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MATHEMATICA!. MOOElilNG AND NUMERICAL ANALYSIS
MODÉUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 24, n 4, 1990, p. 423 à 455)

DEFECT CORRECTION METHODS FOR CONVECTION DOMINATED
CONVECTION-DIFFUSION PROBLEMS (*)

O. AXELSSON (!) and W. LAYTON (2)

Communicated by J. DESCLOUX

Abstract. — Standard Galerkin methods for elliptic problems applied on convection domi-
nated convection-diffusion équations give poor approximations and may even not converge. We
prove local and global error estimâtes for a defect correction method proposed by Hemker and
show how the convergence dépends on solution regularity, types o f layers present and
domainslsubdomains on which the error is measured.

In particular, we point out the global regularity associâted wit h problems wit h characteristic
layers alone, and the effect of this on the numerical methods.

Résumé. — Les méthodes d'éléments finis standard pour des problèmes elliptiques de
convection-diffusion dominés par la diffusion donnent de mauvaises approximations et peuvent
ne pas converger. Nous établissons des estimations d'erreur locales et globales pour une méthode
de « defect correction » proposée par Hemker. Nous analysons la dépendance de la convergence
par rapport à la régularité de la solution, aux types de couches limites et aux domaines où l'erreur
est considérée.

En particulier, nous mettons en évidence la régularité globale pour des problèmes de couches
limites caractéristiques et ses conséquences pour les méthodes numériques.

1. INTRODUCTION

This paper considers the approximate solution of singularly perturbed,
convection diffusion équations

DSf8w = - e A w + u(x) . Vu + q (x) u = ƒ (x) , JC e H, e => 0 9 (1.1)
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424 O. AXELSSON, W. LAYTON

where ü c R ; , (j = 1,2,3) is a regular (*) domain with boundary F,
v_(x) is a smooth vector field and q(x) ei smooth function on Ù. Let
n(x) be the outward unit normal on F. The boundary F is partitioned into
three sets

r_ = {xe F ; v(x). n <0} ,

Fo = {xeT; v(x). n = 0} ,

F+ = {xe F ; v(x). n >0} ,

corresponding to the inflow, characteristic and outflow boundaries, respect-
ively. Dirichlet boundary conditions are imposed on the inflow portion of F,

u(x) = 0, xe F_ . (1.2)

The boundary conditions chosen on Fo and F+ influence the size and nature
of the boundary layers occurring in the problem. The method considered
herein can be used for various kinds of boundary conditions but to be
spécifie we take Dirichlet boundary conditions on the characteristic
boundary and Neuman or Dirichlet boundary conditions on the outflow
boundary, i.e.,

Y.u. n = 0 , x G F+
 v }

or

u(x) - 0, xe Fo U F+ . (1.36)

ïn addition, we shall assume that F is either a gênerai boundary curve of a
regular domain, a convex polygon or very smooth (e.g., C00). Throughout
the discussion we will assume that all the intégrais involved are evaluated
exactly and the fimte element space is conforming.

The solution of (1.1), (1.2), and (1.3) is characterized by the following
weak formulation, ue H (CL) satisfles

Bz{utv) = (f9w)9 Va e Hl(tl). (1.4)

Here Hl(Q,j dénotes the subspace of the Sobolev space Hl(Cl) = W2A(£l)
of functions vanishing on F_ U Fo in case (1.3a) and on F in case (1.36), and
B, is the bilinear form

Ja
(v(x).S7u + q(x)u)w]dx. (1.5)

(*) A regular domain is one for which the divergence theorem is true.
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CONVECTION-DIFFUSION PROBLEMS 425

If S dénotes a fini te dimensional subspace of H (Cl), the usual Galerkin
method gives an approximation U e Sh to u through the équations

Bt(U,w)= ( / , w ) , V w e S * . (1.6)

In the above formulation, Sh is typically a flnite element space consisting of
piecewise polynomial functions on a subdivision of Ö with maximum
element size h.

Standard finite element methods are not appropriate when s <: 0(/z) for
the following two reasons. A generic finite element method for (1.1), (1.2),
(1.3) satisfies : for E » 0 there is an ho(s) such that for h =s hö(e) the method
is stable and the error u - U satisfies

\\u\\
k+l

where k + 1 is the order of accuracy of the method and || • || k x is the
W-I+ l = Hk+X norm. Here hö(&) -> 0 and C ( E ) -• oo as s -> 0, essentially
because BE is not coercive in Hx uniformly in £.

The second problem associated with the numerical solution of (1.1),
(1.2), (1.3) for e <̂  0(h) is approximation theoretic. The solution to (1.1),
(1.2), (1.3) is characterized by sharp boundary layers along Fo and
F+ . It is observed that unless the mesh density around Fo U F+ is much
greater than in the interior of il, the resulting piecewise polynomial

] approximation is highly oscillatory even in régions in which the true solution
is smooth. The global estimâtes of the form : error = O(hk+X e"7) for some
positive 7 = yk are a generic feature of methods for (1.1), (1-2), (1.3) and
any appropriate numerical method faces the problem of resolution of layers.

The method studied herein is a combination of defect correction with an
artificial viscosity approximation. It computes a séquence {UJ} a Sh by the
following équations : let e0 = max {s, h },

Beo(UJ + l - U j , w ) = ( f , w ) - B e ( U J , w ) , V w e S h . (1.7)

If e <̂  /*, then, in gênerai, Ul is only a flrst order accurate approximation to
u. At each correction step the residual is computed and a correction to the
current approximation is calculated using the (flrst order) viscosity approxi-
mation with Bef).

Defect correction methods of this type have been studied experimentally
by e. g., Hemker [6], [7]. He indicated that for problems with layers, the
defect corrections produces an acceptable approximation in the interior of fi
after a few correction steps, but eventually the numerical approximation
approaches the Galerkin solution with its bad oscillatory behavior and
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426 O. AXBLSSON, W. LAYTON

deteriorated accuracy. For the analysis he uses « local mode analysis » on a
simple model problem.

In this paper we dérive local and global error estimâtes for (1.7) which
agrée with the observed behavior of the error. We prove detailed global
error estimâtes in section 4, for problems with layers, in R2, R3, which are of
the gênerai form : (v = 0,1 )

without any stability restrictions on h w. r. t. e. In these, we account for the
dependence of C(e) upon the various possible types of layers which arise.

