L^x).
(0'G^A iEA

Since ̂  ls a set ^ representatives of a basis of 333 ,̂ this shows that for each subset A

det(I-^)=det(I-^).

The theorem now follows from (4.46).

66



ON THE ZETA FUNCTION OF A HYPERSURFACE 67

Corollary.
Pg(^) = det (I-^|)

degPg^-^-ir^+^-iK-i)"^}

Proof. — Theorem 4.2, equation 4.33 and Theorem 4.4 show that for each
non-empty subset B, of S,

ridet(I-fai)=nP^)
A A

the products being over all non-empty subsets A of B. This system of relations can be
solved for P^(^)/det (1—^) by means of equation (4.32). This gives the first
assertion of the corollary. The assertion concerning the degree follows from the compu-
tation ofdimSSj (Lemma 3.19) and the proof (Theorem 4.4) that oc (and hence oc|)
is non-singular.

c ) Let k (as previously) be the field of q elements and let us extend the notion of
regularity (in the obvious way) to polynomials in A[Xi, . . ., X^J. We have verified
a part of the Well hypothesis for a non-singular hypersurface, §, in £^ defined over k
provided d is odd if p = 2 and provided the defining polynomial / ek[X.] of § is regular.
(/ = image for f under the residue class map). We now consider the situation in which f
is not necessarily regular. Let A == (^) be an {n + i) x {n + i) matrix whose coefficients
are algebraically independent over k[X^, .. ., X^J. We consider the coordinate
transformation

n+l

X,=S^.Y,, j= i , 2, . . . , n + i] = i

and consider/ as a polynomial in Y^, . . ., V^+i wltn coefficients in k(a^y • • • • > ^ + i , n + i ) -
We easily compute

fl = y8— = "S X,|-a,,A,./det A
0\i j ^ l = i C^j

where A, is the cofactor of a^ in A. Our problem is to specialize the matrix A subject
to the conditions '
(1) de tA+o

(2) /, (det A)//, . . ., (detA)/'^ have no common zero in ©^.
Let U be the set of all A with coefficients in the algebraic closure of k which fail to

satisfy these conditions, i.e. U is the set of all A such that either detA==o or
/, (det A)/', . . ., (detA)/^ have a common zero in ©„. It follows from elimination
theory that U is an algebraic variety in ®^, where m == (n + i)2— i. On the other hand
it is known ([7], Chap. VIII, prop. 13) that the generic hyperplane section of a non-
singular variety is non-singular and therefore U=h®^. Hence the dimension of U is
at most m—i (and hence must in fact be m — i ) . Thus if A:, is the field of (f elements,
the number of points of U rational over ky is no greater than ^(^"^—i)/^—!) for
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some fixed real number b. On the other hand there are (^—i)/^—!) points in ©^
rational over k y . Thus there exists an integer TQ such that for each r>ro, there exists
a point of (5^ rational over ky but not in U. This means that for each r>rQ there exists
a coordinate transformation rational over ky such that ̂  is defined by a regular polynomial
with respect to the new coordinates. For each integer r, let ^ be the zeta function of $
as hypersurface over ky and let P,. be the rational function defined by

P.M^1^-^)"^!-^).

It follows that for each reZ, r>i

p^)=np,(^),^=1
the product being over all r^ roots of unity, v. Furthermore if y>ro then Py is a
polynomial of a certain predicted degree m'. If P^ is a polynomial then clearly it must
also be of degree m\ and hence to complete our treatment of P^ it is enough to show
that Pi is a polynomial. Since P^ is a power series with constant term i, we may write

p^)^ri(i-^)/ri(i-6^)1=1 / z=i
where the b[ are distinct from the ^. Consider b[. If P,. is a polynomial then there
must be an r^ root of unity, v, such that ^v==^ for some integer z, i^r<^. Let r run
through ^ + i distinct primes each greater than r^. By the pigeon hole principle there
exists one integer i such that b[^'^==^==6^", where v' (resp. v") is a^'-th (resp. ̂ "-th)
root of unity, p\ p " being distinct prime numbers. It is clear that v '==v"=i
and b[=b^ contrary to hypothesis.

It is now clear that for the treatment of a non-singular hypersurface, the hypothesis
that the defining polynomial is regular is no essential restriction.
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