M2AN. MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
- MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

MARCO CODEGONE

ENRIQUE SANCHEZ-PALENCIA

Asymptotics of the scattering frequencies
for a thermoelasticity problem with small
thermal conductivity

M2AN. Mathematical modelling and numerical analysis - Modéli-
sation mathématique et analyse numérique, tome 23, n° 1 (1989),
p. 87-101

<http://www.numdam.org/item?id=M2AN_1989 23 1_87_0>

© AFCET, 1989, tous droits réservés.

L’acces aux archives de la revue « M2AN. Mathematical modelling and nume-
rical analysis - Modélisation mathématique et analyse numérique » implique
I’accord avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=M2AN_1989__23_1_87_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

= :\_\'] MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
! 1 | MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE

(Vol. 23, n° 1, 1989, p. 87 & 101)

ASYMPTOTICS OF THE SCATTERING FREQUENCIES FOR A THERMO-
ELASTICITY PROBLEM WITH SMALL THERMAL CONDUCTIVITY (*)

by Marco CODEGONE (!) and Enrique SANCHEZ-PALENCIA (%)

Abstract. — We give a physical example of a system, depending on a parameter &, such that,
for e =0, it has an eigenvalue with infinite multiplicity, which, for € = 0, splits into the set of an
eigenvalue with infinite multiplicity and infinitely many scattering frequencies with finite
multiplicity. The system is made of a thermoelastic heterogeneous medium and & denotes the
thermal conductivity of a bounded region of the medium.

Résumé. — Nous donnons un exemple physique d’un systéeme dépendant d’un parameétre tel
que, pour e =0, il a une valeur propre de multiplicité infinie, qui éclate, pour € =0, en
I’ensemble d’une valeur propre de multiplicité infinie et d’une infinité de fréquences de scattering
de multiplicité finie. Le systéme est formé par un milieu thermoélastique hétérogéne et € désigne
la conductivité thermique d’une région bornée du milieu.

1. GENERALITIES

It is known [6], [7] that the thermoelasticity system in a bounded domain
has an eigenvalue at the origin when the thermal conductivity vanishes. This
point of the spectrum splits into infinitely many eigenvalues for positive
thermal conductivity. We consider here an analogous problem in an
unbounded domain, which exhibits a more singular behaviour : for positive
thermal conductivity there is an eigenvalue with infinite multiplicity plus
infinitely many scattering frequencies, the corresponding scattering func-
tions not belonging to the functional space where the problem is considered.
We shall focus our study on the difference with respect to the case of
bounded domain, and the reader is referred to [6], [7] for some questions. In
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88 M. CODEGONE, E. SANCHEZ-PALENCIA

this context, the density and specific heat will be taken equal to 1. Otherwise
weighted spaces should be taken as in [6]. The thermal conductivity
ek and the thermal-elastic coupling coefficient B will be considered isotropic
(i.e. scalar). :

Throughout this paper, the notations are standard. If u is a function,
u| denotes its restriction to the domain E. The same notation is used for
traces. If H is a Hilbert space, H' denotes its dual ; & (H, V') denotes the
space of the continuous operators from H into V, and ¥ (H) = % (H, H).
Vectors in the physical space are noted with boldface types :

(1.1) u = (uy, Uy, Us)

and in the same way, L? and H' will denote (L?)* and (H')?, i.e. the space of
« vectors » with components in the space of square integrable functions and
in the space of functions with square integrable derivatives of order 0 and 1.
The convention of summation of repeated indices will be used, and
d;; will denote the classical Kronecker tensor.
The linear thermoelasticity system (see [4] for instance) reads

Lo u; g 0
(-2 i
(1.3) %(9+Bdivu)—skA9=0

where u and 6 denote the displacement vector and the temperature, A is the
Laplace operator, o7 is the « total » stress tensor, which decomposes into
two parts depending on u and 6 according to

(1.4) ol =o(m)+()
A9 oy =t en®; en@) = (e ot )
(1.6) 5,;(0) = — B35, 0.

