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MATHEMATICA!. MODELLING AND NUMERICAL ANALYSfS
MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol 30, n° 5, 1996, p 637 à 667)

SOME IMPLEMENTATIONS OF PROJECTION METHODS
FOR NAVIER-STOKES EQUATIONS (*)

by Jean-Luc GUERMOND (*)

Abstract — This paper is concetned with the unplementatton of spatially discrete versions of
Chorm-Temam's projection methods The etnphasis is put on the projection step, which enforces
incompressibüity Three types of variational approximations are reviewed In the first one, the
projection step is solved as a div-grad problem with velocity test functions satisfying (at first
g lance) a paradoxical Dmchlet condition In the second method, the projection step is still solved
as a div-grad problem but the velocity test functions satisfy a boundary condition only for the
notmal component In the ihird approach the projection step is solved in the form o f a Poisson
équation supplemented with a Neumann boundary condition The first method i s shown to be
legitimate and economical for fini te element approximations, whereas the second one is shown
to be usefulfor spectral approximations The third one is probably the easiest to implement since
it avoids the ptoblem ofthe mas s matrix occumng m the two others Though the second and third
approaches do not directly involve a infsup condition, this condition is pointed out to be
necessary to establish convergence and rule out possible spunoiis pressure Finally some links
between these algotithms and some preconditwmng techniques ofthe Uzawa operator are shown

Key words Piojection method, Fractional step method, Navier-Stokes équations

Résumé —Dans cet article on s'intéresse a quelques approximations spatiales des méthodes
de projections du type Chorm-Temam On s'intéresse plus particulièrement à l'étape de projec-
tion, qui sert a imposer Vincompressibilité Trois types d'approximations vanationnelles sont
étudiées Dans la première on résout l'étape de projection sous la forme d'un problème de Darcy
avec des vitesses test satisfaisant une condition de Dinchlet (à première vue) paradoxale Dans
la seconde approche, le problème est encore résolu sous sa forme div-grad (i e Darcy) mats les
vitesses test satisfont cette foi s-ci une condition a la frontière portant uniquement sur la
composante normale Dans la troisième méthode, l'étape de projection est résolue sous la forme
d'une équation de Poisson avec une condition de Neumann On montre que la premiere méthode
est légitime pour des approximations par éléments finis, alors que la seconde a de l'intérêt aussi
pour des approximations spectrales La troisième méthode est probablement la plus aisée à mettre
en œuvre puisque qu'elle permet d'éviter l'inversion d'une matrice de masse qui est obligatoire
pour les deux autres Bien que les deux dernières méthodes n'imposent pas directement de
compatibilité entre les espaces de vitesse et de pression, on montre qu'une telle condition est
nécessaire pour assurer la convergence de la méthode Finalement on montre quelques liens entre
ces algorithmes et certaines techniques de prêconditionnement de l'opérateur d'Uzawa
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638 J-L GUERMOND

1. INTRODUCTION

In this paper we consider discrete approximations of a class of fractional
step techniques known as Chorm-Temam projection methods [8] [23]. These
techniques have been proposed for approximating m time the unsteady in-
compressible Navier-Stokes équations. They are devised to turn around the
coupling between the pressure and the velocity that is imphed by the ïncom-
pressibihty constraint • div u = 0. The basic idea consists in devising time
marchmg procedures that uncouple viscous and incompressibility effects.
These techniques are very efficient and have probably « been the first numen-
cal schemes enablmg a cost-effective solution of three-dimensional time-
dependent problems » (cf. Quartapelle [19, p 177]). Their simplicity and
sometimes surpnsmg efficiency render them particularly attractive to the CED
community (see e.g. [2], [9], [11], [12], [25]) Although these techniques have
long been used for calculating steady-state solutions to Navier-Stokes équa-
tions, they are now regaining their status as true time marching procedures for
calculating time-dependent incompressible viscous flows. This renewed inter-
est for time-dependent solutions to Navier-Stokes équations is prompted by the
mcreasmg capacities of computers and the success of large eddy théories
which recognize that unsteadiness of large eddies should be well predicted
whereas smaller scales can (reasonably) be filtered.

Since lts initial appearance, the projection method has been implemented
with various types of spatial approximations and the fractional step has been
modified in order to improve the overall accuracy of the scheme, Thougth the
stability of this method and lts modified versions can generally be proven quite
easily when space variables are contmuous, the stability and convergence of
their discrete counterparts are often overlooked in the hterature.

For instance, the projection step may be put into two different forms. One
possibihty consists m solving a so-called div-grad or Darcy problem as
follows

!

p = ü

V . w =
The second possibihty consists in obtaimng from (1.1) a Poisson équation
supplemented with a homogeneous Neumann boundary condition on the
pressure

2)
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PROJECTION METHODS FOR NAVIER-STOKES EQUATIONS 639

Although (1.1) and (1.2) are equivalent in some sensé, their discrete
counterparts are not in generaL On the one hand, discrete variational approxi-
mations of the Darcy problem yield pressure équations of type
3ih $~ 1 <%'h 0 = F, where $h is a mass matrix and â8h is a matrix associated
with the divergence operator. In this case the homogeneous Neumann bound-
ary condition on the pressure is not enforced, though it is implicitly accounted
for by the velocity tests functions which have the normal component vanishing
at the boundary. On the other hand, discrete variational approximations of
(1.2) yield équations of type 3)h 0 = F, where 2h is an approximation of the
Laplace operator and the homogeneous Neumann boundary condition is
explicitly, though weakly, enforced by the variational formulation. At this
point, one may ask oneself which procedure is correct ? If both are correct
what are their respective range of application ? It is shown in this paper that
both approaches are correct, and each of them has its own advantages within
its respective functional framework.

The other point that is discussed in this paper concerns the appropriate
boundary condition that should be imposed on the end-of-step velocity.
Thanks to theorem2.1 (see below), it is clear on (1.1) that, as far as the
spatially continuous problem is concerned, only the normal component of the
end-of-step velocity should be constrained. However, when the problem is
discretized in space, the answer is no longer clear : a full Dirichlet condition
on the end-of-step velocity is sometimes advocated by some authors (cf. e.g.
Gresho and Chan [12, part II]), whereas other authors impose a, more natural,
condition on the normal component of the velocity (cf. Donea et al. [9], Azaiez
et al. [1]). Which solution is correct ? What are their respective advantages ?
It is the purpose of this paper to show that both solutions are suitable if applied
in the correct functional frameworks. Actually, we show in this paper that the
intermediate velocity and the final velocity should be approximated in two
different spaces.