In the preliminary section 3 we consider the periodic problem in
1 — D with the aim of setting the stage for the later analysis and validating
the results of « local-mode-analysis ». The convergence results of section 3
are clearly overly optimistic in a global sensé. However, in section 5 we
study 2 — D problems and we show that, modulo a term of infinité order
accuracy which is nonuniform in e, the convergence in subdomains
sufficiently far from layers is analogous to the rates suggested by « local-
mode-analysis ». Indeed it is observed in fînite element implementations of
(1.7) that the error in the method in such subdomains behaves like
0(hk + (e0 —e)7), where k ••= formai order of accuracy of the method.
Further, it is observed that as j increases we must move to successive
subdomains farther from the boundary layers (see [5], [7]) along F for the
interior estimâtes above to hold. Under numerous assumptions upon O,
v_ etc., we show (see Theorem 5.1) that for a subdomain Q,j9 sufficiently far
from the characteristic and outflow portions of F, the error in Hx is of the
observed form 0(hk + (e0 - e y) uniformly in e ; up to a term of infinité
order accuracy in h which is nonuniform in e, for every s > 0 :

II"" ^ X n ; ^ <?,(

We also give an L2(Ctj) error estimate which is suboptimal by 0(h1/2), which
is typical for these problems.

It is noteworthy that, to achieve this accuracy we must move further
inside ft as we iterate further. This increase in the pollution as we iterate
was noticed by Hemker [7]. See also Ervin and Layton [6 ; section 4], for an
example in which this effect appears. Computationally attractive modifi-
cations of the basic algorithm have been suggested in e.g., Hemker [6], [7],
Axelsson [2], Ervin and Layton [4], which seem to slow the spread of the
région in which convergence cannot be demonstrated. We consider herein
only the basic method, but we believe that several of the modifications can
be analyzed by suitably adapting our techniques.
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CONVECTION-DIFFUSION PROBLEMS 427

The « streamline diffusion » method represents an entirely different
approach to (1.1), (L2), (1.3) which has been analyzed in, e.g., Navert [12],
Johnson and Navert [8], Johnson, Schatz and Wahlbin [10] and Johnson
Navert and Pitkaranta [9]. See also Axelsson [1] for a combination of defect
correction with this latter method.

2. A PRIORI ESTIMATES

Associated with (1.1), (1.2), (1.3) is the adjoint problem

JSf*M* = - e AM*-div (v(x) M*) + q(x) u* = f , x e £1

u* = 0 on T_ U r0 , and either (2.1)

u* = 0 on T+ if (1.36), or (e VM* + vu*) . n = 0 on T+ if (1.3a).
Note that

Note also that the convection in the adjoint problem is driven by a velocity
field ( - v(x)) in the opposite direction to the original problem and
w* will, in gênerai, have a strong boundary layer along F_ of width
O(e).

We can distinguish between some practical cases of various degrees of
smoothness as e -> 0. As usual, C dénotes a generic constant, independent
of u, e and h.

LEMMA 2.1 : Assume that q div v ^ q0 > 0, x e fî, p ^ 2. Then the

solution u of (1.1), (1.2), (1.3) satisfies

II u II < r* II ƒ II ? < n < on (2 2/7Ï

£ 3 / 2 | |Aw | | + B 1 / 2 | | W | | , + | | u | | ^ C 11/11 , ( 2 . 2 6 )

#«*/ // /? w either a convex polygon or smooth and we have pure Dirichlet
boundary conditions

83/2||w||2+ e ^ l H I , + || M || =sC ||/"|| , (2.2c)

Proof : To prove a), multiply (1.1) by up~] and integrate. By use of
Green's formula on the first two terms and a Holder inequality on the right
hand side (cf. Schatz and Wahlbin [13]) we arrive at a). The L°° estimate
follows by letting p -• oo. Similarly, for p = 2 we get
s l / 2 |Mli + llwll ^ C H / I I - From the differential équation (1.1) we get then
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428 O. AXELSSON, W. LAYTON

and b) follows. If d€l is smooth, or a convex polygon, and we have pure
Dirichlet boundary conditions || w || 2 =s= C [ || Aw || + || u || ], and c) follows. D

Remark 2.1 : Note that (2.2a) implies that " ] | | p is bounded uniformly

in e for any p ^ 2, i.e., we have stability with respect to given data in any
such norm. This result is already known for p = 2 and p = oo, see for
instance Miranda [11]. The powers e3/2, e1/2 occurring in part b) can be
shown to be sharp by considering simple examples in one dimension.

LEMMA 2.2 : Ifq - - div (v ) q0 > 0 if f e Hk~ 2(H) awJ T is smooth the

solution to (1.1), (1.2), (1.36) satisfies u e Hk(£l) O U Hl(Q,) and

• + 8 - 2 + 1/2

Proof : Since w satisfies

= 8 {ƒ - qu - v . Vu } = ƒ ,

the « shift theorem » implies that || u \
s+2

Wfh-i}'

Thus,

The result follows by beginning with Lemma 2.1 and proceeding inductively
using the above. •

In the following uvl dénotes the unnormalized directional derivative
(streamline derivative) along P, UV = v_. Vu.

Generalized Periodic Boundary Value Problem : The boundary value
piobîem (Î-1) is said to be generalized periodic if the data are such that (the
trace of) the solutions and its derivatives satisfy
u | r ~~ u | r = ^u - U. | r ~ Vw . n | r =0 , and similarly for t?5 in the sense

that boundary intégrais like
r_ n r

Vw . nuhl ux oT vanishes. This is valid in

particular if F_ and T+ are congruent and these functions are equal at
corresponding points of T_ and F+ . An example is illustrated in figure 2.1.

Z?a«
r_ =

Figure 2.1. — A Generalized Periodic Boundary Value Problem.
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CONVECTION-DIFFUSION PROBLEMS 429

L E M M A 2.3 : Assume that u G H2(£l), that ( | | / J | + \\f || ) exists and that

q — - div v_ === q0 > 0, X G ( 1 . If (i) F_ U F+ zs empty or (ii) z7ze boundary

value problem is generalized periodic, then

e||Au|| +81/2 | |M | | ,+ K i l + ||«|| * C [ | | / e | | + | | / | | ] . (2.5a)

If, in addition, Y is smooth or a convex polygon and we have pure Dirichlet
boundary conditions then

<HMI2 + 6 I / 2 I | K | | , + KII + I M | * C [ | | / E | | + n/11 ] . (2.56)

If, in addition, Y is smooth and f e Hk~2(Q,)

e * - ' H | ^ C { 8 * - 2 | | / | | f c _ 2 + . . . + e | | / | | 1 + ||/E|| + 11/11}. (2.5c)

