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SHARP MAXIMUM NORM ERROR ESTIMATES
FOR GENERAL MIXED FINITE ELEMENT APPROXIMATIONS

TO SECOND ORDER ELLIPTIC EQUATIONS (*)

Lucia GASTALDI Q) and Ricardo H. NOCHETTO (2)

Communicated by F. BREZZI

Abstract. — In this paper we analyze the approximation properties in L00 of mixed finite
éléments for second order elliptic équations. The analysis relies on abstract assumptions on the
finite element spaces involved and holds for the whole range of the index k of the discrete spaces.
Sharp asymptotic Lm-error estimâtes are derived for both the scalar and the vector fields. A
superconvergence estimate is proved for the L2-projection of the scalar unknown. As a resuit, the
modified scalar field provided by a suitable element-by-element postprocessing is shown to be
superconvergent in L°°. A hybridization of the mixed method is introduced and the additional
information provided by Lagrange multipliers is discussed in maximum norm. The required
abstract properties are enjoyed by Raviart-Thomas-Nedelec mixed finite éléments in 2-D and 3-D
as well as by the new families of mixed finite éléments recently introduced by Brezzi-Douglas-
Marini in 2-D and by Brezzi-Douglas-Durân-Fortin in 3-D.

Resumé. — On analyse les propriétés dans Lœ des approximations par éléments finis mixtes
pour les équations elliptiques du deuxième ordre. L'analyse est basée sur des hypothèses
abstraites pour les espaces d'éléments finis et s'applique dans des conditions très générales. On en
déduit des estimations optimales en norme L*3pour les champs scalaire et vectoriel. On démontre
une estimation de superconvergence pour la projection L2 de Vinconnue scalaire. De plus le
champ scalaire modifié, obtenu par un postprocessing effectué élément par élément, est
superconvergent en L°°. On introduit la formulation mixte-hybride de la méthode et on analyse
dans L00 les informations supplémentaires fournies par les multiplicateurs de Lagrange. Les
hypothèses abstraites que nous utilisons sont vérifiées par les éléments finis mixtes de Raviart-
Thomas-Nedelec en 2-D et 3-D et aussi par les éléments récemment introduits par Brezzi-
Douglas-Marini en 2-D et par Brezzi-Douglas-Durân-Fortin en 3-D.
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104 L. GASTALDI, R. H. NOCHETTO

1. INTRODUCTION

New families of mixed finite éléments to approximate second order
elliptic problems have been introduced recently as alternatives to the usual
Raviart-Thomas-Nedelec spaces [15, 20]. Two families, one based on
simplices and the other on rectangles, were proposed by Brezzi-Douglas-
Marini in two dimensions [6] ; the natural analogues in three dimensions
were presented by Brezzi-Douglas-Durân-Fortin [4], The key idea in
constructing these new discrete spaces was to modify the Standard mixed
finite éléments of Raviart-Thomas-Nedelec but preserving their main
property, which is expressed in the following commutative diagram :

div

Here x£ and M£ stand for the discrete spaces of order k s= 0,
n = 2, 3 dénotes the dimension and IIJ, P£ are suitable interpolation
operators [4, 5, 6, 7, 15, 20] ; a précise définition is given in section 5. This
property implies the mf-sup condition of Brezzi [3] and, consequently, the
stability of the discrete scheme. Moreover, it simplifies the L2-error analysis
giving also a superconvergence error estimate for the scalar field as shown
by Douglas-Roberts [9] and Johnson-Thomee [13].

Within this framework the question whether the above diagram is the
suitable abstract setting to analyze the L°°-accuracy arises quite naturally.
The primary aim of this paper is to dérive sharp error bounds in
L00 under this gênerai setting and, next, to apply the abstract results already
obtained to getting rates of convergence for the above families of mixed
finite éléments in 2 and 3-D. Moreover, we prove that the différence
between the L2-projection of the scalar field and the discrete solution
superconverges in L00. This f act allows us to show that the modified scalar
field produced element-by-element by a simple postprocess is asymptotically
more accurate in L00. As a second by-product we can analyze the
hybridization process and exploit the further information provided by
Lagrange multipliers. Our basic tooi in proving the abstract L°°-results is, as
usual, the Nitsche's method of weighted Sobolev norms [16, 17, 8, 14, 18].

Maximum norm error estimâtes for Raviart-Thomas-Nedelec spaces were
obtained by Scholz [21, 22, 23], but excluding the lowest order approxi-
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mation which is undoubtly the most important in practice. Moreover,
Douglas-Roberts [9] and Johnson-Thomee [13] proved L°°-error estimâtes
for the scalar unknown in 2-D that hold for the entire range of the index k,
but their techniques do not lead to an error bound for the vector unknown.
A full error analysis in 2-D for both variables was recently done by Gastaldi-
Nochetto [11, 12]. While this paper was being written, we learned that
Durân [10] had derived sharp ZAerror estimâtes (1 ̂  p ̂  oo ) for the above
families as well as for the Brezzi-Douglas-Marini spaces. However, his
technique does not apply in more than two dimensions.

The new families of mixed finite éléments introduced in [4, 5, 6,7] possess
the same asymptotic accuracy for the vector unknown as the Raviart-
Thomas-Nedelec ones but at lower computational cost. So they are designed
to be compétitive in approximating the variable for which mixed methods
are known to work better. We shall be mainly concerned with these new
families because the Standard ones in 2-D were recently treated in [11, 12].
Moreover the present ideas are a natural extension of those in [12] where a
rather gênerai second order elliptic operator was considered ; hence we
restrict ourselves to the Laplacian. For u and p being the scalar and vector
fields associated with - Au = ƒ, our main results are summarized in
table 1.1.

