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FINITE ELEMENT APPROXIMATION
OF NONLINEAR ELLIPTIC PROBLEMS
WITH DISCONTINUOUS COEFFICIENTS (*)

Miloslav FEISTAUER (') and Veronika SOBOTIKOVA (1)

Communicated by P G CIARLET

Abstract — The paper presents a detailed theory of the finite element solution of second-order
nonlinear elliptic equations with discontinuous coefficients mn a general nonpolygonal domain
Q with nonhomogeneous mixed Dirichlet-Neumann boundary conditions In the discretization of
the problem we proceed m the usual way the domain §) 1s approximated by a polygonal one,
conforming piecewise linear triangular elements are used and the integrals are evaluated by
numerical quadratures We prove the solvability of the discrete problem and study the
convergence of the method both i strongly monotone and pseudomonotone cases under the only
assumption that the exact solution ue H'(Q) Provided u 1s piecewise of class H? and the
problem 1s stiongly monotone, we get the error estimate O(h)

Résume — Dans cet article nous présentons une théorie détaillée des éléments fims pour la
solution des équations elliptiqgues non hnéaires de second ordre avec des coefficients discontinus,
dans le domaime Q) général, avec les conditions aux Ilwutes de Duwrichlet-Neumann non
homogénes Nous discrétisons le probléme de la facon habituelle le domaine ) est remplacé par
le domaine polygonal et on utilise les éléments finis hnéaires conformes et l'intégration
numérique Nous démontrons lexistence de la solution du probléme discret et étudions la
convergence de la méthode dans les cas strictement monotones ou pseudo-monotones dans
I'hypothése oun la solution exacte ue H'(Q) Supposé que u appartient dans la classe
H? par morceaux et le probléme est strictement monotone, nous obtenons l'estimation de l'erreur

O(h)

INTRODUCTION

A series of processes in technology and science 1s described by partial
differential equations of the type

2

©.1) - Z 58; a,(x,u(x), Vu (x)) + ag(x, u(x), Vu (x)) = f(x), x € Q.

t=1 i
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458 M. FEISTAUER, V. SOBOTIKOVA

The coefficients a; and right-hand side f usually depend on the properties of
materials that form the device represented by the domain Q. In general,
a; and f have different values and structures in particular subregions
Q,cQ, s=1,..,m made from different materials. Hence, a; and f are
discontinuous across the common boundaries of Q, s =1, ..., m, where
instead of equation (0.1) the so-called transition conditions are used.

As a typical example the stationary magnetic field in a plane domain
Qc R? can be introduced. It is described by equation (0.1) of the form

0.2) -3

A GO OIIOEIEE
Here v, = 1/p;, where p; is the permeability, » is the magnetic field
potential and j represents the current density. Provided  consists e.g. of
iron, copper and (holes of) air, then v, is discontinuous, since it is equal to
different constants in copper and air and it is a nonlinear function of
|Vu|? in iron. Also the right-hand side j can be discontinuous. Often,
7 = 01in air and iron, and j = const. # 0 in copper wire conductors. (Cf. e.g.
[10, 11, 14, 17].)

We get a similar situation in heat conductivity processes described by the
equation for the absolute temperature u :

ou (x)) — f(x), xeQ.

X,

0.3) — _Z % (k(x,u(x), Vu (x))

i=1 i

If Q consists of several different materials, then the heat conductivity
coefficient k and the heat sources density f are discontinuous in general.
Other examples can be found in nuclear physics.

The weak solvability of a problem with discontinuous coefficients can be
proved by the methods and techniques treated in [16, 19]. Some results
concerning the properties and numerical solution of problems with disconti-
nuous coefficients can be found e.g. in [1, 13, 20, 21, 22].

In this paper we present a general theory of the finite element solution to
nonlinear equation (0.1) with discontinuous coefficients in a bounded
domain Q = R%. We generalize here the methods and techniques from [6-9].
One of our starting points is also the work [12], where the finite element
discretization of nonlinear problems with discontinuous coefficients in
polygonal domains was studied and computer realization was carried out.
Here we consider the problem in a general nonpolygonal domain.

In Section 1 we give the classical formulation of the problem and derive
the generalized weak formulation. Section 2 is devoted to the discretization
of the problem. We procede as it is usual in practice : the domain Q is
approximated by a polygonal domain ,, which is triangulated in a suitable
way. We use conforming piecewise linear finite elements. The integrals are
evaluated by numerical quadratures. (By Strang [24] we commit basic

M? AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



NONLINEAR ELLIPTIC PROBLEMS 459

variational crimes.) In paragraph 2.3 we prove the existence of approximate
solutions. Paragraph 3.1 deals with their convergence in the space
H'(Q) to an exact solution. As a by-product the solvability of the
continuous problem in H'(Q) is obtained. No additional assumption on the
regularity of the exact solution is needed.

Provided the problem is strongly monotone and the exact solution is
piecewise of class H> i.e. ulf e HZ(QS) for s=1,...,m, we prove in
paragraph 3.2 that the error is of order O (k). We use here an improved
version of the Green’s theorem method. Near the boundary I'y, where the
Neumann condition is considered, we use the « triple application of Green’s
theorem », proposed in [7] (V).

1. CONTINUOUS PROBLEM
1.1. Assumptions

1.1.1. Assumptions concerning the domain and the boundary

Let Q, Q,, ..., @ ,, = R? be bounded domains with Lipschitz-continuous
boundaries 382, 3Q2, ..., 3Q ,, and let

m

(1.1) ():UQ:, Q.NQ, =g for r,s=1,...,m, r+#s,

s=1

WALE

s=1

Q

(1.2) =T, uly, Tp)NI'y=g, meas, (I'p)=0.

Q, Q,, T, etc. denote the closures of Q, Q, T') etc., meas, denotes one-

dimensional measure defined on 3Q, 3Q,; etc. We set

(1.3) [,=T,=080,Nn3Q,, r,s=1,...,m, r#s,
Fp,=T,Nnaq,, T,y=TynaQ,, s=1,...,m.

Let I'p, I'y, T',, be formed by a finite number of open arcs (i.e. arcs without
their endpoints) or simple closed curves. It is evident that

(1.4) a‘Qs = I:sN U rsD U Ul:rs d I_ﬂN = UFSN > I_ﬂD = UI_-‘SD .

r=1 s=1 s =
r#s
Of course, some of the sets [, [',y, T,, can be empty. (See fig. 1.1.)

(") Tt should be noted that simultaneously with this paper and independently on it the same
problem has been treated in {27]). The approach from [27] is quite different to our approach.

vol. 24, n° 4, 1990



460 M FEISTAUER, V SOBOTIKOVA

Figure 1.1.

In the discretization of the problem (see Section 2) we shall work with
polygonal approximations , of  and Qg of Q, for 2 € (0, ) (hy=0).
Let QF be bounded domains such that

(1.5) Q*50Q,UQ, Vhe (0,hy), s=1,...m.

1.1.2. Function spaces

By the symbols C*(Q), CQ,), L?(Q), LP(3Q), L"(Ty), W-r(Q),
HAQ), Wh2(Q), W"®(Q¥) etc., etc. we shall denote the well-known

spaces of continuously-differentiable functions and Lebesgue and Sobolev
spaces of measurable functions, equipped with their usual norms (see e.g.

[15, 18, 2]). We put C(Q)ZCO(Q)~ By ”'”0,99 “'”o,an’ H'”O,p,ﬂ’
N0, 00> W-llka> I-lg , o We denote the norms in the spaces LY(Q),

L*(8Q), LP(Q), LP(3Q), HQ) (= W*2(Q)), WrP(Q), respectively. In
H'(Q) beside the norm

12
(1.6) “ulll,ﬂ = (J (u?+ |Vu12)a’x)
o)
we shall use the seminorm

1/2
(1.7) lul, o = (J |Vu|2dx> .
¢

M? AN Modélisation mathématique et Analyse numerique
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NONLINEAR ELLIPTIC PROBLEMS 461

(We set Vi = ( Ou B ).) The norm |. |, , in H'(Q) is induced by the
axl 8x2 ’

scalar product (., .), o defined on H'(Q) x H'(Q):

(1.8) (4, 0)) 0= J (uv + Vu.Vov )dx.
Q

We shall also consider the mentioned spaces over other open sets and use a
similar notation.
By meas we shall denote the two-dimensional Lebesgue measure.

1.1.3. Assumptions on the coefficients in equation (0.1) and on data

(A) a) f,e Whe(QF), f:0y— R! and [l =fQ (s=1,....,m).
b) 3Q and 3 (s = 1, ..., m ) are Lipschitz-continuous and piecewise of
class C>.

¢) g:Ty > R', ge L®(Ty), q is piecewise of class C? on T.
d) up:Tp - R, up =u*|T,, where u* € W"?(R?) with p = 2.

