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HERMITE PSEUDOSPECTRAL METHOD FOR NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS

BEN-YU GUO 1 AND CHENG-LONG X U 2

Abstract. Her mit e polynomial interpolation is investigated. Some approximation results are ob-
tained. As an example, the Burgers équation on the whole line is considered. The stability and the
convergence of proposed Hermite pseudospectral scheme are proved strictly. Numerical results are
presented.
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1. INTRODUCTION

Many problems in science and engineering are set in unbounded domains. We may solve them by restrict ing
calculations to some bounded domains with artificial boundary conditions. Whereas this treatment causes
errors. A reasonable way is to approximate them by certain orthogonal Systems in unbounded domains. Maday
et al. [13], Coulaud et ai [3], and Funaro [5] used the Laguerre spectral method for some linear problems.
Funaro and Kavian [6] considered some algorithms by using Hermite functions. Recently Guo [10] developed
the spectral method by using Hermite polynomials. However it is not easy to perform the quadratures in
unbounded domains, which are used in the Hermite spectral approximations. So the Hermite pseudospectral
method is more préférable in actual calculations. But so far, there is no work concerning it. The aim of this
paper is to develop the Hermite pseudospectral method. We establish some approximation results in the next
section. Then as an example, we pro vide a Hermite pseudospectral scheme for the Burgers équation on the
whole line, and prove its stability and the spectral accuracy in Section 3. The numerical results are presented
in the final section, which show the high accuracy and the convergence of this method.

2. HERMITE INTERPOLATION IN ONE DIMENSION

Let A — {x \ — oo < x < oo} and co(x) = e~x . For 1 < p < oo, let

= { v | v is measurable and \\V\\LZ
 < °° }
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where

\ }
esssup|v(#)|, p = oo.

XGA

In particular, £j(A) is a Hubert space with the inner product

= ƒ ifc(x)i;(a;)cj(a;)da;.
J A

Let dxv(x) = — (x), etc. For any non-negative integer m,

L*(A), 0 < fc < m }

equipped with the following inner product, semi-norm and the norm

For any real r > 0, the space H^(A) is defined by the space interpolation as in [1]. For simplicity, dénote the semi-
norm |V|H£(A) and the norm ||V||H^(A) by \v\riw a-nd ||^||r,cj) respectively. In particular, (ti,v)w = {UJV)LI(A)I

||Ï;||W = ||̂ ||o,w a n d Ĥ lloo =
 IÎ HLOOCA)- Throughout this paper, we dénote by c a generic positive constant

independent of any function. Guo [10] proved that for any v E H^(A),

Hx)\<2e^\\v\\ï\\v\\lu, (2.1)
I M I - < ll«lli,<- (2-2)

The Hermite polynomial of degree l is defined by

Hf(x) = (-lï'e-'^Ce-*2).

Clearly H0(x) ~ 1 and Hx(x) = 2x. We have

dxHi{x) = 2lHi-i(x), l > 1. (2.3)

The set of Hermite polynomials is the L^(A)-orthogonal System, Le.,

Hi(x)Hm(x)uj(x)dx = 7i(5i,m (2.4)

where öitm is the Kronecker function, and 7/ = 2ll\^.
We first recall some properties of the Hermite approximation. Let N be any positive integer and Vj^f be the

set of all algebraic polynomials of degree at most N. The L^(A)-orthogonal projection P/v : l£(A) —> VM is
such a mapping that for any v £ L^(A)y

As pointed out in [9], PN is also the best approximations associated with the inner product of the space i7"™(A),
m being any non négative integer.
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Lemma 2.1 (See [9]). For any v G iZ£(A) and 0 < \i < r,