TABLE 1.1
Asymptotic L™-Error Estimâtes,

l|p-pfclk~
||u-uft||L~

II«-«ÏIU~

R-T-N

/l* + 1|log/i]||/||iy*,~

hk+2\\ogh\2\\f\\Wk.ot>nWl,n

B-D-M & B-D-D-F

^+1|log/i|||/||v7*.-

^fc||/ll^.«>
hk+2-s"\\ogh\2-*»\\f\\Wk.„

There uh and ph stand for the discrete scalar and vector fields and
u£ indicates the modified scalar field. Some logarithmic factors can be
removed under siightly stronger assumptions on u and ƒ (see section 5).

The paper is organized as follows. In section 2 we state the notation and
the abstract assumptions under which the error analysis holds. In Sections 3
recall some technical results for weighted Sobolev norms and we prove
other new ones in n dimensions. The proof of the L°°-error estimâtes is
carried out in section 4 ; we demonstrate that the abstract framework
provides optimal error bounds according to the approximation theory. This
is so for the whole range of the index k with exception of the lowest order
method for which a logarithmic factor occurs. Moreover we construct a
modifed scalar field which is asymptotically more accurate in L00. These
abstract results are applied in section 5 to the new families and the standard
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106 L. GASTALDI, R. H. NOCHETTO

ones in 2-D and 3-D. Finally in section 6 we analyze in L00 the hybrid
formulation.

2. NOTATION AND ABSTRACT ASSUMPTIONS

Let H be a regular bounded domain in R/1 (n s= 2 ) and let u be the unique
solution of the following model problem

(2.1) u e Jtf<}(fl) : - Au = ƒ in O .

The associated vector unknown p is defined by

(2.2) P = - g r a d u •

Let {TA} h be a family of regular and quasi-uniform décompositions of ft
into triangles or rectangles in 2-D, and the corresponding generalizations in
higher dimensions ; hère h > 0 dénotes the mesh-size. Boundary finite
éléments are allo wed to have one curvilinear edge [4, 6, 7] ; so we are
implicitly assuming that Q = U{T: T e 7h}. This simplification does not
yield a loss of generality [13].

Let us now introducé the functional spaces we shall work with, namely

X : = H ( d i v ; n ) = {qe [L 2 (H)f : div q e

(2.3) X*={qeX:q\Te[H\T)]n
 V I G T , } ,

The mixed formulation of problem (2.1) is the following first order system :
seek a pair {u9p} e M x X, such that

(2 A\ (P> <?) — (div q, u) = 0 , V ç e X ,
^ * ' (divp,v) = <ƒ,!>>, VreM,

where <., . > stands for the inner product in M. Let x£ and M£ be the finite
dimensional approximating spaces of order k s= 0 [4, 6, 7, 15, 20] ; namely
they satisfy globally X j c X , Mk

h <= M and locally

( A 1 ^ ri*^ ̂ T*^ ~\n /— Y ^ i p ' ( rr\ ̂ - ivi^ i

for all T e Th where either ƒ = k or j = k — 1 provided A: s= 1. Here
P z ( r ) dénotes the set of polynomials of total degree / restricted to
Te TA. The mixed finite element approximation of (2.1) reads as follows :
find a pair {uh,ph} e M | X X£ such that

(2.5) ^ qh) ~ <diV qh' Uh) = °' *q" £ X^ '
(divph, vh) = (f, vh) , VüA e M^ .
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Let P% dénote the L ̂ projection operator onto M£ ; since M£ is defined
without continuity constraints, P\ is local. Let n£ be a local interpolation
operator which satisfies the following commutative diagram [4, 6, 7, 15,
20]:

In other words, div (X*) = M* and

(2.6) div Uk
hq = Pfdiv q, V ^ G X .

In particular, (2.6) holds for all q e [Hx(fl)f. These operators are assumed
to satisfy Lp-approximation properties [4, 6, 7, 15, 20], namely for all

j h and qe [Wk + hp(tl)]n with

(A3)

The primary tooi in our error analysis will be the use of weighted Sobolev
norms. This technique was introduced by Nitsche [16, 17] and Natterer [14]
for conforming finite element methods, and was first applied by Scholz [21,
22, 23] and more recently by Gastaldi-Nochetto [11, 12] for Raviart-
Thomas-Nedelec mixed methods in 2-D. Let us now introducé the
corresponding notation and recall some elementary properties. The weight
function a is defined by

(2.7) CT(X):= ( | x - ^ 0 | 2 + e2)1/2
? x,xoetl,

where |. | dénotes the Euclidean distance in, R" and 9 = C * h with
C * 5= 1 being a constant to be specified later on. Then a satisfies the
following non-oscillation property [17, p. 295] :

(2.8) m a x a ( x ) ^ C min a(x), V T E T ^ .
xeT xeT

For a e R and i e N, the weighted Sobolev norms are defined by

(2.9) IID'i; faa := £ <o-a dKv, 9Ki;>, Vi? e Hl'

vol. 23, n° 1, 1989



108 L. GASTALDI, R. H. NOCHETTO

A trivial conséquence of (2.7), (A3) and the local character of P\ and
n£ is that they approximate well also in weighted norms ; more precisely

(2.10) || v - Pkv ||a„ ^ CV+ !||D' +1 v ||ff„ ,

(2.11) \\q-nk
hq\\&t+h\\div(q-n

for all a 6 R, v e H' + 1(ft) and q e [Hk + 1(ft)]n. A further superapproxi-
mation property of Tlf, is required namely,

(A4)

for all ̂  e Xj, and a, p e R where C :> 0 does not depend on qh9 h, 9, a and
p. This property was proved by Scholz [22] for Raviart-Thomas-Nedelec
mixed methods using the Bramble-Hilbert lemma. The same ideas apply in
this context.