This paper is organized as follows. In § 2, we review non incrémental and
incrémental projection schemes in the space continuüm. In § 3, we analyze a
discrete projection scheme in which the provisional velocity and the corrected
one are approximated in the same space ; that is, the end-of-step veldcity
satisfies a Dirichlet condition. This scheme is shown to be efficient for fmite
element approximations. A discrete projection scheme with an approximation
space enforcing a boundary condition only on the normal component of the
end-of-step velocity is analyzed in § 4. This functional framework is shown to
be useful for spectral approximations. In § 5, the projection step is formulated
as a Poisson problem supplemented with a Neumann boundary condition. This
technique is probably the easiest to implement, for it turns around a mass
matrix problem that plagues the two others. Some generalization and conver-
gence results are presented in § 6. In § 7, we show that the three projection
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640 J L GUERMOND

algonthms are, in some sense, equivalent to some known preconditioning
techniques of the Uzawa operator for which the preconditioner is applied only
once

2. PRELIMINAWES

2.1. The continuous unsteady Stokes problem

In this paper we consider numencal approximations with respect to time and
space of the time-dependent Navier-Stokes équations formulated m the primi-
tive variables, namely velocity and pressure However, to simplify the pré-
sentation and since we are mainly concerned with the parabolic aspect of the
problem, we restnct ourselves to the time-dependent Stokes problem

(21)

where f(t) is a body force, and the boundary condition on the velocity is set
to zero for sake of simphcity The fluid domain Q is open connected and
bounded in IR ( d = 2 or 3 in practical applications) The domam boundary
dQ is assumed to be smooth , say dQ is Lipschitz and Q is locally on one side
of lts boundary

In the following we work within the classical framework of the Sobolev
spaces The set of real functions infinitely differentiable with compact support
m Q is denoted by D(Q), and the set of distributions on Q is denoted by
D\Q) As usual, L2(Q) dénotes the space of real-valued functions the
squares of which are summable in Q The mner product in L (Q) is denoted
by ( . , . ) and | . |0 is the associated norm , we identify L2(Ü) with lts dual
Hm( Q),m 5= 0, is the set of distributions the successive denvatives of which,
up to order m, can be ïdentified with square summable functions The space
Hm(Q), equipped with the norm

1/2

S |O"«lS
|a|=0

expressed in the multi-index notation, is a Hilbert space [18] We define
H™( Q ) as the completion of D( Q ) in Hm( Q ), and we dénote H~ m(Q) the
dual of / /^( £2 )
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The mcompressibihty condition on the velocity leads to consider solenoidal
vector fields For this reason, we define N(Q) = {v e D(Q), V . v = 0},
and we dénote by H and V the complétions of N(Q) m L2(Q)d and
HQ( Q ) â , respectively. Spaces H and V are charactenzed by :

(2.2) H = {v e L2(fl)d, V . v = 0, t;. n |ao = 0} ,

(2.3) V = { i ; e 1 r f }

See for instance Temam [22, pp. 15-18] for a proof. In the following, the space
H plays an important rôle by means of

THEOREM 2 1 : Under the hypotheses on Q stated above, we have the
orthogonal décomposition

(2.4) L2( Q)d = tf ©V( H\Q)/U).

Proof : See for instance Girault and Raviart [10]. D
If one assumes that ƒ e L2(0,T\H~ \Q)d) and u0 e H, then it is well-

known that (2 1) is well-posed (look for u e L2( 0, T, V) n C°( 0, T ; H) and
restnct the time évolution problem to L2( 0, T ; V7) where V' is the dual of V
and apply Lions's theorem [18, p. 257]) Furthermore, one may venfy that
p e L2(0, T ; L (Q)/R). It is hereafter assumed that the data are regular
enough and satisfy all the compatibility conditions that are needed for a
smooth solution to exit

We now turn the attention to the time approximation of (2.1) by means of
projection methods To make the présentation self-contained, we begin by
recalling the main features of some projection schemes

2.2. The non-incrémental and incrémental projection schemes

Projection methods have been introduced by Chonn [8] and Temam [23].
They are time marching procedures based on a fractional step technique that
may be viewed also as a predictor-corrector strategy aimmg at uncoupling
viscous diffusion and mcompressibihty effects. The time interval [0, T] on
which the solution is sought is partitioned into ]?+ 1 time steps that are
hereafter denoted by tk = kSt for 0 ^ k ^ K, where ôt=TIK. In the
algonthm ongmally devised by Chonn and Temam, each time step is decom-
posed into two substeps as follows For each time step, solve fîrst

(2.5)

vol 30, n° 5, 1996

y + i -
-Jl+ 1 r\

uUQ = 0 ,



642 J-L GUERMOND

then project the provisional velocity ük+x onto H ; in other words, solve

öt
(2-6)

The series (uk) is initialized by u° = v0. The velocity ük+l is a prédiction of
M(tk+ ! ), and r/ + * is a correction of ük+\

One possible improvement of the algorithm above consists in predicting a
better value of the provisional velocity ük+i by putting the gradient of the
pressure that has been calculated at the time step tk in the right-hand side of
(2.5). This algorithm, hereafter referred to as the incrémental form of the
projection technique [11], consists in the following. Initialize the series
(uk) and ( / / ) respectively by u° = vQ and p° = P\t = 0, assuming that
p e C°(0, T;L2(Q)/R). For each time step solve

(2.7) \

and project M*"+1 onto H

St

St

Note that this algorithm assumes more regularity than the non incrémental one
since it requires an addition al condition, i.e. p° =P|,= 0, that was not specified
in the original Stokes problem (2.1) so that some regularity on p as t —> 0
needs to be assured.

Step (2.6) and (2.8) are called projection steps since, according to theo-
rem2.1, they are equivalent to uk+l ~PHük+l and either

or (p

where PH is the orthogonal projection of L2( Q ) onto H. In both cases, the
velocity ü is a prédiction of u(t ) that satisfies the correct boundary
condition but is not divergence free. This defect is corrected by projecting
ük+l onto H (this step has given its name to the method). However, the
end-of-step velocity, «*+1, does not satisfy exactly the correct boundary
condition since its tangential component is not necessarily zero.
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Note that fractional step techniques (2 5)-(2 6) and (2 7)-(2 8) uncouple
viscous diffusion and încompressibihty In practice these techniques require
solving Helmholtz problems and performing projections onto H, whereas
classical coupled techniques usually mvolve a Uzawa operator
V • ( îd - crV2 )~ l V where o is proportional to ôt and ld is the identity This
operator, called after Uzawa's algorithm in which it is ïmphcitly used (see for
instance Temam [22, p 138]), is non-local and îli-conditioned as the time step
tend to zero (see also § 7 for other details)

When it cornes to analyzing the convergence of projection algonthms
(2 5)-(2 6) and (2 7)-(2 8), it is sufficient to restrict the analysis to that of the
incrémental algorithm, for the error équations of the non-incremental one can
be put into an incrémental form as follows

and

k+l -Jfc
6 ~ e

ôt

Where R +1 is the intégral Taylor residual, and we have defined the error
functions ek = u{tk)-u\ 6e = u{tk) - u and Sk = p(tk)-pk As a
conséquence, in the following we only consider the incrémental form of the
projection algorithm

Global accuracy of projection schemes can be further improved by replacmg
the one-step backward Euler scheme in (2 7) by a Crank-Nicolson approxi-
mation as Van Kan did [25] or by a two-step backward Euler approximation
Stabihty and convergence of some of these modified scheme is studied m [13],
[15], [16], [20], [21] and [25], but these considérations are out of the scope of
the present paper The objective of the work presented herein is to bnng some
answers to questions concerning spatiaily discrete approximations of the
projection step (2 6) or (2 8)

2.3. The spatiaily discrete unsteady Stokes problem

Let Xh and Mh be convergent, internai, and stable approximations of
Hl

ö{Q)d and L2(Q)/U It is hereafter assumed that Xh and Mh are finite

vol 30, n° 5 1996



644 J.-L. GUERMOND

dimensional vector spaces. We define X'h the dual of Xh ; X'h is identicai to
Xh in terms of vector space but is equipped with the dual norm induced by the
scalar product of L (Q)d. We identify Mh with its dual space, for the natural
norm of Mh is that of L2(Q).