There exist functions «f:Q* x RP°SR' (1=0,1,2, s=1,..,m),
a = al(x, &), x=(x,x,) € Q¥ &= (&,£,£,) € R®, with the following
properties :

(B) @} (i =0,1,2) are continuous in Q* x R?; there exists a constant
¢y > 0 such that

2
‘af(x,g)[sco(l+2 1gj|) Vxe QF, VieR?,

J=0
i=0,1,2, s=1,..,m.
LB . . 3
(C) The derivatives 5 e continuous and bounded in QF x R”:
J
da;

oF;

(x,g)’sc(;" VxeQX, VéeR?>, i,j=0,1,2, s=1,..,m.

(D,) There exist constants ¢; >0, ¢, =0 such that

2

2
Z aj(x, ) & = ci (& + £) —cz( Z & + 1)
1=0

=0
Vxe QF, VEeR? s=1,..,m.

vol. 24, n° 4, 1990



462 M FEISTAUER, V SOBOTIKOVA

(D,) There exists a constant a >0 such that

3

z (x £)0,0, = a(6] +63)

Vxe QF, VYeEeR®, Vo= (0,6,)eR? s=1,..,m.

N

(E) The derivatives 6—' are continuous in QF* x R*® and
x
g

da;

a O g)\ <c(;k*(1+kzo |gj|)

VxeQ*, VéEeR>, 1=0,1,2, ;=1,2.

In Section 3.2 instead of (D;) and (D,) we shall consider the following
assumption :
(D) There exists a constant o > 0 such that

Z (x £)m, M =a(nf +m3)

=0

VxeQFX, VEeR>, Yn= (mn,.m)eER', s=1,...m.
(It is easy to prove that (D) and (B) = (D;) and (D,) and (B), ¢f. [9].)

1.1.4. Remark

Assumption (A, d) says that the function u, (from Dirichlet condition
(1.11)), defined on the set I' < 3£}, has an extension to a function
u* e W4P(R?. This is possible, if e.g. up =¢|I',, and the function
¢:9Q - R' is obtained by integration of a function ¢:L?(3Q) along
aQ. This situation is often met in applications (we can remind stream
function problems in fluid dynamics, c¢f. e.g. [S, 6]). The assumption
u* € H*(R? usually used in the finite element analysis is rather strong and
unrealistic in some cases.

We assume that the coefficients in (0.1) have the form

(1.9) a(x,&) =a’(x, &) VxeQ,, VEe R, i=0,1,2,s5s=1,..,m

Thus, the functions a,: Qyx R*—» R' and f:Q,— R' can have discon-
tinuities across I',,.

M? AN Modélisation mathématique et Analyse numérique
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NONLINEAR ELLIPTIC PROBLEMS 463

1.2. Classical Formulation

If u &> R', then by u' we denote an extension of u|Q  onto

Q, Let #*(x) = (nj(x),n3(x)) denote the umt outer normal to 3Q;
Obviously, 7°(x) = — 1'(x) for xe T,
We shall study the following

121 Boundary value problem

Find u: O — R! satisfying the equation (0 1) 1n Qg 1¢

N

(110 - Z % a, (o, u(x), Vu (x)) + ap(x, u(x), Vu (x)) = f(x), x € Qy,

the boundary conditions

(111) u(x) = up(x), xelp (Dirichlet condition),
2
(112) Y ai(x, u’(x), Vu'(x)) ni(x) = g(x),
i1
xely, s=1, ,m (Neumann condition)

and the transition conditions

k)

(113) ¥ al(x, w'(x), Vu'(x)) ni(x) = — Z a/(x, u'(x), Vu'(x)) n/(x) ,

1 =1

vel, ., 1ov=1, ,m, i1 s#s5s

It 1s obvious, how to define a classical solution of this problem
122 Defmition

We call u.Q - R' a classical solution of problem (1 10)-(113), 1f
ue C(Q), u'e CHQ,) for s=1, ,m and (110)-(1 13) are satisfied
1.3. Generalized Weak Formulation

Let us put
(1 14) ¥ = {ve C2(Q),suppr=QUT},

where supp v denotes the support of the function v, and define the space V
as the closure of ¥ i H'(Q)

(115) V=77 ve H'(Q), v|T) =0}

vol 24, n° 4, 1990



464 M FEISTAUER, V SOBOTIKOVA

Since meas; (I'p) > 0, the seminorm |.|, , is a norm in ¥, equivalent to
-1y, q
(1.16) loll, o <élv|, o YveV
with a constant ¢; > 0 independent of v.

Let us assume that u is a classical solution of problem (1.10)-(1.13). If we
multiply equation (1.10) by an arbitrary v € ¥~, integrate over £}, and apply

Green’s theorem for each Q, s =1, ...,m, then by (1.12), (1.13) and the
fact that meas (2 — Qy) = 0, we get the identity

(1.17) L [i a,(., u, Vi ):—;+a0(., u, Vi )v] dx =

1=1

=ffudx+f quds Yve? .
Q Ty

This leads us to the concept of a generalized weak solution. Let us denote
2 v

. = wu, Vu ) — wu, V d
(1.18) a(u,v) J-n [,Zlat( u u)ax[+a0( u, u)v:| x
for u, ve H'(Q),
(1.19) L%) = J fvodx, LT(v)= j qu ds ,

Q r

(1.20) L()=L%)+L"v), ve H'(Q).
1.3.1. Definition

We say that u: Q —» R' is a weak solution of problem (1.10)-(1.13), if

(1.21) a) ue H'(Q),
b) u—u*eV,
¢) a(u,v)=L(v) YveV.

1.3.2. Properties of the forms a, L, L', L

Under assumptions 1.1.3 (A), (B) there exists a constant ¢ > 0 such that
(1.22) la(u,v)| <c(1 + ”“”1,:1)”””1,9 Yu,ve H(Q),
(1.23) |[L(v)] = |L“(v)| + ]Lr(v)] =<c|v| Lo Yve H'(Q).

Hence, for each ue H!(Q) the functional a(y,.) and the functionals
L® L', L are continuous and linear on H'(Q).

M? AN Modéhsation mathématique et Analyse numérique
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NONLINEAR ELLIPTIC PROBLEMS 465

1.3.3. Remark

It is possible to show that any classical solution in the sense of Definition
1.2.1 is a weak solution. On the other hand, if « is a weak solution and

u*e C*Q,) for each s = 1, ..., m, then u is a classical solution.
Weak problem (1.21, a-¢) and its solvability can be treated under much

weaker assumptions (c¢f. [1, 19]). Our strong assumptions will be necessary
for the finite element analysis.

2. DISCRETE PROBLEM

In this section we shall suppose that assumptions (1.1), (1.2), (1.9) and
1.1.3 (A), (B) are satisfied.

2.1. Triangulations

Let us consider systems {{;,}, ©. ko) and {Qg},_ Oy 5= 1, .., m,

hy =0, of polygonal approximations of Q and €, respectively, with the
following properties :

2.1 ﬁh=Uﬁsh, QuNQ= forr#s, r,s=1,..,m.
s=1

2.2) 9Q, and 3Q, are formed by finite numbers of simple closed
piecewise linear curves the vertices of which are lying on 82 and
0(),, respectively.

Let B, and B, denote triangulations of Q, and Q, respectively, formed
by finite numbers of closed triangles. We assume that

(2.3) a) B, =\_J)Bau>
s=1
b) 0= \JT, Q4= \T;
Te Ty, Te Ty

24) f T, T,e Gy, T\ # Ty, then either T/ NT, = or T),NT,is a
common vertex or 771 N 7, is a common side of T}, T5;

2.5) ifTe Gy (s=1,..,m), then at most two vertices of T are lying on
Q)

5

We denote by o, = {P,,..., P 5} and oy the set of all vertices of
G, and G, respectively, and let

26) @) 0,cQ, 0,0, 0,N080,c8Q, 0, NN, cdQ,s5=1,..,m
b) FD N FN < Oy,

>

vol. 24, n® 4, 1990



466 M FEISTAUER, V SOBOTIKOVA

¢) the points from UaQs, where either the condition of C*

s=1
smoothness of 89, or the condition of C*smoothness of ¢ are not
satisfied, are elements of o,

From the above assumptions it follows that

(2.7) a) to each T € G, there exists exactly one se€ {1, ..., m } such that
T<Q,, ie. TeT

b) op = \_Joas

s=1

Nl co, for r#s and T, NT,  co, for
{ri, 81} # {1y, 82}, 1 #58y, Ny # 5.
By A and 9 we shall denote the length of the maximal side and the

sh >

magnitude of the minimal angle of T € G,, respectively. We set .
(2.8) h=max hy, 9, = min 9.
Te T, Te T,
We shall assume that the system {T,}, (.4 1S regular. It means that
! > 20
there exists 93 = 0 such that
2.9) V,=29,=>0 Vhie (0,h).

Further, by T, and Ty, we denote the parts of 3(, approximating
T, and Ty, respectively. Similarly we define T,,,, Ty, and Ty, (v 5 s) as the
parts of 30y, approximating I,,, Iy and T,

2.2. Finite Element Discretization of the Problem

Approximate solutions to problem (1.21, a-¢) will be sought in the finite-
dimensional space of conforming piecewise linear elements X, = H'(Q,):

2.10) X, = {v,, ;0,€ C(8,), v,is affine on each T € "G’,,} .