The part o is the classical elasticity tensor (or isothermal elasticity tensor)
which depends on the strain tensor e(u) according to (1.5), where
a;jim are the elasticity coefficients, which satisfy the symmetry and positivity
conditions :

1.7) Qijim = Cijml = Amiij

(1.8) Qijim €m €ij = C €5 €;; Y e;; symmetric

for some C = 0.
Of course, (1.2) should be considered in the distribution sense, and then it
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ASYMPTOTICS OF THE SCATTERING FREQUENCIES... 89

implies the transmission condition
T

on the eventual discontinuities of the medium, where the bracket denotes
the jump across a surface with normal n.

Let us recall that the strain-stress relation (1.5) in the isotropic case
becomes

(1.10) 05 = N€py 85 +2 ey <> ajy = N8y 8y + (3 By + 81 8;,)

where A, p are the Lamé constants of the material.

After these generalities on the thermoelasticity system, we consider the
specific case where the space R? is divided into two parts, a bounded one B,
with boundary I', and the exterior region E. The medium is supposed to
have constant properties on each of the regions B and E. Then, the coupling
coefficient B, the conductivity ek and the elasticity coefficients a;;,, are
functions of x of the form :

B .
1.11 B(x) = { B” =const. =0 ifxe B
( ) ) E_const. =0 ifxeE
1 ifxeB
1.12 k(x) = {
12 (x) 0 ifxeE
B .
a;i;,; = const. ifxe B
(1.13) ai}'lm — lE]Im . . :
ijim = isotropic const. ifxe€ E

where it is understood that the aﬁ,m are constants expressed in terms of
Lamé constants A\E, uf according to (1.10). The medium is not necessarily
isotropic in B. On the other hand, we note that (1.12) expresses that the
thermal conductivity vanishes in the exterior region E. More precisely the
thermal conductivity will be e¢k(x), with k(x) given by (1.12), where ¢
denotes a small parameter taking values = 0. In fact, we shall also consider
complex values of £ in a neighbourhood of the origin, in order to use
techniques of holomorphic functions.

On the interface I' we shall prescribe the boundary condition (1.9) and the
continuity of the displacement vector ; moreover, for & %0, we shall
prescribe a Neumann boundary condition for 6 on the side B, expressing the
fact that the heat cannot pass across I' into the region E where the
conductivity vanishes :

(1.14) [ul=0; [ofn]=0 onT

(1.15) 2_: —0 onT,side B, for ¢ # 0, nothing for e = 0 .

vol. 23, n’ 1, 1989



90 M. CODEGONE, E. SANCHEZ-PALENCIA

We note that the term ek(x) A8 in (1.3) may be written ¢ AZ 6, where
A% denotes the Laplace operator in B with Neumann boundary condition.
This may be written in the distribution sense on R as :

0 6L
1.16 — k()= ).
(1:16) *ox, < ) ox; )
In order to study the evolution system (1.2), (1.3) we shall reduce it to a

first order system with respect to ¢ by introducing the velocity field :

du(x,t) .

(1.17) vix,t) = o

We shall study the evolution of U = (u, v, 0) in the space of configur-
ations
(1.18) # = H'(R®) x L2(R%) x LA(R?).

We note that u € H! shows that the first relation (1.14) is automatically
satisfied in the trace sense. The system (1.2), (1.3) with (1.16) becomes :

0 -1 0
(1.19) { 4t A= |-=— 0 B—
U= (u,v,0); 0x; ox;

. 0 0
0 Bdiv —e 2 K3
Baiv =L (k(x) = )

We note that the derivatives are taken in the distribution sense on
R>. Then, &/, maps # into a larger space. In order to define ./, as an
unbounded operator of #, we define its domain

d0;;(u F)
i€ )+ B—ue L?;
ox; ax;

(1.20) D(sf,) = {U: (u,v,8) € # ; —

) 06
ivv—e— (k(x)— L?
B div v sax,-< (x)axi>e }
and we emphasize that this domain depends on . We then have :

PROPOSITION 1.1 : For real € =0, the operator — o, is generator of a
strongly continuous semigroup of bounded operators in F# which solve the
systemn (1.19).
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ASYMPTOTICS OF THE SCATTERING FREQUENCIES... 91

Proof: For the sake of simplicity, we shall choose on L? and
L? the classical norm, and on H' :

(1.21) [u[%:1 = a(m,u)+ [u]?; where
(1.22) au,v)= J , Gijtm em(u)e;(v)dx
R

which is equivalent to the classical one by the Korn’s inequality. Moreover,
changing U(z) = exp (az) V(¢), we have for V an analogous problem with
& . + ol instead of &7 ,. We shall prove that, for sufficiently large positive o,
— (&, +al) is generator of a contraction semigroup (note that the
corresponding semigroup generated by — &/, is not necessarily of contrac-
tion). According to the Lumer-Phillips theorem ([2] or [6]), it sufficies to
prove that o/, + ol is acretive and surjective on #, i.e.