We now introducé the continuous bilinear form bh : Xk x Mh —> M so that
bb( uh, ph ) = - ( div uh, ph ), and we associate with bh the continuous linear
operator Bh : Xh —» Mh and its transpose Br

h : Mh —» X'h so that for every couple
( uh, ph ) in Xh x MA we have ( Bh uh, ph ) = bh{ uh, ph ) and
(uh, Bf

hph) = i? ; i(uh,ph). We assume that Bh : X^ —> Mh is onto. An important
conséquence of the surjectivity of Bh is summarized by the following well-
known result which is a corollary of Banach's closed range theorem.

LEMMA 2A : Let E and F be two Hubert spaces, and T e J&f (E, F). The
following propositions are equivalent :

(i) T: E -» F is onto.
(ii) T* : F ' - > ker (T)° is one to one (2) an<i there is ft > 0, so that

For a proof, the reader is referred to Brezzi [5] or Girault-Raviart [Î0,
pp. 58-59]. As a result, there is fih > 0 so that

(2-9) V^eM,,, \B'hqh\xi^fiMo-

The constant Ph is sometimes referred to as the inf-sup constant or the LBB
constant (LBB being for Ladyzhenskaya-Babüska-Brezzi), A large choice of
discrete spaces Xh and Mh satisfying such a condition is available in the
literature. A review of compatible spaces in the framework of finite éléments
may be found in Girault-Raviart [10]. For spectral approximation see, for
instance, Bernardi-Maday [4].

The null space of Bh playing an important rôle in the following, we set
Vh ~ ker (Bh ), and we equip Vh with the norm induced by that of Xh. We also
define by Hh = Vh in term of vector space and we equip Hh with the norm
of L2(Q)d (in some sensé Hh plays the rôle of the completion of Vh in
(L2( "

Let us also introducé the continuous bilinear form ah : Xh x Xh —> M so that
ah(uh, vh) = ( VMA, VyA), and recall that, thanks to the Poincaré inequality in
Hl

Q(Q)d, ah is Xh -elliptic ; that is,

(2.10) 3a >0, Vu, EX,, ah(uh, uh) > a\uh\
2 .

We associate with ah the linear continuous operator Ah : Xh —» X'h so that for
ail ( uh, vh)eXhxX, ah( u, v ) = (Ah uh, vh).

(2) Recall that the polar set of a space V c E is defined by
V° = {e € E\ (e\ v) = 0, Vu e V).

M2 AN Modélisation mathématique et Analyse numérique
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In the functional framework defined above, the spatially discrete version of
the time-dependent Stokes problem can be formulated as follows. For2 2 °fhe L2(0, T,X'h) a n d i ^ e //„, find uh e 12(O,T;Xh) n C°(0,T; Hh) and
ph E L2(0, T; AfA) so that

'du,

f tf

where/ft and t^ are suitable approximations off and v0 in Xh. The data, ƒ and
v0, are assumed to be as smooth as needed, and in the rest of the paper we
focus on time approximations of (2.11). This problem has a unique solution
(uh,ph), and this solution is stable (in the appropriate norms) with respect to
the data.

Since Xh and Mh are convergent and stable internai approximations of
Hl

Q(Q)d and L2(Q)/U respectively, the solution to (2.11) converges in an
appropriate sense to that of the continuous unsteady Stokes problem (2.1). Our
main concern now consists in approximating the time derivative in (2.11). In
what follows, we are exclusively concerned with time approximations of
problem (2.11) by means of projection techniques similar to (2.5)-(2.6) or
(2.7M2.8).

3. A FUIX DIRICHLET BOUNDARY CONDITION ON THE END-OF-STEP VELOCITY

3.1. The functional framework

In this section we build a discrete projection algorithm in which we take the
provisional velocity uh and the end-of-step velocity uh in the same approxi-
mation space.

In order to build an analogy between the discrete framework and its
continuüm counterpart, we introducé a subspace of Mh that is the analogue of
H](Q) a L2{Q). For this purpose we define the positive bilinear form
(p,q)M\ = (Bt

hptBt
hq). According to (ii) in lemma 2.1, it is clear that

( . , . )Mi is a scalar product, and \p\Mi = \B'hp\0 is a. norm. We now define
M\ SO that Ml = Mh in terms of vector space, but we equip M\ with the norm
| . \Mi. Furthermore, we define Yh = Xh in term of vector space and we equip
Yh with the norm of L ( Q ) . The introduction Mx

h and Yh is justified by

COROLLARY 3.1 : We have the stable, orthogonal décomposition :

(3.1) Yh = Hh®B\{M\).

vol. 30, n° 5, 1996



646 J.-L. GUERMOND

Proof : Let lh e Yh and define PH : Yh —> Hk the orthogonal projection onto
Hh. We have (lh — PH lh, vh) = 0 for all vh in f/̂ , in other words we also
have (lh- PHblh>vhj = 0 for all vh in Vh ; that is to say,
(/A - P w lh) e V .̂ From (ii) of lemma 2.1, we infer that there is a unique
ph e Mk so that Bt

hph = lk~~ PHh lh Furthermore, it is clear that
(PHJ>,'KPh) = O; as a resuit, \PHJh\l= (lh, PHJh) and
\B'hph\l = (lh, B'hph), from which we infer that the décomposition is stable :

\p
HJh\o< l'ftlo a n d l/»*Ui « l'*lo- a

Note that the above décomposition of Y, is the spatially discrete counterpart
of the classical décomposition: L\Ü) = / / 0 V(H\Q)!M).

3.2. The discrete projection algorithm

With the functional framework introduced above, the logical implementa-
tion of the viscous step {2.1) consists in looking for w*+1 in Xh so that

Jk + 1 _ Jt

fh ~BhPh'

This problem is well posed thanks to the Xh -ellipticity of Ah. Note that
ük

h
+ \ being approximated in Xhi satisfies the Dirichlet condition ük

htd
x
Q = 0. We

now turn the attention to the discrete projection step.

