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STRUCTURAL PROPERTIES OF SOLUTIONS TO TOTAL VARIATION
REGULARIZATION PROBLEMS

WOLFGANG RING1

Abstract. In dimension one it is proved that the solution to a total variation-regularized least-squares
problem is always a function which is "constant almost everywhere", provided that the data are in a
certain sensé outside the range of the operator to be inverted. A similar, but weaker resuit is derived
in dimension two.
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1. INTRODUCTION

Since the work by Rudin, Osher and Fatemi [15] published in 1992, regularization by total variation functionals
has received considérable attention in image and signal processing. See the articles of Chambolle and Lions [3],
Acar and Vogel [1], Dobson and Santosa [6], Vogel and Oman [17], Chavent and Kunisch [4], Ito and Kunisch [11],
Dobson and Scherzer [5], Nashed and Scherzer [13] and the références cited therein.

In this paper, we consider the least-squares problem

min \\Ku - zf + a|Vu|(ft) (1.1)

where |Vu|(f2) stands for the total variation of the (distributional) gradient oî u and BV(Q) dénotes the
space of fonctions of bounded variation on Çl. The variational problem (1.1) should be considered as a stable
approximation to the possibly ill-posed problem

Ku = z.

It has been observed by se ver al authors that "blocky" structures or pièce wise constant fonctions can be recon-
structed very well by total variation regularization (see [6]). On the other hand, solutions to total variation-
regularized problems are usually rather "blocky" even if the exact solution UQ, corresponding to exact, noise-free
data ZQ, is smooth (see [3,12], and the recent work of Nikolova [14]).

We illustrate the situation in two numerical examples. Hère our goal is not the best possible reconstruction
of the idéal solution. We choose configurations of noise and regularization parameter which display structural
properties of the solution as good as possible.

Keywords and phrases. Total variation regularization, pièce wise constant function, convex optimization, Lebesgue décomposition,
singular measures.
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FIGURE 1. Unperturbed and perturbed data and solution to (1.1).

We first consider a one-dimensional problem of type (1.1). Here K is an intégral operator of the first kind,

Ku{x)= r
Jo

The plot on the left hand side in Figure 1 shows exact data ZQ together with noise-corrupted data z. The
solution to (1.1) and the exact solution UQ with KUQ = ZQ are plotted on the right hand side as solid and dashed
lines respectively. It is apparent, that the solution ü to (1.1) is constant over large subintervals and that there
are jump discontinuities at a number of points.

Similar effects can be observed in dimension two. Figure 2 shows the regularized inversion of noise corrupted
data z G I/2([0,1] x [0,1]) when K is the compact Fredholm operator

Kf(x) = f i
Jn

with Cl = [0,1] x [0,1]. In this case, the solution is the union of disjoint patches where on each patch the gradient
of the solution is pointing parallel to one of the coordinate axes.

In this paper, we give some theoretical explanations for this behavior. In dimension one, we can characterize
the structure of the solution in présence of data noise quite thoroughly. In this situation, we prove that
the derivative of the solution is zero almost everywhere. In dimension two, we do not obtain such a strong
resuit but we can dérive some structural properties of solutions which correspond to the above mentioned
observation. Specifically, if we use the most simple (anisotropic) définition of the norm on BV(rt)y we can prove
that generically the gradient of the solution is parallel to one of the coordinate directions. In bot h one- and
two-dimensional situations, we focus our attention on two important special cases: the problem of denoising
noise-corrupted data and, the problem of deblurring data which are blurred by some smoothing filter. We also
mention that similar results were derived recent ly by M. Nikolova [14] for finite dimensional approximations of
the functional (1.1) using quite different methods.