The space ¥ will be approximated by

(211) th {thXh;vh,FDh:O}
= {vy€ X;;v,(P)=0 VP, eo,NTp}.
In [26] it was proved that the seminorm |. [, , is a norm on V', uniformly

equivalent to |[.[|, , . It means that there exists a constant ¢; independent of

M? AN Modélisation mathématique et Analyse numérique
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NONLINEAR ELLIPTIC PROBLEMS 467
v, € V', and h such that

(2.12) -1 Lo, S C3|'|1,Qh Vvo,eV,, VYhe (0,h)

(¢f. also [6]).

Instead of the function ¢:Ty — R' we shall use its approximation
gy : Ty, — R' defined in the same way as in [8, § 2.2].

Let r, : H'(Q,) N C(£;) - X, be the operator of the Lagrange interpola-
tion :

(2.13) r,ve X, for ve H'(Q,) N C(Q,),
ro(P)=v(P) VP, e0,.
From 1.1.3 (A, d) and the imbedding theorem ({15, 18]) it follows that
u*|Q, e H'(Q,) N C(Q,). Let us set
2.14) uf =ryu*.
It is evident that

(2.15) up(P)) =up(P)) VP,ec,NT,.

The forms a, LY L' and L will be approximated by

s=1 s=1

2.16) a,(u,v) = Z J [ Z a’(., u, Vu )§—£ + ag(., u, Vu ) v] dx ,
Q 1
uve H'(Q,),

E?(u):ij fovdx, ve H(Q,),
s=1 Q

sh

ZE(U)=J qp v ds, ve H'(Q,),

Ty
L, = ifs L.
2.2.1. Discrete problem

It can be written quite analogously as continuous problem (1.21, a-c) :
find iz, : Q, —» R' such that

(217) a) i‘l’h € Xh )
b) #@,—ufeV,,
) @iy, vy) = Ly(v) Vo, e V.

vol 24, n° 4, 1990



468 M FEISTAUER, V SOBOTIKOVA

2.2.2. Numerical integration

In practice the integrals in (2.16) are evaluated by numerical quadratures.
We write

(2.18) a) Fdx = z .[Fdx,
T

‘Qh Te Gy

AT
b) j F dx =~ meas (T) Z o7 F(xr ), if FeC(T).
T k=1

Here x7, € T and oy, € R'. We shall assume that
At
(2.19) a) or,>0, b Y or,=1.
k=1
Similarly we evaluate integrals over 'y, :

(2.20) a) Fds = Z F ds,

rNh STy N

b) JFdst(S) ZS Bs, Fxs,), if FeC(S),
S

7=1

where s(S) is the length of the side STy, (of a trnangle T € G,),
x5, € S and By, € R'. We assume that

(2.21) the degrees of precision of formulas (2.18, b) and (2.20, b) are = 1.

If we approximate the forms &,, L{ and L} by means of the formulas
(2.18, a-b) and (2.20, a-b), we get

(2.22) a,(upv,) =

m 2 du, | Kk
= Z Z meas (T)[ Z g T Z T, als('xT,j:uh('xT,j)r Vuth)
s=1pe .Gi =1 g J=1
k-
+ wr,, ag(xr,,, uyp(xr,,), Vuy| T) v, (xr,) |
=1
(2.23) Ly(vy) = L(vy) + Ly(v,),
where
n 3
(224 a) L) = Y Y meas (T) ¥ wr, fi(xr,) v4(xr,),
s=1Te By J=1
ks
b) Lj(v,) = Y s(S) Y Bs, aun(xs,,) v,(xs,)-
Sclyy J=1

M? AN Modélisation mathématique et Analyse numeérnque
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NONLINEAR ELLIPTIC PROBLEMS 469

Let us notice that if x7,; € oy, x5 ; € 0, N Ty, then in practical calculations

it is not necessary to extend the coefficients a; from €, onto Q* and to define
the function g,. Now we come to the definition of

2.2.3. Discrete problem with the use of numerical integration
Find u,: Q, —» R' such that
(2.25) a) u,€ Xy,

b) uh—u;ike Vh’

C) ah(uh, vh) =Lh(vh) Vvhe Vh'

2.3. Existence of Approximate Solutions

Let us comsider assumptions (1.1), (1.2), (1.9), 1.1.3 (A), (B), (O),
(D), (E) and assumptions from 2.1 and 2.2. (i.e., (2.1)-(2.6), (2.9), (2.19),
(2.21)).

In the sequel the symbol ¢ will denote a generic positive constant,
independent of 4, which can have different values at different places.
First let us draw our attention to the effect of numerical integration in the

forms L, and a,

2.3.1. Lemma

There exists a constant ¢ = 0 such that

(2.26) |Li() = L} ()| < chlv]l, 4,
2.27) |Li() = Li@)| < chlvll, g,

Yve X,, VYhe (0,h),

(2.28) |an(u, v) — @, (u,v)| <ch(l+ lully g 01 g,
VV,UEXh, VYhe (O,ho)

Proof of assertions (2.26) and (2.28) can be carried out on the basis of [8,
Lemma 2.2.5] (which is a special case of [2, Theorem 4.1.5]) by a similar
technique as in [8, Theorems 2.2.4 and 2.2.7]. E.g., in view of (2.16) and
(2.22), we can write

all(uav)_ah(u’v) :Il+125

vol. 24, n° 4, 1990



470 M FEISTAUER, V SOBOTIKOVA

where

m

2
s=1TeGg 1=1

~
Il

ov T” @, u, Vu|T) dx —
ox, T

kr
— meas (T)Z wr,, a/(xg,;, u(xg,), Vu|T)} ,

J=1

Izzi Z {jTag(.,u, Vu|T) v dx —

s=1TeBy

kr
— meas (T)z mT,] as(xT,j’ M(XT’I), VM|T) v(xT,_/)} .

=1

Now we estimate the expressions in parenthesis in the same way as in [8,
Theorem 2.2.7].

Concerning estimate (2.27), see [25, Theorem 5. H

Further, it is easy to prove the existence of a constant ¢ > 0 such that

(2.29) |3 (v)

i),

) E(U)I sC”"”l,n,,
Vve H'(Q,), VYhe (0,hy),
(2.30) | (u, v)| <1+ Jlull, o)Vl g,
Vu,ve H'(Q,), Vhe (0,hy),
(2.31) |LE®)], |La)], |L@)] <cllvll,
Vve X,, Vhe (0,hy).
(2.32) lay(u, v)| < c(l+ Jull, oIVl g,

»

Vu,ve X,, Yhe (0,h).

In the proof of these assertions we procede similarly as 1n [8, Lemma 3.2.2
and Theorem 3.1.2].

The proof of the solvability of discrete problems (2.17, a-¢) and (2.25, a-c)
is based on the following

2.3.2. Lemma
There exist constants ¢, ¢ >0 such that
(2.33)  a,(uf +v,0) — L,(v) =
=0 C§2||”||%,Qh (i + ol o, + lluif “1,9,‘)(1 + [uitll )
YveV,, Yhe (0,hy)
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and
(2.34) a,(uf +v,0) - Ly(v) =
=c 52 oll] g, — e+ vl g, + Nuill, o)+ lluifll, o)
YveV,, Yhe (0,hy).

(u;f € X, are functions defined by (2.14); ¢, and c¢; are constants from
assumptions 1.1.3 (D)) and (2.12), respectively).

Proof : If we use assumptions 1.1.3 (B), (D,), the inclusion Qg < QF and
write 1 = (9 + n) — 9, we easily prove that

2

(235 Y @(x, ¥ +m)m, =c (] +m3) -
=0

—c(1+ i (|m.] + |1‘},|)> (1+é:0 |ﬁ,|)

1=0

Vs = 1,...,m, VXEQ‘/,, VY = (’80,'&1, '82), VT| = (7]0,1]1, T]z)ER3

with a constant ¢ depending on ¢j, ¢, and ¢, from 1.1.3 only.
Now, let v € V,. Then, by (2.16) and (2.35),

m 2
(2.36)  a,(uf +v,0) = zj [Zaf(.,u,j“+v,V(u;"+v)):—;+
‘Q\h

s=1 =1 ]

(ufF+v,V(ut+v))v]dx
Z { Vv]zdx—cls} ,

where

Y I,= J [1+ o] + | Vo] + Juf| + |VuiF|]. [+ Juif] + | VuF]] dx
s=1 Q;.
Using the Cauchy inequality, we get

m

Y Lisc(l+ vl o, + Nuilll, o)+ il o,)

s=1
This, (2.12), (2.29) and (2.36) immediately yield (2.33).
In proof of (2.34) we procede quite analogously. For v € ¥V, we have

kg

(2.37) a(uf +v,v) = Z Z meas (77) Z or,Gr, >

s=1TeTg J=1
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where
K} 2 s * X* ov
GT,/ = Z al(‘xT,_/’ (uh +v)(xT,j)>V(uh +l’)|T)5; T+
1=1 1
+ ay(xr,,, (uif +0)(xp,), V(uF +0)|T) v(xy,) .
In virtue of (2.35),
(2.38) G%’J 2c1|Vv|iT—c[1+ |v(xT,j)| + |[(Vo|T)| + |u,:"(xT’j)| +
+ | (VuF| |1+ |uf(xep)) | + [ (Ve | D)1=

= G~T:=c1|Vu|iT—c|:l+max o] + [(Vo|T)| +
T
+ max |uf| + |(Vu,;“|T)|][1+max || + |(Vu,;“|7)|].
T T

Now, by (2.37), (2.38), (2.19, a-b), (2.31), the estimate

(2.39) max |v| < c(meas (7)) 2|

Ul 7
T

Vve X,, YVTe®,, Yhe (0,h

valid with a constant ¢ independent of v, T, & (see [8, Lemma 2.2.6]), the
relations
(2.40) meas (T)|(Vw|T)|* = |w|?