The projection step of the incrémental algorithm can be implemented as
follows. Find uh

+l in Yh and ph
+ — pk

h in Mh so that

rk+1

(3.3)

According to corollary 3.1 this problem is well posed. Actually, the couple
(uk

h
+\St(pk

h
+1 - pk

h) ) is the décomposition of ük
h
+1 in Hh ®Bf

h{Ml
h) ; that is,

uk
h
+} ~ Ptitjh*l* Note, however, that this way of setting the discrete projection

step may not seem the most appropriate since the velocity test functions
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involved satisfy a Dirichlet boundary condition. In order to emphasize this
poin
that
point we can reformulate (3.3) as follows : flnd u\+1 in Xh and pk

h
+1 in Mh so

Xh being an internai approximation to Hl
0(Q)d, uh

h
+x satisfies uk

h?d
l
Q = 0 and

the velocity test functions satisfy vh,dQ = 0, whereas it might seem more
appropriate to enforce only uk

h
+1. n,dQ = 0 and vh . n>dû = 0 as suggested by

the continuous projection step (2.6) or (2.8). We show in the following that this
choice has some conséquence on the condition number of the pressure
operator involved in the linear System (3.4).

3.3. The condition number issue

If the velocity uk
h

+ i is eliminated from (3.3), the projection step reduces to
solving the following pressure problem

n nk+l

^• 5 ) BhBh(ph -ph)—g—.

We now turn the attention to the influence of the end-of-step boundary
condition on the condition number of the pressure operator Bh B*h. We analyze
this influence for finite element approximations and for spectral approxima-
tions. It is shown that the full Dirichlet boundary condition on the end-of-step
velocity is optimal, in term of condition number of Bh B*h9 for finite element
approximations, whereas it is not for spectral approximations.

In the following we assume that Xh and Mh are composed of finite éléments
based on a uniformly regular triangulation 9~A of Q, the characteristic mesh
size of which is denoted by h. We also assume that these two spaces are
uniformly compatible in the sensé that the inf-sup constant fih is independent
of h. Recall that for uniformly regular triangulation we have the inverse
inequality.

LEMMA 3.1 : (cf Girault-Raviart [10, p. 103]). There is a constant
c > 0 independent of h so that

(3.6) VvheX, | V » f c | o « c A - > A | o .

We now give an upper bound on the condition number K(BhB*h)

vol 30, n° 5, 1996



648 J-L. GUERMOND

THEOREM 3.1 : There is a constant c> 0 so that

(3.7)

Proof : Let ph be in Mh and define gh in Mh so that gh = Bh B
r
h ph. By setting

t w e h a v e

. Uh = 9 h .

(a) From this system we deduce the bound |MJQ =
-(Bhuh,ph) ^ |gh\0\ph10 . Furthermore, (ii) in lemma 2.1 yields

\uh\o~ l^hPhlo^ Ph\Ph\o' A s a result, we have $l\ph\0 ^ l̂ hlo» ^ r o m

which we deduce that the smallest eigenvalue of Bh B*h is bounded from below

(b) From the system above we also deduce \uh\l = (div uh,ph), which
together with the inverse inequality (3.6), yields | j o I/JIO

more, we have |öf/Jo~~ (div wA, c^), which for the same reason as above
yields &|0A|O ^ C|M/,|O*

 B y combining the two bounds above, we obtain that
the largest eigenvalue of Bh B

t
h is bounded from above by clh2.

(c) The operator Bh B
r
h being symmetrie, its condition number is equal to

the ratio of its largest to its smallest eigenvalues. D
This bound on K(BhB

r
h) is likely to be optimal since the underlying partial

differential équation is a Poisson problem supplemented with a Neumann
boundary condition, and it is known that approximating such a problem by
finite éléments yields an operator the condition number of which is equivalent
to \lh2. Hence, the important conclusion of this section is that although
approximating the projection step by means of test functions satisfying
vh\dQ ~ 0 does not seem natural, it nevertheless remains optimal in the
framework of finite element approximations since it yields a pressure operator
with an optimal condition numben

Now assume that Q = ] - 1, + 1[2, and let N ^ K>0 be two
integers. Let Xh = PN{ Q ) n Hl

0( Q )d be the space of the polynomial
velocities on Q vanishing on dü and the partial degree of which are less than
or equal to N. Likewise, we define Mh ~ PK(Q) n L2(Q)/U the space of the
pressures on Q that are polynomials with partial degree less than or equal to
K. We assume that Mh is compatible with Xh, and we dénote by fiNK the
corresponding inf-sup constant (cf. Bernardi-Maday [4] for a review on such
approximations). The counterpart of lemma 2.1 for spectral approximations is
the following.
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LEMMA 3.2 : (cf. Canuto-Quarteroni [7] lemma 2.1, p. 73]. There is a
constant c > 0, Independent of N, so that

(3.8) V t ^ e />„ ( [ -1 ,+ 1 ] ) , | V » , , | 0 ^ d V > J 0 .

We now give an upper bound on the condition number of the pressure
operator.

THEOREM 3.2 : There is c> 0 so that

(3-9) K(BhB[)^£f.
PNK

Proof : Proceed as for the proof of theorem 3.1 D
In gênerai the exponent 4 is optimal for spectral Poisson problems supple-

mented with either Dirichlet or Neumann boundary conditions. It may be
further reduced to 3 through the action of a mass matrix if the base functions
are conveniently weighted {cf. Bernardi-Maday [4, Lemma 5.5, ch. III]). Note
that the present functional framework is intrinsic {Le, no particular base is
chosen) ; that is, we deal with operators instead of matrices. In this context,
the intrinsic counterpart of the mass matrix is the identity operator. This reason
explains why we obtained the exponent 4 instead of 3.

The bound (3.9) would be optimal if fiNK were bounded from below by a
constant when N and K tend to infmity. Unfortunately, in gênerai fïNK tends to
zero. For instance, for K = N—2 {Le. the (P;y, ^y_ 2 ) approximation) we
have (see Bernardi-Maday [4, p. 147])

As a resuit, K{BhB
t
h) ^ cN which is no longer optimal. This default to the

optimality is even worse if the pressure is taken in PN{ Q ), for in this case
(once the spurious modes are discarded) the inf-sup constant behaves like
1/JV.

In conclusion, enforcing v>dQ = 0 on the test functions for the projection
step may not be optimal in the framework of spectral approximations. This
default to the optimality comes from the inf-sup constant that vanish as the
number of modes increases. It is shown in the next section that if the boundary
condition on the velocity test functions is relaxed {Le. v . n,dQ = 0 ) , then the
corresponding inf-sup constant can be uniformly bounded from below by a
strictly positive constant.

4. THE NORMAL TRACE OF THE END-OF-STEP VELOCITY ENFORCED

4,1. The functional framework

In order to take into account the boundary condition v . n>dQ = 0, we
introducé //Q I V(Q) = {v G L2(Q)d, div v e L2(Q), v . n,dQ = 0}. Equipped
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with the norm ( \v\l + |div v\l)m, H^lw(Q) is a Hubert space, and we have
ffJ(fl)rfcflîv(û)cL2(û)rfs l}(Q)d'^Hf{Q)'<zir\Q)d, where
the embeddings are dense and continuous.