Proof : Note at first that u = 0 on Fo implies uhl = 0 on Fo. For notational
simplicity, we consider now only the case n = 2 and we dénote xl = x,
X2 = y. By direct calculations, (qu)v = qhlu + qu^ and

LE(uv) =

uy] -qhlu,

where we have Le(u)v = fv. Since by assumption u G H2(il) and
/ E G Z,2(n), the right hand side of the above équation is square integrable
and Lemma 2.1 is applicable. Multiplying by uu and integrating and using
partial intégration of some of the terms, such as

Vv{ . Vux uv_ dfl = - [Me ux
Jn Jn

V Ü ,

Vf] . n_uxUv dY ,
J L u r +

we get, as in Lemma 2.1,

e |KJ*+ | | « J 2 * C [ | | / E | | 2 + I M l ' + e K H j K l I . + e'llKlIÏ]. (2.6)

Note namely that the boundary intégral on Fo is zero because uL, = 0 and (in
case (ii)) the boundary intégrais, such as

n . Vwy M„ <iF ,
r_ u r+

vanish because of the generalized periodic boundary conditions. By the
usual inequalities, by (2.4a) and by the differential équation, we then get
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430 O AXELSSON W LAYTON

(2 5a) (2 5c) follows from the shift theorem and (2 5b) as in Lem-
ma 2 2 •

Remark 2 2 Note that m case (i) and case (n) of Lemma 2 3 only a
charactenstic layer can occur (in case (i) the outflow boundary is even non-
existent) Case (i) occurs m mterior fluid flow problems and case (n) can
occur in a (long) channel flow problem, where the mflow and outflow
boundanes have the same shape and area

2.1. Local regularity

Next we give a local regularity resuit from Navert [12] which we use
extensively m derivmg local error estimâtes First we present the notations
used

The notation we use is all standard || -1|fc 0» £><=R2, dénotes the

Hk(D ) norm (if D = CL then we shall omit D) and |. | k D the correspondmg

seminorm Given a weight function \\f(x), ||w|L 0 dénotes the usual

w2\\t dx\ CL IS assumed to be a

D I
convex polygon m R2 We define a flmte element space
Sn = S (CL) cz H (£1) by first covering CL with an edge to edge triangulation
{T, } which is assumed to be quasiumform We shall assume Sh | T/ contams

polynomials of degree ^ k so that the usual interpolation resuit holds for
all ue Hk+l(n) n H](n)

\\u-Ih(u)\\ + h\\u-Ih{u)\\x^Chk+'\u\k+xüi (2 7)

where Ih(u) e Sh is the interpolant of w If D is a subdomam whose
boundary consists of edges of the triangulation {T/} we dénote by
Sh(D) the restriction of Sh to D We shall use the quasmniformity
assumption upon {17} in the form of the usual inverse estimâtes for
Sh

For a subdomam CïJ7 we let Y+, T~, Tj dénote, respectively, the outflow,
ïnflow and charactenstic portions of bCl;

T+ = {xe dn^v. rij^Ö}, Tj = {x e 8lly = TJ v . n} ̂  0},

r y
0 ^ { X G e n , = ^ 1 ^ . ^ = 0 }

Here n} dénotes the outward unit normal to Ctj
As we will be dealmg with interior estimâtes in section 5, it is useful to

bnefly collect some of the basic properties of the cutoff functions i|/5
mtroduced in Johnson and Navert [8], Navert [12], which we will use In this
work ([8], [12]) the crucial rôle of subdomains which exclude upstream
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CONVECTION-DJFFUSION PROBLEMS 431

cutoff was first point out and exploited. For the définition of q0, see
Lemma 2.1.

DEFINITION 2.1 [Nàvert [12: p. 19]] : A smooth function i|> is qö = a
compensating in Cl' a Cl ifty s= 1 in Cl' and there is a constant p e [0, 1 ], with

p ̂  0 if qö = 0, such that — — i|> === pi|> in Cl.

Note that \\t can be viewed as a generalization of the exponential weight
function used in Axelsson [2] to get a bilinear form which is coercive
uniformly in e.

DEFINITION 2.2. A subdomain Cl" a Cl is said to « exclude upstream
cutoff» if ail points upstream w.r.t. v_ of a point in Cl" belongs to
Cl". Le., {T"y c F.

In Nàvert [12 ; Lemma 2.1, p. 20] and Johnson and Nâvert [8] (see also
[9] and [10]), appropriate cutoff functions are constructed for subdomains
which exclude upstream cutoff. We recall, for later référence, their
properties by quoting the following resuit :

LEMMA 2.4 [Nâvert [12 ; Lemma 2.1, pp. 20, 21]] : Let Cl" be a subdomain
of Cl with piecewise smooth boundary F" such that (F")" cr F. Let c9 s, d, y
and M be positive numbers with d =s 1/2, 7 5= 1 and M an integer. Assume
that ail points upstream (w.r.t. v) a point on (F")0 lie on (F")0 and that
|ü. n"\ 5= c on (F")" U (T")+, where n" is the outward unit normal to
dCl". Then, there are constants C} = Cx(s, M, v9 Cl"), C2 = C2(s9 M, v, Cl' )
and C = C(v_,Cl") such that if Cl' is any subdomain of Cl" at a distance o fat

least C}yd\n ( I \ and C2 y \fd In ( I ) from (F")+ and (F")° respect-
ive ly, there exists a cutoff function v(/ which is q0 = a compensating in
Clf wit h the following properties :

\\> ^ 1 in H' , (2.8a)

\\) = 0 in Cl- Cl" , (2.86)

- ^ 0 , in ( i , (2.8c)

i|i(x+ y)
max —^C, in {x e Cl U(x) ^ Cds\, (2.8rf)

max , in lx e Cl \ - tyv(x) ^ Cds}9 (2.8e)

\D? I|I I ̂  C {y- [ d~m I|I + ds) inClifO^m^M. (2.8/)
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432 O. AXELSSON, W. LAYTON

For any v1- with ü x . v_ = 0, | ü x | = 0 (1 ) ,

in O3 (2.8*)
i J

z/ O < | X | -< Af.