3. ON WEIGHTED SOBOLEV NORMS

Let us start by recalling two important properties of the weight function
er. The first one relates derivatives of aa (a e R) with powers of a [17,
p. 298] namely,

(3.1) |9'<ra0O| * s C ( / , a ) o*- ' (*) , Vx 6 fl .

The second resuit is the elementary estimate [17 ; 8, p. 149] :

(3.2) f a - ^
| l o g e | ,

The relations between weighted and L^-norms follow then from the
previous ones and inverse inequalities. In f act, we have

H 3Ï lit; II < r i l uil \®{n~a)/2, forain ,. p r o
\ó'0) \\V\\cj-a ^ C II17 H l 0 0 ! M n M / 2 r J V S L ,

LI log 6|1/z, for a = n

(3.4) | | x | | L ^ C ( e 7 ^ ) 1 / 2 | | x | L - a ï f o r a e R , x e M j (
where x0 in (2.7) is chosen in such a way that |x(*o)| = IIXIIL00*

idea of Nitsche's method of weighted norms is that through the previous
relations it allows one to work in L2(H) instead of LQ0(H) and to use duality
arguments. Let us conclude by establishing some a priori estimâtes in
weighted norms. The first result is due to Nitsche ; see [16, p. 266 ; 8, p. 160]
for n = 2 and [18, p. 74] for n > 2.

M2 AN Modélisation mathématique et Analyse numérique
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LEMMA 3.1 : For every v e i/o (ft) n #2(ft) we W e

(3.5) | |ö%||0 ,+ ||Z>i7 ||^_a « C ( |Iog 61

The second estimate was proved by Rannacher-Scott in two dimensions
[19, p. 442]. We are going to demonstrate it now for any dimension and to
extend it also to a critical value of the exponent a, say a = 2.

LEMMA 3.2: Let beX be given and let v ë HQ(Ü,) D H2(O,) be the

solution of - Av = div b. Then for any 0 < a <: 2 we have

(3.6) ||D^||ff„ + ̂ C ( a ) ( | | d i v è | | ^ + <I

Moreover, for a = 2 this estimate dégénérâtes as

(3.7) ||Z>2b||o,+2+ | |D.; | |^C(| |divfc| | f f„+

Proof: By a simple calculation as in [19, p. 443] using the f act that
3ft is regular, and thus ||HI#2(
w e Ho(ft) n H2(£l), we easily arrive at

Therefore it only remains to estimate ||Ü ||CT«+«-4. TO this aim let us use the

intégral représentation of v in terms of the Green function G(.,.)> namely

v(x)= \ G(x,y)divb(y)dy = - \ DG(x, y) . b(y) dy .
Ja Ja

Moreover, it is well known that

\DG(x,y)\

Then using Cauchy-Schwarz inequality and Fubini's theorem, in this order,
we can write

H2.+.-* f c (x)—(f
Jn \ Jn

voi. 23, n° 1, 1989



110 L. GASTALDI, R.H. NOCHETTO

So the assertions follow from the estimate

Ja
_ for 0 < a < 2

a\y-x\n~l \ J n \z~x\n-l~" f "~^^ 1|log 0 I/O2 , for a = 2

which holds uniformly in y e Q,. The rest of the proof consists of showing
this bound. We proceed in two steps.

Step 1 :

j
J n

\z-x\n-1 , f o r O < a = s 2 .

Let us first assume that \x — xo\ ^ 0 where x0 s Ci was introduced in (2.7).
Then \x — z\2 ^ 2(62 + jx0 — z|2) and using polar coordinates we get

a \z-x\n~l e" +

^"-1 ^ ce-a

where <i ̂ » 0 stands for the diameter of 12, Suppose now that |x — JC0 | > 0
and, in addition, let II be decomposed into the sets

nx:= {ze H : \ z - x \ ^ | J C - J C O | / 2 } , fl2 :=

For z G fl1 we have | JC0 - z \ ^ | JC - JC0 | / 2 ; hence

f °V-{n+a'd^ £
Jajz-xl"-1 \x-xo\

n +

| * - * o l

For £l2 ûistead we can write

-XoT 1 Jo P

Qa\x-x0\

This complètes the first step.

Step 2 :

n l ^ - ^ T ^ 1 "̂  11 log 61, fora = 2.

M2 AN Modélisation mathématique et Analyse numérique
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Let us now décompose H into the sets

n3 := [x e VL : \x - y \ ^ \x - JCO| }, n 4 := n \ n 3 .

Taking polar coordinates centered at y yields

for 0 < a < 2
L for a = 2 .

The same holds for fl4 because the argument is symmetrie (take now
x0 as origin). This ends the lemma. D

4. THE ABSTRACT ERROR ANALYSIS

This section is devoted to the error analysis in L°°(fl) for both the scalar
and the vector unknown. The following error équations are easily obtained
from (2.4) and (2.5) :

(4.1) (p ~Ph, qh) - <div qh, u - uh) = 0 ,

(4.2) <div (p-ph),vh)=0, Vvh e Mk
h .

Our analysis relies solely on the abstract assumptions (Al) to (A4). The key
argument is the combined use of the commutative diagram (A2) and the
lemmas 3.1 and 3.2. In particular lemma 3.2 is the suitable tooi to avoid
logarithmic factors for the vector field. Indeed, this is so for all
ƒ ss 1 but for j = 0 a logarithmic term still occurs. We also obtain a
superconvergence estimate for P^u ~uh. This allows us to prove that the
modified scalar field provided by a local postprocess superconverges with an
optimal rate up to a logarithmic factor.