Let Yh be a finite dimensional, internai and convergent approximation of
^ Though it may seem natural to equip Yh with the norm of

2 d
//Q1V( Q ), we equip it with the norm of L2( Q )d for it will be sufficient for our
purposes as shown below. A discrete divergence operator Ch :
Yh —> Mh = Mf

h and its transpose C\ : Mh —» Y'h are defined so that for all
(vh9qh) in YhxMh we have (Ch vqt qh) = - (div v„ph) =
(vh, C*hph). We assume also that Ch : Yh-$ Mh is onto in the sense that Cf

h

satisfles the following inf-sup condition

(4.1) 3?h > 0, Vqk E Mh \C\q.\, ^ Ph\qh\0.

Now, in order to build some discrete counterpart to Hy define
Hh = ker ( Ch ) and equip Hh with the L2 norm. Introducé also the norm

* anc* *^efine Ml SO tna l ; Ml
h = Mh in terms of vector space,I^JM) \h f̂tlo l h h p

and equip M\ with the | • \M\ norm. We are now in measure of establishing.

COROLLARY 4.1 : We have the décomposition :

(4.2) Yh = Hh®C'h(Ml).

This décomposition is orthogonal and stable with respect to the L norm.
It is also assumed that Xh c Yh. We dénote by ih : Xh —» Yh the natural

injection of Xh into Yh and ïh : Y'b = Yh-^ X'h its transpose. Note that ih can
be identifled to the L2 projection of Yh onto XA ; in particular, we have

(4-3) l'>*lo«No-
The relationship between Bh and Ch is brought to light by

PROPOSITION 4.1 : Ch is an extension of Bh and ih C\ = Bf
h.

Proof: (a)For all (vh,qh) in XhxMh, we have (Chihvh>qh) =
- (div uA, ̂ ) = (Bhvh,qh) since XA c Yh ; that is to say,
ch h vh = Bk vk f o r a l 1 vh e xh-

(b) From (a) we have Ch ih = Bh, from which we easily infer

4.2. The discrete projection algorithm

In the framework defined above the viscous step reads as follows :
flnd « J e l s o that

( 4 . 4 )
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This problem is well posed thanks to the ellipticity of Ah. Note that uk
h must

be projected onto X'h since it naturally belongs to Yh.
The discrete projection step reads : flnd K£+1 in Yh and pk

h
+ [ in Mh so that

(4.5)
C k+\

Corollary 4.1 implies that this linear System has a unique solution.
Note that the solvability of the viscous and projection steps (4.4)-(4.5) do

not require Bl
h to be into. In other words, the pressure is uniquely defined (in

a seemingly stable manner) by the projection step (4.5), At this point it may
corne to one's mind that requiring Bh to be onto is an un-necessary stringent
condition. As a resuit, one may think of choosing Xh and Mh with no référence
to any inf-sup condition so that Bl

h may possibly have spurious modes.
However, when it cornes to studying the convergence in time of the global
scheme, it is shown below (see proof of theorem 6.2) that the discrete pressure
of interest is that which is rid of the possible spurious modes of B*hi and the
global stability constant on the pressure is not that of C*h: Mh-^ Yh but that
ofB'h:Mh^X'h.

In order to illustrate the définitions above, let us give an example in the
framework of spectral approximations (this example is borrowed from Azaiez-
Bernardi-Grundmann [1]). Deflne Ü = ] - 1, + 1[2, and let
Xh = PN( Q) n Ho( Q) be the space of the polynomial velocities on Q
vanishing on dQ and the partial degree of which are less than or equal to N.
Likewise, derme Yh = PN( Q ) n / /JV(Ö) the space of the velocities which
are polynomials with partial degree less than or equal to N and the normal
component of which vanish on dQ. When the pressure space is PN(Q)/U
and the velocity space is Yh> it can be shown that the gradient operator
has three spurious pressure modes (cf. [1, Lemma 4.1]):
span (LN(x), LN(y), LN(x) LN(y)), where LN is the Legendre polynomial of
order N. We get rid of these unwelcome modes by defining Nh as the
orthogonal of the modes in question in PN(Q)/U. Thus defined, Nh and Yh are
compatible and there is a inf-sup constant, ƒ?', independent of N and strictly
positive (cf. [1, Lemma 4.2]) so that

. (divt?ft,gfc)
mf sup -j—[—T—r- > ff.

qh,Nttvf,eYtl l u * l o l ? * l 0
In this spectral framework, the condition number of the pressure operator

Ch C
t
h satisfies the optimal bound

(4.6) KiC.C'^^cN4.
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Furthermore, it is shown in Bernardi-Maday [4, Proposition 5.2, p. 135] that
the discrete gradient B[ : Nh —> X'h has still four spurious modes :

xVN(x)VN(y\ {xL'N(x)yL'N(y)).

This unwelcome modes should be discarded by defining Mh as the orthogonal
of Sh in Nh. Hence, not only the pressure space should be rid of the three modes
span {LN(x), LN(y), LN(x) LN(y)) so that C\ is into, but it should also be rid
of the four spurious modes of Sh. In practice, the regularization of the pressure
can be done as a post processing. Furthermore, it can be shown (cf. [4, p. 135])
that the resulting stability constant of B*h, fth, is equivalent to VN.

In conclusion, introducing velocity test functions satisfying the boundary
condition v . n,dü = 0 may be justifled for some spectral approximations, for
it yields a pressure operator with an optimal condition number. Note, however,
that this procedure is less economical than the previous one since it involves
two approximation spaces for the velocity and it involves two gradient
operators (Le. two matrices), namely Br

h and C*h. It is not clear whether the
present approach should be preferred to the previous one as far as flnite
element approximations are concerned (see also Quartapelle [19, pp. 191-201]
for other details on this technique). Furthermore, although the algorithm
(4.4)-(4.5) does not explicitly require B*h to be into, the pressure of interest (Le.
the one on which we have some stability) is that which is rid of the spurious
modes of Bf

h (if such modes exist).

5. THE PROJECTION STEP AS A POISSON PROBLEM

5.1. Motivation

Assume as in the previous sections that the projection step is formulated in
the form of a Darcy problem with velocity test functions satisfying either a
Dirichlet condition or a boundary condition only for the normal component.
In practical implementations we have to choose particular bases of Xh (or
Yh) and Mh. Each of these choices yields a mass matrix 3>h and a matrix
3bh associated with the divergence operator Bh. For a velocity field uh in Xh (or
Yh ) and a pressure field ph in Mh, we dénote by Uh and Ph the vectors of the
components of uh and/^ in the bases in question. In this context, the projection
step (3,3) (or (4.5)) yields the following linear System in terms of the pressure
unknowns
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Though this approach is quite natural, for it is based on the définition of the
projection operator {cf. theorem 2.1), the présence of the inverse of the mass
matrix may hamper its practicability in some circumstances. For instance, for
fînite element approximations the mass matrix is not diagonal, and the direct
solution of the pressure problem may not be feasible, especially when a large
number of unknowns is involved. In practice, alternative approaches consist in
lumping the mass matrix (cf. Gresho and Chan [12, part II] or Quartapelle [19,
pp. 191-201]). Though this technique may work, no stability resuit has yet
been proven.

It is the purpose of this section to show that the mass matrix problem may
be circumvented if the projection step is recast in the form of a Poisson
problem (1.2), as advocated in Temam [24].