(1.23) Re((#, +al)U,U)y=0 YUeD(H,)

there exists a solution U € D (&, ) of

(1.24) (A, +al)U="TU? foranygivenU? € 5 .

In order to prove (1.23), using the definition (1.19), we obtain :

(1.25) (L. +al)U,U)=(—v,u)yi+a(,v)— (B6,divv)z+

+ (Bdivv,8)2+¢ J 1012dx + afullZ +ofv]Z + ol 6|2
B

and taking the real part, we have (1.23) for a = 1. We note that (1.25)

amounts to formal integration by parts ; in fact it is rigorously obtained by
taking the product in 3# of &/, U with U":

U= (W, v,0")e D x Dx2 (=spacedensein )

and letting U”" - U in 4 ; as for U", integration by parts is merely the
interpretation of (1.19) in the distribution sense.

In order to prove the solvability of (1.24), we write it down, with
a=>1:

—v+au=u?

90;;(u
— i€ )+Ba—9+avi=v?
an ax,-

. ] a0
Bdivv—e — (k(x)—-> +ab =09,
ax,- axi

vol. 23, n° 1, 1989



92 M. CODEGONE, E. SANCHEZ-PALENCIA
Eliminating v this is equivalent to

d0;;(u) 36
4B — 4o’y = v+ auf
Bx] axi i

(1.26) -

0 06
. 60— — — i =09 _— ivu? .
(1.27) af — e o, <k(x) x, ) +apdiva =69 —Bdivu

In the case £ = 0, we solve (1.27) with respect to 6 and we substitute into
(1.26), which becomes a standard elasticity problem for the modified
elasticity system :

9

(1.28) %,

(0;;(n) + B*div u) = given terms’

which is solved by the standard Lax-Milgram method ; formal integration by
parts is performed as above.

The case & >0 is in fact analogous ; but in order to solve (1.27) with
respect to 8 we must study separately the restrictions of 6 to B and E. In B,
(1.27) is solved with the Neumann boundary condition (1.15). In this case
(1.24) is also solvable. MW

Now, it is easily seen that zero is an eigenvalue of /.. The eigenspace is
the kernel of the operator, i.e. the (closed) subspace of the solutions of
&. U = 0. We have immediatly :

PROPOSITION 1.2 : The kernel of . is

90;;(u) 30
ij
o, +B P 0} for e =0

do;;(w) - 90
ij _
ax; +Ba_x,-_0} for e #0.

{(u,v,e)ef;v:o,—

{(u,v,G)e.}f;v:O,9|B=const.,—

It is evident that this kernel for e # 0 is a strict subspace of that for
¢ = 0. We shall see that as ¢ — 0 there are « infinitely many » scattering
frequencies converging to 0.

2. THE SCATTERING FREQUENCIES

Let us seek for solutions of (1.19) depending on ¢ by the factor
exp(— {t), i.e. of the form

(2.1) Ux,t)=e¥U(K).
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ASYMPTOTICS OF THE SCATTERING FREQUENCIES... 93

We shall also denote { =iw, and either { or w will be called the
corresponding frequency (in fact the genuine frequency is w/(2 w)) : this
leads to the system

—v=_u
_60,‘/(“)_*_833_&).
22) 4. U=(U< ax; ax;, '
i 9 090
Bdlvv—sg;i (k(x)a_x[> — 6

and we note that, for x € E, i.e. k(x) = 0, this is equivalent to
(2.3) - % (0;;@) + (BEY divud;) = -y
)

which is a modified elasticity system with the Lamé coefficients
2.4) A+ (BE), n insteadof X\, p.

