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THE FINITE ELEMENT SOLUTION

OF ELLIPTIC AND PARABOLIC EQUATIONS

USING SIMPLICIAL ISOPARAMETRIC ELEMENTS (*)

par Josef NEDOMA (1)

Communiqué par P. G. CIARLET

Abstract. — Error bounds introduced in [7] were givenforfully discretized approximate solutions of
parabolic équations by thefinite element method. For time discretization the Astable linear v-step
methods ( for v = 1 or 2) were used. In this paper the Aostable linear v-step methodsfor any v are used
for time discretization. lt is known that Astable methodsfor v = l, 2 are included in the class of
Aostable methods. The considération for the elliptic équations is similar to the parabolic équations.
Hence, the error bounds for elliptic équations are formulated in this paper too.

Résumé. — On a donné en [7] des majorations de l'erreur pour des approximations complètement
discrètes d'équations paraboliques par la méthode des éléments finis. On utilisait des méthodes linéaires
Astables à v pas (v = 1 ou 2) pour la discrétisation en temps. Dans cet article, on utilise des méthodes
linéaires A0-stables à v pas, v quelconque, pour la discrétisation en temps. On sait que les méthodes
Astables pour v = l, 2 sont incluses dans la classe des méthodes A0-stables. Les développements
étant semblables dans les cas elliptiques et paraboliques, on énonce également dans cet article les majo-
rations d'erreurs pour les équations elliptiques.

1. CONSTRUCTION OF THE FINITE ELEMENT SPACE. NOTATION

We consider the /c-regular family {K} h of simplidal isoparametric fmite

éléments K introduced by Ciarlet and Raviart [3]. Hence, the simplicial element

K e {K } h is the image of the unit rc-simplex Ê. ( K is the closed convex huil of a

set î = \J { ât} ) through the unique mapping FK : K -> Rn (the mapping FK is
i=i )

supposed to be a C*+1-diffeomorphism) such that FKePn, FK{âi)-=ai
k + 1 is a finite dimensional space of functions defined on K with

(*) Reçu septembre 1978.
f1) Technical University, Laborator pocitacich strojû V.U.T., Brno, Tchécoslovaquie.
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258 J. NEDOMA

dim P = N such that Ê is P-unisolvent and JP=>P(1), where for any integer
r^O, P(r) is the space of restrictions to K of all polynomials of degree ^ r in
n variables x1( . . . , xn) and there exist constants cit O^f ̂ k + 1 , independent
of h such that for all h:

and

sup max|/>a,Mx)| ^c4ft'f l ^ i ^ k + 1 (1.1)
xetf |a | - i

0< — hn^\jK{x)\^coh\ (1.2)

where a = (a1, . . . , a„), ja | = a t + . . . +a„ and JK(x) is the Jacobian of the
mapping FK at the point xeK.

To every element K there is associated the finite dimensional space PK (with
dim PK = N) of functions

^ = { ^ : ^ ^ ^ ; ^ = P * ( ^ K 1 ) > V P * G P } . (1.3)

The X-interpolate rcx w of a given function u : K -> i? is the unique function
which satisfies

nKuePK, nKu(ai) = u(ai), l^i^N. (1.4)

For a /c-regular family { X} h of finite éléments the following interpolation
theorem is true (see Ciarlet and Raviart [3], theorem 2, p. 429).

LEMMA 1.1 (interpolation theorem): Let ak-reguiarfamily {K}hof simplicial
éléments such that P(k)<=P be given. Let

fc>^-l. (1.5)

Thenfor any integer i such that 0 ̂  i ̂  k +1 , there exists a constant c independent
of h such that for any Ke{K}h and for any function ueHk+1(K) we have

IU-HKUL^C/I^-'IIIIII^, .* . (1.6)

Here the following notation is used:
The norm and the scalar product in the space L2{A) is denoted by ||.||0 A

and (., . )0 A respectively.
Hm(A)= W^(A)$ m = 0, 1 . . . is a Sobolev space with the norm

/
=

l/2

• where Kt=< I \\D*41A)W-
| a | = i

R.A.I.R.O. Analyse numérique/Numerical Analysis



ELLIPTIC AND PARABOLIC EQUATIONS 259

In the sequel we mean by Q a bounded domain in Rn with a sufficiently smooth
boundary dÇï.

Using the way described by Ciarlet and Raviart [3] we define a fc-regular
triangulation <€h oi£l. Let Qh be the union of a finite number of simplicial
éléments K. Every element K = FK(K) is determined by N points altK. We
suppose that all points alK belong to Q. The family of éléments constructed in
this way is called a triangulation of Q and is denoted by <€h. We say that a
triangulation <êh of Q is /c-regular if:

a) the family of all éléments from which the triangulation is formed
is fc-regular;

b) the geometrical shape of any "face" À of a given element Ke^h must be
completely determined by those points ah K which belong to A;

c) for the boundary éléments (i. e. for éléments K^Q) of the triangulation cêh

we have

1, (1-7)
y'eà

where c is a constant independent of h and the notation is that of figure.

y'-(%>••%.,)

To a given fc-regular triangulation cêh there is associated the finite dimensional
space Vh of functions v defined by

= {veC°{Qh); vKePK, on dQh}, (1.8)

where vK is the restriction of the function v to the set K.

vol. 13, n° 3, 1979



260 J. NEDOMA

Next, to any function v defined on Q or on Qh we may associate its unique
interpolate nh vf which satisfies

= nKv, V K e ^ . (1.9)

In our paper we suppose that P = P{k). This restriction is not essential.
It enables us to give simpler proofs.

