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A FAMILY OF C1 FINITE ELEMENTS
WITH OPTIMAL APPROXIMATION PROPERTIES

FOR VARIOUS GALERKIN METHODS
FOR 2ND AND 4TH ORDER PROBLEMS (*) (1)

by Jim DOUGLAS, Jr., Todd DUPONT (2)
Peter PERCELL (3) and Ridgway SCOTT (4)

Abstract. — Families of C1 piecewise polynomial spaces of degree r ^ 3 on triangles and
quadrilatéral in two dimensions are constructed, and approximation properties of the families are
studied. Examples of the use of the families in Galerkin methodsfor 2nd and 4th order elliptic boundary
value problems on arbitrarily shaped domains are given. The approximation properties on the boundary
are such that the rate of convergence of the Galerkin methods is the optimal rate determined by the
degree r of the piecewise polynomial space.

Résumé. — En dimension deux, on construit des familles d'espaces de classe C1 .formés de polynômes
de degré r ^ 3 par morceaux, sur des triangles et des quadrilatères, et on étudie les propriétés
d'approximation de ces familles. On en donne des exemples d'application à des méthodes de Galerkin
pour les problèmes aux limites elliptiques du 2e et du 4e ordre posés sur des domaines déforme arbitraire.
Les propriétés d'approximation de la frontière sont telles que le taux de convergence des méthodes de
Galerkin est le taux optimal, déterminé par le degré r de V'espace des polynômes par morceaux.

INTRODUCTION

In finite element approximation of fourth order elliptic boundary value
problems and in some Galerkin methods for second order problems, C1

piecewise polynomial spaces are required in order to satisfy conformity. In
addition, if the boundary is curved, essential boundary conditions must be
closely approximated in a négative Sobolev boundary norm [2]. These two
requirements rule out the use of standard triangular and quadrilatéral éléments,
and the purpose of this note is to present families of macroéléments that do
possess the necessary smoothness and boundary condition approximation
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228 j . DOUGLAS JR. et al.

properties. An additional bonus of the families is that they have minimal
smoothness: e.g., the standard 21 degree of freedom C1 quintic [34] is C2 at
vertices, whereas the éléments described hère comprise the full space of C1

piecewise polynomials, with no additional constraints.

A basic idea of the Galerkin methods treated here is to interpolate the
boundary conditions rather than attempt to satisfy them exactly, without
imposing a penalty on the nonsatisfaction of boundary conditions. This idea was
first studied in [2] and then amplified in [4] and [30]; in these papers, only second
order Dirichlet problems using C° piecewise polynomial spaces on triangles
were considered. Here, we treat fourth order problems, as well as gênerai second
order problems using Galerkin techniques [13], [15], [16] that require C1 spaces.
To achieve C1 cpntinuity while retaining enough degrees of freedom at the
boundary to have the necessary approximation properties, macroéléments
based on the Clough-Tocher [12] and Fraeijs de Veubeke-Sander [18], [27]
macrocubics are used.

The families of macroéléments studied here were first considered in [32], and
further developed in [21], [25], although accurate approximation of essential
boundary conditions was not treated. In these works, the convergence
parameter is the degree r of the piecewise polynomials. The point of view in the
present paper is that r is fixed and the convergence parameter is the mesh size h.

1. FAMILIES OF MACROELEMENTS

In this section we present a family of C1 triangular macroéléments
(also see [32]) for which we shall prove useful approximation properties. The
family contains an element of degree n for each n ^ 3 beginning with the well
known cubic Clough-Tocher element [12], [8]. We shall discuss several
modifications of this basic family and also briefly discuss a very similar family of
quadrilatéral macroéléments which begins with the cubic Fraeijs de Veubeke-
Sander macroelement [18], [27], [11].