861

\v -

Lemma 2.2. For any v E H^(A) and r > 1,

Proof. By (2.1) and Lemma 2.1, for any x E A,

[v - < 2\\v - PNv\\È\\v -

We now turn to the Hermite-Gauss interpolation. We first introducé some notations. For any two séquences
of {ai} and {bi} of nonzero real numbers, we write ai ^ fy, if there exists a positive constant d independent of Z,
such that ai < dbi for ail l large enough. Moreover we write ai~bi, if ai •< b\ and bi ^ ai. Let a3 (0 < j < N) be
the N + 1 simple zéros of HN+I(X)> &N < &N-I < -•• < VQ. They are situated symmetrically around the origin,
see [17]. Let A^ = o~3-\ — ^j+i and UN — \/27V be the TVth Mhaskar-Rahmanov-Safî number. It is proved
in [11] that

a0 ^

and uniformly for N > 1 and 1 < j < N — 1,

It is shown as in Lubinsky and Moricz [12] that for 0 < j < N,

\dxHN+l(a3)\

Thusby (2.3),

and so

1)!TT

(2.5)

(2.6)

Let AAT^I^TJ | 0 < j < A ^ } . For any v G C'(A), the Hermite-Gauss interpolant INV £ VN is determined by

INV(X) = v(x), x G AAT.

Next, Let CĴ  be the Christoffel numbers with respect to CJ(X),

(2.7)
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The discrete inner product and norm related to the Hermite-Gauss interpolation are as follows,

(uv)uff = T u{a)v{ao)u3 MUs = {vv)*s

Clearly

{INv - v, fy^N = 0, V<f> e PN. (2-8)

In order to study the properties of the Hermite-Gauss interpolation, we need some préparations. Firstly, by
Szegö [16], for any <j> G V2N+I7

f ^
/ A\( \ ( \r\ \ rk( \t (O Q\
A J=O

By (2.9), we assert that for any (j>^ E

(<P^)u = (<P^)uNi (2-10)

and for any 4> e TV,

Furthermore let
TV

INv(x) = ^ vi
1=0

By (2.8), for any v € C(A),

(v, Fz)w N = (/JVÜ, iïOw.iv = UNV, H0« = W , 0 < l < N.

Hence we can take (2,8) as the définition of IN-
We are going to the main resuit in this section.

Lemma 2.3. For any v G H„(A),

Proof. By virtue of (2.7),

N

\\V\\IN < ctN-i V e " ^ 2 f e ) ( l - ^ - ) " * - (2-12)

It is shown in [2] that for —oo < a <b < co,

sup I
re[a,6]

Let Aj = (aj+i,<7j_i), 1 < j < N, Then

e~^v2(a,) < — / e~x2v2(x)dx + c2An / (dx {e~^v(x))) dx. (2.13)
j */ A_j J Aj
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Moreover the combination of (2.1) and (2.5) leads to that for j = 0, iV,

By substituting (2.13) and (2.14) into (2.12), we assert that

N-l

\\l,N <
- \

JV~1
/ I

A3(l- J ^

Purthermore, (2.6) implies that

-i
<c 4 .

1 -
ÜN+1

1 -

Besides, (2.5) leads to

So using (2.6) again yields that

Furthermore |a;| < V2iV + 3 for xGA ; , and thus

/ x2e~x2v2(x)dx < 5N f e-x\2(x)dx.

By substituting (2.16)-(2.18) into (2.15), we get that

\\v\\lN<2cN-i\\v\\u\\v\\liU + cN* f e-x2v2(x)dx + cN-3 f
JA JA

where c = max(^f, 9x^,c1c2cA + ^ * f * ) . The proof is complete.

Theorem 2.1. For any v e H^(A)9r > 1 and 0 < \x < r,

(dxv(x))2 dx

\v -

Proof. It is proved in [9] that for any 0 G VN and /x > 0,

This fact with Lemma 2.3 lead to that

\\PNv - INv\\^ < ciVf \\PNv - INv\\u < cATt \\lN(v - PNV)\\U = cN% \\v - PNv\\^

< ciV5 + f ||w _ p
N\\u _ PNv\\ltU.

863

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

D

(2.19)
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Finally by Lemma 2.1,

\\v ~ INV\\W < \\v - PNVWW + \\INV -

T h e o r e m 2.2. For any v e H*(A) and r > 1,

Proof. By (2.1) and Theorem 2.1, for any x e A,

\v(x) - INv(x)\ < ceï*2 \\v - INv\\ï h ~

which implies the desired result.