In the sequel we use the foliowing notation:
H o (A) is the closure of the set C™ {A) (i. e. of the set of infinitely differentiable

functions with compact support in A) in the norm ||.||i,x-
H"104) is the space dual to HQ(A) (with dual norm).
Z,°° {Hm(A)) is the space of all functions 9 (x, t),x = {xlf . . . , xn)eA, te[0, T]

suchthat<p(x, t)eHm(A),\/te[0, T] and the function ||q>(x, 0 | U x i s b o u n d e d

for almost all te[0, T\.
Let O(x) be any function defined on the element K, Then the function

<ï>(FK(x)) is defined on X. In the sequel we will dénote it by O*(x).
In the sequel the constants independent of h will be denoted by c. The

notation is generic, i. e. c will not dénote necessarily the same constant in any
two places.

2. ISOPARAMETRÏC INTEGRATION

In the same way as in Ciarlet and Raviart [3] let us suppose that we have at our
disposai a quadrature formula of degree à over the référence set K. In other
words

j
JK

cp (x) dx is approximated by £ ô)r cp (ér) (2.1)

for some specified points 6r e K and weights ô r which will be assumed once and
for ail to satisfy

œr>0. (2.2)

This assumption is by no means necessary but it yields simpler proofs.
Concerning br we suppose that for every r, br either lies inside K or it coincides
with some of the points ât. With the quadrature scheme (2.1) we associate the
error

X (2.3)
r

RA.I.R.O. Analyse numénque/Numerical Analysis



ELLIPTIC AND PARABOLIC EQUATIONS 261

Using the standard formula for change of variables in multiple intégrais, we find
that

I cp (x) dx is approximated by ]T cor K cp (br K ), (2.4)

JK r

where

©r.ic = ôrJJC(fir). briK = FK(Sr)> (2.5)

We may, and will, assume that JK(Jc)>0, VxeK. We see that the quadrature
scheme (2.1) over the référence set K induces the quadrature scheme (2.4) over
the element K, a circumstance which is called by Ciarlet and Raviart [3]
"isoparametric numerical intégration". With the scheme (2.4) we associate the
error

JK r

so that we have

K) and É((p*)~£K(cp JK
1). (2.7)

In the sequel we will dénote

E(q>)= Y, EK(<p) for any function cp. (2.8)

Now, we dérive two theorems concerning isoparametric numerical
intégration. Before, we give some technical lemmas.

LEMMA 2.1: Let Z)pcpf = O(/i |pl+^f)for i='l, . . . , s, | P | = 0 , . . ., |oc|. Then

Da((p1cp2.. ,<ps)^O(h\<x\+Jfl+'+^s). (2.9)

The proof is trivial using the mathematical induction.

LEMMA 2.2: For polynomials r, s on the référence set K the following
inequalities are true

• C i l r L * . (2-10)|

\r\l^c2\r\lK for ; ^ 0 , (2.11)

t \r\h\s\lj,K, (2.12)
j=o

where clf c2, c2 cire constants.

vol. "13, n° 3, 1979



262 J. NEDOMA

The proof follows from Zlamal's paper [12], p. 356 and from lemma 3 in [7].

LEMMA 2.3: Let ^hbe a k-regular triangulation ofQ.LetJ%'p)bea cofactor of
the Jacobian JK. Then

n), (2.13)
n - 1 ) , (2.14)

J O ( f c ) . (2.15)

For the proof see Lemma 5 in [7].

LEMMA 2.4: Let T*eHfc+1(K), xeHk + 1{K), Ke<€ht <£hbe a k-regular
triangulation ofQ. Then there exists a constant c independent of h such that

Lemma is an immédiate conséquence of Lemma 1 from [3], p. 427.

LEMMA 2.5: Let q>eHs(K), where s>n/2 and let ns-1<p be a polynomial of
degree s—l which uniquely interpolâtes thefunction cp on K. Then there exists a
constant c such that

| I i J t for 7=0 5. (2.17)

Lemma follows from Bramble and Hubert paper [2], p. 812.

LEMMA 2.6: Let y\f(x)eHs{K), where

s>\> (2.18)

x(Jc) be a polynomial of degree ^r, where

(2.19)

8(x)eC s(X) be afunction such that

D*6 = O(hM+*r) for 0 ^ | a | ^ s , X.. .some int. (2.20)

Let d be the order of a quadrature formula on the référence set K such that

d>\-\. (2.21)

R.A.I.R.O. Analyse numérique/Numerical Analysis



ELLIPTIC AND PARABOLIC EQUATIONS 2 6 3

Then there exists a constant c such that

. (2.22)

When supposing, in addition, that y\t(x) is a polynomial ofdegree ^ r , then there
exists a constant c such that

t = l
\x\u\. (2-23)

J

Proof: Evidently

. (2.24)

From (2.3), from the first Sobolev theorem and from lemma 2 . 5 it follows

Scsup I ô -TC S _ ! ô I sup I \ | / - n s - x \|/1 max | x |

Hence, from (2.20) and from lemma 2 .2 we get

\È((b-7tM.lh)^-nt.l^)Y^c^^\^\U\\z\\U (2-25)

Similarly we obtain

\\^\\lt\\x\\U, (2.26)
I I ^ I ^ I I T I I ^ . (2.27)

Evidently

voL 13, n° 3, 1979



264 J. NEDOMA

Hence

(2-28)
r . (2.29)