Then, the behaviour at infinity of the eventual eigenfunctions is the same as
for the elasticity system. It is known that this system is much alike the
Laplace equation [1] ; there are no eigenvectors (belonging to the space),
and they must be replaced by scattering functions ; the corresponding
frequencies are the scattering frequencies, which replace the classical
eigenfrequencies. In order to define them, we consider the fundamental
solution of the elasticity system (2.3), i.e. the solution G' of

9 .
(2.5) - (0,;(G") + (BEY divG' 8;;) + 12 Gl = 8,
]

where & denote the Dirac mass at the origin, and §;; is of course the
Kronecker symbol. This function is given by ([1] or [3]) :

? r cz axl axl

26) Gl 0) =

m

1 81.1 etlr/b 1 9?2 ( exb/a e:;r/b )
r r

for { # 0, with
2.7 a?=N+ BEY+2u; bP=p; r= x|

where the sign + or — are used in the so-called outgoing or incoming
fundamental solution, respectively. This denomination is obvious on
account of the dependence exp(— {t) on time. Each one of the solutions
depend homomorphically on ¢ € C and they both become for { = 0 the

vol. 23, n° 1, 1989



94 M. CODEGONE, E. SANCHEZ-PALENCIA

fundamental solution of the static elasticity system :

1 [%1 1 1 3%
2.8 Gl(x,0) =L |21 <___>_ ,
( ) ](x ) 40 [ bz r + az bz ax] axl

Remark 2.1 : The fundamental solution for { = 0 (2.8) is homogeneous of
degree — 1, and consequently it enjoys the behaviour at infinity

aG(x,O)zr_g‘ BZG(x,O)wr_3

- -1.
2.9) Gx,0)=r"; ox, ; o, o1,

, ¥ — 0

but this is not true for { # 0, (2.6).This property in the case { = iw, wreal, is
associated with the Sommerfeld radiation condition at infinity and energy
flux at large distance, but the case { = 0 is singular in this respect.

DEFINITION 2.2 : The scattering functions and frequencies of the thermoe-
lasticity system (2.2) are the solutions u # 0 of the system of equations (2.2)
which are outgoing, i.e. they are, for sufficiently large |x|, convolutions of
the outgoing fundamental solution (i.e. (2.6) with sign +) with functions or
distributions with compact support. B

In order to transform the problem of the scattering frequencies into a
problem in the bounded domain B, we shall solve the Dirichlet problem in
E:

Find u satisfying (2.3) in E and
(2.10) u=¢onl

u is outgoing

1

where ¢ is a given element of H?(I'). Outgoing is understood as in
Definition 2.2. This problem is well posed unless for some values { (the
scattering frequencies of the Dirichlet problem in E) which form a discrete
set contained in the halfplane Re {{} = 0. For the values { for which (2.10)
is solvable, we may compute

(2.11) (o;;) + (BEY divud;) nj|r = (BQ) @),

where the right side constitutes a definition of the operator G. In this
connection we have the following proposition, which is the exact analogue
of Proposition IX.3.8 of [6]:

PROPOSITION 2.3 : The operator G (L) defined in (2.11) is a meromorphic
function of » (witlh poles at fhe scattering frequencies of problem (2.10), with

values in Q(HE(I‘), H_E(I‘)). In particular, it is holomorphic in a
neighbourhood of { =0. M
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LEMMA 2.4 : For { = 0 the operator G(0) satisfies
@12) (SO e, yytut = [ afimem@) e, @)+
E

+ (BE)? div u® div u¥] dx
1

for any ¢, b e HE, where u®, u¥ denote the corresponding solutions of
(2.10).