T h e o r e m 2.3. For any v G H*(A) and r > 1,

\\v —

Proof. By (2.8), for any <f> E VNI

\\v ~ IN

whence
\\v - INVWU^N = inf \\v - (f>\\uj,N-

By taking <f> — P ^ and using Lemma 2.3 and Theorem 2.1, we get that

\\v - INv\\u,tN < cN*\\v - PNv\\u, + cN~i\\v - PNv\\liUt <

We have from (2.8), (2.10) and Theorem 2.1 that for any v G #X(A), (f>£VN and r > 1,

(2.20)

3. APPLICATION TO BURGERS ÉQUATION ON THE WHOLE LINE

In this section, we consider the Hermite pseudospectral method for the Burgers équation on the whole line.
We first change it to an alternative formulation by a similarity transformation, which is suitable for the Hermite
approximation. We shall prove the stability and the spectral accuracy of the designed scheme strictly.

Let /i > 0 be the kinetic viscosity. g(y, s) and Vo(y, s) are the source term and the initial value, respectively.
T is a fixed positive number. We consider the following problem

{
1

dsV -\—dy(V ) — fidyV = g, —oo < y < oo,0 < s < T, (**-[}

V(y,0) = VQ(y), y e Â.
In addition, V and dyV satisfy certain conditions at the infmity. If we multiply (3.1) by V(y)u)(y) and sum the
result for cjj E AJV, then by (2,9) and intégration by parts, the last term of the left side of (3.1) becomes

Ou(V,V) = f dyV(y)dy(V(y)cü(y))dy, W E PN.
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It can be checked that

MV, V) = || dyV fLl{k) -2 f yV(y)dyV(yMy)dy
^ JA.

= II d v v WluK) + II V

It is not clear whether or not au{V, V) > 0. So (3.1) is not suitable for Hermite pseudospectral approximation.
To remedy this trouble, we follow Guo [10] to make the similarity transformation

x=—, V t = ln(l + s), U{x,t) =ex2V(2^/]lxe^et - 1), f(x9t) = ex2+tg(2yfjlxé,é - 1).
2 ^ ( 1 +s)

Then (3.1) reads

+ ^ + ^ Ö ^ + i ^ e X 2 + l ^ ( e ~ 2 a ; 2 [ / 2 ) ~ ï Ö ' C / = / ^ A 0 < t < l n ( l + T ) ,

As in [13], we suppose that Vb and g fulfill some conditions such that for certain a > 0,

lim eay2(\V(y,s)\ + \dyV(y1s)\) = 0, 0 < s < T.

Then

lim e^4a^e ~^x (\U(x,t)\ + \dxU(x,t)\) = 0, 0 < £ < ln( l+T) .

If a > ^-, then for ail t > 0, 4a^e* — 1 > — | . So U G H^(A)} and we can use the Hermite approximation.
Let UN be the approximation to U, The Hermite pseudospectral scheme for (3.2) is to find UN € VN for ail

t <ln(l + T), such that

f dtuN + \uN + \xdxuN + ^ e - 2 + t 9 x ( e - 2 - 2 O - \d2
xuN = INf, xeAN,0<t< ln(l + T),

I Uiv(0) = WATÏ0 = /jvf/"Oï x G AJV, t = 0.

(3.3)

Let

B(v,w,z) = fex2Öx fe" 2 x 2 ^) , z)

According to (2.10), (3.3) stands for

\(dxuN(t),dx(f>)u

t = 0.
(3.4)

We now consider the stability of (3.3). Since (3.3) is nonlinear, it is not possible to prove the stability in the
sense of Courant [4], also see [14]. But it may be stable in the sense of Guo [7,8]. To do this, assume that ƒ
and UN,o have the errors ƒ and ÜAT.OÏ respectively. They induce the error of UN, denoted by üN. The errors
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fulfi.il the following équation

B(vNüN<l>) + £^

By taking <fi = 2{t# in (3.5), it follows that

? ^ ^ ^Ar. (3.6)W + ^B(üN(t),üN(t),üN(t)) + ^=B(üN(t),uN(t),üN(t))

In order to estimate the nonlinear term in (3.6), we need the following lemma.