Let us remember that the inequality (2.29) is true also for i>s since
17is_ t 81 ( ^ — 0. From the Bramble-Hilbert lemma (see [1]), from lemma 2.2 and
from (2.29) we get

i £ Ix^ l^^l / .^ . (2.30)
1=0

It is easy to verify that

j=o i = o \ j = o / \;=o

Hence, from (2.30) and from (2.28) it follows

t h l ^ f K I ^ ï l l ) (2.31)
j=o A i-o /

Substituting from (2.25), (2.26), (2.27) and from (2.31) into(2.24) we
get (2.22). From (2.22).it follows

If \|/(x) is a polynomial of degree ^r(r:gs) then

* and |H2
+ i .*=°- (2-33)

R.A.I.R.O. Analyse numérique/Numerical Analysis



ELLIPTIC AND PARABOLIC EQUATIONS 265

Evidently

I *"aih|f+i.*=ri h-w-^xWt-V ih-2i\z\f,z, (2.34)

l*-2lHr|.2+i.it= t h-^-^MU-h? t*"2'K|2*- (2-35)
i = 0 t = l i = l

Substituting from (2.33)-(2.35) into (2.32) we get (2.23).
Now we can formulate two theorems concerning isoparametric intégration.

THEOREM 2.1: Let <gh be a k-regular triangulation of the set Q where

fc>|-l. (2.36)

Let ve Vh(Qh) and <peHm(Qh), where

T^ l (2.37)

Let the quadrature formula given on the référence set K be ofdegree

d£max(l,2fc-2). (2.38)

Then there exists a constant c such that

ƒƒ, in addition, q>ei/k+1 (Qh) then there exists a constant c such that

\E{Vv)\ £cV+l\\v\\k+UOt( E MIK)112- (2.40)

Proof: Obviously

= X EK{<pv)= X £(JIC9*Ü*). (2.41)

It is easy to verify that m>n/2, k?£m^k + l, max(l, 2k —2)^/c and that
Z>a(J/c) = O(/i|a|+"). Hence, we may apply Lemma 2.6 for \|f = <p*. s = m, x = ü*f

r=kt 8=JK , ^ = n and d^max(l, 2k-2) . From (2.22) we get

2^-lM<p1i*+T

vol. 13, n° 3, 1979



266 J. NEDOMA

Hence from Lemma 2 .4 (notice that a fc-regular family is a /c'-regular family for
any k' ̂  k) it follows

i = 0

2 V I ? 4 - (2-42)

In the same manner we may apply the inequality (2.22) for s = fc+l assuming
<peHk+1(Clh). Then we obtain

\k+l,K

k
i M ? * } • (2.43)

From lemma 2.2 and from lemma 2.4 we get for k^ 1:

\ \
i = 0

Hence

Similarly

| | ^ | | î ; | | ? i i C for Ikèl . (2.44)
0

k

Y h~2i\v*\?K<ch-n-2k+4\\v\\ïK for fe>2. (2.45)
i=o

Substituting from (2.44) into (2.42) and observing that m ̂  fe and d ̂  2 k - 2, we
obtain

||ix | |r | |f i JC for fe^l. (2.46)

Substituting from (2.45) into (2.43) and observing that d^2k — 2, we get

\Ê(JK^v*)\^ch2^^\\9\\l1,K\\v\\lK for. *£2. (2.47)

Substituting from (2.44) into (2.43) and observing that d^l, we obtain

\Ê(JK<p*v*)\2^ch*\\<p\\lK\\v\\lK for fc=l. (2.48)

R.A.I.R.O. Analyse numérique/Numerical Analysis



ELLIPTIC AND PARABOLIC EQUATIONS 267

From (2.47) and (2.48) we see that

|É(JJC9*»*)|2^cli2|t+1)||<P||*a
+i.iC||Hl2a.ic for tel. (2.49)

From (2.46), (2.49), (2.41) and from the Schwarz inequality the
inequalities (2.39) and (2.40) foliow.

THEOREM 2.2: Let <€h be a k-regular triangulation of the set Q, where

Jfc>n/2-l. Let <peT/„(fi), veVh(Q), beCk+1(üh) and ®eHk+1(&h) be any

function such that nh<S>e Fh(Q). Let the quadrature formula given on the référence

set Kbeofa degree d^max( l , 2k — 2).

Then there exists a constant c such that

\ dxt ôxj

If, in addition, beCk+2{Çlh) then there exists a constant c such that

E(b7TT-)\ ^WM^+IIV-VI^ZMIK)112- (2-51)
\ Oxi Oxj / I

Proof: Obviously

From the rule on differentiation of the composite function it follows

where

yu . = b* J ^ ' ' ) J ^ ' J > (jg. of J(P. ;) a r e cofactors of JK).