In Section 2 we introducé the spaces BV(Q) and A4n{Q>) and we recall some structural properties of functions
of bounded variation and of Radon measures. Here we use mainly the Lebesgue décomposition of a measure
into its absolutely continuous and singular parts. In Section 3, we formulate the variational problem and its
functional analytic setting, we prove existence of a solution, and we dérive an optimality System for (1.1). In
Sections 4 and 5 we study structural properties of solutions to (1.1) in dimensions one and two respectively.
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FIGURE 2. Idéal solution and solution to (1.1) for a two-dimensional problem.

2. THE SPACES BV(Ü) AND Mn

Let fi be a bounded, open, simply connected domain in M.n with n > 1. We consider the space

BV{Ü) = {f eLl{Q) : | £ (2.1)

where ^ - dénotes the distributional derivative with respect to Xi and A4(Çt) is the vector space of all Radon
measures on Û, ie., the dual of C0(ü) (see Th. 6.19, p. 130 in [16]). BV(£l) is a Banach space if we define the
norm on BV(Q) by

\BV = \\J\\L* ËL (ÎÎ) (2.2)

where IL
d

(Q) dénotes the total variation of the measure -j^-. We shall write (2.2) in the short form

The term |V/|(f2) can alternatively be written as

|V/|(fï) = sup | f ƒ(x) divv(x) dx : v e C^(Q)n, |v(x)|oo < 1 for all x € fl}

(2.3)

(2.4)

Remark 1. If we choose a different vector norm for v in (2.4), we get a different (but equivalent) norm on
BV(fL). We choose the | • |oo-norm because then (2.2) and (2.4) are equivalent définitions. For any other norm
for v, the term corresponding to |V/|(fi) cannot be expressed as a simple sum of variations, or any other simple

function of the terms (ft). Using our définition, we get a norm which is easy to analyze, but from the
practical point of view the norm has the drawback of being anisotropic.



802 W. RING

Remark 2. For u G BV (SI) with ^ G L1^) C M(SÏ) we have (see Th. 6.13, p. 125 in [16])

du

Thus, the Sobolev space

is isometrically embedded in BV(Ü). Although W 1 ' 1 ^ ) is not dense in BV (ft) in the norm topology, we can
approximate functions in BV (Cl) even by C°°-functions if we use a slightly weaker topology (see [8]: p. 172 ff).

We have the following properties.

Proposition 1.
1. Lower Semicontinuity:

If {uj}^i C BV(Ù) and Uj -> u in L^fi) then

du
dx~

(fi) < liminf {Cl). (2.5)

2. Compactness:
For every bounded séquence {UJ}J?=1 C BV (ft) and for every p € [1, ̂ 3j) there exists a subsequence

{ujk}kLi anà a fonction u € BV(Q) such that Ujk —> u in Lp(ü). If n = 1 then "oo" is substüuted for
(( n »

n-1 '
3. Sobolev Inequality:

There exists a constant C = C(n, Q) such that

\\u - Ü\\L^ ( n ) < C | , for allu£BV(Q), (2.6)

where the constant function ü is defined by ü = mea
1
s,Q^ JQ wdx. /ƒ n = 1 i/ie L^-1 -norm is understood to

be the L°° -norm.

For proofs of the above described properties we refer to [4,10,18].
n

We consider the space Ain(ft) = <& A4(Q). A norm on A4n(JÏ) is given by

(2.7)

where |/Xi|(f2) dénotes the total variation of the measure \ii and

/x = (/xi,... , / /n) .

Remark 3. We can equivalently define the norm on Mn(ü) by

= sup : v G v(x)|TO < 1 for all x (2.8)

For u e BV (ft) we have Vu 6 Mn(ft) and définition (2.8) coincides with (2.4).
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Let // G .M(fi). Then, by Lebesgue's décomposition theorem (see Th. 6.10, p. 121 in [16]) it is possible to
write fi in a unique way as

M = Ma + Ma (2-9)

with Ma being absolutely continuons with respect to the Lebesgue measure, and fis being concentrated on a set
of Lebesgue measure 0. For /i £ A4n(Q), we have the Lebesgue décomposition

i t h Ma = (Ml.a, • • • .> Mn.a), Ms = (MI,S> • - • >Hn,s)- (2.10)

If Mï,s is concentrated on the zero set Si C fi, then fj,s is concentrated o n S = Uf=1Si which is also of Lebesgue
measure 0. Thus fx§ is a vector-valued singular measure. Moreover, fj,s and / i a provide the unique décomposition
of fj, with this property.