5.2. The functional framework

As in the previous sections we dénote by Xh the Hilbert space in which the
provisional velocities are approximated. Recall that Xh is an internai approxi-
mation of Hl

Q(Q) . Thanks to the Poincaré-Wirtinger inequality in
Hl(Q)/U, we equip H\Û)M with the equivalent norm |V/?|0. We now
introducé M\ a stable and internai approximation of H ( Q )/R and we equip
it with the norm of H\Q)M defined above. To make a clear différence
bet ween the H1 norm in M\, the L2 norm, and the dual norm, we introducé
Mh and M\\ These spaces are identical to Mx

h in terms of vector space and they
are respectively equipped with the L norm and the dual norm induced by the
L2 scalar product.

Note that we now impose Mh a H\Q)/U, whereas in the previous sections
we only needed Mh<z L2(Q)/U. In the following, the définitions of Ah :
Xh —> X'h, and Bh : Xh -> Mh remain unchanged.

In order to build a discrete Poisson problem for the pressure, we introducé
the continuous bilinear form dh : M

l
h X M\ —» R so that

(5.2) \/{Ph,qh)sM\xM[, dh{ph, q) =

This bilinear form is obviously Mx
h -elliptic. We associate with dh the linear

continuous operator Dh : M\ —» M^'so that dh(pk, qh) = {Dhph, qh) for all

(Pv 9/?)
 m Mf\ x M\. The ellipticity of dh implies that Dh : M

l
h —> M^'is one

to one.
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We introducé also the vector space Yh = Xh + VM* and we equip it with
the norm of L2( Q ) d It is clear that Xh <z Yh We respectively dénote by ih

Xh —> Yh and by ih Y'h —> X'h the natural injection of Xh into Yh and lts
transpose Note that we have the following stabihty inequality

(5 3) vh\0

5.3. The discrete projection algorithm

In a way much similar to that in the other sections, the viscous step reduces

to findmg ifh
+1 in Xh so that

(54)

The ellipticity of Ah guarantees that this problem is well posed Note that for
reasons explained further, uh must be projected onto X'h for uh naturally
belongs to Yh = Xh + VMl

h (see (5 6))

We now solve the projection step (2 8) as a Poisson problem supplemented
with a homogeneous Neumann condition

(5 5)

Given the ellipticity of Dh, this discrete problem has a unique solution Note
that this problem is very classical, and the CED and apphed mathematics
commumties have spent a lot of energy devising efficient numencal algonthms
permitting to solve it In some sensé this problem is more attractive than îts
div-grad counterparts (3 3) or (4 5) since lts matrix formulation does not
involve the inverse of the mass matrix

The last step of the algorithm consists in correcting the velocity This is
done by setting

(5 6) uh
+x = ü k

h
+ ' - \ l \

Note that uk
h

+l belongs to Xh + VM\ which is a subset of L2(Q)d Stnctly
speaking, this velocity is not divergence free since there is no reason for
div üL

h
+ x to be equal to V2(pJ + 1 -pK

h) For instance, if P} finite éléments are
used for approximating the pressure, the Laplacian of the pressure incrément
is a H~ \ ü ) measure, whereas the divergence of the provisional velocity is
in L 2 (Q ) , hence, the divergence of uL

h
+1 is aH~ X(Q) measure However, we

have
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PROPOSITION 5.1 : uh
 + is weakly divergence free in the sensé that

(5.7) Vqh*Mh, {uk
h
+\Vqh) =0,

and its divergence and normal trace converge to zero (in some weak sensé)
when h —» 0 if ul

h
+} converges in H0(Q) when h —> 0.

Proof : (a) By définition, (5.5) is equivalent to

Vqh e Mh, St( V(pJ+ ' - p\ ), Vqh ) + ( div ü\+ \qh)=0.

Furthermore, by taking the inner product of (5.6) by Vqh we obtain

V* e Mh, ( « t + \Vqh) = -{div fij+ ',<?„)

from which (5.7) is easily deduced.

(b) Assume for sake of simplicity that Ü is a convex polygon and ük
h
+l

converges in Hl
Q(Q)d to some function «, then the series of functions

(pk
h
+l -p\) converges in Hl(Q)/U to the solution of the Poisson problem

V2 0 = div üloi and d<pfdn,oü = 0. As a resuit, uk
h
+l converges to

u = ü-StV<p in L2(Q)d'; the limit function u is divergence free and its
normal trace is zero. D

Indeed, the scheme (5,4)-(5.5) can be put formally in a form quite similar
to that of the two other techniques descnbed in the sections above. A discrete
divergence operator Ch : Yh—> Mh can be defined by

(5.8) \/vh e Yh, Vqh e Mh, ( Ch vh, qh ) = ( vh, Vqh ) .

By setting Hh - ker (Ch), we clearly have

(5.9) Y„ = Hh(BCh(Ml).

Furthermore, the relation between Ch and Bh is brought to light by

PROPOSITION 5.2 : Ch is an extension of Bh and ïh C
T

h = B[.
The particular choice we have made on Yh implies that

PROPOSITION 5.3 : C\ is the restriction of V to Mh,

Proof: For all (vh, qh) in YhxMh, we have (Cl
hqh, vh) = ( V ^ , vh) ; that

is to say (C*hqh - Vqh, vh) = 0. But Vqh is in Yh by définition and C\q is
in Y'h( = Yh in terms of vector space), hence C\ qh = V^^. D
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COROLLARY 5.1 : The projection step (5.4)-(5.5) is equivalent to the p rob-
lem : look for uk

h
+x in Yh and pk

h
+l in Mh so that

(5.10)

Remark that the algorithm described above does not explicitly involve any
compatibility condition between Xh and Mh ; that is, no inf-sup condition is
required to ensure wellposedness of any of the fractional steps (5.4), (5,5), or
(5.6). For instance, ( P p Px ) finite éléments would be perfectly suited to the
algorithm above. Actually a compatibility condition shows up when we are
interested in the stability and the convergence of the scheme (see proof of
theorem 6.2). After all, we are interested in approximating the velocity and
pressure which are solution to (2.11), but uniqueness and stability on the
pressure in (2.11) is ensured only if B*h has no spurious modes. Hence, if such
modes exist, they have eventually to be discarded, If for some reason one is
interested in solving the problem by means of continuous finite éléments of
degree one, a possible choice consists in using ( P{ -iso-P2, Px ) finite éléments
(cf. Bercovier-Pironneau [3]).

6. GENERALIZATION AND ERROR BOUNDS

6.1. Generalization

We show in this section that the three projection algorithms described above
can be put into a unified framework.