From lemma 2.3 and from lemma 2.1 we get Da(Y0) = O(/i | a |+n"2). Hence we
mayapply lemma2.6 for v|/ = cp*, s = k + q(q = l if beCk+1 or q = 2 if beCk+2),
% = v*, r = k, S = yu, 3tf = n-2 and J ^ m a x (1, 2fc-2). From (2.23) we get

(2.54)

vol. 13, n° 3, 1979



268 J. NEDOMA

From lemma 2.2, lemma 2.4 and from the interpolation theorem
(see lemma 1.1) it follows

|q»-«»«||îx+ E ||«.*-*||2« + £ \\*\\IK\

Hence

£ h-2i\i?*\f.l>Sch-'{h-2ky-(i> UK+WHLUK}- (2-55)
1 = 1

Evidently

•+2|M|?.K. (2.56)

Substituting from (2.56), (2.55) and from (2.44) into (2.54) for q = l and
observing that i ^ 2 J t - 2 w e get (for fc^l):

Hence

for fc^l. (2.57)

Substituting from (2.56), (2.55) and from (2.45) into (2.54) for q=2 and
observing that d^2k—2, we similarly obtain

»\\^î+lK]\\v\\lK for k^2 (2.58)

R.A.I.R.O. Analyse numérique/Numerical Analysis



ELLIPTIC AND PARABOLIC EQUATIONS 269

Substituting from (2.56), (2.55) and from (2.44) into (2.54) for k = 1, q = 2 and
observing that d^ 1, we get

1 , / C

Hence

Ê
dv*

(2.59)

From (2.58) and (2.59) we see that

3cp* Ôv*\\2

From (2.57), (2.60), (2.53), (2.52) and from the Schwarz inequality the
inequalities (2.50) and (2.51) follow.

3. APPROXIMATE SOLUTION OF THE ELLIPTIC PROBLEMS

Let Q be a bounded domain in R" with sufficiently smooth boundary ÔQ. We
study the elliptic problem

fi,l

where ƒ is a sufficiently smooth function and

M(X)=0 on dn, j y ' '

We suppose that the functions gtj (x) are suf&ciently smooth and

gu(x)=gji(x). (3.3)

About the differential operator / we suppose that it is strongly elliptic, i. e. there
exists a constant gx > 0 such that

t 9u(*)Si%i*9ii&' VxeQ, (^ ^n)eR". (3.4)
» , j = l 1 = 1

vol. 13, n° 3, 1979



2 7 0 J. NEDOMA

The variational formulation of the elliptic problem is:

Find a fonction u (x) e Ho(Q) such that

where

2, 9IAX)T~ T~dx- ^3*6^

We extend the functions gti(x)9 f(x) to a greater set Qi^Q so that the
conditions (3.3) and (3.4) are satisfied (with positive constants GJ. In this way
we obtain the functions Gy(x), F(x). We dénote

L-,k UG'K
Let cêh be a k-regular triangulation of the set Q and Let Vh be the corresponding
finite element space. The union of the éléments K from <ëh forms a set Qh which,
in gênerai, differs from Q. We suppose that

Qfccfi, (3.8)

for all sufficiently small h and formulate the following discrete problem

Find a function ud (x) e Vh such that

(3.9)

where

\ t ^^dx. (3.10)
d

Since it is either too costly or simply impossible to evaluate exactly the intégrais
(•» -)o,nh>

 ah(-> -)' w e must now take into account the fact that approximate
intégration is used for their computation. For this purpose we use the
isoparametric numerical intégration, i.e. in agreement with (2.4) we replace

(<P. Wo,nA~(<P> Wh, ah(<p, \|f)Wi4fc(9, \|/) (3.11)

where

R.A.I.R.O. Analyse numérique/Numerical Analysis



MLTIC AND PARABOLIC EQUATIONS 2 7 1

Ê jl^^.jl^^r.J (3-13)

Let us note that form (2.6) and (2.8) it follows

(3-14)

(3.15)

Evidently for K e Q for sufficiently small h (remember that br are supposed to lie
inside K or coincide with some of the points ât). Hence F(br K) = f(br K),
Gij(bri K) = 9ij(br, K)- Therefore from (3.12) we see that (F, v)h = (f, v)h. In such a
way we come to the following fuUy discrete problem:

Find a function uh(x)e Vh such that |

Ah(uh, v) = (f, v)h, VveVh] (3.16)

Let the functions (pt, . . . , <ps form the basis of the space Vh. Denoting

Y = lYi Y/- (3-17)

K» = {4(9i.q>;)}lj-i (3-18)

F» = [(/.q>i)i (/<Ps).J
r (3-19)

the system (3.16) can be written in the form

Fft. (3.20)

4. APPROXIMATE SOLUTION OF THE PARABOLIC PROBLEMS

We study the parabolic problem

dw
g(x)- /u = /(x, t) for xeQ and te(0, T),

ot

w(x, t)=0 for xedQ and re(0, T), v ' ;

IÜ(X, 0) = M;0(x)eL2(Q),

where #(x) and ƒ (x, t) are sufficiently smooth fonctions,

g(x)^go{ = Const.) > 0 (4.2)

voi. 13, n° 3, 1979



272 J. NEDOMA

and the differential operator / defined by (3.2) satisfies the conditions (3.3)
and (3.4) with sufficiently smooth functions gtj (x). Similarly as in the elliptic case
we come to the variational formulation of the parabolic problem (see [8]):

Find a function w(x, t) such that

dw

+ a(w, ») = (ƒ, v)0Mh, (4.3)

and te (O, T),

w (x, 0) = w0 (X) eL2 (Q),

where the bilinear form a(., .) is given by (3.6).
Let us dénote by G (x) a sufficiently smooth extension of the function g (x) to a

greater set Q satisfying (4.2) (with some positive constant Go). First, in the same
way as in the elliptic case, we discretize this problem for every te(0, T) by
the finite element method with respect to x. Then we use isoparametric
numerical intégration. In such a way we come to the foliowing fully semidiscrete
problem:

Find a function ws(x, t) such that

(4.4)

h and te(0, T\

ws(x, 0) = i

where ws0 (x) is an approximation of w0 (x).
Replacing v in (4.4) by the basic functions <p£ we come, to the conclusion that

the problem (4.4) is represented by the system of ordinary differential équations
with an unknown vector function of paramètre t :

where

Y.Wf.