I D™ + l Dy± *|i I «s C (~ 7~ ! d~ m ~ ' K' \\tv + <is) in O , (2.8/*)

i f O < m + |X| < Af.
Her e D^ differentiation in the £ direction, D^ OÙ — £ . Vw ££c, m ^ 0 is an

integer and X = (Xb ..., X n) is a multi-index of lengt h |X| = ^Xy. D

DEFINITION 2.3 [Nâvert [12 ; Définition 2.2, p. 25]] : A cutoff function i|/
satisfying the conditions of Lemma 2.4 is said to be q0 = a compensating and
smooth of order {d, ty,s) on (O'5 fi"),

THEOREM 2.1 [Nâvert [12; Theorem 2.3, p. 26]] : Assume that either
£ has no closed arcs in Ü or that q0 > C ( Ë ) where C dépends upon the first
derivatives ofv_. Let Q\ Cl" satisfy Lemma 2A, let c, s, m be positive numbers
with m an integer and let (F")~ c: F" and F^ is part of one of the f aces of CL
(a polygon). Suppose ft is a convex polygon in R2, (F")~ H F+ is empty.
Then, jthere are constants Cx = Cx{s,m, v_, û" ) , C2 = C2(s, m, E, Ü") and
C = C(u? g, O", O ) £«c/? /̂iaf i/ //?e distance from O' /o (F")+ and

(F")° is at least Cx Egln ( — I and C2 SJEQIÏÏ l — ) respectively, the

solution of :

LeQuBQ=f in il, w^g onT, (2.9)

with ƒ G Hm(€L") and g = 0, satisfies

HML5n<+ l l « J U n ^ c l l / I L , n - + eôll/lln- D (2"10>

3. THE PROBLEM IN ONE SPACE DIMENSION

In this preliminary (introductory) section the problem in one space
dimension will be considered. The aims of this section are threefold : to
make the « local mode analysis », discussed in the introduction, rigorous, to
introducé the basic ideas underlying the method in a simplified context, and
to provide, as a point of comparison for later sections, an analysis of the
basic method when the critica! effects of boundary conditions and directional
bias do not influence the scheme.
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CONVECTION-DIFFUSION PROBLEMS 433

Therefore, the équation

Leu =• - su" (x) + vu' (x) + qu(x) = ƒ (x) , 0 < x <: 2 TT (3.1)

is considered subject to periodic boundary conditions

«(0) - W (2 ir) = K' (0) - w' (2 ir) = 0 . (3.2)

Assume that v and /? are constants such that v ̂  0, # > 0 is satisfied.
f(x) is a 2 TT-periodic, smooth, known forcing term.

Regularity

In this section, periodic functions will be considered as functions from T
(the unit circle) -• R. There is a natural identification between 2 ir-periodic
functions : R ->• R and functions : T -• R and we shall pass from one to the
other without comment. The Sobolev spaces HS(T), — oo < S < : Q O , are
defmed in the usual manner. Thus, we HS(T) (considered as a periodic
function) if

w(x) = £ Wj elJX, Wj = (w,elJX)

L E M M A 3.1 : Assume f e HS(T) and v =£ 0. 77Ï<?H, r/ze solution u to (3.1),
(3.2) w OT HS + 2(T) and

where C is independent of e.

Proof : Expanding ƒ in a Fourier series, the solution to (3.1), (3.2) can
easily be calculated

u(x)= ^[Bjï+vij + qr'fjev*, fj={f,e»*).

Thus (for the e||w||5 + 2
 t e r m proceed in the same manner),

n

Note that the above regularity resuit holds for both the équation for
L£ and for its adjoint L* (with v replaced by - i> in Le). This is true in the
periodic case.
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434 O AXELSSOM, W LAYTON

Convergence of the Method

In the periodic case the équation (3.1), (3.2) has the weak formulation

Be(u, w) = \ [eu' W' + vu' w + quw ] dx .
Jo

Using this weak formulation, the defect correction itérations (1.7) will be
considered. Let Sh dénote a subspace of Hl(T) and e0 = max {e, h }• Then,
the itérations (1.7) can be rewritten in the folio wing form that is convenient
for analysis :

(R>,w)=(f,w)-Be(U>,w), VweS*.

B^E\w)=(RJ,w), VweSh

U' + l = U' + EJ, 7 = 1,2,...,

where, of course, RJ is the residual and E' the artificial viscosity approxi-
mation to the error. Associated with the discrete séquences (3.3) are
continuous defect corrections séquences u], eJ, r1 defined in an analogous
manner,

L,QeJ = rJ, u^l = uJ + eJ
3 j = 1, 2, ...

- ^ (^(0) - uJ(2 ir)) = —, (^(0) - e'(2 TT)) = 0 , k = 05 1 .
dxk dxk

In addition, another auxiliary séquence will be necessary. Defme
g e Sh as the artificial viscosity projection of ey into Sh :

Bto(e>-g9w) = (r>,w)-Btù&9w)=O9 VweSh. (3.5)

The séquences (3.3), (3.4), (3.5) will be used in the subséquent sections to
analyze the method in the more gênerai context. (Of course, LB,
LtQ, Bz and BZQ are to be interpreted in the appropriate manner for the
problem under considération.)

The basic convergence theorem in the periodic case is then

THEOREM 3.1 : Assume q >0, v # 0 and that Sh satisfies the approxi-
mation assumption {AA) given helow, Then, the error in the defect correction
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approximation to (3.1), (3.2) is given by

where u[, ..., u 3 are given by (3.4).
Thus, the method is optimal after k itérations {after which we stop). It is

optimal (in this case of periodic boundary conditions) both with respect to
the power of h occurring in the error estimate and with respect to the
regularity required of the continuous itérâtes uJ. The error \\u — UJ\\} is
broken down into two components : || u — uJ \\} and || uJ — UJ \\ y The first is
the error in the continuous defect correction itération (3.4). lts magnitude
dépends in a critical way upon the regularity of the continuous problem
(3.1), (3.2). As will be seen later, the magnitude of the discretization error
|| uJ - UJ\\ 1 also dépends upon the regularity of the adjoint problem. Here
they are the same (Lemma 3.1), so optimal rates of convergence are
obtained. First, \\u — uJ\\ will be estimated.

LEMMA 3.2 : In addition to the assumptions oj Lemma 3.1, suppose
feHs+J~ \T). Then

where C is independent of e , h and f.