Lemma 1. We have

(2-11)

where \x = fj,a + fis is the Lebesgue décomposition oƒ fi € A4n(fi) into its absolutely continuous and singular
parts, as given in (2.10).

Proof, We first prove the resuit for dimension n = 1. Obviously we have |MK^) ^ lMa|(fi) + IM^K^) by the
triangle inequality on AI (fi).

To prove the converse inequality, suppose we are given two partitions {Ei}^ and {Fn}™=l of Q, Le. two
countable collections of measurable sets with Ei H Ej = 0 if i / j ; Fn (1 F m = 0 if n / m, and \JiEi — UnFn = Q.
Since \xa and \xs are mutually singular, there exist two measurable sets A and B with A n B = 0 and AuB = Q,
such that Ha{E) — M(̂ 4 H £?) and jJ>s{E) = M ( ^ H £?) for every measurable set E. We have

n=l i=l n=l

since {Ei D ̂ 1}^! U {Fn n -B}^! is a partition of Q,. If we take the supremum over all partitions {Ei}^ and
{Fn}~=1 we get

The resuit for dimension n > 1 follows immediately from the définition of |/x|(fi) and from the one-dimensional
case. D

Remark 4. We can isometrically identify absolutely continuous measures with L1-functions. Hence we can
write (2.9) in the form p = f + fa with some ƒ € L1^). This yields the following décomposition of Ai(Q,) into
a direct sum

M(n) = ̂ (tyeV (2.12)

where
p = { ŝ £ J\4(£ï) : Ms 'IS singular with respect to the Lebesgue measure on fi}.

The décomposition for the vector-valued case reads as

Mn(ty = L^iSl) © Pn (2.13)

with Ll(tt) = S LVfi) and Pn = ®P.
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We consider the operator

V :BV(n)^Mn(Ü).

Obviously, V is a bounded linear operator on BV(£Ï). We define the dual operator:

-Dio : Mn(ny -> BV(ny, -©u> = v*. (2.14)

Here and for the rest of the paper "*" dénotes the dual for bot h operators and spaces.

3. PROBLEM FORMULATION, SOLVABILITY AND OPTIMALITY SYSTEMS

Let Q, C MJ1 be as in Section 2 , p G [1, ̂ zr[) if TI, > 2, and p E [1, oo) if n = 1. Suppose Y is a reflexive Banach
space and K : Lp(ft) —> Y is a bounded linear operator. We consider the following unconstrained optimization
problem

minimize -\\Ku - z\\\r -f- a\Vu\{Ü) over u e BV(Ü) (P)
z

with given z e Y. With p < ^~-, and Q bounded, we have BV(Q.) continuously embedded in LP(Q) due to
Proposition 1.3. Hence, the minimization over BV (ft) in (P) is well defined.

Solvability of problem (P) has been considered in a slightly less gênerai framework in [3]. We present the
following solvability resuit for (P).

Proposition 2. Suppose K and Y are given as above with ker K containing no constant, non-zero function.
Then, for every zeY there exists a solution û G BV(Q) to problem (P). If K is injective and the norm on Y
is strictly convex then the solution is unique.

