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THE FINITE ELEMENT SOLUTION
OF ELLIPTIC AND PARABOLIC EQUATIONS
USING SIMPLICIAL ISOPARAMETRIC ELEMENTS (")

par Josef NEpoma (1)

Communiqué par P. G. CIARLET

Abstract. — Error bounds introduced in [7) were given for fully discretized approximate solutions of
parabolic equations by the finite element method. For time discretization the A-stable linear v-step
methods ( for v=1 or 2) were used. In this paper the A,-stable linear v-step methods for any v are used
Sor time discretization. It is known that A-stable methods for v=1, 2 are included in the class of
Ay-stable methods. The consideration for the elliptic equations is similar to the parabolic equations.
Hence, the error bounds for elliptic equations are formulated in this paper too.

Résumé. — On a donné en [7] des majorations de I'erreur pour des approximations complétement
discrétes d’équations paraboliques par la méthode des éléments finis. On utilisait des méthodes linéaires
A-stables a v pas (v=1 ou 2) pour la discrétisation en temps. Dans cet article, on utilise des méthodes
linéaires Ao-stables a v pas, v quelconque, pour la discrétisation en temps. On sait que les méthodes
A-stables pour v=1, 2 sont incluses dans la classe des méthodes Aq-stables. Les développements
étant semblables dans les cas elliptiques et paraboliques, on énonce également dans cet article les majo-
rations d’erreurs pour les équations elliptiques.

1. CONSTRUCTION OF THE FINITE ELEMENT SPACE. NOTATION
We consider the k-regular family { K}, of simplicial isoparametric finite
elements K introduced by Ciarlet and Raviart [3]. Hence, the simplicial element

K e{K},is the image of the unit n-simplex K (K is the closed convex hull of a

N
set= | ) {a} ) through the unique mapping Fy : K — R" (the mapping Fy is
i=1

supposed to be a C**1.diffeomorphism) such that F,eP" F,(4)=a
(P<C***'(K) is a finite dimensional space of functions defined on K with

(*) Regu septembre 1978.
(*) Technical University, Laboratof poéitacich stroji V.U.T., Brno, Tchécoslovaquie.
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258 J. NEDOMA

dim P=N such that £ is P-unisolvent and P> P (1), where for any integer
r=0, P(r) is the space of restrictions to K of all polynomials of degree <r in
n variables X, ..., X,) and there exist constants ¢;, 0<i<k+1, independent
of h such that for all h:

sup rlnlaxlD“FK(fc)| <cht,  1Zi<k+1 (1.1)
ek |a| =
and

0<éh”§|.]x(fc)| <co ", 1.2)
where a=(at;, ..., &), |o] =a;+...+a, and J¢(%) is the Jacobian of the

mapping Fy at the point x € K.

To every element K there is associated the finite dimensional space Py (with
dim Pg=N) of functions

Py={px: K> R; py=p*(F¢"), Vp*eP}. (1.3)

The K-interpolate ng u of a given function u : K — R is the unique function
which satisfies

neucPy, mngula)=u(ay), 1<iSN. (1.9

For a k-regular family { K }, of finite elements the following interpolation
theorem is true (see Ciarlet and Raviart [3], theorem 2, p. 429).

Lemma 1.1 (interpolation theorem): Let a k-regular family { K },, of simplicial
elements such that P (k) P be given. Let

n
k>3 -1. 1.5)

Then for any integer i such that 0<i<k+ 1, there exists a constant c independent
of h such that for any K e{ K}, and for any function ue H*** (K) we have

|u—‘ltKuIl,K§Chk+1_i”u“k+l‘K. (1‘6)

Here the following notation is used:
The norm and the scalar product in the space L?(4) is denoted by ||.||o, 4
and (., .), 4 respectively.

H™(A)=W{(A), m=0, 1... is a Sobolev space with the norm

m 1/2
ol (E1e12) ", where [ohumt 5 050l 02

a| =1
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ELLIPTIC AND PARABOLIC EQUATIONS 259

In the sequel we mean by Q a bounded domain in R" with a sufficiently smooth
boundary 0Q.

Using the way described by Ciarlet and Raviart [3] we define a k-regular
triangulation €, of Q. Let Q, be the union of a finite number of simplicial
elements K. Every element K=F,(K) is determined by N points a, x. We
suppose that all points a, ¢ belong to Q. The family of elements constructed in
this way is called a triangulation of Q and is denoted by ¥,. We say that a
triangulation 4, of Q is k-regular if:

a) the family of all elements from which the triangulation is formed
is k-regular;

b) the geometrical shape of any “face” A of a given element K € ¢, must be
completely determined by those points a, x which belong to A;

c) for the boundary elements (i. . for elements Kd- 5) of the triangulation %,
we have

max | Vs (y)— Y (y)| Sch*, (1.7

y'eA

where c is a constant independent of h and the notation is that of figure.

H
0, . = % ()
A %, = Y(rg)
) A
7’,(7” e 1:;”.’)

To a given k-regular triangulation €, there is associated the finite dimensional
space ¥, of functions v defined by

Vi={veC°(Q); vk Py, YKe%,, v=0 on 8Q,}, (1.8)

where vy is the restriction of the function v to the set K.

vol. 13, n°® 3, 1979



260 J. NEDOMA

Next, to any function v defined on Q or on Q, we may associate its unique
interpolate m, v, which satisfies

M V=TxV, VKe%,. (1.9)

In our paper we suppose that P=P (k). This restriction is not essential.
It enables us to give simpler proofs.

In the sequel we use the following notation:

H{ (A)is the closure of the set CZ (4) (i. e. of the set of infinitely differentiable
functions with compact support in 4) in the norm ||. |, ,-

H~1(A) is the space dual to H}(A) (with dual norm).

L>*(H™(A))is the space of all functions @ (x, t), x=(x,, ..., x,)€4, te[0, T]
such that ¢ (x, t)e H™(A),V t€[0, T]and the function || ¢ (x, ) ||, ,is bounded
for almost all te[0, T7.

Let ®(x) be any function defined on the element K. Then the function
® (F (%)) is defined on K. In the sequel we will denote it by ®*(%).

In the sequel the constants independent of h will be denoted by ¢. The
notation is generic, i.e. ¢ will not denote necessarily the same constant in any
two places.