Proof • Let & = u — uJ. Then, & satisfies

Leoh' = (LEo-Le)u, LHb> +

Applying Lemma 3.1 recursively gives

* ... * C (e 0 - s y | | « | | i + y ^ C ( e 0 - e y || ƒ \\s+j _ , . •

Next, the discretization error will be considered. For this, Sh is assumed to
satisfy the standard approximation assumption (AA) : given
ueHx(T) n / f r + l ( 0 , 2TT), then

i n f { | | « - x | | + A | | « - X | | , } ^Chf + l\\u\\r+], Q^r^L. (AA)

This is satisfied, for example, if Sh consists of C°, periodic, piecewise
polynomials of degree k, defined on a quasi-uniform mesh of maximum
width h.
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Under this approximation property, by a straightforward argument (see
Appendix 1 for details) and utilizing that e0 s= h, one proves the optimal
order estimate

h \ \ e > - ï \ \ l + \ \ e > - Z \ \ 0 ^ C h " l \ \ e ' \ \ r + 1 , O ^ r ^ k . (3.6)

In the nonperiodic case, the fact that LE and L* have different regularity
properties causes the L2 error estimate in gênerai to be suboptimal by a
factor BQ 1/2, see Nàvert [12] for details.

LEMMA 3.3 : Under the assumptions of Theorem 3.1,

where {uJ} is given by (3.4).

Proof : Since Ux is the artificial viscosity projection of w1, (3.6) implies
that

\ \ u ' ~ U ' \ \ v ^ C h k + ' ~ v \ \ u ' \ \ k + l , v = 0 , l . (3.7)

(Note that the regularity Lemma 3.1 holds for {uJ}.)
To estimate | |w2- C/2||v, note that

\\u2~ U2\\ ^ \\ux~ Ux\\ + | k ] - £ l | | ,

so tha t all tha t is needed is an estimate of H ^ - i s 1 ! ! . By the triangle

inequality and (3.6), this reduces to \\%} - E]\\ .g - EJ satisfies

BH(€> -EJ, w) - (^-RJ,w), VweSk,

which reduces to here

B E Q ( e - E \ w ) = - B t { u l - U \ w ) 9 V w e S h .

Setting w = i*1 — Ex G Sh and using coercivity of Bz^ gives

where

Integrating (w1 - Ux)f (£} - Ex) in the right hand side of the above by parts
and using the Cauchy inequality gives
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Since e0 3= h, this implies that

\ \ z } - E X \ \ X ^ C { \ \ U X - u x \ \ x + h ~ x \ \ u x ~ u ' \ \ ) .

Thus, (3.7) gives

IIÊ'-^^CAVII^,-

By a duality argument (see Appendix 1) we also get

\\£-E%^Chk^\\ul\\k+x.

This implies, by the triangle inequality,

WJ-uX^ch^-^uX^ + 11̂ 11̂ ,)
^Chk+»-\\\u'\\k + x+ | | « 2 | | f c + 1 ) .

£2 - E1 satisfies the same équation as g1 - Ex :

so, to complete the proof, proceed by induction. D
Theorem 3.1 now follows directly from the previous two lemmas.
The regularity assumptions on uJ can be restated in terms off through the

foliowing argument. Notice that {uJ} is given by

Lemma 3.1 gives the requires estimate on w1. For uJ + l, note that if

then uJ + l is given by

UJ + l= £ [ s o ^ + t ^ + ^ r 1 [ ƒ , + (eo-s)k2ui]elkx.
keZ

Thus, using the same argument as in the proof of Lemma 3.1 gives

Usmg an induction argument with \\ul\\ s+ } ^ C \\f \\s as the first step and

the above as the gênerai step gives that

K I I , + I , , 7 = 1 ,2 , . . .

The above regularity result and Theorem 3.1 gives the following corollary.
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COROLLARY 3 1 In addition to the assumptions of Theorem 3 1, suppose
feHk(T) Then for j = 0 , 1 , , &,

\\u-U>\\^C((*s-*y + hk)\\j\\k D

We note again that the assumption j e Hk{T) implicitly mvolves the
compatibihty conditions (clearly qui te restrictive if k > 1) on f that

/ ( O ) - / ( 2 ir) = ƒ ' ( < ) ) - / ' ( 2 * r ) = - • = ƒ {k '>(())-ƒ<* !>(2<ir) = 0

4 GLOBAL ERROR ESTIMATES IN HIGHER SP ACE DIMENSIONS

In this section the global convergence of the algonthm (1 7) on the
problem of interest (1 1), (1 2), (1 3) is considered Followmg the analysis
of the previous section, the error in the method will be broken mto two
components || u — UJ\\ =s || u - uJ\ + | |w 7 - UJ\\, where {uJ} is given by
(3 4) The itération error \\ u — uJ\\ is governed by the regulanty and possible
boundary layers of the contmuous problem for Jïf 8 The discretization error
|| uJ - UJ || may, in addition, be governed by the regulanty properties of the
adjoint problem for JS?* Further, the problem m higher space dimensions
has the added feature that the reduced équation (e = 0 in (11)) has
different properties along the charactenstics than across the charactenstics
the équation is amsotropic

Throughout this section the coefficients of (1 1) will be assumed to satisfy
the hypotheses of Lemma 2 1 so that Be will be coercive m the norm

V.^'2dxV (4 1)

In addition q and v_ are assumed to satisfy the smoothness properties
required by the vanous lemmas in Section 2, which are apphed in this
section

Discretization Error

We assume that e <: h, i e , e0 = h (In case e s= h, it follows from
Appendix 1 that L2-error estimâtes of optimal, or almost optimal order, are
denved without use of defect-correction )

Define, followmg Section 3, u\ eJ e ^ ( f t ) , Ç e Sh by

B t Q ( u \ v ) = ( ƒ , ! > ) , V Ü Ê

tQ(u' + ]-u'9v) = (f9v)-Bt(u*9v)9 Vve
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In order to dérive a bound on the discretization error uJ — UJ, we note that
for 7 = 1,

BZo(u
l- U\w) = 0, VweSh (4.2)

\ \ u x - U l \ \ H ^ C s y 2 h s \ \ u ' \ \ s + l , O ^ s ^ k (4.3)

and in particular

\ \ u l - U l \ \ ^ C h S + ï \ \ u l \ \ s + ] , Q ^ s ^ k . (4.4a)

This follows directly from the coercivity of BEQ. If the boundary conditions
are generalized periodic, or if F_ U F+ is empty this estimate can be
improved to (see Appendix 1)} since the adjoint problem is then more
regular,

\ \ u l - U { \ \ s £ C h s + ] \ \ u l \ \ s + x , O ^ s ^ k . (4.46)

Likewise, in the gênerai case, for 0 =e s =s k,

| | C - ^ | | e o i l « C e J / 2 A ' | | e ' | | , + I> (4.5)

and, if F_ is empty or the problem is generalized periodic

| | ? - e l « C A ' + ' l l e ' H ^ , .