(4.5)

(4.6)

(4.7)

R.A.I.R.O. Analyse numérique/Numerical Analysis



ELUPTIC AND PARABOLIC EQUATIONS 273

(/,<ps),Jr.

(4.8)

(4.9)

This suggests the way how to discretize the problem (4.4) with respect to t. We
solve the mentioned system of ordinary differential équations by v-step ̂ 4o-stable
method of order q. We divide the time interval (0, T) into a finite number of
equal parts At. We introducé the notation

<Dm=$m(x)=<I>(xf m Ar), =0, 1, . . . (4.10)

for any function O(x, t).
According to (4.4) and to the described way of the time discretization we

define the following fully discrete problem

Find a function wh(x, t) such that

wheVh for t =

[9 £ *jWk+i, v) +AtAk(£t $ju$+j
t v

t, 2 At, . . . , T,

- O
VveVh and m = 0, 1, . . .

(4.11)

I
From (4.5) we can see that the system in (4.11) is represented by the linear system
of algebraic équations

(4.12)

Le. by the system

j - o

+J ']. (4.13)

5. RITZ APPROXIMATIONS

Let l / bea function from H1 (Ù). The function r| e Vh(Qh) such that

vol. 13, n° 3, 1979
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274 J. NEDOMA

is called the Ritz approximation of the function U. The function y\de Vh{Q) such
that

Ak(r\d9v)=-(LU,v)h9 VveVh (5.2)

is called the Ritz discrete approximation of the function U.

From the Green theorem it follows

ah(r\,v) = ah(U,v), VveVh, (5.3)

i.e. the function r| is an orthogonal projection onto Vh of the function U in the
energy norm given by the bilinear form ah (., . )• This is the reson why we use the
name Ritz approximation. From the proof of theorem 1 in [7] the foliowing
theorem follows:

THEOREM 5.1 (theorem on the Ritz approximation): Let #h be a k-regular
triangulation of the set Q, k>n/2—l and let

Q„c:Q for all h. (5.4)

Let UeHk+1(Ù) be any function such that

C/-0 on dQ (5.5)

and let r\ be the Ritz approximation of the function U.

Then there exists a constant c (independent of h) such that

\u-T]\lMhSchk\\U\\k+lMh. (5.6)

If, in addition, UeHk+2(Û), then there exists a constant c such that

| |C/-n||o.n^c/i"+1 |!C/| |k+2. f i. (5.7)

Remark: From (5.6) and (5.7) it follows immediately

\\U-r\\\UOk£c&\\V\\k+2tlk (5.8)

provided UeHk+2(Ù).

We are going to dérive the similar theorem for the Ritz discrete
approximation. Before, we formulate two lemmas.

LEMMA 5.1. Let c€h be a k-regular triangulation of Q{k>(n/2)~ 1).
Let v e H1 (Ù) and

v(y',yJ = Q on dQh (5.9)
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(for notation see figure). Then there exists a constant c such that

\\v\\OtQk_Q£ctf + 1\v\ltQk_Q. (5.10)

The proof follows from [7] (see lemma 1 and note 1).

We introducé the notation

\\v\\2
h=(g(x)v,v)h, \v\2

h=Ah(v,v), (5.11)

where the forms (,, .)h, Ah(., .) are defined in (3.12) and (3.13).

LEMMA 5.2. Let <êh be a k-regular triangulation ofQ(k>(n/2) — 1). Then there
exist positive constants cA and c2 such that:

(à) C I H I O . Q ^ H I * . VveVh (5.12)

provided the quadrature formula on the refrence set K is of a degree d^2k,

(b) c2\v\1Qk^\v\h, VueF h (5.13)

provided the quadrature formula on the référence set K is of a degree d^2k — 2.

For the proof see [7] (Theorem 5).

THEOREM 5.2 (Theorem on the Ritz discrete approximation): Let (éh be a
k-regular triangulation of the set Q,k> (n/2) — 1, (5.4) be satisfied and h< 1. Let
UeHm+2(Q), where m = max ([n/2] + 1 , k) be any function such thatU = 0on dQ
and the quadrature formula given on the référence set K be of a degree
d^max( l , 2k — 2). Let r[d be the Ritz discrete approximation of the function U.
Then there exists a constant c such that

| | , | | , a | | | | 2 , a . (5.14)

If, in addition, UeHk+3(Cl) then there exist constants clt c2 such that

\\,yù, (5.15)

|| H I l y ^ û . (5.16)
Proof: Evidently

| U - T l d | 1 . a ^ | l / - T i | 1 . Q f c + |Ti-'nd|1,afc, (5.17)

where TJ is the Ritz approximation of the function U.

From (5.13) (lemma 5.2 may be applied since V[ - r\d e Vh), from (3.15), (5.1),
(5.2) and from (3.14) it follows
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— c

Hence, using the inequality (2.39) for (p=LU, v = r | - r | d and the inequality
(2.50) for cp = r|, t? = r| —r|d and O = t/ (notice that nhUe Vh) we get

+ |h-t/||o.QJ|h-ïld||i.«.- (5-18)

We notice at this point that because of the assumption (5.4) there exists a
constant c independent of h such that

(see Ciarlet and Raviart [3], p. 455).