2. ISOPARAMETRIC INTEGRATION

In the same way as in Ciarlet and Raviart [3]let us suppose that we have at our
disposal a quadrature formula of degree d over the reference set K. In other
words

J @ (X)dx is approximated by > &, ¢ (b,) 2.1
R r

for some specified points b, € K and weights &, which will be assumed once and
for all to satisfy
®,>0. 2.2)

This assumption is by no means necessary but it yields simpler proofs.
Concerning b, we suppose that for every r, b, either lies inside K or it coincides
with some of the points 4;. With the quadrature scheme (2. 1) we associate the
error

E(g)= ch(fc)dfc— Y. &, ¢ (b). 2.3)

R.A.LLR.O. Analyse numérique/Numerical Analysis



ELLIPTIC AND PARABOLIC EQUATIONS 261

Using the standard formula for change of variables in multiple integrals, we find
that

J‘ @ (x)dx is approximated by } ©, x ¢ (b, ). 2.4
K r

where
o, x=0,Jc(b,), b, x=Fg(b,). 2.5

We may, and will, assume that J,(X)>0, Y xe K. We see that the quadrature
scheme (2.1) over the reference set K induces the quadrature scheme (2.4) over
the element K, a circumstance which is called by Ciarlet and Raviart [3]
“isoparametric numerical integration”. With the scheme (2.4) we associate the
error

EK(¢)=J eo(x)dx— Y 0, (b, k) (2.6)

so that we have
Ec(@)=E(p*J,) and  E(¢¥)=E((pJgY). 2.7
In the sequel we will denote

E(p)= Y Ei(¢p) for any function ¢. (2.8)

Ke¥,

Now, we derive two theorems concerning isoparametric numerical
integration. Before, we give some technical lemmas.

Lemma 2.1: Let DP@;=0(W*"**) for i=1, ..., 5, |B| =0, ..., |a|. Then
D* (@1 9. .- @) =0 (hl=1+X1+ 47, 2.9)
The proof is trivial using the mathematical induction.

Lemma 2.2: For polynomials v, s on the reference set K the following
inequalities are true

max | D*r| Zci|r| o) 2> (2.10)
R
|r|?e<c.|r|2e  for jziz0, (2.11)
Irslieses X Ir[iels|tz. 2.12)
7~

where ¢, ¢4, 3 are constants.

vol. 13, n° 3, 1979



262 J. NEDOMA

The proof follows from Zlamal’s paper [12], p. 356 and from lemma 3 in [7].

LeEMMA 2.3: Let €, be a k-regular triangulation of Q. Let J§' P be a cofactor of
the Jacobian Jy. Then

D*J =0 (hl=l*m), (2.13)
DuJ};,P)=O(h|a|+n—1), (214)
D“<i> =0 h*l-"). (2.15)

Jx

For the proof see Lemma 5 in [7].

LemMA 2.4: Let t*eH**'(K), teH**'(K), Ke%,, %, be a k-regular
triangulation of Q. Then there exists a constant c independent of h such that

|T*|k+1,K§Ch_("/2)+k+1”T“k+1,K- (2.16)
Lemma is an immediate consequence of Lemma 1 from [3], p. 427.

LeEmMA 2.5: Let ¢ e H*(K), where s>n/2 and let n,_, ¢ be a polynomial of
degree s— 1 which uniquely interpolates the function @ on K. Then there exists a
constant ¢ such that

|o—m—1 0|, kSclol,x  for j=0,...,s. (2.17)

Lemma follows from Bramble and Hilbert paper [2], p. 812.

LeEMMA 2.6: Let s (%) H*(K), where

§>=, (2.18)

[\ 3 I

T(X) be a polynomial of degree <r, where

r<s, (2.19)
3 (%)e C*(K) be a function such that
D*s=0(h!***)  for 0<|a|<s, #...someint.  (2.20)
Let d be the order of a quadrature formula on the reference set K such that

n
- 1. 2.21
d>2 ( )

R.A.LLR.O. Analyse numérique/Numerical Analysis



ELLIPTIC AND PARABOLIC EQUATIONS 263

Then there exists a constant ¢ such that

|E<aw|2§ch2*{<hzs|1wnmwm)ntnax

ween( §rnlelze) (e 0luler T A vl | @2
i=0 i=

When supposing, in addition, that (%) is a polynomial of degree <r, then there
exists a constant ¢ such that

.0V Ot

2
échw{h2s||¢||s.k|riix

Wl TS Wl HE SRS
i=1 i=1

Proof: Evidently
LE@VD)| S |E@ -1 ) (W —Tte- 1 W) D)| + | E(@ — -1 ) ey YT)|
+ | E(me— 1 8O =y W) )| + | E(me—y Sme_y Y1) | (2.29)

From (2.3), from the first Sobolev theorem and from lemma 2.5 it follows

|E@—ms-1 ) (W —ms-1 ¥)7)|

<csup|d—m,_, 8|sup|¥—m,_y V| max|t|
R R R
éc”8_n8_18HS,K“‘h_nS—l\IIHS,KmKa'xl‘rI
§0|5|s,x|¢|s,meXItl-
Hence, from (2.20) and from lemma 2.2 we get
|E(@ - )W =7y WOk 2 ¢ |3 (2:29)

Similarly we obtain

|E@—me—y &) my— s Y1) 2SO |2 || 712 ¢ (2.26)
|E(mo—y 8 (0 —m—y W) 1) | Z<ch®™ | W) 2 ¢ || 7|12 - 2.27)
Evidently

|m-10| e |nm10—0| g+ |0l Sc(lo] z+]oliz). 0=iss.
vol. 13, n° 3, 1979



264 J. NEDOMA
Hence

|me-1¥ligsc([¥] e+ ]¥]g)  OSiss, (2.28)
|mo-1 8], g Sc(|8], o+ [8]i R)Scr** +H¥)<ch*. (2.29)

Let us remember that the inequality (2.29) is true also for i>s since
|ns_ 10 | . # =0. From the Bramble-Hilbert lemma (see [1]), from lemma 2.2 and

from (2.29) we get
|E(ﬂs—1 dms_y ‘l’T)lz §C| Tty M5y ‘3"('34-1,12

d+1
sc .Zoltns—l ‘kal’fs—l Sldzu—;,x
i=

2s
échZ(.;e’+d+l) z h_zjltns—l ‘l’ Iﬁk
j=0

2s J
< chX+d+D Zh—zi Z ]T|.~2,k|ﬂs~1‘l’|jz_.,k- (2.30)
i=0 i=0

It is easy to verify that

2s . Jj 5 . S .

Y Y |2k mem V| Rk =( Y h'z’ltljz,k)( Y h"z’lns-xﬂ!l,%ﬁ)-
j=0 i=0 j=0 i=0

Hence, from (2.30) and from (2.28) it follows
|E(us—18ns—l‘ktlz

<Ch2(x’+d+1)(

r s—1
h‘“l"lfz)("‘“"”l\|'|§x+ 5 h-“wlfk) @.31)
=0 =0

J

Substituting from (2.25), (2.26), (2.27) and from (2.31) into (2.24) we
get (2.22). From (2.22).it follows

o ot

s s—1
eren( S hsel, o) (12 e D )] @3
i=0 i=0

échw{(hzsn\ll“szu.z'i' V2 )l |2

If ¥ (%) is a polynomial of degree <r(r<s) then

[ Wl|ZesclVllde  and  [W[2, £=0. (2.33)

R.A.LR.O. Analyse numérique/Numerical Analysis



ELLIPTIC AND PARABOLIC EQUATIONS 265

Evidently

r

P I.“x— h 26-Dg]? ¢ —h2 h %|t)2.,  (2.34)

i=0

ih 2z|\|,|‘+l o= Z‘h—l(i—l)lq’lgk=h2 'glh_Zil‘l'Iiz.K' 2.35)

Substituting from (2.33)-(2.35) into (2.32) we get (2.23).
Now we can formulate two theorems concerning isoparametric integration.