Proof: As 0 is not a scattering frequency of (2.10), u® and u* are well
defined. Let us write (2.10) (and (2.3)) with ¢, u®. Taking the product with
u’ and integrating by parts on Eg = EN {|x| < R} for some large R, we
obtain an expression analogous to (2.12) but with the right side integrated
on Ej instead of E and the supplementary term

(2.13) J. [o7;(u®) + (BE) div u® 8] n;u} dS
|x| =R

but u®, u¥, which are convolutions of G (x, 0), behave at infinity as (2.9).
Then, letting R — o0, we get (2.12). MW
In order to transform the scattering frequency problem into a problem on

the bounded domain B, we shall define the sesquilinear form on
H!(B):

Q1) a@iuw)= | aliy en@) ey @) dr— (G uln Wl
B

and the corresponding operator of % (H'(B), H(B)'):
(2.15) (A u, W) g1 gy g1z = aC,u, w) Yu,we H'Y(B).
We then have :

LEMMA 2.5: For [ € C (different from the scattering frequencies of the
Dirichlet problem in E, (2.10)), the form a({) defined in (2.14) is continuous
on H'(B) and depends holomorphically on { for fixed u, w. For
{ =0 the form is hermitian. For sufficiently small |{|, zero belongs to the
resolvent set of A(L), and A(L)™! is holomorphic of { (with values either in
L HY(B)', H'(B)) or in £ (L*(B)). The same result holds true for
A+

Proof: The first assertion follows from Proposition 2.3. For { = 0, we
have, from (2.14) and Lemma 2.2 :

(2.16) a(@;u,w)= J‘ agj,m em(u)e;(W)dx +
B

+ JE [aﬁ,m em(@*)e;(W*)+ (BE)Y div u* div w*] dx

vol. 23, n° 1, 1989



96 M. CODEGONE, E. SANCHEZ-PALENCIA

where u*, w* denote the extension of u and w to E defined by the solution
of the outer Dirichlet problem (2.10) with { = 0 and the data ¢ = u| or
w |- We note that the traces of u and u* coincide on I' (as well as those of w
and w*). Thus, the form a(0) is hermitian. Then, it is classical (see [2] or
[6], chapter V, if necessary) that the corresponding operator A({) is
holomorphic with values in % (H'(B)', H' (B)) or even in % (L*(B)), when
taking the restriction to L>(B), i.e. considered as an unbounded operator in
L?>(B). Moreover, because of the compact imbedding of H'(B) into
L%(B), it is an operator with compact resolvent. As a(0) is hermitian,
A (0) is selfadjoint. From (2.16) we see that a (0, w, w ) = 0 and consequently
the eigenvalues of A(0) are real and =0. In addition, 0 is not an
eigenvalue. For, from (2.16),

(2.17) a0,u,u)=0=¢;)=0, e¢;u*)=0

which shows that u™ and u are rigid motions in E and B. In fact they are the
same rigid motion on R? because the traces of u* and u coincide on I.
Moreover, as we saw at the end of the proof of Lemma 2.4, u* tends to zero
at infinity. Then, the rigid motion vanishes and (2.17) implies u = 0. This
shows that 0 is not an eigenvalue of A(0) and then A(0)~ ! belongs to
£ (HY,H') or £ (L?). According to classical holomorphic perturbation
theory, A({)"! and [A (L) + £*]"! are well defined and holomorphic in a
neighbourhood of £ =0. MW

Now we are able to write the scattering problem as a functional problem
on B:

PROPOSITION 2.6 : For { € C (different from the scattering frequencies of
the Dirichlet problem in E (2.10)), the problem of finding the scattering
frequencies and functions of the thermoelasticity problem (Definition 2.2) is
equivalent to find { € C, u € H'(B), 0 € L?(B) (not both vanishing) such
that

»

(2.18) a(l;u,w)— J B2 6 divw dx = — {’(u, w2 VYwe H'(B)
B
(2.19) —eAO=((0+BBdiva) in B

(2.20) 30/on =0 onl fore=0
where « equivalent » means that u in (2.18)-(2.20) must be extended to E by
the solution of (2.10) with the corresponding { and the datum ¢ = u|,.

. Proof: Definition 2.2 is equivalent to

acr,-]-(u)+ 8 ﬂ _ 2w

ox j ox i

(2.21) -
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(2.22) ‘8532 (k(x):—i) =20+ pdivu)

in B and E, with the transmission and boundary conditions (1.14), (1.15) on

I', and u outgoing. Then, solving in E, we see that this is equivalent to
(2.21), (2.22) in B with the boundary conditions on I':

(2.23) ofn;=(B()u|) and 38/n=0 for =0,

because 05 n; and u take the same value on both sides of I'. Now, (2.18)-
(2.20) is merely some kind of variational formulation of this last prob-
lem. H

Let us think about (2.18), (2.19) with £ = 0, { # 0. Solving (2.19) with
respect to © and inserting it into (2.18) we see that this problem is equivalent
to the purely elastic problem with the coefficients

(224) aijlm + 8‘] Blm BZ .