Lemma 3.1. For any v,w e H^(A) and z € l£(A),

\B(v,w,z)\ < cWzWÏWzWlu (\\dxv\\UlN\\w\\&\\w\\lu + \\dxw\\»iN\\v\\i\\v\\lS)

c\\v\\È\\v\\lJw\\i\\w\\lJz\\ÜJ>N.

Proof. We have

where
Bi(v,w,z) = (e~x29a;ï;u;,z)

ÜJ,N

Bs(v^ w, z) — —2 (^e"^ t;^,z)
V / u),N

By(2.1),

Similarly

Moreover by (2.1) and (2.10),

N

\Bs(v,w,z)\ < ^ ^

The above statements lead to the desired result.
By Lemma 3.1, (2.11) and the Hölder inequality, we obtain that

\B(üN(t),üN(t),üN(t))\ < c^T^ÜN^UlÜNit)]]^ (3.7)

\B(üN(t)yuN{t)yüN{t))\ <c2{uN^,T)\\üN{t)\\i + e\\üN{t)\\l„ (3.8)

where C\{fi,T) is some positive constant depending only on ̂  and T, and

j T ) = , e > 0.
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By substituting (3.7) and (3.8) into (3.6), and integrating it for t, we obtain that

+ ƒ (\~CI(^T)\\ÜN(V)L) \\üN(ri)\\lud7i<p(üNtoJ^+C2{uN,^T)^ ll̂ vWIÎ dr? (3.9)

where

p(ÜNyoJ,t) = \\üNio\\l + 2 f \\f(v)\\liNdri.
Jo

Lemma 3.2 (see [10]). Assume that
(i) the constants b\ > 0, b2 > 0,b% > 0 and d>0,

(ii) Z(t) and A(t) are non-negative functions oft,

(Ui) d < -±e-b3tl for certain h > 0,

(iv) for all t < t\7

Z(t)+ f (h-hzH^AMdrj <d + b3 f
Jo Jo

Then for all t<t1} Z(t) < deb3t.

Applying Lemma 3.2 to (3.9), we obtain the following result.

Theorem 3.1. Let a > ̂ - and UN be the solution of (3.3). If for certain t\,

nffiATn f ti) ^ -c2{uN,fj,,T)t1

p(^,o,/,iij<64c2(^T)e

then for all t <t\,
o Jo

Theorem 3.1 indicates that the error of the numerical solution is controlled by the errors of the data WJV,O
ƒ, provided that the average error p({tjv,O) ƒ>*) does not exceed certain critical value. It means that (3.3) is of
generalized stability in the sense of Guo [7,8], and of restricted stability in the sense of Stetter [15].

We next deal with the convergence. Let U be the solution of (3.2), and UN = PNU. We dérive from (3.2)
that

B (UN(t),UN(t),<l>) + \ { t

(3.10)

where

and

G4(t,4>) =
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Let UN be the solution of (3.3), and ÜN — UN — UN- By (3.4) and (3.10), we deduce that

^ i^B (üN(t),UN(t),<p)

In addition, UN(0) = 0. Comparing with (3.11) with (3.5), we can dérive a resuit similar to that of Theorem 3.1.
But w/v, ü;v,o and ƒ are now replaced by UN, UN(0) and G(t> </>), respectively. Therefore we only have to estimate
the term |G(t, C7jv(t))|. We first have from Lemma 2.1 that

\G2(t,ÜN{t))\ < cN-i\\U{t)\\r,„\\ÜN(t)\\u.