THEOREM 2.1: Let %, be a k-regular triangulation of the set Q where

k>g—1. (2.36)

Let ve V), () and ¢ € H™(Q,), where

m=max<[§] +1, k). 2.37)

Let the quadrature formula given on the reference set K be of degree
d=max(1, 2k—2). (2.38)
Then there exists a constant ¢ such that
E@0)| S [@flna o], o 2.39)
If, in addition, o € H** ' (Q,) then there exists a constant ¢ such that

|E@o)] <ch* [0 flesral 2, oll7 <) (2.40)

Proof: Obviously
E(@v)= Y, Ex(pv)= Y E(Uxo*v*). (2.41)

Ke$, Ke$),

It is easy to verify that m>n/2, kSm=<k+1, max(l,2k—2)=k and that
D*(J)=0(h!*1*"). Hence, we may apply Lemma 2.6 for y =¥, s=m, t=0p*,
r=k,d=Jg, # =n and dzmax(l, 2k—2). From (2.22) we get

|0t v sk { 0ot 2 o+ [o* 2.0 ¥ 3.

X m-—1
+h2(¢+1)( 5 h—2i|v*|,.2,K)(h-“""”|<p*l.i.x+ )3 h‘”l¢*|ﬁx)}~
Py i=0

vol. 13, n® 3, 1979



266 J. NEDOMA

Hence from Lemma 2.4 (notice that a k-regular family is a k’-regular family for
any k' k) it follows

|Euxcp*v*>|2§c{h2mnvuaxnwuh

k
Doz a5 h o e} @4
i=0

In the same manner we may apply the inequality (2.22) for s=k+ 1 assuming
@eH**1(Q,). Then we obtain

e s R o
k
ROl b T H 0 2e . @43
i=0
From lemma 2.2 and from lemma 2.4 we get for k= 1:

K k
DI U S A S S W e g L S L P
i=0 i=1

<ch™" (o]l e+ h7* 2 0llE 0

Hence

i:oh”z‘]u*|fk§ch‘"'2”+2||v||ﬁx for k2l (2.44)
Similarly

.Zkloh“z"lv*|f,¢§ch‘"“2"+4||v||§_x for kz2.  (2.49)

Substituting from (2. 44) into (2.42) and observing thatm=kand d=2k—2, we
obtain

|[EUx@*v) |2 <ch®| o2 «||v|lix  for k=1 (2.46)
Substituting from (2.45) into (2.43) and observing that d=2k—2, we get
|[EUgo* ™) |2 Sch?®* V|| o2 kllvllZx for. k22, (2.47)

Substituting from (2.44) into (2.43) and observing that d=1, we obtain
|ETgo*v®) |2 sch?|| o2 ||v]|ix  for k=1 (2.48)

R.A.LLR.O. Analyse numérique/Numerical Analysis



ELLIPTIC AND PARABOLIC EQUATIONS 267

From (2.47) and (2.48) we see that
|[EUgo* v |2 Sch?* Vo2 kllvll3«  for k21 (2.49)

From (2.46), (2.49), (2.41) and from the Schwarz inequality the
inequalities (2.39) and (2.40) follow.

THEOREM 2.2: Let %, be a k-regular triangulation of the set Q, where

k>n/2—1. Let ¢€V,(Q), ve V,(Q), be C**1(Q,) and ®e H**(Q,) be any
function such that n, ® € V,(Q). Let the quadrature formula given on the reference
set K be of a degree d=max(1, 2k—2).

Then there exists a constant ¢ such that

dp Ov
\E(”a—xi a*)

If, in addition, be C**2(Q,) then there exists a constant ¢ such that

dp Ov
E(b 0x; 5"7)

Proof: Obviously

dp Ov o 09 v
o5 ) 0 (GE)(Z)) oo

From the rule on differentiation of the composite function it follows
do dv ud 6(p* ov*
* , 2.53
() (5))- LA &) e

S
T

Sclh||®|usr.0+ [0=Plo. o]l v]l1q, (2.50)

Sch[l @[+ || 0—PlloalC Y [[0]l3 0" (2.51)
Ke%\

where

Y, j=b (JE& P, J@ P are cofactors of Jy).

From lemma 2.3 and from lemma 2.1 we get D*(y;;)=0 (h!*1*"~?). Hence we
may apply lemma 2.6 for y =¢*, s=k+q(g=1ifbeC**! orq=2ifbe C**?),
t=v* r=k, 8§=y;;, #=n—2 and dZmax (1, 2k—2). From (2.23) we get

R dp* dv* \ |2
Elvy. - 2
<7” 0% afc,.)

échz (n-Z){hz (k+q)“ (P* ”gK | ¥ ilz Py

k k
T [P AT e
i=1 i=1

vol. 13, n°® 3, 1979



268 J. NEDOMA

From lemma 2.2, lemma 2.4 and from the interpolation theorem
(see lemma 1.1) it follows

k
,Zlh—”l(P*l:z.x
k - k . k 3
gc{ Y b3 o* —(m ®)* |2+ Y h Y| (m, @) — 0% |2+ Y h"‘l@*L’.x}
i=1 i=1 i=1

k k
<ch (W o-molR c+ 3 o0+ % o)}
Sch™" (W2 (|0 =02 «+ | 0=y @0+ my @~ 2+ @ 2.}
Sch™" (02 (| o =0+ %2 [ @ 2,0+ 1|0 2 +]| @24}

Hence

k
Y b2 ox|esch T (kT lo—@ B+ [[@flF k. 259)
i=1
Evidently
lo*llGeschloll3x  o*[Zesch™ 2 ||o|lix. 2.56)

Substituting from (2.56), (2.55) and from (2.44) into (2.54) for g=1 and
observing that d=2k—2 we get (for k=1):

* Jp*
A L T R RN
c{*(lo-@[3c+] @] N0]IF «
+h* (h~2 N ‘P_q)”g.x'*‘”q)“'?n.x)ll"" ik}

2
§ch2(”'2){hz"”h'"”(p||§Kh‘"+2||v||f,x

Hence
A dp* ov*
|E(*‘fa—fci %)
for k=21. (2.57)

Substituting from (2.56), (2.55) and from (2.45) into (2.54) for g=2 and
observing that d>2k—2, we similarly obtain

Jdo* ov*
(Y“'E‘c,-— “a;l)

2

scllo—e[dx+r* || @Iz vl

2

Sch[||lo—@|2c+h*||@||2, Llv)2x  for k=2 (2.58)

R.A.LLR.O. Analyse numérique/Numerical Analysis



ELLIPTIC AND PARABOLIC EQUATIONS 269

Substituting from (2. 56), (2.55) and from (2.44) into (2.54) for k=1, g=2 and
observing that d=1, we get

do* dv*
(% 5)

+hh" (02 ||~ |2 c+]| @12 DB " 017 &}
sc{r*(lo—o|lzc+| @30 llv]2x
+h* 2 o=@ |3+ @[ 0 | o]k -

2
<ch 4 {hSh || @ |2k b2 0|3«

Hence
op* dv* \|?
IE(“J‘"@}T 2N s tio—olic+ ol alollie @59
From (2.58) and (2.59) we see that
L dp* ov*\|?
iE(“fEe? %)

Sch?[||o—@||2 x+h2* ||@||2, (]||v||2x  for k=1. (2.60)

From (2.57), (2.60), (2.53), (2.52) and from the Schwarz inequality the
inequalities (2.50) and (2.51) follow.