The définitions of the spaces Xh and Mh together with that of the operators
A. and Bh are unchanged. We define Yh a finite dimensional subspace of
L (Q) and endow Yh with the norm of L ( Q ) ; we assume also that
Xh er Yh (in terms of vector space) and we dénote by ih the continuous injection
of Xh into Yh ; the transpose of ih is the L2 projection of Yh onto Xh. Note that
Yh is an internai approximation of L2( Q )d, for Xh is an approximation of
H\{Q)d and Hl

0(Q)d is dense in L2(Q)d. In addition, we assume that there
is an operator Ch : Yh —» Mh so that Ch is an extension of Bh ; in other words
we assume that we have the following commutative diagrams :
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ch

657

Mh

Since Bh is onto and Ch is an extension of Bh, Ch is necessarily onto. One
conséquence of this (together with (ii) of lemma 2.1) is that | Cl

h q\0 is a norm ;
this norm is hereafter denoted by \q\Mi = I^A^IO

 anc* w e dénote by M\ the
vector space Mh equipped with this norm. The null space of Ch is denoted by
Hh. The définitions above enable us to build a discrete counterpart of the
aforementioned orthogonal décomposition L2( Q)d = H © V(H1(Q) ) :

(6.1)

The three algorithms described above can be put into the following unified
form. The diffusion step reads : find üh G X so that

4 k

(6.2) öt
Uh =fh ~BhPh'

The projection step consists in looking for uk
h

+l in Yh and/?^+1 in Mh so that

(6.3)

Jfc+l . Jk+ 1

huh = ° •

The décomposition (6.1) implies that this linear System has a unique
k+\solution. This step is a projection step in the sense that uh is the projection

of uh
+x onto Hh.

We now turn our attention to the convergence issue.

6.2. The convergence issue

We prove in this section that the solution to the projection algorithm
composed of the viscous step (6.2) and the projection step (6.3) converges in
some sense to the solution of (2.1). However, since a complete proof of
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convergence is out of the scope of the present paper we only give the mam
ideas For complete proofs of convergence in the context of the non-hnear
Navier-Stokes équations, the reader is referred to Guermond-Quartapelle [16]

For sake of simplicity, we shall compare the solution of the projection
scheme (6 2)-(6 3) to that of the following coupled scheme set w°h = v0 h and
for k ^ 0 solve

k+l kwh -wh

(6 4)

We shall assume that for some k0 large enough, the solution to this algonthm
satisfies the following local in time convergence resuit

(6 5) max [ |«(r*) - wk
k\l + \p(tk) - qk

h\0] *£ c(St + h) ,

where c i s a genene constant that does not depend on h but possibly dépends
on the regulanty of the data of (2 1) We will restnet our analysis to
tL 5= tk° in order to avoid a possible blow up of the error estimâtes at
t - 0 due to a possible lack of smoothness of the solution to (2 1) (and/or
ïncompatibihty of the data at t - 0 [20]) We assume also that the extended
gradient operator, Cr

h, is somewhat stable m Hl(ü) (a précise meaning of this
stabihty is given in Guermond-Quartapelle [16]) so that we have

(6 6) max \C[(qk
h+

l - ^ ) | 0 ^ cêt,
k0 ^ k ^ K

Of course (6 5) and (6 6) can be proved under reasonable hypotheses on Xh and
Mh and on the data of (2 1) , the reader is referred to Guermond-Quartapelle
[16] for further details

In order to ïnitiahze our fractional step technique, we assume that we have
carned out k0 steps of (6 4) , that is to say, we set uk

h° = w£° and pk£ ~ q% and
the projection algonthm (6 2)-(6 3) is ïmplemented for k ^ k0

Let us dénote by e\ = wk
h - uk

h, th = wk
h - ü\ and cJ = ^ - p J the

error functions For conciseness we introducé the notation
St z

 +1 = zk +1 - z for any function z The ability of the solution to
(6 2)-(6 3) to approximate that of (2 1) for k0 ^ k ^ K is stated m
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THEOREM 6.1 : IfSt is small enough, the solution to the projection scheme
(6.2)-(6.3) satisfies :

(6 .7 ) m a x \ u ( t k ) - uk
h\0 + \ S t J £ K ' * ) " < l î ^ ( < 5 f + / i ) .

Proof : (a) By subtracting (6.2) from the first équation of (6.4), we dérive
the équation which controls the error e*h

+

(6.8)

where we have set

öt

Note that we have used ih wh = wh since wh is in Xh,
Furthermore, noticing that wk

h
+x is in Xh, Bhw

k+] = 0, and Ch is an
extension of Bh, we obtain the system of équations which controls ek

h and
k

\'~K+l

(6.9)

(b) In order to obtain a bound on eh , we take the inner product of (6.S)
by 2 <5f e^l. Using the ellipticity of A^ (the ellipticity constant is denoted by
a ) together with the classical relation

= | a | 2 + | a - 6 | 2 -

we obtain :

l
The stability of i'h yields

(6.10) l ^ l l + laôtlë^^ + lôK^KB'^l) ^ \ek
h\

2
0.

(c) In order to obtain some control on B*h e
k
h
+\ we take the inner product

of the first équation of (6.9) by 2 St2 C[ y/k
h, and using the fact that Ch is an

extension of Bh we obtain

,Bh¥h)+öt\Cheh \Q-\eh - iheh | 0 = St\Ch yth\0.
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With the help of (6.6), the nght hand side of this équation is bounded from
above as follows.

ôt\ v+ôt)\C'h tk
h\l + ôt( 1 + dt) \C'hôt qk

h
+ ' |^ ,

that is to say

C6.ll) -2ôt(eh ,Bhy/h)+öt \Cheh \0-\eh - iheh | 0

(d) We obtain some control on ek
h
+1 by taking the inner product of (6.9) by

(6-12) | e r ' lo+ l4 + ' - v1 + 1 | o -k1 + 1 | o = O.

(e) After summing up (6.10) + (6.11) + (6.12) we obtain

By takmg the sum from k = k0 to some integer n ^ K we obtain

+ 1 1 2 , e . 2 1 ^ A n + 1 1 2 o P ^ ^ t ^ + l i 2 _ i ^ o i 2 ç . 2 1 n t k012 o 2

By our particular choice of the initial conditions we have

and |C;
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As a resuit, the discrete Gronwall lemma yields

661

(6.13)

The final resuit is a conséquence of

u(tL) - u\ = e\+u(tk) - w\ , u(tL) ~u\ = th + u(tk) - w\ ,

together with the convergence hypothesis (6.5). D
The ability of Sfu

L
h
+l lot to approximate Stw

k
h
+Ï Idt is explicited by

PROPOSITION 6.1 : If Ôt is small enough, the solution to the projection
scheme (6.2)-(6.3) satisfies :

(6.14) max \S,ek
h\0

A,, S i =S K E

1/2

côt2

Proof: (a) In a first step we control S/h
0+\ ôte)^1 and öte

k°+1. We note
first that

I | ^ o + 1 l 2
 + (

We obtain the bound

°+M ^ côt2

which yields

(6.15)
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Furthermore, from the projection step (6.9) we obtain

/ l < l ê leh lo ^ \eh io

^* >Mo ^ I e * \ 0 f

The first bound easily yields

(6.16)

The other bound yields

If other words, we have

(6.17) |Cia,£+I |0««5t.