Proof Suppose {UJ}<^=1 is a minimizing séquence for problem (P). We prove that {UJ} is bounded in BV(Q).
Prom the Sobolev Inequality (2.6) we conclude that {VJ} = {UJ — üj} is bounded in L^(tt) and hence also
in LP(Q), with üj — mes^/^ JQ UJ dx. We claim that {üj} (as a séquence of constant functions in L1(O))
is also bounded. Suppose otherwise that we have üj = VjXn with \rj\ —> oo as j —• oo. Then Hî ttjH^ =
\TJ\ \\KXQ\\Y -^ OO as J —> OO because keri^ does not contain any constant, non-zero function. Since ||i^tij||y >
IIK^IIy — ||if^||y, we find that {KUJ} must be unbounded in Y, contradicting the assumption that {KUJ} is
a minimizing séquence for(P). Therefore, {UJ} = {VJ + üj} is bounded in i 1 (^ ) . Since {|Vitj|(fi)} is bounded,
we conclude that {UJ} is bounded in BV(£l).

Using Proposition 1.2, there exists a subsequence, again denoted by {UJ}, satisfying Uj —> û~ in Lp(fl) with
ü E BV {SI). Prom the continuity of K and Proposition 1.1 we conclude

<liminf (-\\KUJ --\
2

which proves that u is a solution to (P).
To prove uniqueness of the minimizer, it is sufficient to show that the cost functional in (P) is strictly convex.

This, however, is an immédiate conséquence of the injectivity of K and the strict convexity of || • \\y. D

We shall now give a characterization of the solution ü to Problem (P) by an appropriate optimality System.
In this context we shall use the following notations. Let (Vü)a = {{-§^)a}i=i a nd (VtZ)s = {(J~)s}"=i dénote
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the absolute continuous and singular parts of Vü G Mn(ft). Moreover let sign(#) dénote the set-valued mapping

{- 1 i f x < 0 ,

[-1,1] if a; = 0,

1 if x > 0.
The duality mapping J : Y —> Y* is defined as the subdifferential of the convex function y H-* | | |y| |y on Y (see
Barbu [2, p. 60] for details). Finally let Lq(ft) dénote the dual space to Lp(ft), i.e. let q G (1, oo] be given such
that - + - = 1. With these définitions we find the following optimality system.
Proposition 3. Let ü G BV(ft) be a solution to (P) and let Y* be a strictly convex Banach space. Then there
exists À G L^(ft)9 with divA G lq(ft) such that:

K*J(Kü-z) = adivÀ G Lq(ft) (Oi)

Q Q (x) (O2)
almost everywhere on ft for i = 1,.. . , n.

Proof. The proof proceeds in two steps. We first dérive optimality conditions using techniques from convex
analysis. In the second step we consider the absolute continuous and the singular parts of Vw separately and
we show that the Lagrange multiplier À found in the first step can be replaced by a smoother function À.

We consider the cost functional

F(u) = Fx(u) + aF2(u)

with Fi(u) =5 |||ifw — z\\y and F2(u) = |Vu|(fi) on BV(Q). Obviously F\, F2, and F are continuous convex
functions on BV (Çl). Therefore, ü G BV (ft) is a solution to (P) if and only if

0 G dF(ü) = dF^ü) + adF2(ü), (3.1)

where the ô-operator dénotes the subdifferential of a convex function (see Prop. 1, p. 124 and Cor. 1, p. 121
in [7] for details). F2 is in f act the composition of the affine mapping u »—• Ku — z and the convex function
V •—*• èlblly- Therefore, using the arguments in Prop. 12, p. 119 of [7], we find that

dF^ü) = K*J(Kü - z).

The duality mapping is single valued due to the strict convexity of Y* (see Ex. 1, p. 60 and Th. 1.2, p. 2 in [2]),
hence dFi(u) is also single valued. Since K* : F* -> L*(fi), we obtain dF^ü) G L*(fi) C (BV(Q))*.