THEOREM 4.1 : Let {uJ}, {U1} be defined as above and e < h. Then,

\\uJ-UJ\\ *sCzö(»-])hs+] j] ||«'||,+ 1 , Oss s l c ,
i = 1

where e0 = h, \x = 3/2, if j ^2, \x = 3/2 if the assumptions of Lemma 2.1
hold and if j = 1 and the assumptions of Lemma 2.3 hold then jx = 1.

Proef: The resuit for y' = 1 follows from (4.3), (4.4). Consider

M 2 _ u2 = u] - U] + e{ - Z] + £] - E] . (4.6)

Then, (^ - E1) e Sh satisfies

Btotf -E\w) = -B,(u' - U\w)

= (B90-3J(ux-U\w)9 VweS*,
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because of (4.2). Hence,
f

5 (g1 -E\w) = ( e 0 - e ) V(ul- Ul).Vwdx, VM; e Sh .
Ja

Setting vr = Ç1 - E] we get

l l€ l-^ILi*<

and in particular,

Hence by (4.5), (4.3), (4.6),

\ \ u 2 - U 2 \ \ l * C h ' + V - ' y \ \ \ u % + i + H e ' l U , ) » ' = 0 , 1 ,

* * C h ° + V - ' y \ \ \ u % + l + \ \ u 2 \ \ s + ] ) , 1 = 0 , 1 .

The estimate for \\uJ — UJ\\ v j 5= 3 follows by induction. D

Remark 4.1 : The regularity required in Theorem 4.1 is stated in terms of
uJ instead of u (or / ) . Heuristically, one would expect L^ l [ ( e 0 — e)(— A)] to

be a bounded operator (in fact, slightly smoothing since e0 => (s0 — e)) so
that uJ and u would have qualitatively similar regularity properties.

Itération Error

Consider now the itération error ô7 = u — uJ. By définition of {uJ} we
have

Lzy=J9 Z ^ Ô 1 = ( e o - e ) ( - A M ) , L EQ * = (E0 - e ) ( - AÔ̂  " l) (4.7)

where j = 2, 3, ..., and S7 satisfies the same (homogeneous) boundary
conditions as u.

THEOREM 4.2 : If T is a regular curve, then

\\u-u>\\ ^C^yle-^Zl\J{\\f\\ + (3/2-OH/k||}

where r — 3/2 if Lemma 2.1 (b) holds and r = 1 if Lemma 2.3 holds.

Proof : By Lemma 2.1 or 2.3

and

C ( e o - e ) | | A K | | « C ( e o - e ) | | A M | | ^ C (^ V ( E 0 - e)
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In the same way,

||Ô2|| « C ( e o - e ) | | A 5 l | | * C(e0 - e) eô'fl (e0 - e) AK ||

and by induction

( ^ )r((B0-e)/eSy||/H- D

Remark 43 : Since, in gênerai, r =2= 1, this theorem would indicate that the
defect correction method does converge very slowly. Local estimâtes will be
improved in section 5 by utilizing the fact that Lemmas 2.1 and 2.3 describe
the lack of regularity due to the boundary layers.

By a similar technique, we dérive the following regularity resuit for
uJ which will be useful in the next section.

PROPOSITION 4.1 : Suppose q§ => 0, O c R 2 is a convex polygon and we
have pure Dirichlet boundary conditions. Then, for 1 =s j =s J,

Proof : From Lemma 2.1 équation (2.2b)

I IAw' l l
Similarly

|| A^II^Ceö^t 11/11

ƒ = 0

and the result follows. D

5. LOCAL ERROR ESTIMATES IN R2

In this section, we restrict our discussion to homogeneous Dirichlet
boundary conditions and convex polygonal domains in R2.

We begin by giving a précise statement of the main local error estimate.
Let,

n = £i$ = n j Z3 o," ZD o ; z>... =5 o ; =D O> (s.ia)

be a séquence of subdomains of Ü such that each O/, Oj satisfy the
hypotheses of Lemma 2.4 with d = e o ^ A and does not admit upstream
cutoff,

j = l ,2 , . . . 9 y. (5.1b)
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In particular, we assume that the boundaries of Tj, TJ are piecewise smooth
with

(r/r eer;.,)- c r - (5.2a)
all points upstream of a point on (F/)° belongs to (IJ)0 (5.26)

\v. w/l ^ c on (F/)" U ( r / ) + , (5.2c)

where, «7- is the outward unit normal to O, .
Suppose also :

v_ has no close arcs in Ö or qo> C(ü) where C dépends upont the first
derivatives of u (5.3a)

(F/)" n F+ is empty , (5.3b)

Cl" is convex and F ƒ = dClj' consists of gridlines of the mesh covering Ci

dist ( a ; ; (F/)+ ) s* C, e0 In ( — ) , and

dist (Clj ; (Fy')°) s= C2 \ / e o m ( — ) •

(5.3c)

Ff consists of grid lines . (53d)

Remark : The constraint that Tj' consist of grid lines in (53d) is not
necessary for the H1 estimate in Theorem 5.1 below but only for the
L2 estimate.

THEOREM 5.1 : Suppose that (5.1a) through (5.3c) above hold. Then, for
ail s > 0, j = 1, ..., / , it follows that for r = 0 :

r\\u- . ^ C ( e 0 - s y [ s ^ H ƒ | |2 , + 1>fi, + r \\f ||2j. „.

If (5.3<i) holds additionally then the above holds for r = L
We shall prove Theorem 5.1 in two steps in, respectively, Theorem 5.3

and Theorem 5.4.
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To prove the theorem it is flrst necessary to establish some local regularity
properties of the continuous defect correction séquence, defined by :
u° = 0 and

LEQ uJ = f - (e0 - E) AUJ ~ ' , in Xi , u J = 0 on dft. (5.4)

THEOREM 5.2: Suppose (5.1a) to (53c) hold. Then, for any positive
integer m and positive number s, there are constants Cx = C t(5, m, u, Cl")
the solutions uJ of (5.4) satisfy for 7 = 1, ..., / < oo,

j - \

£ (e 0 — e ) ; II ƒ ||m + 2/ a1' "*"

Proof : Note that by Theorem 2.1

Similarly,

Thus, by backwards recursion :

(eo-e)' l l / IL + 2/.n/.1 +
 e5

. D

We remark that the estimâtes in the above theorem can be improved or
shown to hold under somewhat relaxed assumptions in several special cases
(e.g., Courant éléments). These extensions would utilize key modifications
introduced for streamline diffusion methods in e.g., Johnson Schatz and
Wahlbin [10], and Johnson and Nâvert [8].