As these coefficients take in general different values in £ and B, this is in
fact a diffraction problem of elastic waves by the obstacle B. This problem
has in general scattering frequencies {;, which form a discrete set with

The preceding Proposition furnishes in particular a description of the
scattering frequencies in a neighbourhood of { =0 (as { =0 is not a
scattering frequency of (2.10)). This will be used in next section to prove our
main result. Nevertheless, we also have the following property of continuity
of the scattering frequencies with respect to &, which is proved exactly as
Proposition VII, 9.6 of [6]:

PROPOSITION 2.7 : Let A be an open domain of the complex plane the
closure of which does not intersect the real axis and do not contain scattering
frequencies of (2.10). Then, the scattering frequencies of the thermoelasticity
problem { (&) contained in A are continuous functions of e which converge, as
e N0 to the scattering frequencies of the elasticity problem with the
coefficients (2.24). Here continuous is taken in the classical sense of
perturbation of eigenvalues : an eigenvalue may split into several ones.

|

3. SCATTERING FREQUENCIES IN THE VICINITY OF THE ORIGIN

In order to study the scattering frequencies near { = 0, we shall perform
the dilatation

(3.1) 14
vol. 23, n° 1, 1989
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98 M. CODEGONE, E. SANCHEZ-PALENCIA

where z is the new spectral parameter, which we consider in any bounded
region of C (and then ¢ of order O (¢)). The equations (2.19), (2.20) become

(3.2) — A0 =2z(0 +p2divu) inB
where Ay denotes the Laplacian with Neumann boundary condition. Now
we shall « solve » (2.18) with respect to u and substitute into (3.2) to obtain

a functional equation in 6. Let us define an operator B € % (L*(B),
H'(B)') by :

(3.3) (BO, W)y 1 = ( BBodivwdx YweH!(B).
/B

Then, (2.18) becomes :
(3.4) [AZ)+*]u=Bs.

According to Lemma 2.5, this equation may be solved in a neighbourhood
of { =0 by

(3.5) u=[AQ)+¢)'Be.
In order to substitute this into (3.2), we define the operator K({) by :
(3.6) K(t) 6 =pEdiv {[A(L) + ?] ! Bo} .

LEMMA 3.1 : The operator K({) is well defined for ¢ in a neighbourhood of
the origin. It is there a holomorphic function with values in % (L*(B)). The
operator I + K({) is an isomorphism of L*(B) for sufficiently small
|¢|. Moreover, K(0) is hermitian and

(3.7) (K(0)6,0),23,=0 VY06e L%B).

Proof: The first part is obvious from Lemma 2.5. Let us study
K(0). Let 8 and ¢ be arbitrary elements of L?(B). According to (3.5) with

{ =0, let u®, u® be the corresponding solutions of (3.4), i.e.
(3.8) A)u®*=Be; A0)u’=Bo

then, let us take the scalar product of the first one with u® (in fact the duality
product between H' and H!): by virtute of (2.15) and (3.3), we have :

(3.9) a(;u®,u®) = J B8 ¢ div @® dx .
B

Moreover, from (3.6),
(3.10) K(0)6 =p2divu
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thus

(3.11) (¢, K(0) 0)25y = J B2 ¢ div u® dx
B

and by comparison with (3.9) and using Lemma 2.5, we see that this
expression is hermitian. Moreover, taking in (3.9), (3.11) ¢ = 8 we see that
(3.7) follows from (2.16). It is then classical that [I + K(0)]" ! € £ (L*(B))
(see [6], Theorem IIL.6.5 if necessary). The same result remains valid for
sufficiently small [{|. Thus, I + K({) is an isomorphism. W

Now, (3.2) becomes

(3.2) —AN0 =z[I + K(e2)] 6

which is an implicit eigenvalue problem in L?(B). We shall write this under
a more classical form by applying the isomorphism [/ + K(£)]™! (Lemma
3.1) to (3.12), which becomes :

(3.13) A)B=20; (=c=z,
where
(3.14) A= +K@T ' (—ay).