,T°

meas (7)|(Vw|T)| =J |Vw|dx, weX,,
T

and the repeated application of the Cauchy inequality we come to
(2.34). =

2.3.3. Lemma
We have

(2.41) a) |&h(ul,v)—&h(u2,v)| $Cl|ul _uzlll,ﬂh ”UII]-Qh
Vu,u,ve H(Q,), Yhe (0,h),
b) Iah(ulsu)_ah(ubv)' Sc”“l““lel’nh ”vlll,nh

Vul, u2,vEXh, Vhe (O,ho)

with a constant c¢ independent of u,, u,, v and h.
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Proof: Let us prove the second inequality. By (2.22), provided
v, Uy, U € Xy,

kr

42 apuyv) —ay(uyv) = 3 Y meas (T) ¥ or, &,

s=1TeTg 7=1

where

2

ov
T, = 3 (@, ui(xr,), Vu | T) — ai(Cer, ), ua(xq,,), Vua | T)] Py T

+ [aa(xﬂ/s ul('xT,/)= VulIT) - aS(XT,,: uZ(xT,j)a Vu2| T)] U(XT’]).

In view of assumption 1.1.3 (C), we can apply the mean value theorem :

2 19 lS
ai(x,m) - a}(x,€) = ¥ J e Cot (=) di(n — %)
j=0v0 7]

for all xe Q* and &, ne R3 and get the estimate

|5, | s2co*<max Iv] + |(Vv|T)|> x
T

X (max fu; —uy| + |(V(u1—u2)|T)|) .
T

Substituting into (2.42), using (2.39), (2.40) and the Cauchy inequality, we
come to the desired result (2.41, b). The proof of (2.41, a) is analogous, but
simpler. W

Finally, we come to the main result of this paragraph -—— the solvability
theorem for the discrete problem.

2.3.4. Theorem

To each h € (0, hy) there exists at least one solution i, of problem (2.17, a-
¢) and at least one solution u, of problem (2.25, a-c). Moreover, if

(2.43) |l L= c* Yhe (0,h),

where ¢* is a constant independent of h, then there exists a constant
¢ >0 such that

(2.44) lull, g5 Nunll, g, <c Ve (0, ho).

Proof : Let us prove the existence of a solution u;, of problem (2.25, a-¢).
(The existence of #, as a solution to problem (2.17, a-¢) can be proved in the
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same way.) We shall seek u, in the form u;, = u} + z,, where z, € V. From
(2.31) and (2.32) it follows that for each z, € ¥, the mapping

, - 1
vy, € V) = ay(u) +z,0,) — Ly(v,) € R

is a continuous linear functional and hence, by the well-known Riesz
theorem, we can write

(245) [lh(l,lljk + Zps vh) - L/z(v/:) = (7)1(:/1)’ vh)l,.(),, s

where (., . ), q, is the scalar product in H'(Q,) which induces the norm
-1, 0, (compare with (1.8)) and 7,(z,) € V', with
(2.46) | Tz, 0, = surI)/ {an(uf + 2, v4) — Lyi) |/ |04l Q,°

’ v, € Vy o

vh#o

Hence, 7,:V, - V, and the problem (2.25, u-c¢) is equivalent to the
equation
(2.47) Ty(z,) = 0

in the finite-dimensional space ¥,. From (2.41, b) we see that the operator
T, is continuous. Moreover, by (2.34),

(2.48)  (Ty(v), )y o, = ¢ c3_2||u||f‘nh_
—c(l+ flug ”1,9,,)||U”1.n,, —c(l+ [juj “l,(),,)z’

where the constant ¢ is independent of # and v e V). This yields the
existence of a constant K = 0 such that (7,(v),v) =0 for all v e V', with
vl o, = K- Hence, by [16, Chap. 1, Lemma 4.3] equation (2.47) has at

least one solution z, € V,, which gives a solution u, = u;* + z, of problem
(2.25, a-c).
Now, let (2.43) be satisfied. Then, in view of (2.47) and (2.48),

0 = (Th(z4), zpr, o, = P (|| 24|l l,ﬂ,,) Vhe (0,hy),

where p(t) =cic52 2 —c(l+c*)t—c(l+c*)% As ¢ 5% c(l +c*),
c(1 + ¢*)? = 0 are constants independent of 4, there exists ¢ > 0 such that
Izl 0, < ¢forall h e (0, hy). Now it is evident that u,, satisfies (2.44) with

c=¢+c¢c*. N
2.3.5. Remark

The approximate finite element solutions #, or u, to continuous problem
(1.21, a-c) are obtained on the basis of the discretization process without or
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with the use of numerical integration, respectively. Therefore, in practical
calculations we seek the solutions #,. The solutions 7%, will have a theoretical
importance in paragraph 3.2.

Now we shall deal with the uniqueness of the approximate solutions.

2.3.6. Lemma

Provided we consider assumption 1.1.3 (D) instead of 1.1.3 (D)), the
forms a, and a, are unmiformly strongly monotone with respect to the

seminorm HLQn:

(2.49) G u—v) -G, u-v)=alu—v|; o
Yu,ve H'(Q,), Yhe (0,h),

(2.50) ah(u,u_v)—ah(v,u——v)aalu—vIf,nh

Yu,ve X,, VYhe (0,hy),
where « is the constant from assumption 1.1.3 (D).

Proof can be carried out similarly as in [8, Theorem 3.1.2] using the same
technique as in the proof of Lemma 2.3.2. W

2.3.7. Theorem

Provided we consider assumption 1.1.3 (D) instead of 1.1.3 (D)), the
solutions i, and u;, to problems (2.17, a-c) and (2.25, a-c), respectively, are
unique for each h e (0, hy).

Proof : 1f, e.g., ii}, #i2 are two solutions of (2.17, a-c), then by (2.17, b),
iy — iy € V, and thus, in view of (2.17, ¢), (2.12) and (2.49),

0= ||ﬂi—l7hnliﬂhscs‘ﬁi"7“170,,50'

It means that i} = 2. W

3. CONVERGENCE

3.1. General Pseudomonotone Case

Let assumptions (1.1), (1.2), (1.9), 1.1.3 (A), (B), (C), (D)), (D,) and
(E) and assumptions from 2.1 and 2.2 be satisfied. We shall use ideas from
[6, 8, 9] based on the possibility to modify functions v, € V', in such a way
that we get elements of the space V.

By the symbol B. we denote the ideal triangulation of the domain Q,
associated with the triangulation G, of ,. If T € B, is a boundary element
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(1.e., two vertices of 7" are lying on 38Q), then T"“e B¢ denotes the 1deal

element associated with the element 7. (See [8, § 2.1.1].) Similarly we can
speak about the ideal triangulation B of the domain ,, associated with
By

In order to simplify some our considerations we shall introduce the
following assumption : if S < 38, (S < 9Q,) 1s a side of a boundary triangle
Te G, (Te B,)and 3 « 3Q (2 < 9Q,) is the corresponding curved side of
the ideal element 7'%e G}? (T'%e G!f) associated with 7, then either
S =3 or S N X is formed by the common end-points of S and %, which are
elements of o, (see fig. 3.1).

Let us set

(31) wp :Q'—ﬁha Th :‘Q‘h_ﬂ:
Ogp :Qs_ﬂsha Tsh=ﬂsh_ﬁS'
In virtue of [7, Lemma 3.3.4],

(3.2) meas (7, U w,), meas (1,5 U wy) <ch?
Yhe (0,hy), s=1,..,m

with a constant ¢ independent of 4.

b fcwh F < Ty

N\

m [T

an

Figure 3.1.

By 7, we shall denote the natural extension of v, € X, onto O, U Q. It
means that b,€ C(Q,UQ), ¥,=v, on Q, and 7,|T"=p|T* on
T'Y 5 T, where p is the polynomial of order < 1 satisfying p|T = v, | T. It is
evident that 5, € H'(Q) (¢f. [2, Theorem 2.1.1]).
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3.1.1. Lemma

There exists a constant ¢ = 0 such that

6 D ol 0y = #1401,
b) ” v, ” 1,7, U, < ch 1!2” Up ” 1,Q,,
9 B0l o, =100,

0,754 U wg

= 12
d | v, Hl,mu% < ch'?||v, ||1,QS,”
VthXh, Yhe (O,ho) (S=1,...,m),
€) HUHO,TMU“’xh < ch|v] 1L,or
Yve H'(Q*), Yhe (0,hy) (s=1,...,m).
Proof of a)-b). See [8, Lemma 3.3.12}; similarly we prove ¢) and d).
Assertion e) follows from [8, Lemma 3.3.11]. H
3.1.2. Lemma

To each v, € V), (he (0, hy)) there exists a function 0, € V such that
(3.9 |25 — B, l Lo = ch||v,|| Lo,

where ¢ is a constant independent of h and v,,.