Therefore from (5.18) and from the theorem on the Ritz approximation
[see (5.7)] it follows

Hence

In-n-li^ctflIi/IUiu. (5.20)

From (5.17), (5.6) and (5.20) we get

| 1 7 - T ^ U £c#\\U\\m+2.a. (5.21)

Evidently

Therefore from the theorem on the Ritz approximation, from (5.19) and from
(5.20) it follows

+2rù. (5.22)

The inequalities (5.21) and (5.22) imply (5.14).
We prove now the inequality (5.15). We give the proof for n ̂  3; the proof for

n > 3 can be achieved by using a smoothing procedure, foliowing an idea of
Strang [9].
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Let us dénote

z fîl-TK for xeÖtA

[O for xeÙ-Qh. J

Let 3; be the solution of the homogeneous Dirichlet problem

-ly = z in Q, y = 0 on dn. (5.24)

If du is smooth enough then y e Hl (Q) n H2 (Q) and

| |y| |2.Q ^ ^ l U l k n ^ c | |^ | | 0 .n = cHzllo.0..
i. e. :

IMi2.«^lh-Tld||o.cv (5.25)
Using the Calderon theorem we extend the function y from Q onto Q. In this way
we obtain a function yeH2(ù) such that ||y||2.û è c\\y\\z,n- Therefore from
(5.25)itfollows

||y|[2,fth^c||Ti-Tid||o,Qj(. (5.26)

Using simple calculation we get

lh-^d| |o2f l ,= (T]-rid)(2 + L y ) d x - {r\-r\d)Lydx.

The Green theorem (TI — T]d = 0 on ôQh) yields

Hence

||Tl"~Tld||o,nh = (H— 'Hd) (z + Ly)dx

The Schwarz inequality gives

IJ (r| — rjd) {z + Ly)dx

- î l d J ) | . (5.27)

0 ( a . o . (5.28)

Using (5.26) we get

< || « || -L /• II v II <C /* II n n II Ŝ *}Q\
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From (5.10) and (5.20) it follows

lh-r |d | |o ,nA-n^^k + 1 | r l~ 'nd| i tah

Therefore from (5.29) and (5.28) we get

jQh-Q

(5-30)

Evidently

û* (*n - ^ y) = ah (r| - U, y- nhy) + a h(r\ - U, nh y)

From (5.3) (we know that nhye Vh) it follows that ah(r\- U, 7ihy) = 0. Hence

r\d,nky)\. (5.31)

From the Schwarz inequality, from (5.6) and from the interpolation theorem
(see Lemma 1) we get

t ^ S chk\\ U\\k+lMhh\\ y \ \ 2 ^

This and (5.26) imply

|a f c(T,-l/ fy-n*3^|^^+ 1 | | l7 | | à + 1^|h-Ti l l | |o a . (5.32)

Similarly, using (5.21), we get

|aa^-Tid,y-7r^)i^c^+ii|c/iim+2iftih-Tidii0,fih. (5.33)

From the Green theorem, from (3.15), (5.2) and from (3.14) we get

i\d, nhy) = ah(U, nhy)-ah{i\dt nhy)

= -(LU,nhy)0Qh-Ah(r[d,nhy)-E[ ^ G y — - ^ — I

Hence

(5.34)
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Evidently for Ke<gh\\nhy\\2K ^ | |7 i h y-y | | 2 j K + | | ? | | 2 .K- Hence the interpola-
tion theorem implies | | ïthj/ | |2 K ̂  c\\y\\2 K and from (5,26) we get

( E hhy\\lK)ll2sc\^-Dd\\0Mh. (5.35)

Therefore from (2.40) (we apply theorem 2.1 for q> = LU and v = nhy) it follows

Hence

/| | fe+3(QJ|ri-Tid | |Otnh . (5.36)

From (2.51) (we apply theorem 2.2 for b = Gijt q> = r\d,<$)=U,v = nhy) and from
(5.35) it follows

Hence, from (5.22) observing that m ^ k + 1 we get

EI y rJ-^d-^l\ ,.iv (5-37)

From (5.34), (5.36> and (5.37) it follows

^+ 1 | |C/ |L ) t +3, s | | i1-T1 ( f | |0 .n i . (5.38)

Substituting from (5.32), (5.33) and (5.38) into (5.31) we get

From (5.27), (5.30) and (5.39) it follows

Hence

Ih-TlrffU^+ll/IUs (5.40)

Therefore, from the trivial inequality

| |U-Tl < , | | o i £ 4 ^ | | t / -T l | | o . a + | |Tl-Tld | |o.a

and from the Theorem on the Ritz approximation the inequality (5.15) follows.
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From (5.11), (3.12) and from (1.2) it follows

|| U-T\d\\
2
h S ch* X [maxOr-ru*)]2 (5.41)

K

Hence

Evidently

max|C/*-TiÏ| ^max\U*-nkU*\ + max | nk U* - r|î |. (5.42)
Ét K &

F r o m the Bramble-Hilbert lemma and from lemma 2 .4 [see (2.17)] it follows

m a x | l / * - K k U* | ^ c | l / * | k + 1 * ^ cfc~W2) + k + 1 1 | ü | | f c + l i J C . (5.43)

F r o m lemma 2 . 2 [see (2.10)], from lemma 2 .5 [see (2.17)], from lemma 2 .4

and from the evident inequality || t/*—îl*||o,/t S ch~n/2\\ U — r\d\\0K we get

max | nk U* - ttf | ^ c \| nk U* - r\$ 110>R

Hence, from (5.43) and (5.42) it follows

rr* ^ÏC I < rh~ni2 r^+1 II ff II J_ II T7

Therefore, (5.41) implies

This and (5.15) imply (5.16).