Let us now state our main resuit.

THEOREM4.1 : Let {u,p} and {uh,ph} be the solutions o f (1 A) and (1.5)
respectively. Then for every h === 0 there exists a positive constant C > 0
independent of h, such that the following estimâtes hold

(4-3) llP

(4.4) \\p*u - uh\\L„{^c {h\togh\jp -

where ôy 0 is the Kroenecker symbol, P£, 11̂  are the local projection operators
introduced in section 1 and j is defined in (Al).

vol. 23 , n ° l , 1989



112 L. GASTALDI, R. H. NOCHETTO

The proof will be carried out in a series of lemmas. As in the
L2-error analysis, the use of assumption (A2) leads to a séparation of the
error estimâtes for each unknown. So we first analyze the vector variable
and next the scalar one. Since the index k will be kept fixed along this
section, it will be omitted in the notation.

LEMMA 4.1 : Let j 5= 1 and let the assumptions (Al) to (A4) hold. Then
there exists a constant C > 0 independent of h such that

(4-5) | | / ' - /»*| |1- ( n )^C(b-n^| | i . ( a ) + A||/-PA/| |L. (O)).

Proof: Obviously it is enough to bound the error \\Tlhp -ph\\Lao- Let

x0 e To e Th be chosen so that \\ïlhp -ph\\L«> = max | (Uhp -ph)i(x0)\.
i = 1 ,2

Since Uhp — pheXh we use (3.4) to obtain

(4.6) 1/2

Let us set \|/ := a" {a + n\Uhp -ph) and then write

(4.7) \\KhP-Ph\\l_{a + n)= (Hhp-p^)

+ (p -Ph> ̂  - n* i|>> + (p -ph, nh ij/>
= / + / / + / / / .

Notice that IT̂  i(i is well defined. Applying now Cauchy-Schwarz inequality
yields for /

For the second term we use again Cauchy-Schwarz inequality combined now
with the superapproximation property (A4) as follows (recall that

^c(h/B)\\uhP -j>A||*_(.+.> + c \\nhP -/>|£-(.+„,.

For the remaining term III, the error équation (4.1) implies

III = <div Uk \|i, u - wA) = <div nA \JJ, P A U - wA) .

Here we have employed that div Xh = Mh, which is implicit in (A2), and
that Ph is the L2-projection onto Mh. To proceed further, we use a duality

M2 AN Modélisation mathématique et Analyse numérique
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argument. Let cp be the solution of the auxiliary problem

<p e H^(Q) : - A9 = div Iï^ I|I .

Since div Ilh ty e Mh c M = L2(O) by (Al) and (A2), we get
<p e HQ(£Ï) H H2(ü). Then, using again (A2) and (4.1), we easily arrive at

= - {div (Uh grad cp)5 Phu~-uh) = - <j> -ph9 nh grad <p)

Applying Cauchy-Schwarz inequality, the interpolation error estimate
(2.11) and the a priori estimate (3.6) yields

IV ^ \\p -^||CT_{a+fl)||grad 9 -

Let us now analyze the last two terms in IV. First notice that (4.2) and (2.6)
imply div Hhp = div ph. Then using again (2.6) coupled now with the
définition of ty gives after straightforward calculations

By the superapproximation property (A4) and the fact that 8 =2= h9 we get

So we conclude that

IV^C(h/%)\\P-Ph\\a-i«±

^c(h/Q)\\uhp-ph\\l^n) + c\\nhp-J

Since divph e Mh and div(p — ph) = ƒ - Ph ƒ is orthogonal to MA? we can
rewrite F as follows

V= (div(p-ph),ip-Phtp) = </-PA/,9-Pfc9> •

We then combine the fact that ƒ 22= 1, and so P1 c= M^ locally (see (Al)), with
the error estimate (2.10) and the a priori estimate (3.6) to arrive at

l^+n) + Ch2\\f-Ph ƒ ||;. (.+.).

vol. 23, n° 1, 1989



114 L. GASTALDI, R. H. NOCHETTO

Next inserting all the estimâtes already obtained in (4.7) and choosing
C* = Q/h big enough (but independent of h), the term \\Uhp - ^ | | -<«+«)
which appears on the right hand side can be hidden in the left. So the final
estimate reads as follows.

Replacing this into (4.6) and going back to L^-norms by means of (3.3), we
easily get the desired estimate (4.5) because a^>0. This complètes the
lemma. D

The most interesting case / = 0 can also be handled as before with minor
changes in the proof, but at the expense of a logarithmic factor.

LEMMA 4.2 : Let j = 0 and let the assumptions (Al) to (A4) hold. Then
there exists a constant C > 0 independent of h such that

(4.8) ||p

Proof: The proof proceeds along the same lines as the previous one
except for treating term V. So let us now explain the necessary changes.
Using the error estimate (2,10) with ƒ = 0 and the a priori estimate (3.7)
yields

=sCA||/-P*/| |a_.(| |divn f ci |»| |oB+2+ (|log e|3

The same analysis as before for the last two terms leads to

v^c(h/Q)\\ogs\^\\f-phf\\j\nhP-À

=sC(/i/ea) | ioge| || ƒ — JPA f\\Ln\\nhp

Here we have chosen 1 < a <: 2 and used (3.3) twice. Once we have inserted
all the estimâtes in (4.7) and chosen C* = O/h so big as to absorb into the
left hand side the remaining terms \\Hhp — Ph\\2-(«+n), we get

By (4.6) and (3.3) we transform this bound in an L°°-one as follows

This obviously implies the assertion of the lemma. D

M2 AN Modélisation mathématique et Analyse numérique
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The next step in our analysis is to prove an L°°-superconvergence error
estimate for Phu — uh in terms of ||p -Ph\\L«>- This will be done in the
following two lemmas.