+ ~ ~ ~

= G3(i, UN(t)) = Ax(t, UN{t)) + A2(t, UN(t))
where

Ai(t,UN(t)) = (f

= - (e-*2 (U2(t) - U2
N(t)) , dxÜN(t)) ,

A2(t,ÜN(t)) = (e*2dx

By virtue of (2.1) and Lemma 2.1,

i{t, ÜN(t))\ < c\\U(t) + UN{t)\\t\\U{t) + UN(t)\\lJU(t) - UN(t)\\Z\\U(t) -

Furthermore
A2(t, ÜN(t)) = Dx(t, ÜN(t)) + D2(t, ÜN(t))

where

Di(t,ÜN(t)) = 2 (e-x2UN(t)dxUN(t),ÜN(t)) - (e-
x2UN(t)dxUN(t),ÜN(t))

LJ,N

Thanks to (2.20),

We have

dl (e-*2uN(t)dxuN(t)^ = e-*2 (dr
xuNdxuN + di+luNuN) +Pr(x)e~x2uNdxuN

where pr(x) is polynomial of degree r. By virtue of (2.1), (2.2) and Lemma 2.1,

We can estimate D2(t, Ö"^(t)) similarly. Besides, (2.20) implies that
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TABLE 1. The errors E^(l).

869

T

0.01
0.001

0.000001

N = 8
1.389E-05
1.381E-06
L397E-08

N = 16
1.389E-05
1.381E-06
1.419E-10

iV = 32
1.389E-05
1.381E-06
2.838E-12

TABLE 2. The errors

r
0.01
0.001

0.000001

N = 8
2.396E-03
2.382E-04
2.409E-06

iV = 16
2.396E-03
2.382E-04
2.447E-08

iV = 32
2.396E-03
2.382E-04
4.895E-10

Therefore

\G(t,ÜN(t))\<l\ \\dtU(t)\\2r,u

Obviously, the last term in the above inequality tends to zero as N goes to the infinity. Finally we obtain the
following resuit.

Theorem 3.2. If a > ^ ; r > 0, U G L2(0,ln(l + T); 2&+*(A)) n Hl(0M(l + T); H*(A)) and f e

L2 (o, ln(l + T); H^ (A)), then for ail t < ln(l + T),

\\uN(t) - U(t)\\

where c* is a positive constant depending only on /x, T and the norms of U and ƒ %n the mentioned spaces.

Remark 3.1. In the proof of Theorem 3.1 and Theorem 3.2, we require that for U E H„(A) and so
e~^~(\U(x:t)\ + \dxU(x,i)\) —» 0 as |rc| —> oo. A sufiicient condition for it is that for certain a > ^-,

eay (\V(y,s)\ + \dyV(y,s)\) —* 0, as |y| —• oo, see [10]. It means that ^(^,5) should decay fast enough. It
agrées the expérience in actual computations as described by Funaro and Kavian [6].

Remark 3.2. In this paper, we use the variable transformation and so obtain the error estimations. In fact, a
similar transformation was used in actual computations by Funaro and Kavian [6]. This trick can be generalized
to other problems such as the two-dimensional heat équation and the Navier-Stokes équations.

4. NUMERICAL RESULTS

We now present some numerical results. Take the following test function

U(x}t) = sech2(ax — bt — c).

We use (3.3) to solve (3.2) with a = 0.3, b = 0.5, c = —3 and \i = 1. In actual computation, we use standard
fourth order Runge-Kutta method in time t with the step r. Let E}p(i) = \\U(t) — UATMIIC^N and Ë^\t) =

I ( .U(t)
be the errors of numerical solution ujsf. Tables 1 and 2 show the errors and i% (£)

)
for t = 1 and varions values of N and r. They indicate the high accuracy and the convergence of the this
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TABLE 3. The errors E$(t) and

t
1.0
2.0
3.0
4.0
5.0

E™(t)
1.381E-06
1.249E-06
8.869E-07
5.812E-07
3.680E-07

2.382E-04
5.848E-04
1.127E-03
2.008E-03
3.456E-03

TABLE 4. The errors

T

0.01
0.001

0.000001

N = 8
1.189E-05
5.965E-06
6.510E-08

N = 16
1.187E-05
5.883E-06
2.380E-10

TV = 32
1.186E-05
5.883E-06
8.194E-12

TABLE 5. The errors

T

0.01
0.001

0.000001

iV = 8
2.051E-03
6.028E-04
1.122E-05

N = 16
2.047E-03
3.014E-04
4.106E-08

iV = 32
2.045E-03
6.698E-04
1.431E-09

TABLE 6. The errors E&\t) and

t
1.0
2.0
3.0
4.0
5.0

E^(t)
5.883E-06
3.230E-06
1.508E-06
7.377E-07
4.012E-07

6.698E-04
1.513E-03
1.918E-03
2.549E-03
3.768E-03

method. Moreover the errors Ej^\t) and É^(t) with N — 32, r = 0.001 and various values of t are listed in
Table 3 which shows the stability of calculation.