6. ERROR ESTIMATE FOR ELLIPTIC PROBLEMS

THEOREM 6 .1 : Let u be the solution of the elliptic problem (3.1) with sufficiently

smooth fonctions f, gtj satisfying the conditions (3.3) and (3.4). Let c€h be a
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k-regular (k > (n/2)- l) triangulation of the set Q with a sufficiently smooth
boundary dCï. Let the quadrature formula on the référence set Kbeofa degree
d ^ max(l, 2/c-2). Then thefully discrete problem (3.16) has a unique solution
uh(x) and there exists a constant c independent of h and u such that

\\u-uh\\lrÇînQh^chk\\u\\m+2Mf (6.1)

\\u-uh\\0MnnhSchk^\\u\\k+xat (6.2)

where m = max ([n/2] + 1, k),

Proof: We know that the problem (3.16) is représentée! by the System (3.20).
Hence, to prove the existence and the uniqueness it suffices to show that the
matrix Kh defmed by (3.18) is positive defmite, i.e. that

m r K „ m > 0 (6.3)

for any nonzero vector m = [ m l , . . . , m j r

( s

From (3.18), (5.11) and (5.13) I we may apply lemma 5.2 since £ n^ <pt- e Vft
\ É=I

it follows

Ë
= 1

2

>c
h

2

> 0

and (6.3) is proved.

Let us suppose that ueHm + 2(ü). By the Calderon theorem there exists an
extension u of the function u onto Q such that

\\u\\m+2,ü^c\\u\\m+2,Q. (6.4)

Let us dénote

f = -Lu. (6.5)

Evidently the function ƒ is an extension of the function ƒ.

Hence

(6.6)

Substituting from (6.6) into (3.16) we get

Ah(uhtv)=-{LÛ,v)f VveVh. (6.7)

Therefore from (5,2) we can see that the function uh is the Ritz discrete
approximation of the function u. Since w = u —0 on dQ we may apply the
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theorem on the Ritz discrete approximation for r\d=^uh and U = u. From (5.14),
(5.15) and (6.4) we get the estimâtes (6.1) and (6.2).

Remark: The results formulated in theorem 6.1 represent a generaiization of
the results which have been obtained for H1 norm by Ciarlet [4] and by
Zlâmal [12] for special cases. In the case of selfadjoint operator l they also
improve the results which have been obtained for H1 and L2 norm by Ciarlet and
Raviart [3], They are similar to those obtained by Zenisëk [15] for Cm-elements.

7. ERROR ESTIMATE FOR PARABOLIC PROBLEMS

THEOREM 7 .1: Let w be the solution of the parabolic problem (4.1) with
sufficiently smoothfunctionsf gu, g satisfying the conditions (3.3), (3.4) and (4.2).
Let c€h be a k-regular (k is a positive integer such that k > n/2 -1) triangulation of
the set Q with a sufficiently smooth boundary 3Q. Let the quadrature formula on
the référence set K be of a degree d^max( l , 2 k-2) and let exist a positive
constant cl independent ofv and h such that

cl\\v\\2
0Q^(g(x)v>v)h> VveVh. (7.1)

Let a given v-step time discretization method (p, o) of an order q(^. 1) be
A0-stable. Besides A0-stability, we require that the method (p, a) be stable in the
sense ofDahlquist and that the roots ofthe poîynomial a (£) with modulus equal to
one be simple. Then thefully discrete problem (4.11) has one and only one solution
wh and there exists a constant c independent of t and h such that

-hA^sup
(0,7)

«>||fc+3,n+sup
(0, T) (0, T)

dw

Jt 3,Qj

(7.2)

where r\d is the Ritz discrete approximation ofthe Caîderon extension w ofthe
function w.

Remark 1: From (7.2) we see that the L2-norm ofthe error is of a magnitude of
the order Atq with respect to t and ofthe order hk+1 with respect to x.

Remark 2: Evidently
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Hence, from (7.27) and from the theorem on the Ritz discrete approximation
[see(5.16)]itfollows

\ws~ws
h\\h^c\hk

(0, T) (0. D

(0, T)

dq
w

df* Zl
j=o

i.e. in (7.2) the norm ||.||0,nno» m a y ^ e replaced by the norm ||.||A.

Remark 3: From the Lemma 5.2 [see (5.12)] we can see that the condition (7.1)
is satisfied for example in case that the quadrature formula on the référence set K
for évaluation of the form (.,.)0 Qh is of a degree d^2k. Nevertheless this
condition is not necessary. Using the quadrature formula

mesXi -[q>(0,.. .,0) +<p(lf 0, 0 0 ) + . . . + (p(0,..., 0, 1)]

(which is of degree 1) in case of 1-regular triangulation (i. e. k= 1-linear éléments)
it can be proved that (7.1) is satisfied, too.

Proofof the theorem 7.1 : We know that the problem (4.11) is represented by
the linear system of algebraic équations (4.13). Hence, to prove the existence and
the uniqueness it suffices to show that the matrix av Mft + Atfiv Kh is positive
definite. In the previous part we have proved that Kh is positive definite. In the
case of ^0-stable methods ocv > 0, pv > 0. Hence it is sufïlcient to prove that

m 0 (7.3)

for any nonzero vector ra = [mlt m 2 , . . . , m s]
r .