3. APPROXIMATE SOLUTION OF THE ELLIPTIC PROBLEMS

Let Q be a bounded domain in R” with sufficiently smooth boundary Q. We
study the elliptic problem

1ltu(x)j=ﬂ((J)C)’ on ;g,g’ } 3.1
where f is a sufficiently smooth function and
l=i,j2n——:-1 aixj(gij(x)aixi) (3.2)
We suppose that the functions g;;(x) are sufficiently smooth and
g (x)=gi (x). (3.3)

About the differential operator ! we suppose that it is strongly elliptic, i. e. there
exists a constant g, >0 such that

i gi](x)gigiggl -i,g'?' VXEﬁ, (E.»l: ---:@-)GR”- (34)

i, j=1

vol. 13, n° 3, 1979



270 J. NEDOMA

The variational formulation of the elliptic problem is:

Find a function u(x)e H§ () such that } 3s
a(u, v)=(f, vl o Vo H3 (@), G-3)
where
0 6
a(u, v)= z 91y (%) 5 5—dx. (3.6)
Q i, j=1 XJ

We extend the functions g;;(x), f(x) to a greater set Q>5Q so that the
conditions (3.3) and (3.4) are satisfied (with positive constants G,). In this way
we obtain the functions G;;(x), F(x). We denote

= 2, (o) o

Let €, be a k-regular triangulation of the set Q and Let V), be the corresponding
finite element space. The union of the elements K from %, forms a set Q, which,
in general, differs from Q. We suppose that

Q,<0, 3.8)

for all sufficiently small h and formulate the following discrete problem

Find a function u,(x)e V,, such that }
a;,(ud, D)=(F, v)g'n". Vve V;!, (39)
where
du 0
a, (g, v) = }: Gy () == — (3.10)
Q iLji=1 X ﬁx j

Since it is either too costly or simply impossible to evaluate exactly the integrals
(-» Jo.o, a@n(., .), we must now take into account the fact that approximate
integration is used for their computation. For this purpose we use the
isoparametric numerical integration, i.e. in agreement with (2.4) we replace

(@, ¥)o 0, (@, V), (@, V)= Au(0, V) (3.11)
where
(o, \I/);.=KZW Y @, (b, )V (b, &) (3.12)

R.A.LR.O. Analyse numérique/Numerical Analysis



MLTIC AND PARABOLIC EQUATIONS 271

> 0 0
4@ V=3 To.x ¥ Gybdieb, dorba) 6.1

Ke%, r i,j=

Let us note that form (2.6) and (2.8) it follows

(@ Wo.0— (@, Vh=E(0W). (3.14)
d oo 0
4,0, V)~ 4, (0. ¢,=E(z 6,022 %) (3.15)

Evidently b, Kefl- for sufficiently small i (remember that 13, are supposed to lie
inside K or coincide with some of the points ;). Hence F(b, )= f (b, x).
G;;(b, k) =g (b, g). Therefore from (3.12) we see that (F, v),=(f, v),. Insuch a
way we come to the following fully discrete problem:

Find a function u,(x)e ¥V, such that }

Ay (ug, v)=(f, V), YoveV, (3.16)

Let the functions @, ..., @, form the basis of the space V}. Denoting
=l .- v, (3.17)
K, ={ 4 (0i, 9) }§ j=1 (3.18)
Eo=l(f, @n -, (f @) (3.19)

the system (3.16) can be written in the form

K,y=F,. (3.20)

4. APPROXIMATE SOLUTION OF THE PARABOLIC PROBLEMS
We study the parabolic problem

g(x)%w{—-lu-—-f(x, t) for xeQ and te(0, T)

w(x, )=0 for xedQ and te(0, T) (4.1)
w(x, 0)=wq (x)e L? (Q),
where g(x) and f (x, t) are sufficiently smooth functions,
g(x)=go(=Const.)>0 4.2)
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and the differential operator ! defined by (3.2) satisfies the conditions (3.3)
and (3.4) with sufficiently smooth functions g;;(x). Similarly as in the elliptic case
we come to the variational formulation of the parabolic problem (see [8]):

Find a function w(x, t) such that

we L® (H§(Q)), %?EL“’ (H™1(Q).

ow
(QE,D> +a(w, v)=(f, V) q, @.3)
0.9,

VveH{(Q) and te(0, 7),
w(x, 0)=wy(x)e L2(Q),

where the bilinear form a(., .) is given by (3.6).

Let us denote by G (x) a sufficiently smooth extension of the function g(x)to a
greater set Q) satisfying (4.2) (with some positive constant G,). First, in the same
way as in the elliptic case, we discretize this problem for every t€(0, T') by
the finite element method with respect to x. Then we use isoparametric
numerical integration. In such a way we come to the following fully semidiscrete
problem:

Find a function w;(x, t) such that

owg
;€ Vi, Vie(©, T),

(ga;)s, :;) 1 Aylw,, v)=
4 h
YveV, and te(0, T)

Ws (x: 0) =Wso (X),

Wy,

4.4)

where w,o (x) is an approximation of wg (x).

Replacing v in (4.4) by the basic functions ¢; we come, to the conclusion that
the problem (4.4) is represented by the system of ordinary differential equations
with an unknown vector function of parametre ¢ :

M,y () +K,y () =F,, 4.5

where
YO=[1(), ..., 7@, (4.6)
Mh={(g @i, Qi }f,j=1, 4.7
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Kh={ An(@s <Pj) }f.j=1, 4.8)
F)=[f, @ - - -, (f, @ )" 4.9)

This suggests the way how to discretize the problem (4.4) with respect to t. We
solve the mentioned system of ordinary differential equations by v-step A,-stable
method of order q. We divide the time interval (0, T') into a finite number of
equal parts At. We introduce the notation

P"=0" (x)=D(x, mAtL), m=0,1, ... (4.10)

for any function ®(x, t).