The following result of Nâvert [12] will also be useful in the sequel.
Letting UEQ dénote the solution to : LeQ UEQ = ƒ in ft, ueQ = g on dft, with

E0 5= h define £/ G Sh by

U?Q - Ih(g) (interpolant) on F . ^ ' J
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Thus, UEQ is the usual Galerkin projection of U£Q into Sh. (5.5) can also be
thought of as the Galerkin artificial viscosity of UEQ into Sh, as s0 s= h.

PROPOSTION 5.1 [Nàvert [12; Corollary 4.3, p. 52]] : Let zQ^h,
n'^WczO, be as in Lemma 2.1, and U£QE Hm+ [(Sl), g e Hm+ l(T),

0 =s= m =s= k, integer s. Let s > 0 be given. Then, there are constants

Cx = Cx(s, v, ft"), C2 = C2(s, v9 Q,") andC = C(v, q9 O", Ü, T ) such that

ifthe distance from D.' to (Trr)° and (r")+ is at least Cx ^/~Ë~0 In ( — ) and

C2 ÊQ ln ( — ) s resp., then

»eJ,+ 1n„ + e ^ " > e o | m + | n ) . (5.6.)

M o r e o v e r , if i l ' is c o n v e x , F " c o n s i s t s of g r id l ines a n d w | r » e

t h e n ,

Foliowing the strategy of section 3, we décompose the error u — Uj into
(u — uj) and w7 — UK Thus, Theorem 5.1 is proven in two steps, the first of
which is given by :

THEOREM 5.3 [Itération Error] : Suppose {51a, b) (5.2a, b, c) hold.
Suppose also that v_ has no closed arcs in Ö or that q$> C(v) where

(ü) dépends upon the first derivatives of v_. Assume (F/')" n T+ is empty
and s >0 . Then, there are constants Cx = Cx(s, v9 ÙJ) C2 = C2(s, v, SI")
and C = C(ü, q, ft/', O, J) such that if

dist(n;, ( r / ) + ) ^ c i e o i n ( 1 ) ,

dist («;, (r/)°) &c2j7o\n ( - ) ,
\ 80 /

it follows that for m = 0, 1, 2

7 = 1 , . - , / .
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Proof : Letting uJ dénote the continuous defect correction itération,
:= u - u3 is easily seen to satisfy the following

- O o n 8ft, ô° = w, j = 1, . . . , / .

Applying Nàvert [12, Theorem 2.3, p. 26], which is given in Section 2,
Theorem 2.1, to the itération (5.7) upon the subsets ftj, ü," of ft gives (for
m = 0, 1, 2):

II»J II m , Xî
i;+ II a» Ôy IL.n;

(iterating backward to 80 = M).. .

the last term is bounded using the global estimâtes for the itération error
given in Corollary 4.2. Thus, as 0==:/=sj=s/, V ||A8/|| *s

Ce-3/2( fü-I_Ï J 11/11 and the result follows.

Combining the previous result with Proposition 4.1 gives :

COROLLARY 5.1 : Under the assumptions (5.la) to (5.3c) of Theorem 5.1,
for j = 1, ..., / < oo,

and for j = 1 , . . . , / < oo

•
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The discretization error uJ - UJ is bounded via an induction argument.
For this, we require the following special notation :

2 -
Ja

Further, define the operator
n, :H[(a)^s\a) n {<$>\<$> = o on a ^ n ; }

by
= M?

where w satisfies : for all w e Sh(nf/) n 7/l(fl/')

0 = BeQÜ,,(u- w, w)

s0V(u~ w) .Vw + v.V(u- w)w + q(u- w)wdx ( 5 . 8 )
Jn;

w = Ih(u) (interpolant) on CL - O,"

THEOREM 5.4 : Suppose the hypotheses of Lemma 2.4 are satisjied by
Vt} and (5.1a) to (5.3c) hold. Suppose f(x) is sufficiently srnooth
(f G Hm(Ü,) for m sufficiently large). e0 ^ h. Suppose that each £IJ9

Q," satisfies the hypotheses of Theorem 2A and Proposition 5.1. In
particular : (F/')" c F", (F}')' H F+ is empty, Y~ is part of the faces of ü
and F" consists of grid Unes.

Then, for any s ;> 0 there is a C(s) such that

+ 2 +

/ i / - o

Ï ( g o- e)' | |/| |2 + 2 / ,n ; , , + «ƒ | |„ | . (5-9)
! / = 0

In particular, for any s > 0 there are constants C, =

C,O, ƒ, C„ C2) C2 = C2(/, C„ C2)

, n ; « C,(J, f, C „ C2)A
A + C2( / ; C„ C2) ei, (5.10Û)

and

HK' - ^ | | n ; s C,(y. / , C „ C2) A*4 ' 2+ C\(/, C„ C2) ^ . (5.10/7)
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Prooj. When j = 1 we have :

Thus from, e.g., Nàvert [12 ; Corollary 4.3, p. 52 ; Theorem 4.8, p. 49] we
have, for integer m, 0 === m === k,

We now proceed by induction, by showing that, loosely speaking,
I UJ - ul III ft, is of the same order as III UJ ~ ' - uJ " 1 III a, (.

Defïne 0, = ^ ( M 7 ) - C/7 so that

^ _ ^(uJ) II fl; + ! 0j III n ; , (5.13)

and Qj satisfies for all w e Sh(O,")

= (e0 - e ) ^ ^ " 1 - U^]), Vw)a; . (5.14)

Introducé the cutoff function i|/y which is q0 = a compensating of order
(e0, 7, 51 ) in (flj, Cl"). Note that i|f0y = 0 on F" so we obtain, foliowing, e.g.,
Nâvert [12], Johnson, Nàvert, Pitkaranta [9],

i j + eo(ve,( ey v^) + lieji^ 1±(|(.
2 3u

Hence, for 7 suffïciently large, we fïnd, as in [9], [12],

^ 0 , n ; ( e 7 , W j ) * C , ( II 6 7 III 2 + \ \ % \ \ 2 J - C 2 e j III 6 , III 2fi; .