LEMMA 4.3 : Let j 2= 1 and let the assumptions (Al) to (A4) hold. Then
there exists a constant C > 0 independent of h such that

(4.9) | |PAK-M*||L« ( n )

^Ch\\ogh\(\\p - P h \ \ L „ { ü )

Proof: We first reduce the estimate of \\Phu - uh\\L<X3 to an estimate in
weighted Sobolev norms. However the current weight function a is different
from that one used before due to a different choice of x0 and 0 occurring in
(2.7). Indeed, let xö e To e Th be chosen now in such a way that
I (Ph u - uh)(x0) I = \\Pk u - uh ||LO0 ; the parameter 0 = C *h will be speci-

fied later on. From (3.4) we then have

(4.10) \\Phu

As usual, to estimate the right hand side in (4.10) we apply a duality
argument. Let z e H2(£l) be the unique solution of the following auxiliary
problem

2 e Hl
0(il) ;-Az = a~ ^2 + n\Ph u - uh) .

Lemma 3.1 gives the following bound for second derivatives of z,

Since Phu -uhs MhJ using the relation (2.6) for grad z yields

(4.12) \\Phu-uh\\l_{2 + n)

= - <div g r a d z,Phu- uh)

= - (di\Uhgr3idz,u-uh)

- 1 1 / , grad z> - ( p - / ? A , gradz)

We now proceed to estimate separately each term following the same
strategy as for term III in Lemma 4.1. So the error estimate (2.11), together
with (4.11), implies

(h/0)\\Phu - uh\\l„i2 + n) + C |log 0 I \\p -Ph\\l-n .
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Integrating by parts in II and using the f act that div (p ~ph) = ƒ - Ph f is
orthogonal to Mh lead to

II = <div (p -/>*), z> = <ƒ - P„ f, z - P„ z>

« (h/Q)\\Ph u - uh\\l_(2+n) + Ch2\ log 61 || ƒ - P„ ƒ H*...

Here we have used that ys=l, which means that the local interpolant
polynomials contain P1 (see (Al)), and the error estimate (2.10). Inserting
the bounds obtained for I and II in (4.12) we find that a suitable choice of
C* = d/h allows the term \\Phu — uh\\

2.i2+n) to be absorbed into the left

hand side. The resulting expression reads as follows

This estimate can be easily rewritten in terms of L°°-norms by means of
(4.10) and (3.3) for a = n. This implies the assertion (4.9) and finishes the
lemma. D

For the remaining case j ~ 0 we may have a loss of superconvergence
order as happens also in the L2-analysis.

LEMMA 4.4 : Let ƒ = 0 and let the assumptions (Al) to (A4) hold. Then
there exists a constant C > 0 independent of h such that

Proof: This proof differs from the previous one only in treating term II.
So we focus our attention on this term. Since now Mh is made basically of
piecewise constants (see (Al)), from (2.10) and (3.5) we get

We can further bound the last term by using Cauchy-Schwarz inequality and
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(3.2) as follows

A suitable choice of C* = Q/h allows the term \\Ph u — uA|| (2 + B) to be

hidden in the left hand side of (4.12) and the argument concludes as
bef ore. D

Although the différence between the L2-projection of the scalar field and
the discrete solution superconverges in L00, the estimate for the scalar field
cannot be better than || u - Ph u || , «>,fty Therefore, starting from the
evaluated discrete solution one can modify uh through an element-by-
element postprocess to produce a new approximation u£ to u, which is
asymptotically more accurate. Let us now describe one of these procedures.
The approximation u£ to u is such that ujf\T e Pk + 1(T) and on each
triangle T e Th is the solution of the following Neumann problem

(4.14) <grad«h*,gradt>>r = < / , « > r - <P* • «r, *> a r > vePk + 1(T)

(4.15) (u?-uh,l)T = 0

where (f,g)T:= fg, ^ ƒ, g}bT-= f g and nT is the outward normal
JT JdT

to 87". Since the compatibility condition <ƒ, l ) r — 4^Ph • nT-> ̂ dT
 =

(use (2.5) with vh = characteristic function of T) such a function
w* actually exists.

LEMMA 4.5 : There exists a positive constant C > 0 such that for every
Terh

(4.16) I ^ - ^ I I ^ ^ ^ I ! ! ^ ^ ^ ^

+ h 2 \ \ f - Ph f\\L9{T) +\\Phu- uh\\Lai{T)) ,

where ü is a suitable approximation to u in Pk + 1(T).

Proof: Since the argument is local, it is enough to prove the analogous
estimate of (4.16) with L2instead of L00 and then use inverse inequalities. So
let us write the error équation

(4.17) <grad (w - wA*), grad v)T =

Straightforward calculations lead to

\\D(u - «A*)|| *2(r )« \\D(u - Ü)\\\2(J) + 2{(p-Ph).nT,û-
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where ûePk + 1(T) approximates u. Notice that from (4.2) the normal
component of p - ph has mean value zero. Then a trace inequality together
with a scaling argument yield

nT>ü-u*
dT

J>"4
Consequently

(4.18) 2

^ip-ph)\\û(T))\\D{û-un\\^

' -û) l l^ (r,+ 11^-^11^
h2\\f-Phf\\2

L>iT))

Now, using a local version of the standard duality argument, we get the
L2-estimate for u - u£. Let <p be any solution of the auxiliary Neumann
problem

(4.19)
= «-« A *- \T\~l [ {u-ujt),

S " 0 '
where \T\ stands for the measure of T. Solutions of (4.19) clearly exist
because the proper compatibility condition holds. Since the right hand side
of (4.19) has mean value zero we can write

Ch u-ug- \T\ - 1 » (w-i
T

Hence, the définition of u* and Ph yields

|| u - w,* ||^2(r) = <grad (M - w,*), grad <p) f •

^C(h2\\D(u-uiï)\\2
L2{T) +

which together with (4.18) gives

<« -

h\\p -ph\\L2(T)
u ~

Finally, application of inverse inequalities element-by-element concludes
the prooi D
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5. APPLICATIONS

In this section we shall apply the previous abstract results to some mixed
finite element methods that fulfill the abstract assumptions (Al) to (A4).
Let us first describe briefly how the new families recently introduced in [4,
6, 7] look like.