From (4.7), (5.11) and (7.1) it follows

mJ

and (7.3) is proved. More, the matrix Mft is positive definite. Let us suppose that
w e Hk+3 (Q), V t e (0, 71). By the Calderon theorem there exist extensions w, wt of
the functions tv, dw/dt onto Û such that

where c is a constant independent of h and r. Dénote

f = -
vol. 13, n° 3, 1979
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Evidently the function / i s an extension of the function/. Obviously

| |^-iiff| |o.a^ll^"^ï||o.D l + llTlï-ï*llo.a.' <7-6)
where r|d is the Ritz discrete approximation of the function w. Since
w(x, t)~w(x, t) = 0 on dQ for every t e(0, T) we may apply the theorem on the
Ritz discrete approximation. Fr om (5.15) and (7.4) we get

\\wm-r]7\\o,Qh^chk + 1\\wm\\k+3M, Vte(0, T), (7.7)

where c is a constant independent of t and h. From (5.2) and (7.5) it follows

Ah{r\7. ")= -(Lwm
t v)h = (f-G(x)wtt v)k, Vve Vh.

Hence

Therefore from (4.11) we get for any ve Vh

- O Jh \j=o

= (g £ *jWm+\ v) -lg £ *j(wm+3-y)rj), v) À g £ aLjW?+j, v)

49 £ OLjUt + J, v)-At(È
\ J=O Jh \j-0

Hence

£ *MVj-wVj), v) +AtAh( £ h(i\7+J-u%+S). v)
-O / * \j-0 /

h, (7.9)

where

(ùm= X Ot,(K7" + ' -T l3 1 + J ) . (7 .11 )
j = O
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We write (7.9) in a matrix forai. For this purpose, let v be the vector v =
where <p = [q>lt . . . ,<p s ] r is the vector of the basis functions. Let us set
ï ld-wï l = (em)71ü (notice that ttf-ufie Vh). Since (#q>, q>T)h = Mh and
Ah(q>,<f>T) = Kh we have (gy,yT)h=I and A,(v, v ^ - M . - ^ K . M , - ^ 2 . The
matrix Sft = M^ 1 / 2K f tM^ 1 / 2 is symmetrie and positive definite. Putting the
components vt (i — 1, . . . , s) of the vector v for v in (7.9) we get

t ^ j c T , (7.12)
j = 0

where

cXI = te(^m-cûmXvV (7.13)

Dénote

(the matrix avI + AtpvSh is positive definite). Then

£ em+3 = dm (7.14)

and this différence équation will be solved in the way described by Zlâmal [10],
pp. 355-356 who used the ideas given in Henrici [5], pp. 242-244 for ordinary
differential équations. From Zlâmal's result (see [10], pp. 355-356) we get

l
j=0

(by ||. || we dénote the Euclidean norm of a vector or of a matrix). Since

we get from (7.15):

Let cp G L2 (Q) be any function and let \|/ e Vh be its orthogonal projection onto Vh

in the norm ||.||fcf i.e.:

to(cp-v|/)^)h = O, VveVh. (7.17)
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Then

0^||<p —\|i

Hence

Putting \|/ = \J/rv = vr\|/ we get

and

Therefore from (7.19) and from (7.18) it follows

H te «p.»)» ||̂  H l » .
Hence, from (7.13) we get

(7.19)

Substituting this inequality int o (7.16) we obtain

i
j=0

j=0

(7.20)

Evidently

To estimate || TCJf ||fc we use the assumption that the scheme (p? o) is of order q. It
means that for any function y(t)eCs, s^q + 1, it holds

j = o

Hence, from (7.10) and from the first Sobolev theorem it follows

\nj\^cAt*+1 sup sup
Q (O, T)

w il
fc + i,

(7.22)

provided that the function
From (3.12) we have

, t)/dtq + 1 is continuous for every xeQ.
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Hence, (7.22) implies

(0, T)
E»,,* (7-23)

From (2.5) and from (1.2) we get

Z 5 X * = Z Y,àrJK(br)è Z

maxJK(x)

= c§ mes

Hence, (7.23) implies

(0,7)

d"+1w

mes Q.

(7.24)
k+l,Q

A simple calculation gives

where jj = £ aif From the consistency of the scheme (p, a) it follows that y 0 = 0.

Hence

,. (7.25)

Evidently rff+j-r\^+j~i is the Ritz discrete approximation of the function
wm+j — wm+j~l. We may apply the Theorem on the Ritz discrete approximation.
From (5.16), (7.25) and from the Calderon theorem we get for
(m + j -1) At ̂  2te j < (m +;)A t:

dw*<

dt
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Hence

From (7.21), (7.24) and (7.26) we get

J. NEDOMA

sup
(0, T)

dw
lï (7.26)

J = 0

Ï Y T A * « + 1 sup
j=0|_ (0, T)

dq+1w
+hk+1Atsup

(0 T) fc + 3J
— c Atq sup

L (o, rj

d9+1
w

sup
(0, T)

dw

ScT\ Ar* sup
L (o.r>

+ hk+1 sup
ï (o, r)

dw
lt 3, nj

Hence, the inequality (7.20) implies

(O, T

Ô"

d

+ i

i

+ 1 SUP
(0, T)

dw

~dt ï|
fe+3, n j=o

. (7-27)

From il. 6), (7.7), (7.1) and from (7.27) we get (7.2).
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