(b) Now we proceed as in the proof of theoremó.l. For k ^ /c0 + 1, the
équation which controls the error <5,ë£+1 is

(6.18) s + AhSteh

and the system of équations which controls St e\ and St e
k
h is found to be

e l °e J L + I
e(6.19) i

+ 1

(c) By reasoning as in the proof of theorem 6.1, we see that the final bound
is a conséquence of (a) and (b). D
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We are now in measure of estabhshing a convergence resuit on the pressure.

THEOREM 6 2 . The approximate pressure given by the projection scheme
(6.2)-(63) satisfies.

1/2

(6.20) Ut^Z\p{tk)-pk
h\l

L

Proof: By summing (6.8) and ih (6.9), and using the relation
ih C*h = B*h, we obtain

, . , . iuàte, , ,,
( 6 2 1 ) ^ e

A = 5̂  V A •

The mf-sup condition on B\\ Mh^> X'h implies that

IJC «* + 1 1
i ~A.+ 1 t

+ C 2 l e A i l -C\\*h\o< Si

The final bound is a conséquence of this mequality and (6.13), (6.14) together
with the convergence hypothesis (6.5) and the identity

a
Note that m order to obtain an error estimate on the pressure we have

reconstructed an approximation of the momentum équation (6.21), by com-
bimng the viscous step (6.8) and the projection step (6.9). The discrete
momentum équation (6.21) clearly shows that the discrete gradient operator
which cornes into play is not Cf

h : Mh —> Yh but B*h Mh —» X'h. Hence, although
the fractional steps (6 2)-(6.3) do not seem to require B\ to be onto, conver-
gence in time is ensured only if Xh and Mh satisfy a mf-sup condition.

7. RELATIONSHIP WITH SOME UZAWA PRECONDITIONING

We show in this section how the three projection algonthms presented
above can be interpreted as particular preconditionmg techniques.

Our starting point is still the time-dependent Stokes problem (2.11) Assume
we wish to approximate it by means of the one step backward Euler scheme
(6.4). The formulation (6.4) is classical ; it couples the pressure and the
velocity by means of the kinematical constramt Bhw

k
h
+l = 0 . One way of
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lookmg at this problem consists in elimmating the velocity by means of a
Gauss élimination, for the first pivot in the system (6 4), Idldt + AhJ is
mvertible As a resuit the problem (6 4) consists in finding the pressure field
q1^1 so that

(7 1) Bh(Id-ôtAhTlBl(û+l)=±-tBh(Id-otAhr\ôfh
+l+w^

In the hterature, the operator Bh(Id~ StAh)~
 l B*h is frequently referred to as

the Uzawa operator , it is hereafter denoted by Uót Note that this operator has
a condition number of (9( 1 ) if öt is of &( 1 ) However, öt is bound to tend
to zero As a resuit, the condition number of Uót is very large in practice, and
itérative solutions of (7 1) are possible only if Uót is preconditioned If a
preconditioner were at hand, one crude itérative technique would consist of
Picard itérations In the followmg we show how such an algonthm can be
implemented

Assume that qh is the first guess of the pressure, then the pressure incrément,

# A + I " 3 A > 1S s°lu t ion to

tn o\ TT t k + l k \ huh

(72) VSt(qh -qh)=—^—,

where we have set ük
h
+l = (Id- ôtAh)~~ l(ötfh

+l + wk
h -StB[ qk

h) , m other

words, u^ 1 e X is the solution to

(7 3)

Note that this problem coïncides exactly with the provisional step of the three
projection algonthms studied m the previous sections

The difficult task, now, consists in solving (7 2) approximately One pos-
sibihty consists in assummg that if öt is small, Uót should not be very different
from Uo = Bh B\ AS a resuit, if ôt is small enough, it is legitimate to solve
approximately the pressure problem in the followmg form (see eg [13])

B

(74) *Xo>i+1-^) =
Note that (7 4) is equivalent to the projection step of the first algonthm
Likewise, by defining Ch as the discrete divergence operator introduced in the
second projection algonthm (4 5), an other preconditionmg technique consists
in solving

(7 5) ChC'h(p
k
h
+l-qk

h)=-
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This approximate solution corresponds to the projection step of the second
algorithm A third alternative that is equivalent to the projection step of the
third algorithm consists in solvmg

(7 6)

In conclusion, one may interpret the projection step of the three projection
algonthms presented above as a one step preconditioned Picard itération on
Uôt, the three preconditioners bemg either Bh B

l
h, Ch C

f
h or Dh Note also that

if instead of qK
h, the first guess of the pressure is zero, the preconditiomng

techniques in question reduce to the non incrémental version of the three
projection algonthms (see Cahouet-Chabard [6], Guermond [14] or Lababie-
Lasbleiz [17] for other details on these preconditioners) Incidentally, ît is
shown in [6] and confirmed in [14] that BhB

t
h is really a preconditioner of

Uôt in purely algebraic terms only if ôt is very small, for fimte éléments this
condition reads St ^ ch The fact that such a condition did not show up in
the analysis of the stabihty of projection algonthms may possibly mean that
Bh B\ acts as a preconditioner of Uôt if the spatial spectral content of the nght
hand side is dominated by low frequencies

The next and final step consists is correcting the provisional velocity
uk

h
+1 In a pure fixed point strategy, the end-of-step velocity should be set to

(Id-ôîAh)~ \otfa*1 + ^ - ^ r j 5 ^ p J + 1 ) , and depending on the satisfaction
of some convergence critenon, new itérations could be performed as advo-
cated in [2] It is at this very point that classical itérative techniques differ from
the projection techniques Actually, if the velocity is corrected as suggested
above, the stabihty on the discrete divergence of this velocity cannot be
ensured in only one step As a conséquence, in practive this technique requires
more than one itération (see Cahouet-Chabard [6] or Lababie-Lasbleiz [17] for
other details on this technique) In contrast, the distinctive feature of projection
algorithms is that the provisional velocity uh

+ is corrected in a way so that
the new velocity is discretely divergence free (see second équation in (3 3) and
(4 5) and (5 7) in proposition 5 1), the conséquence bemg that the scheme is
stable and converges (i e reachs the consistency level) in only one itération per
time step

Finally, note that when it cornes to implementing the three projection
algonthms descnbed above, it is not necessary to calculate exphcitly the
end-of-step velocities (w;!)A=0 K since they can be eliminated Indeed, by
replacmg the velocity uk

h in the prédiction steps (3 2), (4 4) or (5 4) by îts value
calculated at the previous projection step (3 3), (4 5) or (5 6) one obtains

( 7 7 ) It
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R
f n Q . n nt , k+l *x Dhuh

(7-8) Ch Ch(Ph ~P)=

where Ch dénotes any extension of Bh that has already been defined.

Proof : This is a conséquence of the fact that ihil
k
h = ûk

h and
i'hC'h = B'h. a

This remark means that in practice the possibly weird space Yh is never
used.

Once again, this algorithm could be interpreted as a one step preconditioned
Picard algorithm if the initial guess qh

h in (7.8) was replaced by
2pk

h-p
k
h~\ but in this case the algorithm would not be stable. Global

stability is ensured by taking qk
h = 2 pk

h- pk
h~

l in the first step (7.7) and
qk

h= pk
h in the second step (7.8).
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