The mapping F2 is the composition of the bounded linear operator V : BV (ft) —• Mn(ft) and the convex
function F2 : fx *-> |/i|(fl) on Mn(ft). Using again [7, Prop. 12, p. 119] we obtain that

ipedF2{ü) c

if and only if

^ = -Dit) À and Â G dF2(Vü). (3.2)

(Recall the définition of — £)n> in (2.14).) From équation (3.2) it follows from the définition of d that

A (3-3)
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for all fj, € Mn(Q). Here and in the following we dénote the duality pairing of a space X and its dual X* by
angle-brackets (•, '}x,x*- The necessary optimality condition (3.1) therefore reads as: ü G BV(Q) is a solution
to (P) if and only if there exists À € A4^(fl) satisfying (3.3) such that

aJ)ix>J = K*J(KÏÏ-z). (3.4)

We now reformulate the optimality System (3.3) and (3.4), to get a more convenient characterization of the
solution ü from which we can dérive structural properties of ü. We first consider (3.3). Setting fx = 0 and
fjt = 2Vü in (3.3) we obtain

and

hence

Inserting this back into (3.3) we obtain

for all fx e Mn{Q).
We claim that equality holds in (3.5) not only for fj, = Vü, but also for /x = (VïZ)o and fi = (Vu)3. Suppose

otherwise that strict inequality holds in at least one relation. Then using Lemma 1 we have:

|Vü|(fï) - (|Vü|)tt(ïï) + (|Vü|)a(fi) > (Â, (Vü) f l)K ,MB + (Â, (Vû)s)M*nlMn = (

Thus, we cannot have a strict inequality in either case. We obtain:

(Â, (Vü)a)M'n,Mn = |(VH)O|(SÎ) (3.6)

and

Â (3.7)

We now show that we can replace the multiplier À € .Mn(£7)* by a smoother function À. Here we closely follow
Th. 2.4 of [4]. We consider the restriction of the functional /i H-> (A,/i)x*)A<n to L^ft) C Mn{Vt)

A = Â|L i ( n ) . (3.8)

Since À is a bounded linear functional on i^(fi), we have

ÂeC(fi) (3.9)



STRUCTURAL PROPERTIES OF TOTAL VARIATION REGULARIZATION 807

and, by (3.6) and (3.5):

< A , ( V ^ > ^ = ^ (3.10)

& f > W i = E ƒ *i(x) *(x)dx < J2 I IA(*)l d* for all f G 2£(ft). (3.11)
i=i ^ i=i J a

(Recall that we use the anisotropic norm (2.2) on BV(Q).) From (3.11) we conclude that |Aî(x)| < 1 almost
everywhere on fl. Consequently (3.10) implies that

Ai(x) G sign ( -— ) (x) almost everywhere on Q for i = 1 , . . . , n.
\9xiJ a

We now corne back to the optimality condition (3.4). Since the right hand side of (3.4) is in Lq(Q) we have
2)iü A G Lq(Vt). We shall now calculate the distributional divergence divA of A and we shall show that it
coincides with Dit) A. Let T>(ft) dénote the space of all infinitely differentiable function with compact support
in £7 and let T>f(Q) dénote its dual. Let Vn(Çl) and P^(f2) dénote the corresponding spaces for functions with
values in Rn. We have A G L™(Ü) C Vf

n(Q). Suppose tp G D(fi). Then we have

(div A, y>)xM> = -(Â, Vy?)L~)Lj. = -(XVtpJM^Mn = {S^X<P)BV%BV = <£>n>Â, y?) Lq^LP. (3.12)

The last equality holds because 2)iü A G L9(Q). Since <p was arbitrary in 2?(fi) and since V(Q) is dense in LP(Q)
we flnd

Inserting this into (3.4) complètes the proof. •

4. THE ONE-DIMENSIONAL CASE

Theorem 1. Let £1 = (a, b) be a bounded open interval in R, let p G (1, oo), and suppose that the assumptions
of Propositions 2 and 3 hold. Suppose moreover that the data z G 1" are given such that, for every measurable
set E C (a, b) with meas(J5) > 0; the équation

K*J(Ku- z) = 0 on E (4.1)

does not have a solution u G BV(a, b). Let ü dénote the solution to (P). Then we have

(üf)a - 0.