We then have :

LEMMA 3.2 : A(L) with sufficiently small || is a family of holomorphic
unbounded operators of L*(B). For { =0, A(0) has eigenvalues, noted
z;(0) which are real and positive, tending to + o0 as i — o0 and with finite
multiplicity. According to classical holomorphic perturbation theory,
A (L) has the eigenvalues z;({) which are algebroid functions of L, i.e. they are
holomorphic functions of some fractional power (/P of ¢, p integer
= 0.

Proof: Let us consider the domain of — Ay as an unbounded operator of
L*B), i.e.:

(3.15) D(-Ay)= {0 H¥B),30/on =0 onT)

which is a Banach space either for the norm of H? or the graph norm of
— Ay

Let us consider A({) as an unbounded operator on L%(B) with domain
D(—Ay). As [I + K(£)]™ ! is an isomorphism, A ({) is closed, as it is easily
seen.

Moreover, its domain is independent of { and A({) 9 with a fixed
6 € D(—Ay) is holomorphic. Thus, A({) is a holomorphic family of
unbounded operators [2] or [6], and as a consequence, the isolated
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eigenvalues of finite multiplicity are algebroid functions of the parameter ¢.

It only remains to prove the conclusions on the eigenvalues of
A (0). Using again the isomorphism, we write the eigenvalue problem for
A(0) under the form

(3.16) (—Ay) 0 =z[I +K(0)]6 in L?*(B)

but — Ay and K(0) are selfadjoint and positive ; it then follows easily that
the eigenvalues are real and positive (of course, z = 0 is an eigenvalue, with
the eigenfunction 6 = const.). Now, in order to prove that the eigenvalues
z;(0) actually exist and form an infinite sequence, it sufficies to prove that
A (0) is an operator with compact resolvent. Let us take p = 0 and consider

(3.17) [A(O)+pnI]0=f inL*B).

We shall see that [A(0) + pl ]~ ! is well defined and compact in L?(B). We
see that (3.17) is equivalent to

{(—Ay+r[I+KQO)]} 6=[I+K(©O)]f

and the left side is the operator associated by the classical Lax-Milgram
theory to the form

(grad 0, grad 8),2) + w([I + K(0)]6, 8),25)

on H'(B), which is coercive by (3.7). Then, the resolvent is well defined and
continuous from LZ2(B) into H'(B) (and even into D(— Ay)) and thus
compact in L%B), QE.D. ®m

Coming back to (3.12), finding z as a function of ¢ is equivalent to
« solve » the implicit equation

(3.18) z =2z;(s2)

for each i, where z; are the functions quoted in Lemma 3.2. We shall
disregard the first eigenvalue, z; () = 0, corresponding to the eigenfunction
6 = const. As we said in Lemma 3.2, z;({) has in general an algebraic
singularity as { = 0, i.e. it is a p-valued function which is expressed as a
holomorphic function f of {!/? with the p values of it. In order to use the
implicit function theorem for holomorphic functions, we use the same
device as in [S]: we write

(3.19) (P = gl/P VP 15 /Py
and (3.18) becomes
(3.20) F(Z,m)=0 F(Z,m)=2% - fi(nZ).
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In order to solve in a neighbourhood of
£=2z(0)/", m=0,

we check that at this point, 8F /82 % 0. Then we obtain the implicit function
Z(m) and then

Z:Ep(ﬁl/p)

which is a p-valued function of &, which we shall denote f;(¢!/?). Finally,
¢ = ef(¢!/?), and we have proved the following :

THEOREM 3.3 : The considered thermoelasticity problem, with small €, has
infinitely many scattering functions { near the origin, of the form

(3.20) {=zef;(s/7)

which have in general algebraic singularities (i.e. each one is a holomorphic
function of some root /P of €). The values f;(0) are real and positive, and
form a sequence tending to + co. It should be noticed that all the functions
(3.20) are not necessarily defined simultaneously for sufficiently small € ; but,

taking a finite number of them, they are well defined for sufficiently small
€.
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