Proof : The function ¥, can be chosen as the ideal interpolation of
D, defined in [9, § 5.1.1]. Then (3.4) follows from the proof of [9, Lemma

512]. m
Now, for each h e (0, k) let us define a function uj, € H'(Q) associated

with the solution u, of problem (2.25, a-c) in the following way : if we
express u, in the form u;, = ujf + z, with z, € V, (¢f. the proof of Theorem
2.3.4), then we set

3.5 u, = 4f + 2.

Let us deal with the limit properties of u/ = r, u*, if 4 > 0*.
3.1.3. Lemma

It holds

(3.6) T I e
hoot '
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Proof : Let * « R?be a domain such that Q, « Q* forall k€ (0, &;). In
view of assumption 1.1.3 (A,d), u*|Q*e W"’(Q*) and
u*|Q, € w2(Q,) for each he (0, hy). From [3, Theorem 6] (¢f. also [2,
Theorem 3.1.6] it follows that

o =rivll, o =<cloll,, o, YoeW (@), Vhe (0,h)
with a constant ¢ > 0 independent of 4 and v. Hence,
(3.7) Irn ol 0, <€ N0l 0, (<0, 00)

Yoe W2 (Q*), Vhe (0, hy)
(¢' = 1 + c). Further, let us remind that provided v € W*?(Q*),
(3.8) Jo—rivll,, 0 =chloly, 0 Vhe (O.h)

with a constant ¢ independent of # and v (see [3, Theorem 6]).
Now let us consider an arbitrary € = 0. In virtue of the density of

C®(Q*) in Wh?(Q*) ([18, Chap. 2, § 3]) we can choose v € C ®(Q*) such
that
(3.9) e

v <

~ V0, <355
From (3.7) it follows that

* _ <Z
(3.10) || 7, (e v)|| L, <3
By (3.8), there exists /. € (0, hy) such that

£

(3.11H) ”v‘rh')”],p‘n,,sg Yhe (0,h,).

Using (3.9)-(3.11) we come to

hur =], o = lu* =0l g, +

+“v—rhv”1,p, h+||rhv_"hu*”|, <e, VYhe (0,h,),

0 P, 7

which means that

lim [luf —u

* _
h—0* ” Lo B
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Finaly, from this and the Hoélder inequality

el q, = (Jn,

h

= C”‘P”O‘p‘ﬂh Vee LP(Ly,)

1

172 p-2 P
¢’ dx) < (meas (Q,)) *# < [ (p"dx> =

JQ,

(c independent of # and ¢), applied to u — u™ and % (ujf —u*), we get

(36). m
Let us notice that (3.6) immediately implies (2.43).

3.1.4. Lemma

It holds

3.12) lim ||ﬁ,,*—u*”‘ 0 =0.
h—0* ’

Proof : We have

2

“L_{:_u*“in = ”u: —u 1,a,

o P
and thus,

lai —u |, o =cClui —w*ll, o + [@Fl, ,, + lu*l,) =0,

as it follows from (3.6), (3.2), Lemma 3.1.1 and the absolute continuity of
the Lebesgue integral. W

3.1.5. Lemma
It holds

3
(3.13) |L5w) = LT@)| < ch *|va], 4,

Yv,e V,, Yhe (0,hy).
For the proof see [8, Lemma 3.3.13].

3.1.6. Lemma

There exists a constant ¢ = 0 such that
(3.14) ””;1“1‘9' "ﬁ,,”l‘nsc Yhe (0,hy).

vol. 24, n° 4, 1990



480 M. FEISTAUER, V. SOBOTIKOVA

Proof : If we write u;, = u;f + z; and use the boundedness of u; and
u,, then

(3.15) Izl Lo, <€ Vhe (0, hy).
By Lemma 3.1.1 and (3.15), we get

(3.16) 124, o = lzall} o, + 1267 M

L, o

sc||zh||1’9hsc Vhe (0, hy).

Similarly (or from (3.12)) we find out that

3.17) ”L_"T”Lngc Vhe (0,hy).

Further, by (3.5),

(3.18) il o =< NE N o+ 120, o
<@l o+ 12l o+ 12 = 2l o -

From (3.15)-(3.18) and (3.4) we immediately have the estimate
l#ill, o =<c- The estimate EAR o < ¢ follows from (3.16), (3.17) and the

relation &1, = @ + z,. M
Let G = QX be an open set and let u, v € H'(G). If we denote

2
(3.19) c‘ré;(u,v):j [Zag(.,u,Vu)_aE+a3(.,u,Vu)u]dx,
G Ll=1 axi _I

then, by 1.1.3 (B),
(3.20) |@(u, )| < c((meas (G))+ |lul, HlIvll, ¢

with ¢ independent of G, u, v.
From (1.22) it follows that we can define the operator
A:H'(Q) - (H'(Q))* by the relation

3.21) (A(u),vY =a(u,v) u,ve H'Y(Q).
Here (H'(Q))* is the dual to H'(Q) and {., . ) denotes the duality between

(H'(Q))* and H'(Q). The norm in (H'(Q))* will be denoted by

-1y,
The proof of the convergence of the finite element approximations is
based on the following fundamental properties of the operator A.
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3.1.7. Theorem

a) The operator A is Lipschitz-continuous : there exists a constant ¢ such
that

(322) || Au) - A(uz)u_],Q <cluy —uy| Yu,u,e H'(Q),

and maps a bounded set into a bounded set: to each ¢ =0 there exists
¢ =0 such that

(3.23) |A@)|_, g =c YveH'(Q) with o], ,<&.

b) The operator A satisfies the generalized condition (S): If

(3.24) v, ~—v weaklyinV ,

(3.25) wE sw* in H'(Q),

(3.26) (AW} +v,)—AWw* +0v),0,-v) -0,
then )
3.27) w,=wX+v, >w=w*+0v inH'(Q).

Proof : a) For uy, u,, ve H'(Q), we have
<A (u)) — A (1), U> =

m 2
= Z J [Z (@i, uy, Vuy) —ai(., uy, Vuz))—a£+
Q 0x;

s=1 s Lr=1 i

+ (ag(es uy, Vi) — aj(e, uy, Vuy)) v] dx .

Using the mean value theorem and assumption (C) from 1.1.3, we come to

the estimate
| (A (u) — A(uy),v) | =
) ] dx

m 2
sc&“ZJ‘ [(Iul—u2|+z
s=1 vV

i=1

d(uy — uy)
0X;

ov

axj

)5

$3C(;k Z "ul —u2”1’9x "vlll,ns$306““ul _u2”1’9 ”U” 1, Q

s=1
which implies (3.22).
Property (3.23) is a consequence of (3.22).
b) Let assumptions (3.24)-(3.26) be satisfied. We denote

3 = a(wn: v, —v) —a(w, v, — U) s

I, =a(w,w,—w)—a(lw,w, —w),
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where w,, w are defined in (3.27). Then
J,=aw,v,-v)—awv,-v)=1,+K,
with
K,=a(w,wk —-w*)—a(w, wk—-w*).
Similarly as in part @) of the proof, we find out that

|Kr1| s3C(;kllw_wn”]‘g) ”w’:k _W*“Ln'

From this, the boundedness of the sequence {w — w,} and (3.25) we get
K, — 0. Hence, by (3.26),

(3.28) 1,-0.

From (3.24), (3.25) and the compact imbedding H'(Q) = L*(Q) it follows
that

(3.29) [w, — -0.

w HO,Q

Further, using again the mean value theorem, we obtain

(3.30) I, i f

s=1 v

2 s s a(wn - W)
LZ (a[(': W, an) - a[(‘: w, Vw )) a— +

X

+ (a5(., ;;n, w,) —aj(., w, Vw ))(w, — w)] dx =

e 2

m laaf
ZJ ) J 5E (o + 1 0m = w), V(w4 10w, = w))) x
O,i,=140 7

s=1
A(w, —w)d(w, —w)
X

0x; 0x;

Il

dtdx + o, ,

where

(3.31) o, iJ {z [ ago( W+t (w,—w),V(w+t(w, —w))) x
a(w, —w)
X —_—

ax;

—ay(., w, Vw ))(w, — w)} dx.