5.1. 2-D Mixed Finite Eléments of Brezzi-Douglas-Marini

Let Th be a décomposition of ft into triangles T. The discrete functional
spaces are defined locally by

(5.1) M J l r - P * - 1 ^ ) , Xk
h\T^[Fk(T)]2 for aü T e r , , * =* 1 ;

so (Al) holds. An easy calculation shows that the local degrees of freedom
of these éléments are 2 k + 2 less than that corresponding to Raviart-
Thomas-Nedelec spaces with same accuracy. The operator n£ is defined
locally by the following degrees of freedom when T s rh has three straight
edges et, i = 1, 2, 3

(5.2) (q - IlJ«, grad v) T = 0, ve P*

(q - Uk q, cur\b)T = 0 , beBk + 1(T) «= ̂  X2 X3

Here \ stands for the barycentric coordinates of T. A suitable change in
(5.2) is needed when T has a curve side [6, 7]. Then, the construction of
n£ guarantees that the assumptions (A2) and (A3) (with ƒ = k - 1) hold.
The remaining hypothesis (A4) is straightforward from (A3).

Now, let rh be a décomposition of Cl into rectangles R. The discrete
functional spaces are defined locally by

(5 3) MJU-P
Xk

h\R:= [P*(i?)]2 0 span

for all Rs-rh and k s=-1 ; so again (Al) is satisfied. The dimension of
X^ | R is essentially twice less than that of similar Raviart-Thomas-Nedelec
spaces ; the dimension of the scalar space is less, as well [6]. For R ha ving no
curved edges, Il£ is defined through the following degrees of freedom [6] :

(q-nk
hq).ne.,wï = 0 , weP*(e , ) , i = 1, 2, 3, 4 ;

(5.4) ' e'
(q-nk

hq,v) = 0 , c e l P '

vol. 23, n° 1, 1989



120 L. GASTALDI, R. H. NOCHETTO

The définition varies to consider one curved side [6]. As before, the
assumptions (A2)? (A3) obviously hold while (A4) can be proved by means
of the Bramble-Hilbert lemma arguing as in Scholz [22]. Note finally that
the discrete spaces Mk and Xk may also be based on mixing rectangular and
triangular éléments, because they are designed to fit across straight-edges.

5.2. 3-D Mixed Finite Eléments of Brezzi-Dougias-Duran-Fortin

These 3-D families were introduced in [4]. For O being decomposed into
simplices T, the discrete spaces are

(5.5) Mk
h\T*-rk-\T)9 Xk

h\T:=[1>k(T)T f o r a l i r G T , , * =* 1 .

The local dimension of Nedelec spaces [15] exceeds that of the present
spaces by (fc + 2) (& + 1). The operator n | is defined locally by the
following relations :

Ilk
hq).ne,w}e = 0 , w e Pk(e) , for each face e of BT ,

(5.6) ((q~nkq),gmdv)T^0, VGF'-

r e {ts [Fk(T)f:t,n = Q on èT

and ( k 1

If, instead, O is decomposed into cubic éléments T we then have for all
Terh:

Xk
h\T^ [Vk(T)f® span {curl (0, Q,xk + 1y), curl (Qyxzk + \0),

(5.7) curl (yk + l z9 0, 0), curl (0, 05 xy1' + 1 z*"1),
curl (0,xi + 1yk'iz,0),cml {xk~lyzl^ + 1, 0, 0),
/ = 1 , ...,*:} .

The operator IT| is defined through the following degrees of freedom

i(q -~ftk
hq).ne,wfg = 0 , w e Pk(e) , for each face e of T ,

( 5*8 ) (q-TL*hq9r)'T=0,re[F*-2{T)]\

The définitions (5.6) and (5.8) correspond to straight-sided éléments since,
in f act, for curved boundary éléments they are somewhat different [4]. The

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



SHARP MAXIMUM ESTIMATES... 121

local dimension of x£ is about one half that of Raviart-Thomas-Nedelec
spaces of equivalent accuracy [4]. Moreover it is easily seen that assumptions
(Al) to (A4) hold again.

5.3- Raviart-Thomas-Nedelec Mixed Finite Eléments

Let n = 2 or 3. Let Th be a décomposition of fl into rc-simplices T. The
discrete functional spaces are defined locally by

(5.9) M*|r:=p*(r), xÊ|T.-[p*(r)]»eïP*(r), k^o,

where x := (JC1S ..., xn). Then (Al) is fulfilled. The existence of an operator
Uk satisfying assumptions (A2) and (A3) with j = k is well known [15, 20] ;
(A4) also holds (see Scholz [22]).

Let now j h be made up of «-rectangles T and let Qk(T) be the set of
polynomials of degree =s k in each variable restricted to T. The discrete
spaces are defined by

(5.10) Mk
h\T~Qk(T), Xk

h\T>=f\[Qk(T)®xiQ
k(T)], fc^O.

i = 1

Then the assumptions (Al) to (A4) hold [15, 20, 22].