For comparison, we also use the Her mite spectral method in [10] for the same problem. The corr esponding
scheme is as follows

(4.1)

where
1

uv,dx<t>)u

In actual computation, the Hermite coefficients are determined by the Hermite quadratures with the
M interpolation points, M > N. lts numerical errors E^2\t) and Ë^2\t) are defined in the same way as
for E$ (t) and É^ (t). The errors with M = N are shown in Tables 4 and 5. Moreover the errors with N = 32
and r = 0.001 are listed in Table 6. Comparing the errors in Tables 1 to 3 with those in Tables 4 to 6, we find
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TABLE 7. The errors E$\l).

871

T

0.01
0.001

0.000001

N = 8
1.026E-03
1.075B-03
1.075E-03

JV = 16
4.997E-04
4.992E-04
4.991E-04

N = 32
6.058E-05
6.030E-05
6.027E-05

TABLE 8. The errors É%(1).

T

0.01
0.001

0.000001

7V = 8
3.568E-01
3.568E-01
3.567E-01

N = 16
2.283E-01
2.281E-01
2.281E-01

iV = 32
2.977E-02
2.963E-02
2.962E-02

that the Hermite pseudospectral method has the accuracy of the same order as the Hermite spectral method.
But the former method saves the work, since it avoids the quadratures on the whole line.

Finally we restrict the computation to a finite interval [YQ, Yî], YQ = —25.0 and Y\ = 25.0. The corresponding
artiflcial boundary values are given by

V(Y0,t) = V(Yo,0), V(Yl,t) = V(Yu0).

Take the transformation

W(z,s) = V(y,s) - i(l + z)Vo(Y1) - i(l - z)V0(Y0).

Then problem (3.1) becomes

(W + | (1 + z)VoiXi) + | (1 - z)V0(Y0))
2 - w ^ = g,

W(z,0) = V0(è(Yi +YO) + l(Y1-

(-1,1), t e (0,T),
sG[0,T),

z)VQ{Y1) - ±(1 - z)V0(Y0), z 6 [-1,1].
(4.2)

Let Li(z) be the Legendre polynomial of degree Z, and A^ = {z3\j = 1, 2, ...TV — 1} be the set of the zéros of

LN-I(Z) . The Legendre pseudospectral scheme for (4.2) is to find WN € P%(—1,1), such that

dsWN (WN + | = g, z
WN{z,O) = Vo(|(îi + *o) + \{Yi - Y0)z) - | (1 + z)V0(Yx) - | (1 - z)^o(*o), « e A^.

(4.3)

Set VN(z,s) = WN(z,s) + è(l + z)Vo(Yx) + ^(1 - z)V0(Y0). The numerical errors E{*>(t) = \\V(t) - VN(t)\\N

and Ëx(t) — \\V y ff II AT are presented in Tables 7 to 9, where \\V\\N is the corresponding Legendre discrete
norm. Comparing the results in Tables 1 to 3 with those in Tables 7 to 9, we know that the Hermite
pseudospectral method provides better numerical results than the usual method by restricting the computation
to a finite interval. In particular, for N = 32, the points in the Hermite pseudospectral method are sampled
over an interval of size \&N\ ~ y/2N = 8. The size of this interval is still smaller than the truncated interval of
size 25. But the Hermite pseudospectral method provides much better results than (4.3).
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TABLE 9. The errors E$}(t) and

t
1.0
2.0
3.0
4.0
5.0

EW{t)
6.030E-Û5
3.213E-05
1.893E-05
1.229E-05
9.869E-06

2.963E-02
2.137E-02
1.562E-Û2
1.126E-02
1.103E-02
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