(w, —w)dt + (3., w,, Vw,)

From (3.30), (3.31) and assumptions 1.1.3 (B), (C) and (D,) we derive the
inequalities

Inaalw,,—w|iQ+(rn,
|Un| Scllwn'w“()‘ﬂ “W"_Wlll’Q’
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where « 1s the constant from 1 1 3 (D,) and ¢ 1s a constant independent of
w,, w This, (328), (329) and the boundedness of the sequence
{w,} mmmediately yield (327) ®

Now let us go back to the approximate solutions u, and the functions
u;, defined mm (35) In virtue of Lemma 316 and Theorem 31 7, there
exists a constant ¢ = 0 such that

(332 lenlly o A Lo =¢ Vhe (0,h)

Let {h,} < (0, hgy), h,, » 0 On the basis of (3 32) and the reflexivity of
the space H'(Q)) we can choose a subsequence {h,} < {h,,} such that

(3 33) ujp —u weakly n H '(Q)

In the sequel we shall show that the weak hmit u from (3 33) 1s a weak
solution of the continuous problem

318 Theorem

Let uj e H'(Q) be the function associated by (35) with a solution
u, € X, of the discrete problem (225, a-c) If {h,} = (0, hy), h, -0 and
u, — u weakly m H' (), then up — u strongly in H'(Q) and u 1s a solution
of problem (1 21, a-c)

Proof For simplicity we shall omit the subscript » at A and write
h=h,—>0, u, =uj, u, — u etc

I) It 1s evident that u satisfies conditions (1 21, g-b) Actually, from
up, =4+ 2, —u i H'(Q) and (312) 1t follows that ue H'(Q) and
Z, —u—u* Since the space V 1s weakly closed, we see that u —u* e V

1I) Now we prove the existence ot x € (H'(£2))* such that

(3 34) A(up) = A(w;,) — x weakly in (H'(Q))*
and
(3 35) {(x,;v) =L(v) VveV

On the basis of the reflexivity of (H'(2))* we can choose a subsequence
of {A4(uj)} weakly convergent to an element x € (H'(Q))* 1In the
following we shall prove that this x satisfies (3 35) This fact immediately
implies that the whole sequence {A4(u;)} 1s weakly convergent to x

satisfying (335) Thus, 1t 1s sufficient to prove the implication
(334) = (335
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Let v € ¥ (see (1.14)). By v, € H*(R? we denote the Calderon extension

in the space H? of v from Q onto R? (c¢f. [18, Chap. 2, §3.7] and put
v, =r,v, €V, From (3.8) with p = 2 we obtain

(3.36) lon = vell, g, >0, ifh—0.

From this, (3.2), (3.3, a-b) and (3.4) we easily prove that

(3.37) b,—->v, D,—->v in H(Q)
and
(3.38) loall oo 1%l o5 lon], g=c Vie O ho),

where ¢ is a constant independent of 4.
If we use (2.25, ¢), (1.18), (1.1), (2.1), (2.16) and (3.19), we can write

(3-39)  a (uj, 04) + la(up, Uy) — a(uy, )] + [a(ity, 04) — a(uy, 0,)] +

[df'xh(uh’ vh) - fmsh(ah’ 6)] + [ah(uh’ Uh) - dh(“h: vh)] =

+
uMi

= L'(7,) + i |:J Ssvpdx — J STy dx} + [Liwy) — LP(vy)] +

+ LYT) + [L(v,) — LY(®)] + [Li(v,) = Li(v)] -

In the following we show that

(3.40) im a(uj, 0,) = (%, v)
h 0%

(3.41) lim L%®,) = L%"v),
h—'0+

(3.42) lim L(5,) = LT (v)
h-0*

and that the expressions in square brackets in (3.39) tend to zero, if
h — 0. Then, from (3.39)-(3.42) we have (x,v) = L(v) for all v e ¥ and
thus, by the density of ¥ in V, we get (3.35).

a) We have

a(uj, 0,) = (A(u}), 0,) -
From this, (3.32), (3.34) and (3.37) we easily deduce (3.40).
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b) Assertions (3.41) and (3.42) immediately follow from (3.37) and the
continuity of functionals L® and LT.

¢) Now let us show that the expressions in square brackets tend to zero.
By (1.22), Lemmas 3.1.2, 3.1.6, and (3.38) we have

|a(ui, 0,) — a(u;, 0,)| <c(1+ Nuill, o) |5, - ﬁh”l,n <sch->0.

Further, from (3.21), the Lipschitz-continuity of the operator A4, (3.4),
(3.38) and (3.15) we get

| (@@, B,) — aCuj, 0| < cll@y —uif, o [%a], o

sc||(ﬁ,j"+z—h)— (ﬁiik+2h)||l’0_"’0'

In view of (3.20), (3.3, a-b), (3.14) and (3.38),

a, (up, vy) — a, (@, l—)h)| =

<c(+ fupll, Iloally ., + e+ Nz, D),

1 1

sc(1+ch2> h? 0.

(2.28) and the boundedness of the sequences {u,} and {v,} imply that
Iah(uh’ vh) - dh(ull’ vh)l -0.

Concerning the terms on the right-hand side of (3.39), we use analogous
arguments. By Lemmas 2.3.1 and 3.1.5, we have

|Li@y) - L) |, |Li(vs) = Li(vy)] >0
and

|Zi(vy) - Li(®)| -0,

respectively. Finally, by assumption 1.1.3 (4, @) and Lemma 3.1.1,

U fsvth—J £, 5, dx
Tsh W

III) Let us put z = v — u* and prove that

< fillg 0, 1P0llg., o, =€n =0

(3.43) lim (A(uj) —A(u), 2, —2) =0.
h-0

In virtue of the part I), Z, — z and thus,
<A(u), Zy — z) -0.
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By (3.34) and (3.35),

(A(up),z) - L(2).
Therefore, it remains to show that

(3.449) <A(u,’,), Z,) = L(z2).

We proceed similarly, as in the part II). If we set v, := z;, in (2.25, ¢), use
(1.18), (1.1), (2.1), (2.16) and (3.19), we obtain

(3.45) a(up, 2,) + [a(up, 2),) — auy, 2,)] + [a(@y, Z,) — a(uy, 2,)] +
+ Z [‘?ish(uh’ Zh) - dfnsh(ﬁhr Z_h)] + [ah(uhs Zh) - &h(uh’ Zh)] =
s=1

= Ln(fh)+Ln(Z_11_2h)+ i I:j stth— [‘ st_th] +

s=1 sh vy,

+ [LiXNz,) — LX) + LY + LT (z, - 2,)

+ [L}(z) — L(Z)] + [Li(z,) — Li(z)] -

From 2, —z in H'(Q) and the continuity of the functionals. L? and
LT it follows that

LY%z) - LYz), L) - LY2).

Analogously, as in the part II), we can show that all other terms in (3.45)
tend to zero, if & — 0, except a(uy, Z,) = (A(u}), Z,). Hence, we im-
mediately get (3.44).

Finally, we apply Theorem 3.1.7b, where we substitute v, :=Z,, v =z,
wk = @F, w¥ = u*. If we use (3.12), (3.33) and realize that (3.43) represents
assumption (3.26), we obtain

(3.46) u, »u in H(Q).
This and the Lipschitz-continuity of the operator 4 imply
(3.47) A(u) - A(u) in (H'(Q))*.
From (3.47), (3.34) and (3.35) we see that
(A(u),v) =L(v) VveV,

which is equivalent to (1.21, ¢). Hence, u is a weak solution of the
continuous problem (1.21, a-c). W
As a corollary of Theorem 3.1.8 we get
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3.1.9. Theorem

The sequence {uy, } from Theorem 3.1.8 satisfies

(3.43) im  ||u, — u.| =0,

1,9,
hy -0 "

where u, € H'(R?) is the Calderon extension of u.
Proof follows from (3.46), (2.44), (3.2) and (3.3, a-b). W
3.1.10. Remark

Comparing our results with [9], we see that beside the generalization to
the problem with discontinuous coefficients, we replaced the assumption
u* € H*(Q) by a weaker one u € W"?(Q), p > 2 and moreover, we did not
need the monotony of the sequence {4,} (i.e. &,,, <h,) supposed in [9].

3.1.11. Remark

The above results can also be adopted to the approximate solutions
#;, of the discrete problem derived without numerical integration. If we write
fi,=ui+z, z,€V, and set iij = @} + Z,€ H'(Q), then by the same
technique as above we prove that each weak limit z in H'(Q) of a sequence
{a,;"}, with %, —» 0, is a weak solution of the continuous problem and

lim ”uhn—uCH]’Qh =0.
hy -0 i

3.2. Strongly Monotone Case and Error Estimate

In this paragraph we shall consider assumptions (1.1), (1.2), 1.1.3 (A),
(B), (C), (D), (E) and assumptions from paragraphs 2.1, 2.2. It means that
we consider the same assumptions as in 3.1, except (D;) and (D,) that are
replaced by (D).

In this case, by Theorem 2.3.7, the approximate solutions i, and
u, of problems (2.17, a-c) and (2.25, a-c), respectively, are unique. The
same is valid for the solution of the continuous problem (1.21, a-¢):

3.2.1. Theorem
Problem (1.21, a-c) has a unique solution.

Proof follows immediately from the strong monotony of the form
a(u, v) with respect to the seminorm |.|, :

(49) awu-v)-a@,u-v)=alu-v|l, YuveH' Q)
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and inequality (1.16). Assertion (3.49) is a consequence of assumptions
1.1.3 (C) and (D). W

Combining this result with Theorems 3.1.8 and 3.1.9, we find out that
each sequence {“;1,.}’ with {4,} < (0, hy), h, - 0, weakly convergent in

H'(Q), converges strongly to the unique solution u of (1.21, a-¢). Hence, we
have

3.2.2. Theorem

It holds
(3.50) lim u) =u in H'(Q)
h—>0+
and
(351) hlirf)1+ “ U, — uc”Hl(ﬂh) =0 s

where u, € H'(R?) is the Calderon extension of the solution u to problem
(121, a¢c). m

In the following we shall deal with the error estimate, provided u is
piecewise of class H”. Tt means that

(3.52) w=u|Q e H(Q), s=1,..,m.