According to (4.4) and to the described way of the time discretization we
define the following fully discrete problem

Find a function w,(x, t) such that

wyeV, for t=At,2At, ..., T, ‘
(g Y owpt, v) +AtAh(Z B;wi*, v)
i=o h =0

v @.11)
=At<izo[5jf"'“,v)h, VveV, and m=0,1, ...

wl? = Wso (x)-

From(4.5) we can see that the system in (4. 11) is represented by the linear system
of algebraic equations

Y (M, +AtBK)y"ti=Ae Y, B;Fpti 4.12)
i=0 ji=0

i.e. by the system

(oM +AtB Ky y" Y =At B, Fp ™Y

v—1

+_ZolAtB,-(F;.'””—K;.Y"'”)—%-M:.Y'"”]- (4.13)

7

5. RITZ APPROXIMATIONS

Let U be a function from H! (). The function n € ¥, (Q4) such that
ay(n, v)=—(LU, v)y o, YveV, (5.1)
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is called the Ritz approximation of the function U. The function n,€ ¥}, () such
that

Ax(Ma, V)= —(LU, v),, VoveV, (5.2
is called the Ritz discrete approximation of the function U.
From the Green theorem it follows
ay(n, v)=a,(U,v), VveV, (5-3)

i.e. the function 7 is an orthogonal projection onto ¥, of the function U in the
energy norm given by the bilinear form a, (., .). This is the reson why we use the

name Ritz approximation. From the proof of theorem 1 in [7] the following
theorem follows:

THEOREM 5.1 (theorem on the Ritz approximation): Let €, be a k-regular
triangulation of the set Q, k>n/2—1 and let

Q,=Q for all h. 5.9

Let Ue H*** (Q) be any function such that
U=0 on 0Q 5.5)

and let n be the Ritz approximation of the function U.
Then there exists a constant ¢ (independent of k) such that

lu=n}i o, sch*|| U0, (5.6)

If, in addition, Ue H**2(Q3), then there exists a constant ¢ such that
IU=nlloasel* Ul (5.7
Remark: From (5.6) and (5.7) it follows immediately
HU-n]la<ch||Ullza (5.8)

provided Ue H**2((}).

We are going to derive the similar theorem for the Ritz discrete
approximation. Before, we formulate two lemmas.

LemMMa 5.1. Let ¥, be a k-regular triangulation of Q(k>(n/2)~1).
Let ve HY () and

v(y', y)=0 on 0Q, (5.9)
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(for notation see figure). Then there exists a constant ¢ such that
llollo.q-aSch***|v]y 0o (5.10)

The proof follows from [7] (see lemma 1 and note 1).
We introduce the notation

[olli=(@(®)v, ), |v|F=A44(v. v), (5.11)
where the forms (., .),, A,(., .) are defined in (3.12) and (3.13).

LeEMMA 5.2. Let €, be a k-regular triangulation of Q(k>(n/2)—1). Then there
exist positive constants ¢, and ¢, such that:

(@ allofloaslolle  Voevs (5.12)
provided the quadrature formula on the refrence set K is of a degree d=2k,

(b) C2’0|1’9n§|0 hs VUGV;, (5.13)
provided the quadrature formula on the reference set K is of a degree d=2k —2.
For the proof see [7] (Theorem 5).

THEOREM 5.2 (Theorem on the Ritz discrete approximation): Let €, be a
k-regular triangulation of the set Q, k>(n/2)—1,(5.4) be satisfied and h<1. Let
UeH™2(Q), where m=max ([n/2] + 1, k) be any function such that U =0 on 0Q
and the quadrature formula given on the reference set K be of a degree
d=max (1, 2k—2). Let n4 be the Ritz discrete approximation of the function U.
Then there exists a constant ¢ such that

[U=ll0=ch | U]lnrzz (5.14)

If, in addition, U e H**3(Q)) then there exist constants c,, ¢, such that

H U‘“d"o.n,éCth “U“k+3,ﬁ’ (5.15)
|U=nallusch** || U|liss 0 (5.16)

Proof: Evidently
lU_ndll.ﬂhé‘U_n|1.ﬂh+ln—nd|1.n,,’ (5.17)

where m is the Ritz approximation of the function U.

From (5.13) (lemma 5.2 may be applied since N —n4€ V4), from (3.15),(5.1),
(5.2) and from (3.14) it follows

In—ni2aScArm—ma n—nd=c{4m, n—n)—A4r(Ms N—Nd)}

n on d(n-—
=c{a;.(n, n—nd)—E< ) Gua—z %;&))—Ah(m,n—na)}

i, j=1
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c on d(m—mny)
=c¢{ —(LU, n— - . -
C{ ( N—"NMa, o, E( Z=1 gk,  ox, +(LU, n=nah

i J

=c{—-E(LU(n—nd))—E<z": G, on I “")}.

L2y Yox,  ox

Hence, using the inequality (2.39) for ¢ =LU, v=m—n, and the inequality
(2.50) for p=n, v=m—n, and ®="U (notice that n, Ue V) we get

In—malf o = c{H*|| LU |0, +F[| U [lis1.0,
+n=Ulloa}lIn—"alliq- (5.18)

We notice at this point that because of the assumption (5.4) there exists a
constant ¢ independent of h such that

lollio Sc|vlia, YveVs (5.19)

(see Ciarlet and Raviart [3], p. 455).

Therefore from (5.18) and from the theorem on the Ritz approximation
[see (5.7)] it follows

In—m4l} o £ cH[Ulnszaln—nalia0
Hence
In—"al0, S B[ Ul (5.20)
From (5.17), (5.6) and (5.20) we get
|U—m4y g, £ cB*||Ulnsa.n (5.21)
Evidently

1 U—nallo.o, 21U =1 lo.0+ I —7alfo.0.

Therefore from the theorem on the Ritz approximation, from (5.19) and from
(5.20) it follows

| U- Tldlo Q= < ch “ U”m+2 0 (5.22)
The inequalities (5.21) and (5.22) imply (5. 14).
We prove now the inequality (5. 15). We give the proof for n < 3; the proof for

n > 3 can be achieved by using a smoothing procedure, following an idea of
Strang [9].
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Let us denote

z={“_“" for "Ef"’} (5.23)
0 for xeQ—-Q,.

Let y be the solution of the homogeneous Dirichlet problem
—ly=z in Q, y=0 on 0Q. (5.29)
If 8Q is smooth enough then ye H} (Q) n H?(Q) and
I¥ll20 S clizllon s cllzlloa=cllzlo.a.
I9lle.0 = clin—nallo.0 (5.29)

Using the Calderon theorem we extend the function y from Q onto Q. In this way
we obtain a function ye H2(8) such that ||y||, a < ¢||»||, o- Therefore from
(5.25) it follows

71|20, = clln—"lfo.0 (5.26)

Using simple calculation we get
”"1"714”5,9,=J (n-m)(Z+L§)dx—j (m—ma Lydx.
o-0 Q,
The Green theorem (n —n,=0 on 3Q,) yields
- j (M “ﬂd)Lj;dx:ah(Tl —na,f)-
0,
Hence

+|a;.(n—m,J7)|- (5.27)

Iln~mll§.a.§U

The Schwarz inequality gives

n(n—m) (z+Ly)dx

h

é“n_ndno,n,.—n“Z+L)7l|o_m_ﬂ. (528)

L n(n--m) (z+Ly)dx

Using (5.26) we get
lz+Lyllo.a-0 =l zllo.a+ L300
<n=nallo.o +cl|¥]laa = clln—malloq. (5-29
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From (5.10) and (5.20) it follows
1M =7allo, -0 < B[ Na|1.0,-0 < ¥ || Ufni2 5