5.4. Asymptotic I^-Error Estimâtes

Let us now state the L^-rates of convergence for the families of mixed
finite éléments just recalled. So, assume that n = 2, 3.

COROLLARY 5.1 : Let k ^ 1 and u e Wk + 2> °°(ft). Let Mk
h and Xk

h be the
BDM or BDDF spaces defined in either (5.1), (5.3) or (5.5), (5.7). Then
there exists a constant C > 0 independent of h such that

Furthermore, the following superconvergence error estimâtes hold

(5.12) \\Pk
hu-uh\\La>m^C

(5.13) \\u-uh*\\L„{n)^C

where u* e ¥k + 1(T) for each T G Th is the modified scalar field defined in
(4.14), (4.15). D
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The proof is an immédiate conséquence of Theorem 4.1 and Lemma 4.5.
Note that, according to the degree of the interpolant polynomials, the

orders of convergence in (5.11) are optimal for k^2 and quasioptimal for
k — 1 due to the présence of logarithmic factors. Since the regularity
property u e Wfc + 2ïQC(n) is not easy to be verified in practical cases, let us
consider the weaker assumption f e Wfcï°°(fl). We can still dérive sharp
error estimâtes arguing as in Johnson-Thomee [13] and Gastaldi-Nochetto
[12] ; so we only sketch the proof.

COROLLARY 5.2 : Let k^l be given and let Mk
h and x£ be defined in either

(5.1), (5.3), (5.5) or (5.7). Assume that f e W*'°°(ft). Then

(5.14) * | | « -«* | | L « ( n )

(5.15) llP^-^II^

(5.16) | | " - ^ | | L o o ( n )

where C >• 0 does not depend on h.

Proof: The argument is based on tracing constants in [1] and using a well-
known interpolation error estimate [8, p. 124]. So, for any r < oo we can
write

The desired result follows from taking r = |log h\. D
Another conséquence of Theorem 4.1 is the following / °°-superconver-

gence result.

COROLLARY 5.3 : Let k = 1 and f e W1>5(fl), s => n. For any T G Th being
either a simplex or an n-rectangle, let xT dénote its barycenter. Then the
following superconvergence estimate holds

(5.17) | (u - uh)(xT)\ ^ Ch2\logh\ || ƒ ||wi,.(ft), for all Te rh .

Proof: Since f eWlt5(SÏ) and 911 is regular, Sobolev inequalities
combined with regularity elliptic theory imply, [1] :

Thus \\p ~nlp\\L00 = 0(A). In addition, the following interpolation error

estimate is well known [8, p. 124]
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Inserting these estimâtes in (4.4) we get

To conclude the argument we split the error (u — uh)(xT) for each
T e Th as follows

(u - uh)(xT) = (u - P2
hu)(xT) + (P2

h u-P\ u)(xT) + (P\u- uh)(xT) .

Then, since ||w - P\u\ œ — 0(h2), we only have to estimate the middle

term. However, this is a trivial task because (Plu — P\ u)(xT) = 0, as can

be easily checked. The proof is thus complete. D

Remark 5.1 : For ƒ G Whn(Çl) n LQO(11) the error bound (5.17) becomes
0(&2|log h | 2 ) . To see this one has to proceed as before using now a similar
argument to that in Corollary 5.2.

Let us now state the analogues of corollaries 5.1, 5.2 and 5.3 for Raviart-
Thomas-Nedelec mixed éléments. As before assume n = 2, 3.

COROLLARY 5.4 : Let k =* 0 and u e W* + 2 '°°(n). Let Mk
h and Xk

h be the
RTN spaces defined in either (5.9) or (5.10). Then there exists a constant
C :> 0 independent of h such that

(5.18) ||u - «*| |L . (0 ) + \\P -Ph\\L-m
 k ^ h

(5.19) \\Pku-u4Ln(a)*C

(5.20) \\u-uh*\\La,(cl)^C

where u£ ePk + 1(T) for each Te Th is the modified scalar field defined in
(4.14)-(4.15). D

Next the weaker assumption ƒ e Wk' ^(Q) still yields the following sharp
error estimâtes.

COROLLARY 5.5 : Let k^Obe given and let M£ and x£ be defined in (5.9)
or (5.10). Assume that f e Wkt<x>(n). Then

(5.21) | |K-w*| |L» ( n )+ l|p-PA||L» (n )

(5.22) | | n ^ - ^ | | L O O ( n )

(5.23) l l M - ^ l l ^ n j ^

If, in addition for k = 0, we assume that f e Wl*n(p,), then

(5.24) ||/>
fc°M-Mfc||L.(n)«CA2|logA|2(||/||L.(n)+ || ƒ | |H , . . . ^ ) ,

(5.25) | |«-uh*| | t . ( n )«Cfc2 | logA|2( | | / | |L . ( n )+| | / | |w l . . ( O )) . D
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The superconvergence estimate (5.24) leads to the following /°°-supercon-
vergence results.

COROLLARY 5.6 : Let TH be a décomposition of ft into n-rectangles T and
let ST be the set of Gauss-Legendre points of T. Then we have for

(5.26)

Moreover, if rh is a décomposition of Q into nsimplices T and xT is the
barycenter of T e rh, then for k = 0

(5.27) \{u-uh){xT)\

Before concluding this section several comments are in order.

Remark 5.2 : Let us consider the lowest order case in estimâtes (5.11) and
(5.18). Assuming that / is piècewise continuous with a modulus of continuity
w(t) =s C |log t \~l, the logarithmic factors can be removed.