We shall procede similarly as in [6, 7] and separate the discretization error
from the error caused by numerical integration.

3.2.3. Estimate of the discretization error

Our further considerations are based on the following abstract error
estimate.

3.2.4. Theorem

Let us assume that for every he (0, hy) the following assumptions are
satisfied :

1) X, H(Q,) is a finite-dimensional space, V, < X, is its subspace,
u;k (S Xh,

(3.53) VI/h =u;:k+ Vh= {d)h :u,:"+vh;v,,e Vh}

and L,, £,:V, —» R are continuous linear functionals.
2) a,: H'(Q,) x H'(Q,) » R is a form satisfying conditions (2.49) and
(2.41, a).
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3) e H'(Q,) is a function satisfying the condition
(3.54) a, (i1, v,) = Zh(vh) +8,(v,) Vv, ev,,
i, € W, is a solution of the equation
(3.55) a, (il vy) = Ly(v,) Vo, e V.

4) The condition (2.12) is satisfied.
Then there exist constants A,, A, =0 independent of h such that

(356 a-al, o <4lllr,, + 42 nf [7-bull,
s SEbp Lt bye W, s 3&p
where
|gh(vh)|
3.57 f,|* = sup — .
(3.57) 1€all 3, one Vi loall, g,
D,,#O

For the proof see [7, Theorem 3.1.1]. W
Let us extend the exact weak solution u:Q S R' to #:

Qu < U & ) — R'in such a way that on the part of Q;, — Q adjacent to

he (0, hg)
Q, we set i =u), where ule H 2(R?» is the Calderon extension of
u® = u|Q, e H*(Q,). Hence, we set

(3.58) #=uonQ, #@#=ulonQy-Q,

The first fundamental result of this paragraph is formulated as the
following

3.2.5. Theorem

If the solution u of the continuous problem satisfies condition (3.52), then
there exists a constant ¢ =0 such that

(3.59) |&@ -l , <ch Yhe (0ho).

Proof will be carried out in two steps.
I) First we shall prove that

(3.60) inf ||@— ]|, , <ch Vhe (0,h)

b, e W,
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with ¢ > 0 independent of 4.
Let us denote QF=Q,U (7, NQ,) =0,V (Qy—Q). We have
QU Q, = Qg

s=1

ie H(QUQ,) and @|QF=ui|Q}e H(Q}) < CQy)

sh sh

foreach s =1,....,m. Letr,se (l,...,m), r#s, I'y# . It is evident
that I',, = 0Q % N 8Q%. Since " and u° have the same traces on I',; equal to
u|T,,, we see that # is continuous in O U , (eventually after changing
it on M < O U Q, with meas (M) = 0). Therefore, r, # has sense and, by
(1.21, b), r, @i € W,. This implies that

Gen ot 7=l g, = =l
Hence, it is sufficient to estimate |[@ —r,d|, .
Lt ]
It holds
- 2 < I~ -2
(3.62) I#=ruilio,= L 17 =l
and
- 012 - 2
(3.63) f@—rwal} o = ¥ la—ral] .-

Te By

a) If Te By and T <= Qf, then it = uon T and u}|T € HXT). In virtue
of [2, Theorem 3.1.6],

~~
(98]

64) la—r, il Vhe (0, ko)

with ¢ independent of u°, A, T.

b) Let Te B, T« O (then, by 2.5), Tc Q) and ¥, =T - 0, cQ,
where T is the interior of 7. See figure 3.2. Then 3SFrs =27,V ST,A,,'
where Sy < T,y is a side of T approximating the arc %, ; < I',;. Further,

(3.65) ) #=ul onTNQ, (i) uf|TeHXT),
(i) r,d|T=r,u]|T.
Again, by [2, Theorem 3.1.6] and (3.65, iii),
(3.66) s —ry it Lr=ch ||uj|l2’T Vhe (0, hgy)
with ¢ independent of u°, T, h. Further,
(3.67) =l = la-usl,+ lui-rial, .
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Figure 3.2.

In virtue of (3.65, i),
(3.68) o —wulll, = la-ul, o -

Now, using (3.62)-(3.64), (3.66)-(3.68) and the relations

(369) CJ ( U yT,s) = Q [(Q:h - ‘(_)"s) N Q,] = Q(Tsh n Qr)

Te By r=1
TNQ,#+@

=T N Q

(the unions are disjoint), we get

= - 2
10 Ja-nall = T % [l 7wl o)

s=1 Te By
Moreover, from the fact that

(it —u))|Q, € H*(Q,) Vr,s=1,..,m

and Lemma 3.2.6 (proved in the sequel) we obtain the estimate

m

ha=ch ¥ ||ﬁ—u§”2>n',

r=1

”ﬁ - ug”l,-r

sh

which together with (3.70) and the equality & |Q, = u[.| Q, gives

m
la=rual, o <ch § ful, o=ch-

s=1

This and (3.61) yield (3.60).
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I1) Now we shall deal with the estimate of ||¢,] o, We set

2
(3.71) fE=-3% %a;—'(., 7, Va) + ai(. @, Va) - f,

i=] i

inQf=0,U((Q,-Q) for s=1,..,m

and define f*: _JQj —» R' by

s=1

(3.72) FEIQG = f5, s=1,.,m.

In view of (3.58) and 1.13 (B), (C), (E), we

./‘*eLﬁ(Qu ( J n,))

he (0, hy)

If we apply Green’s theorem to identity (1.21, ¢) with suitable test

functions v, we find out that

(3.73) a) f* =0 almosteverywherein Q,

2
by Y ai(x, u'(x), Vu'(x)) nj(x) = q(x)
i=1
forxeTyy —IM,, meas, (M) =0, s=1,..,m,
2
o Y ai(x, u’(x), Vu'(x)) nj(x) =
i=1
2

= - ¥ ai(x, u'(x), Vu'(x)) ni(x)

i=1

forxel, —M,., meas, (M )—-0, r,s=1,.,m,
rs rs [N ¥s7

Let us set ﬁs,, = (Q,NQ,)U (O, — Q). It is evident that Qsh is a

domain. With respect to (1.1), (2.1) and notation (3.1),

m

3749 Q= U[ﬁs,lu (CJTS,, ﬂQ,.)] U, meas (M) =0,
r=1

s=1

where the unions are disjoint. Further, by the symbol & we shall denote
components of the sets 7, w,, 7y and wy. Let v, € V,. Then, by (3.73, a)

and (3.74),

(3.75) f f*v,dx = J f*v,dx =
Th nlt

s=1 v s=lr=1&%crgnQ,

:iJ‘_ f*vhdx—{—%% Y jyf*vhdx.
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From (3.58) and 1.1.3 (B), (C), (E) we see that

(3.76)  @|Qy, = ul|Qy € H(Qy) . a(., &, Vi) |Qy e H'(Qy,),
i =u|S e H(S), al(, i, V)| e H(F) VL <1,NQ,.

Now, if we use these results and again apply Green’s theorem, we can write

(3.77) J f*v,dx =

n

5

v,
J [ Vu)——+a0( uVu)vh—vah]dx+
ﬁ 1=1 ax’

3

n

_+_
HM

L. J; £ aadke

2
Y a(., @, Vi) n, v, ds

=1 Jafly =1

- i i Y i al(., @, Vil)y n, v, ds .

s=lr=1Fcign0 v3&L ;=1

Ms

Comparing (3.77) with (2.16), we see that the sum of the first two terms in
the right-hand side of (3.77) is equal to

a~h(ﬁ’ Uh) - i?(vh) +

m m 2 5 - avh 5
+3y Y Y “Z a(., @, Vii) < + ag (., u,Vﬁ)vh—f,vh}
T N0, ! 1

s=1r=1 =1

2 v

_ {z a(., @, Vﬁ)a—xh+ ai(., i, Vi) v, — f, uh” dx .
=1 1

The sum of line integrals in (3.77) along straight sides S < T',,, of triangles

T € B, is equal to zero, the line integrals along curved sides 3 < T, give

m 2 .
— z j [Z (& (., @4, Vi)yn +a(., i, Vir)) n,’:| v, ds,
Iy

rs=1 rs Le=1
r<s

which is equal to zero, in virtue of (3.73, ¢). The rest of the line integrals in
(3.77) is equal to

m r 2
-y ’ Y a(., @, Vi) n v, ds.

s=1 "rxNhl—‘-1
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From the above considerations and (3.54) we obtain the relation (we use
notation (3.19))