Therefore from (5.29) and (5.28) we get

j (M—na +Ly)dx| = ch*** || U || snalln—"alloo. (5-30)
Q,-Q

Evidently
aM—naY=a,m~-U,y—my+a,(n—U,m)
+a,(U—nay—m ) +a, (U —1a, 4 ).
From (5.3) (we know that m, ye V}) it follows that a,(n—U, m, y)=0. Hence
Ia;.(n—na. )7)[ =< iah(ﬂ_U, 5"_71}:)7)|
+|a;.(U—m, ;—nh.;)| +|ah(U_nd' ﬂh;)l' (5.31)

From the Schwarz inequality, from (5.6) and from the interpolation theorem
(see Lemma 1) we get

Iah(n—U, ;_nh;H = C|Tl“U11.Q,

y=m¥lia = H|Uflir b7 0
This and (5.26) imply

lanm—U, y—m )| < B [ Ulirr 0, In—7allo o, (5.32)
Similarly, using (5.21), we get

lah(U—ﬂw ;—n,,;)l < ch? H U”mz,ﬁ”ﬂ—ﬂduo.nf (5.33)
From the Green theorem, from (3.15), (5.2) and from (3.14) we get

a,(U—m,, nh;)=ah(U» Th ;)_ah (M4, Tk ;)

- ~ c ng 0my
=—(LU, Tt;,y)o,gh_Ah(ndr nhy)_E<i’jz=1Gija—xi an
=—(LU, m;¥)o o, + (LU, 1 Ys—E Z G,y T O

» W J)0, Q, » b Yk ij=1 Y 5x; an

- ong om,y
— _E(LU n,,y)—E( "“—“ﬂ)

n

G —2
,,Z=1 Yox; 0x;
Hence

LJ

|ah(U—n,,,nJ>léIE(LUnJ)H’E( > G a""”“”)l (5.349)

y 7 0x; 0x;
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Evidently for Ke®,||my |, x < || Y —Y |2, x+ || Y]l - Hence the interpola-

tion theorem implies || 1,y ||, x < ¢|| ¥ ||, x and from (5.26) we get
(2 Hﬂn;llix)”zéc”n—m\lo,m- (5.35)

Therefore from (2. 40) (we apply theorem 2.1 for ¢ = LU and v=m, y) it follows
| E(LU m3)| < k| LU |1, 0.l m=mallo.a.

Hence
|EQLU )| £ B U ||issalln—nallo o, (5.36)

From (2.51) (we apply theorem 2.2 for b=G;;, p=m,4, ©=U,v=m, y) and from
(5.395) it follows

‘ oy a"h;
‘ (,ZlGUa 5x.

J

< Ch[th Ullk+1,9,,+ H'ﬂd“ U“o,nJ ” n—mHo,n.-

Hence, from (5.22) observing that m < k + 1 we get

i on, om,y
(£ 6B < v Ulhusalln-reloa: 530

JJj=1

From (5.34), (5.36) and (5.37) it follows
Uy D SR saln-malons 539

Substituting from (5.32), (5.33) and (5.38) into (5.31) we get
|ah M—"na, ;)l < ekt H U”k+3,f§” n —mHo, Q, (5.39)

From (5.27), (5.30) and (5. 39) it follows

"T]—T],,H&Qh < cht! ” U”k+3.ﬁ“n—r(d”o,m

Hence
[n—mallo.q, < || Ullissa (5.40)
Therefore, from the trivial inequality
1U=nallo.a, U7 1lo.0,+ I —7allo.q,
and from the Theorem on the Ritz approximation the inequality (5. 15) follows.
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From (5.11), (3.12) and from (1.2) it follows
|U—mulli= ¥ Y 6,Jcb)g* () U*b)—nk b))

Ke¥, r
<ch" ¥ Y[U*(b)—nib)P.

Kew, r
Hence
[ U—nalld £ ch” ¥ [max(U*-nHI (5.41)
Ke#, R
Evidently
m’?x| U*—n}| < mkaxl U*—m U*| + m;x]nk U*—ni|. (5.42)

From the Bramble-Hilbert lemma and from lemma 2.4 [see (2.17)] it follows

max | U* —n, U*| S c|U* |1 g Sch™ P Uy k. (5.43)

R
From lemma 2.2 [see (2.10)], from lemma 2.5 [see (2.17)], from lemma 2.4
and from the evident inequality || U* —nj|jo. ¢ < ch™"*|| U —ng|o, « We get
m;lX\nk U*—n¥| < cf|m U*—ni o«
< cf|fm U* = U*{fo ¢ + | U* = ni{|o,«]
< cl|U*|epr z +[[U* =1 lo.2]

Ah—n/2TLk+1 _—
< e BB U+ U

Hence, from (5.43) and (5.42) it follows

mkaxl U*_lel < ch™ 2 [pt? “ U”k+1,K+ H U"nd“o, ]

Therefore, (5.41) implies

[U-malli sc 3 2“2 UE 0+ [1U=malld «]

Ke%,

=c[R* | U||F o+ | U=mal|d o,]-

This and (5.15) imply (5. 16).

6. ERROR ESTIMATE FOR ELLIPTIC PROBLEMS

THEOREM 6. 1: Let u be the solution of the elliptic problem (3. 1) with sufficiently
smooth functions f, g;; satisfying the conditions (3.3) and (3.4). Let €, be a
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k-regular (k > (n/2)— 1) triangulation of the set Q with a sufficiently smooth
boundary 0Q. Let the quadrature formula on the reference set K be of a degree
d = max(1, 2k—2). Then the fully discrete problem (3.16) has a unique solution
uy,(x) and there exists a constant ¢ independent of h and u such that
lu=th]l1.0na, = ch|tt]|nsz 0 6.1

lu=unllo,0na < B ulirs o (6.2)
where m=max ([n/2] +1, k).

Proof: We know that the problem (3. 16) is represented by the system (3. 20).
Hence, to prove the existence and the uniqueness it suffices to show that the
matrix K, defined by (3.18) is positive definite, i.e. that

m’ K, m>0 6.3)
for any nonzero vector m=[m,,. .., m]".
From(3.18),(5.11)and (5.13) (we may apply lemma 5.2 since ), m; ;€ V,,)

i=1
it follows

m’ K, m=Ah< 'Zﬁ m; Q;, Z m; (Pi> =

i=1

2
2c
h

s 2

>0

1.9,

s
Z m; Q; m; Q;
i=1 1

i=

and (6.3) is proved.

Let us suppose that ue H™*2(Q). By the Calderon theorem there exists an
extension u of the function u onto & such that

Il"7”m+2.ﬂ = c||u||m+2,ﬂ' 6.4
Let us denote
f=-Lu 6.5)

Evidently the function fis an extension of the function f.
Hence

(f Oh=(f, olp=— (L, v} (6.6)
Substituting from (6.6) into (3.16) we get
A, (uy, v)=—(Lu,v), VeV, 6.7

Therefore from (5.2) we can see that the function u, is the Ritz discrete
approximation of the function u. Since u=u=0 on 0Q we may apply the
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theorem on the Ritz discrete approximation for n;=u, and U= u. From (5.14),
(5.15) and (6.4) we get the estimates (6.1) and (6. 2).