Hence, v! = (ü')s G V, and v! = 0 almost everywhere on (a, 6).

Proof We use the optimality condition (Oi). In the one-dimensional case, we have Â G W1'q(a^b) and

aXf - K*J(Kû-z) G Lq(a,b). (4.2)

Suppose that the absolutely continuons part (vf)a in the Lebesgue décomposition v! = (v!)a + (^)s °f ^' does
not vanish. Let us assume without loss of generality that (v!)a > 0 on some measurable set E with meas(£1) > 0.
Then, by (O2) we have \(x) = lonE and hence \!{x) = 0 almost everywhere on E (see Lem. 7.7, p. 145 in [9]).
If we insert this into (4.2), we see that û solves (4.1) on some set of positive Lebesgue measure in contradiction
to our assumption. Hence (ûf)a = 0 and thus v! = (ü')s G V. •
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Remark 5. Theorem 1 states that under certain conditions on the data z, the measure üf is concentrated on
a subset of (a, b) which is of Lebesgue measure 0. In this sense, we can say that v! = 0 almost everywhere on
(a, 6), and thus uü is constant almost everywhere".

Remark 6. It is a common situation for inverse problems that the data z are given by some noisy measurement
of "ideal" data ZQ 6 K(BV(a,b)). Typically K(BV(a,b)) is dense in Y but does not coincide with Y and the
perturbed data z are outside this range. Therefore the optimization problem

minimizellXw - z\\2 over u G BV(a, b) (4.3)

does not have a solution, and consequently the optimality condition

K*J(Ku -z) = 0 (4.4)

does not have a solution u G BV(a,b). Condition (4.1) can therefore be seen as a generalization of z $
K(BV(a,b)).

We now investigate more closely two special situations which are important in practical applications. In the
fîrst case K = id, which corresponds to the problem of noise removal from a noise-corrupted signal. In the
second case K is some smoothing intégral operator, which corresponds to the problem of deblurring a blurred
signal.

Proposition 4 (Denoising). Suppose Y = L2(a, b), p = q = 2, and K = id. Assume moreover that z G Z/2(a, b)
is given such that for any E C (a, b) with positive Lebesgue measure, z does not coincide with some function
u G BV (a, b) on E. Let û dénote the solution to (P). Then we have (üf)a — 0, and hence v! — (üf)s G V.

Proof. In this special situation, we have K — K* = id, and also J = id (the duality map of the Hilbert space
L2(a, b)). Condition (4.1) then reads as: for any E C (a, b) of positive measure, u — z = 0 on E does not have
a solution u G BV(a, b). This is the condition formulated in the Proposition. D

In the deblurring case, we fînd that ûf is a singular measure, under even weaker assumptions on the data z.

Proposition 5 (Deblurring). Suppose Y = L2(a,b), p = q = 2, and

fb
Ku — I k(x — •) u(x) dx,

J a

with k analytic, and k(x) = k(—x). Suppose also that K is injective. Assume moreover that

z g K(BV{a,b)). (4.5)

Let ü dénote the solution to (P). Then we have (üf)a — 0 and hence v! = (üf)s G V.

Proof. Under the above assumptions it is easy to see that K is selfadjoint on L2(a, 6), and as in Proposition 4
J — id. Condition (4.1) then reads as: for any E C (a, b) of positive measure, the problem

K(Ku -z) = 0onE

does not have a solution u € BV(a, b). Suppose this condition was not satisfied, le., there exists u G BV(a, b)
such that K{Ku — z) — 0 on E for some set E of positive measure. Since k is analytic, we find that K(Ku — z)
is an analytic function which is 0 on some set of positive measure. This, however, means K(Ku — z) = 0 on
(a, 6), and by the injectivity of K we obtain Ku ~- z = 0 on (a, 6), i.e., z G K(BV(a, b)) in contradiction to our
assumption. D
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5. THE TWO-DIMENSIONAL CASE