Therefore,

c(e* 0 III e, III 2n; + 5 e o , n ; ( e , , * e , ) ) ^ III e, III \ + | | e 7 1 | 2 _^ . (5 .15)

From (4.8),

Bf0,a;(Bj, /*(*e,)) = - (e0 - e ) ( V ( ^ - ' - C/̂  " '), V ( / / , ( ^ ) ) ) n ; = 0 ,
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- (e0 - s

s - (e0 - - U> ~ ' ) , V

( ieiL,.) (5.16)

Inserting (5.16) into (5.15) gives

Ni A III 2 , M A M 2 ,

(5.17)

As S 0 & O ( / J ) , taking 7 suffîciently large to hide the appropriate terms in
(5.17) gives

e , III l ; +

(5.18)

We now focus our attention on the last term in the R.H.S. of (5.18).
Expanding :

(e0 - SHVCM' - ' - U' ~ '), V

where :

= (e„ - e)(r, + T2) (5.19)

T2 == - W - ' ) , V

Consider Tx :

TX = - u'

(5.20)
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With v1- the velocity orthogonal to v_ :

a , II2 IL a . II2

(5.21a)
where we have used the properties of i|/ given in Nâvert [12], see also Section
2, Lemma 2.1.

Inserting (5.21) into (5.20) gives the following bound for Tx of (5.19) ;

(5.216)
We bound T2 using similar techniques as in (5.16), (5.17). Indeed,

By interpolation theory :

17 in triangulation of Slj

| a | = 2 ' T /

T, | * + /| = 2 * ' T / ' T / J

Analyzing the components in the sum on the R.H.S. of (5.22) individually :
from Nâvert [12] quoted in Section 2 as Lemma 2.1,

^ Cy~] h"31| 9. ||2 . + Ch s\\ 0. || ] . (5.23a)

From Lemma 2.1 also :

and from the inverse estimate for S* and Lemma 2.1

Further, Lemma 2.1 gives,
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The previous three inequalities then give :

y M = i
[ /| = i

From the higher order inverse estimate :

(5.236)

we bound the last component of (5.22) as

l
V I «I - 2 '

Combining (5.23a, b, c) into (5.22) gives

Thus, as 80 = 0(h),

(s0-

using (5.25) and

(e0 - e) 7-, * (e0 - e)

(5.24)

(5.25)

(which follow from (5.216)) by y suffïciently large in (5.18) gives:

Cs'J 8, III 2o.+ C ( e 0 - e ) | |V(M>- ' - t / ' - 1 ) ^ . (5.26)

A s || w I =s C || w || n . we have

" ' U1 " ' ) || 2Eo II' ©y III l- + C ( e 0 - 8 ) H V ( ^ - ' - C/̂  - O U ; , , . (5 .27)
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To bound the first term in the R.H.S. of the above, note that

III Qj III n ; =s III uJ - yLj{uJ) III n ; + III uJ - UJ III n; • (5-28)

From the global estimâtes for uJ - UJ in Theorem 4.1 applied to

(5.29)

Cl" we have

z \\u'\\k+]) .
/ = l /

Letting Qj be some Sh(Clj) function which interpolâtes uJ on dClj we then

have, again from the global estimâtes in Appendix 1 applied to Cl" that

III uJ - vJ(«i) III „. ^ Chk+i'2\uJ - gj\k+ua. • (5.30)

Using (5.30), (5.29) and (5.28) in (5.27) gives :

III 6, III i. « C (e0 - E) || V(«> " ' - W " ') ||\. +

Local error estimâtes for the artificial viscosity projection operator
j follow from e.g. Nàvert [12 ; Corollary 4.3, p. 52]

, ,n ; , + l « ' l , , r ; , ) • (5-32)

Using the triangle inequality :

III uj - Uj III n. « III Qj III n. + III M-' - | x y ( M
J ) III n;

n ;

(5.31) and (5.32) we obtain a bound for III u'- Uj III a. :
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Let t ing gj =Ih(u
j), which satisfies : \g-\ n„ =s C ||wy|| applying the

trace theorem, using Corollary 5.1 and picking sufficiently high reduces
(5.33) to :

- e Vil ƒ11
fc ) \\J Wk+ i + 2 1 , n ; , ,o

• - i

L/ = o

The theorem now follows by induction. •

CONCLUSION

We have performed an analysis of the global and local convergence
properties of the defect correction method with artificial viscosity. On the
basis of this, the method studied herein seems to have the following
characteristics. When the true solution is smooth uniformly in e, the method
convergences with optimal rates after a few itérations. When there are
characteristic (parabolic) boundary layers the method converges slowly
globally with no mesh refinement. When there are downstream layers the
method will not converge globally, in gênerai, unless the mesh is reflned in
the layer or an exponential weighting function is incorporated in the layer
element. If the mesh is refmed suitably in the boundary layers, the
convergence is as in the case when u is smooth uniformly. in e. A
convergence is to be understood as h -> 0 for j fixed, and j ^ k.

In addition, the dominant error term in the method when sufficiently far
from the layers is independent of s. However, as j increases, we must move
farther into the interior of ft to obtain this nice rate of convergence.
Computational experiments, reported in [6, 7, 4, 5] also show this effect
clearly.

We have considered the most straightforward artificial viscosity + defect
correction formulation. This is because the defect correction method (1.7) is
easy to implement when a finite element package is available to solve
convection diffusion équations for large e. If better results are desired the
defect correction idea could be used with methods that are « tailored » for
the problem, such as the streamline diffusion method studied by Nàvert [18]
(see also Axelsson [1, 2]).
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APPENDIX 1

Optimal Order J^-Error Estimate

Let 0 = U — Uj, r\ = u - Uh where UT is the interpolant of u on
5*. Then by (1.4), (1.5), (1.6),

^ E ( e , e ) = ^ e ( 7 1 , 0 ) ^ s | 0 | 1 | e | 1 + e - ]

+ C | H | || e || + ( f \v.rn\*
J r+

By the usual inequalities

Here |. 11 is the first order Sobolev seminorm. Then if e === h, it follows that

and by a triangle inequality

l l i i - t f l l ^ C e 1 / 2 * ' ! * ! ^ , , r^k. (1)

The L2-error estimate part of this can be improved a little (by /zl/2 if
e = h) if we use the usual duality argument.

Let then

i f * <|> = u - U, 4> = 0 on T _ , s Vc|>. n + i? . n<\> = 0 on F /Y_ .

We assume that «£?* satisfies the regularity estimate

Ce-'llx-tfH. (2)

(Note that by the results of Section 2, this is satisfied when we have only
parabolic layers.) Then

(u~U,u-U)= f
Ja
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and we obtain

Since inf || <|> - <\>h ||y ^ Ch2~v\^\v v = 0, 1, we finally get by use of (1)

a n d (2),

\\U-U\\ ^ (E^h^CB

^ Chr+l\u\r+
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