Remark: The results formulated in theorem 6.1 represent a generalization of
the results which have been obtained for H* norm by Ciarlet [4] and by
Zlamal [12] for special cases. In the case of selfadjoint operator I they also
improve the results which have been obtained for H! and L, norm by Ciarlet and
Raviart [3]. They are similar to those obtained by Zenisék [15] for C™-elements.

7. ERROR ESTIMATE FOR PARABOLIC PROBLEMS

THEOREM 7.1: Let w be the solution of the parabolic problem (4.1) with
sufficiently smooth functionsf, g;, g satisfying the conditions (3.3),(3.4) and (4 .2).
Let €, be a k-regular (k is a positive integer such that k > n/2—1) triangulation of
the set Q with a sufficiently smooth boundary 8Q. Let the quadrature formula on
the reference set K be of a degree d 2max(1, 2k—2) and let exist a positive
constant ¢, independent of v and h such that

c||ol|te S@X v, ) VEV, (7.1)

Let a given v-step time discretization method (p, o) of an order q(= 1) be
Ap-stable. Besides A,-stability, we require that the method (p, o) be stable in the
sense of Dahlquist and that the roots of the polynomial o (§) with modulus equal to
one be simple. Then the fully discrete problem (4.11) has one and only one solution
wy, and there exists a constant ¢ independent of t and h such that

0
=il ann, 5 {1 suplal ot sop |52 ]
0. 7) ©0, N k+3,Q
q+1w v=1 . .
+Atsup || 51 + Y ||n{,—w{,l|h}, Vs(sAt < T), (7.2)
ol o k+LQ  j=0

where 14 is the Ritz discrete approximation of the Calderon extension w of the
Sfunction w.

Remark 1: From (7. 2) we see that the L,-norm of the error is of a magnitude of
the order Az? with respect to ¢t and of the order h**! with respect to x.

Remark 2: Evidently

[l =i [ln = [ " = [n+ | & =i [
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Hence, from (7.27) and from the theorem on the Ritz discrete approximation
ow

[see (5.16)] it follows
Ot ||kss, nil

aq+1

|| uf—-wi"h < c{h""’l [sup]lw]]k+3,g+ sup
©, 7 0,7

w
atq+1

+At?sup
©. 7

v=1
+'% =l
Lo j=0

k+1,

i.e.in (7.2) the norm ||.||o q o, May be replaced by the norm ||. 5.

Remark 3: From the Lemma 5.2 [see (5. 12)] we can see that the condition (7. 1)
is satisfied for example in case that the quadrature formula on the reference set K
for evaluation of the form (.,.), o is of a degree d 2 2k. Nevertheless this
condition is not necessary. Using the quadrature formula

mes K
n

j o (X)dx ~ [¢(0,....0) +0¢(1,0,0,...,0)+...+¢(0,...,0, 1)]

R

(which is of degree 1) in case of 1-regular triangulation (i. e. k = 1-linear elements)
it can be proved that (7.1) is satisfied, too.

Proof of the theorem 7.1: We know that the problem (4.11) is represented by
the linear system of algebraic equations (4. 13). Hence, to prove the existence and
the uniqueness it suffices to show that the matrix o, M, + At B, K, is positive
definite. In the previous part we have proved that K, is positive definite. In the
case of A,-stable methods o, > 0, B, > 0. Hence it is sufficient to prove that

m’ M, m =0 (1.3)

for any nonzero vector m=[m,, m,,. .., my]".

From (4.7), (5.11) and (7.1) it follows
2
\ 2 C“mi(Pi”&n,, >0

m"M,m= (g _Zl m; ¢, .Zl m; (Pi>h =

s
‘Zl m; @;

and (7. 3)is proved. More, the matrix M, is positive definite. Let us suppose that
we H**3(Q),V t(0, T). By the Calderon theorem there exist extensions w, w, of
the functions w, éw/ét onto Q such that

“ ':’||k+3.ﬁ = C” w”k+3,ﬂ: (7.4
where ¢ is a constant independent of & and t. Denote
f=-L+Gx)m, (1.5)
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Evidently the function f is an extension of the function f. Obviously

| 0™ =i [lo. o, < |&0" =17 |lo.0, + |G~ 27 |lo., (7.6)

where n, is the Ritz discrete approximation of the function w. Since
w(x, t)=w(x, t)=0 on dQ for every t€(0, T) we may apply the theorem on the
Ritz discrete approximation. From (5.15) and (7.4) we get

| —nllon S |0 lisa VEEOT. (D)

where c is a constant independent of ¢t and h. From (5.2) and (7.5) it follows
Ay(F, )= —(Lw", h=(f-GX)w, v},  YveV,

Hence

Ay(nz. v)=(S", v)»—(a(x)%w;, v)..’ VveV,. (7.8)

Therefore from (4.11) we get for anyve V,

(g Z o (Mg —wptd), ) +AtAh< Z B,(n"‘”—wh v )

=(g Z‘,oot;w'"“ v>h (gg Wt =7, ) (

rae( £ prmo) ~aefo 38,70 )
“(o

(g Y owpt, v) -
j=0

(g % ay(ng I —wpt), v)h+AtA».<‘Zv:oﬁj(nz"”—wh*’) )

=(g ("™ — ™), V), YveV,, (7.9)

+_] U)
m+J v
h

n[\/]<

Hence

where
v ) ow™*i
= Z (ijm+j—AtBj_—), (7.10)
<o ot
o=, o™t —nFt). (7.11)
j=0
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We write (7.9) in a matrix form. For this purpose, let v be the vector v=M;/? ¢,
where @=[¢,, ..., @7 is the vector of the basis functions. Let us set
ny—wpr=(e")’v (notice that nI—wlreV,). Since (g¢, "),=M, and
An(@, @")=K, we have (gv,v'),=1 and A,(v, V)=M; V2K, M, V2. The
matrix S,=M, >K,M, '/? is symmetric and positive definite. Putting the

components v;(i=1, ..., s) of the vector v for v in (7.9) we get
Y (o X+ AtB;Semt =cyr, (7.12)
=0
where
¢y =(g (@™ —a™), V). (7.13)
Denote
o;+Pp;T —1.m
BO= Tt Bl ARS)

(the matrix o, I+ At B, S, is positive definite). Then

8;(AtS,)em i =dm (7.14)
j=0

J

and this difference equation will be solved in the way described by Zlamal [10],
pp. 355-356 who used the ideas given in Henrici [5], pp. 242-244 for ordinary
differential equations. From Zlamal’s result (see [10], pp. 355-356) we get

lerlize('E e+ Tl .19

(by ||.|| we denote the Euclidean norm of a vector or of a matrix). Since

g —wp |2 =@MF—wp), nF—wi) =(ge™ v, viem,=e" (gv, vT),em=| |2

we get from (7.15):

v—1 m-—v
unz*—wa"néc(zonnﬂ—wf;||h+_zouc;;u). (7.16)
J= J=
Let 9 € L, (Q) be any function and let { € ¥, be its orthogonal projection onto V,

in the norm ||.||4. i.e.:

(g(e—1), v),=0, VoeV,. (7.17)
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Then

0<|lo—V =@ —¥). o—W=@@—V). oh=G ¢, 0)—@V. O
=g, O—(g@—V). V=gV, Wu=|lo||F=|| V|

Hence
W lla=llo]ls (7.18)
Putting Y=y " v=v"{ we get
[V [|Z=@¥, =@V, V' )=V" @V, V¥ =[[¥|*  (7.19)
and
@0, V=@V, V=@ ¥ V)i=W"gv, V' )i= .
Therefore from (7.19) and from (7.18) it follows
o, vull <@
Hence, from (7.13) we get
llehll =g ('~ ), viu|| <[| 7/ — |

Substituting this inequality into (7.16) we obtain

v—1i m—v
-t loze( T ni-wlt T I-wls) 020
j=0 j=
Evidently
] (7.21)
To estimate || n/||, we use the assumption that the scheme (p, ©) is of order g. It
means that for any function y(t)e C*, s<g+1, it holds

Y ay(t+iA)—Ar Y B;y(t+jA)=0(Ar max|y® (t+1)|)
i=0 j=0

Hence, from (7.10) and from the first Sobolev theorem it follows

g+ 1
Yl <eantt supl| 2| (7.22)
©7) k+1,Q

g+ 1

ottt ot

|n;j|ScAr*! sup sup
Q (07

provided that the function 87" w(x, £)/0t***! is continuous for every xeQ.
From (3.12) we have

[nli=@m, tn=Y Yo, kgb, )0 @b, ).

Ke®, r
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Hence, (7.22) implies

a+1

Iwsea e | sup | ot

]Z Y Yok (7.23)
k+1,Q

Ke¥, r

From (2.5) and from (1.2) we get

Y Yo x=) Yo Jk CAESY m‘?xJK(x)Z(o

Ke@, r Ke%, r Ke¥,
max Jg (X)
a A R A -
= maxJg(X) | dX= ——— | Jg(X)dx
Kglm 4 K Ke%, mka x(X) Je

sc§ Y '[JK(X)dfc=c3 Y mes K=c} mes Q,<c§ mes Q.
Ke%, JK Ke%,

Hence, (7.23) implies

0w

“ n ||;,<cAt’1+1 SUP VI

(7.24)

k+1,Q

A simple calculation gives

v

=2 a" " —n7*)

= % o @ T Ty (w0,

where y;= Z o;, From the consistency of the scheme (p, ) it follows that y,=0.
i=j
Hence

|om||s<e _Zl [ i B G VAR R A | 1A
=
<__ci”(wm+1 ) — (=t || (7.25)
ji=1

Evndently Nyt —nr*i ! is the Ritz discrete approximation of the function
w™* —m*i=1 We may apply the Theorem on the Ritz discrete approximation.
From (5.16), (7.25) and from the Calderon theorem we get for
(m+j—1DAt=H#;<(m+j)At:

”mm ||h§Chk+l .il ” Ejm+j_&')m+j—-l “k+3,ﬁ
j=

ow’:

éChk+l i |Iwm+j m+1 1”k+3n<Chk+1 Atz
i=1 ot

j=1

k+3,Q

vol. 13, n° 3, 1979



288 J. NEDOMA

Hence
|| @™ ||nS ch*** At sup||— . (7.26)
©,7) at k+3,Q
From (7.21), (7.24) and (7.26) we get
m-—v . . m-v aq+l a
BT D) [Az«“ sup | S || K<Y Arsup S ]
i=o i=o ©.nl 0t AL Q © ol 0t ||lk+3.0
q+1w ow m-—v
=c| At sup || =+ +h sup || — :I At
[ (o,g T | P (o,?) 0t |lks1.0 ,-;o
g+ 1 aw
ScT| At sup || =——+ +h* sup||— ]
I: (o,g 0t isra (o.g 0t | ki3.0
Hence, the inequality (7.20) implies
q+1w
izt ] Act sup | T
orl| ot k+3,Q
+1 ow e g o
+H* ! sup || —— + Y |Indwh|lnp. (7.27)
o.nll 0t {lk+3.0 =0

From (7.6), (7.7), (7.1) and from (7.27) we get (7.2).

REFERENCES

1. J. H. Bramsie and S. R. HiLserT, Estimation of Linear Functionals on Sobolev Spaces
with Application to Fourier Transforms and Spline Interpolation, S.1.A.M. J. Numer.
Anal., Vol. 7, 1970, pp. 112-124,

2. J. H. Bramsire and M. ZiamaL, Triangular Elements in the Finite Element Method,
Math. Comp., Vol. 24, 1970, pp. 809-820.

3. P. G. Ciarcer and P. A. Raviart, The Combined Effect of Curved Boundaries and
Numerical Integration in Isoparametric Finite Element Methods, The Mathematical
Foundations of the Finite Element Method with Applications to Partial Differential
Equations, A. K. Aziz, Ed., Academic Press, New York, 1972, pp. 409-474.

4. P. G. Cuarier, The Finite Element Method for Elliptic Problems, North-Holland,
Amsterdam, 1977.

5. P. Henrict, Discrete Variable Methods in Ordinary Differential Equations, Wiley,
New York-London, 1962.

6. J. NEtas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris,
1967.

7. J. Nepoma, The Finite Element solution of Parabolic Equations, Aplikace
matematiky, svazek, 23, 1978, C. 6, pp. 408-438.

R.A.LLR.O. Analyse numérique/Numerical Analysis



10.

11.

12,

13.

14.

15.

ELLIPTIC AND PARABOLIC EQUATIONS 289

. P. A. Raviart, The Use of Numerical Integration in Finite Element Methods for

Solving Parabolic Equations, Conference on Numerical Analysis, Dublin, August 14-
18, 1972.

. G. StrANG, Approximation in the Finite Element Method, Numer. Math., Vol. 19,

1972, pp. 81-98.

M. ZramaAL, Finite Element Multistep Discretizations of Parabolic Boundary Value
Problems, Mathematics of Computation, Vol. 29, No. 130, April 1975, pp. 350-359.
M. ZLAmAL, Curved Elements in the Finite Element Method 1. S.1.A.M. J. Numer.
Anal., Vol. 10, No. 1, March 1973.

M. ZiLAmAL, Curved Elements in the Finite Element Method 11. S1.A.M. J. Numer.
Anal., Vol. 11, No. 2, April 1974.

M. ZuamaL, Finite Element Methods for Parabolic Equations. Mathematics of
Computation, Vol. 28, No. 126, April 1974, pp. 393-409.

M. ZLAmAL, Finite Element Methods for Nonlinear Parabolic Equations, R. AIR.O.,
Vol. 11, No. 1, 1977, pp. 93-107.

A. ZeniSex, Curved Triangular Finite C™-Elements, Aplikace matematiky, svazek 23,
1978, ¢. S, pp. 346-377.

vol. 13, n® 3, 1979