In dimension one, an important point in the proof of Theorem 1 is the fact that we have À' G Lq, hence
À G W1>qi and we can use Lemma 7.7 in [9] to conclude that the distributional derivative of À is zero almost
everywhere on the set where A is constant. In dimension two or higher, we only have divÀ G Lq(Q,) by (Oi),
which is weaker than À G W2'

q{il)* We therefore cannot use the same argument, and a closer inspection shows
that the reasoning in [9] cannot easily be adapted to the present situation. In the two-dimensional situation
we therefore get only a weaker resuit, claiming that the gradient Vu of the solution cannot have two non-zero
components on any open subset of Q, This corresponds to the observation in the introductory section that, at
each point, the gradient of the solution is parallel to one of the coordinate directions.

Theorem 2. Suppose fi C M2 is an open domain, p G (l,oo), and suppose that the assumptions o f Proposi-
tions 2 and 3 hold. Suppose moreover that the data z G Y are given such that for every open set f7 C fi the
équation

K*J{Ku-z) - 0 on U (5.1)

does not have a solution u G BV(Q). Let û dénote the solution to (P). Then, there is no open subset Çlf of Q

on which both components ( J^-j , i — 1,2, have constant, non-zero sign.

Proof. We use the optimality condition (Oi). Suppose, we can fincl an open fi' c üy where (§%r) has constant
sign for i = 1,2. Suppose, without loss of generality, that both components are positive. Then we have, by (O2),
that Xz = 1 on Qf and therefore divÀ - 0 on fi'. Thus, we have K*J(Ku — z) = 0 on Qf, contradicting our
assumption. D

Remark 7. The following conjecture is the analogue to Lemma 7.7 in [9] for vectorfields with divergence in
Lq(Q). If the conjecture holds we are able to prove a stronger resuit.

Conjecture 1. Let X G Ljf^fi), with divÀ G Lq(Q) for some 1 < q < 00. Suppose that X is constant on some
measurable set E c fi. Then divÀ = 0 almost everywhere on E.

We consider again the solution ü to problem (P). If we suppose that the data z G Y are given such that, for
every measurable set E C Vt with meas(^) > 0, the équation

K*J(Ku-z) = 0onE (5.2)

does not have a solution u G J3V(fi), and under the hypothesis that Conjecture 1 holds we get the following
resuit: Almost everywhere on Q we have

= 0.

Remark 8. The resuit in Theorem 2 dépends on the fact that Az G signf J^M which is only true for the

anisotropic norm on BV(fl) chosen in (2.4). For any other choice of the norm, this structural resuit does not
hold in the above form. This is different from the situation in dimension one, where we have a unique vector
norm.

As in dimension one, we consider the denoising and deblurring problem in more detail. The proofs are
completely analogous to the proofs of Propositions 4 and 5 and are therefore omittéd.

Proposition 6 (Denoising). Suppose Y = L2(Q), p = q = 2, and K = id. Assume moreover that z G L2(Cl)
is given such that for any open subset 17 C fi? z does not coincide with some function u G BV(Çt) on U. Let û
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dénote the solution to problem (P). Then there is no open subset Q' of Q on which both components ( Jj:) ,

i = 1,2, /itu/e constant, non-zero sign.

Proposition 7 (Deblurring). Suppose Y = L2(a,b), p = q = 2, and

Ku= / k(x — >)u(x)dx, ,
Ja •

with k analytic, and k(x) = k(~x). Suppose also that K is injective. Assume moreover that

z#K(BV(Q)). (5.3)

Let u dénote the solution to problem (P). Then, there is no open subset Q' of O on which both components

(-§—) , i = 1,2, hâve constant, non-zero sign.

Remark 9. It is obvious how the two-dimensional results can be gêneralized to n > 2 dimensions. As for n = 2
we cannot hâve that ail components of the gradient are not zéro on any open subset of O.
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