(3.78) £ ,(vy) = a, (i1, v,) — L~}?(vh) - Z/E(Uh) =

sh

j fFu,dx + i Z (@, no d,v,) =& o (V) +

s=1r=1

+ J '(fs-fr) Uhdx]
na,

2

+ 5: [ Y ai(., @, Vi) nfv,ds — LT(T,) + (L(T,) — Lji(vy)) -

s=1vDlnpi=1

By (3.73, b) and (1.19),

3.79) LY, = Z J qv, ds = Z J al(., 4, Vi) n; 0, ds .
oy r

s=1 s=1 SN

For the following considerations let us denote by o, (N) (74(N)) the
part of w, (7,) adjacent to I';y. On the basis of this notation we can write

2 2
Y ai(., @, Vi) n; v, ds — Y @ (., @, Vi)n; 0, ds =

Conpe=1 Ty i=1

J Z aj(., 4, Viiyn; v, ds —
ycrh(N 3

I =1

-y Z al(., 4,Viyn,; 0, ds .
Fcug(N) YL 1 =1
If we realize that | & = u}|¥ € H* (&) and thus, a(., @, Vii) € H'(¥)
for all components & of wy(N) U 7,(N), and apply Green’s theorem the
third time in this proof, we get

2 2
Y ai(., i, Vi) n; v, ds — Y a(., 4, Vit)yn; 0, ds =

Tonpi=1 Fop =1

Uy

2 0
_ f ) [vh—a—af(., i, Vi) - al(., a,va)_]dx_
Femm v & ax, 9x;

1

2 ? L
-y Z v, —aj(., 4, Vi) —aj(., @, Vii) — | dx .
FcogN) v& 1= dx; ox;
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Now, from this, (3.78) and (3.79) it follows that

(3.80) £,(v,) = J f*v,dx +

i

+

i [(awﬂﬂ(” V) = & na, (@ Uh))+J

T D Q,

||M

(fs_fr) vy dx:'

+ [ y J i[vhia( u, Vi) — aj(., uV)—]dx
L (& crp(N) 3 9x

FLi=1 i

2 _ 9 ~ 8611
- Z Z v, — a'(., @, Vi) —aj(., u, Vi) dx
S cag(N) & ox; axl

»ME

s

t=1 i
+ LY(D,) — Li(v,) -

It is easy to find out that in view of assumptions 1.1.3, Lemma 3.1.1, (3.2)
and (3.71)-(3.72), we have the estimate

(3.81)

=

=

f fropdi+ T T o~ S vpdx

s=1lr=1vVrgNQ,

sc[nf*no,nu (

sch“vh”x’nh.

o)t ma 1o Il g,

he (0, hy) s=L.,m

Further, by (3.2), (3.20) and Lemmas 3.1.1, 3.2.6,

m m

Z Z @, no, (i 0y) ~ @ nql(d, Uh)]i
=53

schm(l + Y ””2”2,}22) ”Uhlll,nhSchw“l.’h”l,n,,'

r=1

(3.82)

> [(meas (v, N ©,))2 + Nl . o dloall

uM‘

1 » Tsh n QV

Similarly, taking into account 1.1.3 (B), we get the estimate

dx <

‘o avi a7,
(., U, Vi) —
a;( T

i

(3.83) Z y J i

s=1Fcrg(NMUeg(N) v& i=1

=c i [(meas (74 U @g )+ [Jul

g1

m
schm(l . uugnz,,zz) 1oul, o =< 2 0l g -

s=1

LTg U w:h] || Eh ” Lrg U Dk,
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Finally,

m il

=)

s=1 P erg(N)Uog(N) v

dx

( i af(‘s 1/7, Vﬁ)) vh
0x;

m

< ¥ [a @ v

s=1

oA .
Lrg Uwg, h 0,75 Vg

In virtue of @ = u$ on 7, U wgy, u’e H*(Qf) and 1.1.3 (B), (C), (E), we
have
al(,ul, Vul) e H(QF),

laiC., @, va)|| < [|@iC ue Vu)|

LrgpUwg Laf"

If we again use Lemma 3.1.1, we immediately get the estimate

m

(3.84) O<Is<ch Y [a(, ul Vu)| L as EA Lo,
s=1
< ch v, L,

Summarizing (3.80)-(3.84), we come to the inequality
[£,(vy)| =< chllv,|l, , satisfied for all v, € V), and all he (0, /) with a
L]

constant ¢ independent of v, and 4. Hence,

(3.85) 1€l g <ch Vhe (0,h).

Now, by (3.56), (3.60) and (3.85) we get the desired result (3.59). B
In order to complete the proof of Theorem 3.2.5, we must prove the
following

3.2.6. Lemma
There exists a constant ¢ = 0 such that

(B86) @) |vll,, o =<ch|v

s N ” 2,0,
Voe HXQ,), VYhe (0,hy), r,s=1,.,m,
b)

191, v oy =< RPN 0

Yvoe HX(QX), VYhe (0,hy), s=1,...,m.

Proof : We shall deal with the estimate (3.86, @) only. (The proof of
(3.86, b) is similar.) It is sufficient to show that

(3.87) lollo ., na <chlvl, o Vve H'(Q,).
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Then, provided v € H*(Q,), we combine (3.87) with this estimate applied to
av/dx,, i = 1,2 and get easily (3.86, a).

As C*®(Q,) is dense in H'(Q,), we can consider v € C*(,) only. Let
S =15 NQ, be a component of 7y We write 3% =3 U S, where
3 < T,, ScT,y,isaside of a triangle T € B, and approximates 3. On & we

introduce local Cartesian coordinates y,-measured in the normal direction to
S and y,-measured along S. Then 3 can be expressed as the graph of a
function y; = ¢ (1), y; € [0, s], where s is the length of S. Let y, be oriented
in such a way that ¢ = 0. Then & = {(y,72); 0 <y, <@ (1), y,€ (0,5)}
and

(3.88) j vids = J (
& 0

By integrating and applying the Cauchy inequality,

¢(y2) 2
J v*(¥1, ¥2) dyl) dy, .
0

) ¢(r2) v 2
(B89 vi(y,yy) = U(‘P(J’z)d’z)"J Yo (t,y7) dt} =
Y1 yl

<2| v (), y2) + (cp(yz)—yl)r(m (—"i(t,yz))zdt .
2572 ” 9y,

If we integrate (3.89) over & and use the estimate 0 < ¢ (y,) < ch?, where ¢
is independent of 4 and y, (see [7, 3.3.2]), we obtain

J vzdxs2[ch2 j V(0 (), ¥2) ds +
& 0
s () 2
+ch4J (J i (—az(t,Jh)) dt)dJ’Z]-
0 0 ayl

Taking into account that
s s
f v (9(12), ¥,) dy, < J V(e (1:), ¥2) (1 + @' (1)) P dy, = f v’ ds,
0 0 s

we have

~

(3.90) JyvzdxsZChz[vadS+J <:—;(t,y2)>2dx].
&

By the summation of (3.90) over all & <1ty N Q, and the use of the
theorem on traces we get

f uzdxszchZU v2dS + [
Vg NQ, 1Y)

Vg N Q,

vax] < chv)?,

which gives (3.87). ®H
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3.2.7. The effect of numerical integration

We shall estimate ||u;, — ||
error estimate.

g, ON the basis of the following abstract
3.2.8. Theorem

Let for every h e (0, hy) the following assumptions be fulfilled :

1) X, c H'(Q,) is a finite-dimensional space, V, is its subspace,
ure X, Wy =ui +VyandL,, b} : V, > R are continuous linear functions.

2) a, = a,(uy, v),): X, x X, » R is a function satisfying (2.50).

3) wy, and i, € W, are solutions of the equations

(3.91) ay(uy, vy) = Ly(v,) Vo, €V,

and

(3.92) ay(#y, vy) = Ly(0y) + 05(vy) Vv, eV,
respectively.

4) Condition (2.12) is satisfied.
Then there exists a constant Ay =0 such that

(3.93) lun = aall, o, =450l Ve (0. ho).
Proof : See [7, Theorem 3.4.1]. W

As an easy consequence of this theorem we get the second fundamental
result.

3.2.9. Theorem

There exists a constant ¢ =0 such that
(3.94) “ iy, — uy, ]l Lo, sch Yhe (0,h).

Proof : As i, and u,, are solutions of problems (2.17, a-c) and (2.25, a-c),
respectively, we see that conditions (3.91), (3.92) are satisfied with

F/[z(l’h) = [a, iy, v4) — @, (i1, v4)] — [Ly(vy) — L~/l(vh)] .

Using Lemma 2.3.1 and the boundedness of approximate solutions
71,, we immediately get the estimate

lff,(vh)) < ch ”vh“]’nh Vv,, € Vh’ Vhe (0, ho).

This and (3.93) yield (3.94). m

Combining Theorems 3.2.5 and 3.2.9, we get the final result for the
strongly monotone case under assumption (3.52).
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3.2.10. Theorem
There exists a constant ¢ > 0 such that

”uh—ﬂ“l’QhSch Vhe (0, ho),

where u, is the approximate solution calculated with the use of numerical
integration and i is the extension of the exact weak solution defined by
(3.58). =

3.2.11. Remark

There is an interesting question, if the techniques applied in this
paragraph also yield improved error estimates, provided the exact solution u
is piecewise of class H* (k=3) and is approximated by higher order
isoparametric finite elements.
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