Remark 53 : The key argument in proving /°°-superconvergence is first to
demonstrate the superconvergence of Pfc u — uh and second to localize a set
of points ST in each finite element Te Th, so that (P^v ~v)(x) = 0
Vu e P; + 1 (T), x e ST, T e Th. This invariance property is no longer true for
j > 0 and the families defined in (5.1), (5.3), (5.5), (5.7) and (5.9) (see [12]).

Remark 5.4 : Variable degree mixed methods were introduced by Brezzi-
Douglas-Marini as generalizations of the families discussed above [7]. Now
the degree of interpolant polynomials is allowed to vary from one element
to another by means of transition éléments. Since the operators n£ and
P\ are local, our main results (4.3) and (4.4) still apply extending to
L00 the error analysis presented in [7],

Remark 5.5: The abstract analysis applies also to the finite éléments
introduced by Brezzi-Douglas-Fortin-Marini [5], giving the same rates of
convergence as RTN spaces.

6. £,°°-ERROR ANALYSIS OF THE HYBRID FORM

The linear algebraic system associated with (2.5) is generally indefinite ;
so standard solvers may fail to work. However, it can be reduced to a
positive definite system through the use of Lagrange multipliers to relax the
continuity constraint on the normal component of the vector field. This
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computational trick can be further exploited to produce a better approxi-
mation to the scalar field u. Indeed, the multipliers approximate u along the
interelement boundaries in a sense to be specified later on (see Remark 6.1).
This information can be postprocessed to get a more accurate approximation
üh to u, as first noted by Arnold-Brezzi [2].

Let Yk be the space of all functions defined on the interelement
boundaries which restrict to polynomials of degree k on each edge
e et bCi and vanish on dCl. Moreover let w£ indicate the discrete space for
the vector unknown without continuity constraints ; hence w£ | T = x£ | T for
all T e Th. Then the extended problem reads as foliows : find (zh, crh,\h) e
M£ x w£ x Y£ such that

(6.1) (div<jh,vh)h= (f,vh), V ü . e M j ,

where (f,9)h = V f9, if>9^h — Y. \ f9 an<^ nT is t r ie outward
T JT T * àT

normal to 97*. Note that v e w£ belongs to X^ if and only if

(6.2) <M*, i>. / i r >. = 0 ,

This implies that the function vh given by (6.1) coincides with ph given by
(2.5) and, consequently, zh = uk.

The Lagrange multipliers \h approximate u on the interelement bound-
aries in the sense that

(6.3) \\h-Qk
hu\\L2{e)^C<ih^\\p-ph\\L2{T) + h-w\\Pk

hu-uh\\L2(T)),

for all TeTh and e e dT\bflh, where Qfc u is the L2-projection of
u\e onto Yh\e [2; 4, 6, 7]. The corresponding L°°-error estimate for
Lagrange multipliers follows from simply applying inverse inequalities to
(6.3) on each element.

LEMMA 6.1 : There exists a positive constant C > 0 independent of u and
h, such that for every T e rh and every edge e of T not belonging to
d£l we have

(6-4) \\^H-QÏu\\L„{e)^C{h\\p-ph\\La>{T)+\\Pk
hu-uh\\L^T)). D

Remark 6.1 : The error estimate (6.4) combined with those in the
previous section yields the superconvergence rate ||\A —g^w|| =
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0(A* + 2 | log h | 2 ) and, therefore, the error bound on edges ||w —

). Moreover, an / °°-superconvergence result can be derived arguing
as in Corollary 5.3. For n = 2 let Se be the set of Gauss-Legendre points on
e ; then

(6.5) | | W - \ J / Q O ( 5 e ) = 0(/** + 2 | log/ï|2), V e c 8 7 V n , TETH.

If n = 3 the estimate (6.5) still holds for either j = 0 or Raviart-Thomas-
Nedelec cubic éléments.

Let us now conclude by describing how a modified scalar field
üh can be constructed in some relevant examples. Take first n = 2. For the
lowest order triangular éléments of Raviart-Thomas-Nedelec recalled in
(5.9) let ï ï ^ e P 1 ^ ) : ^ be defined by Ö ° ( M A - \ A ) = 0, [2]. For the
lowest order triangular éléments of Brezzi-Douglas-Marini reminded in
(5.1), instead, let üh\Te P2(T)=--V be defined by the conditions
Ql(üh - kh) = 0 and Pl(üh - uh) = 0, [6], Suppose now n = 3, fc = 1 and
that O is decomposed into tetrahedra. For the discrete spaces defined in
(5.5) let üh satisfy ^ | e V -.= P2(T) © span {z2(x -y), x2(y - z),
y\x - z)} , Ql(ük - XA) = 0, and P£(w/z - MA) = 0. For the construction of
such an approximation in the gênerai case, we refer to [4].

Such approximations satisfy [2, 4, 6]

(6.6) \\u-üh\\LHT)

~ Û\\L2{T) + \\Pk
hu - uh\\Ll(T) + h^\\Xh - Q£u\\L2{dT))

where û \ T e V is an appropriate interpolant of u. Due to a simple
application of inverse inequalities to (6.6), the following local L^-estimate
holds

(6.7) ||M-aA||L<O(r)

^ C(\\u - û | |L . ( r ) -f HP,*!* - uh\\L„{T) + ||XA - Ô^||L0O(3r)) •

Finally, combining (6.4) with Corollaries 5.2 and 5.5 results in

COROLLARY 6.1. Let k^l and M£, X£ be defined in either (5.1), (5.3),
(5,5) or (5.7). Assume that f E W*'00. Then

(6.8) | | « - S * | | i - ( n > * C

£ ^ m either (5.9) or (5.10)
ƒ G W ^ 0 0 ^ ) H ̂ ' " ( H ) . Then

(6.9) ||u — aA|| t-cn>a
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