First we give some gênerai définitions. Following Ciarlet [9], we define & finite
element to be a triple {K, F, E) such that

(a) K c R2 is a compact région having the restricted cone property,
(b) F is a fini te dimensionai vector space of real-valued functions on K, and

(c) E is a finite set of linear functionals q>£, l:gi^JV, called the degrees of
freedom of the finite element, which are defined on a vector space of functions
containing F and which have the property that for any real numbers aif

l^ igJV, there exists a unique function feF which satisfies

<P< ( ƒ ) = * ,
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C 1 ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 229

A nodal finite element is a finite element (K, F, Z) for which each degree of
freedom is a functional which picks out the value or the value of some derivative
at a point, called a node, in K. For n^O and [/cR2 , let Pn (U), dénote the space
of restrictions to U of polynomials (in the coordinates of R2) of total degree not
greater than n. The degree of a finite element (X, F, E) is the largest integer n
such that Pn(K)<=F or — oo if F does not contain Pn{K) for any n^tO.

Figure 1. — A macrotriangle T.

Now we define the family of triangular macroéléments. For n ^ 3 , an element
of degree n in the family of triangular macroéléments is a nodal finite element
(T, Sn(T)^n) defined as follows:

(a) f c R 2 is a macrotriangle; Le., a triangle T triangulated by three
subtriangles Tlt T2 and T3 (see fig. 1). Note that the point b is allo wed to be
any where in the interior of T ;

(b) Sn(T)={f€C1(T):f\TiePn(Ti)ll^i^3}t where the vertical bar
dénotes restriction of a function;

(c) The degrees of freedom £„ are

1. the value and gradient (i.e. d/ôx and d/dy) at the exterior vertices,
2. the value at n —3 distinct points in the interior of each exterior edge of T,
3. the normal derivative at n — 2 distinct points in the interior of each exterior

edge of T,
and if n^4,

4. the value and gradient at the interior vertex,
5. the value at n—4 distinct points in the interior of each interior edge of T,
6. the normal derivative at n — 4 distinct points in the interior of each interior

edge of T, and
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230 j . DOUGLAS JR. et al

1. the value at (1/2) (n — A) (n-5) distinct points in the interior of each T{

chosen so that if a polynomial of degree n-6 vanishes at those points,
then it vanishes identically.

For an example of one of these macroéléments, see^c/. 2 in which a dot dénotes
a value, a circle dénotes a gradient and a dash dénotes a normal derivative.

Figure 2. — The degrees of freedom S6

For use in the proof of the foliowing theorem, let Xit 1 ̂  i: ̂  3, be the (unique)
affine function on R2 such that %i{b)=l and Xt vanishes at the exterior vertices
of Tt, Furthermore, let X be the function on T defined by

Note that X is well defined and continuous on Jbecause Xt and Xi+1 agrée on the
edge Ei + 2 = Tic\Ti+± since botk are zero at ai + 2 and one at b. (Hère and
through the following proof, subscripts referring to triangles are counted
modulo 3).

THEOREM 1: (T, Sn{T), En), n ^ 3 , is a well defined nodal finite element of
degree n.

Proof: It is easy to see by simply counting that, for all n^3 , the number of
degrees of freedom, denoted by # E„, is (3 /2) (n2 — n + 2). On the other hand, the
following argument due to Strang (see [29], [31] for example) shows that

Let &„ (T), n ^ 3, dénote the space of all (discontinuous) piecewise polynomials of
3

degree n on the macro triangle r.Notethat.Rn(7
T)isisomorphicto Y\

R.A.I.R.O. Analyse numérique/Numerical Analysis



C 1 ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 231

dim Rn(T) = (3/2)(n+l){n + 2). Consider Sn{T) to be a subspace of Rn(T)
consisting of functions satisfying certain constraints imposed across the interior
edges of T. In gênerai, it takes 2 n + l constraints (n + 1 on values and n on
normal derivatives) to make two polynomials of degree n agrée in a C1 fashion
along an edge. However, if a function in Rn{T) satisfies the 2n+ 1 constraints
along two of the interior edges of T, then it automatically has a uniquely defined
value and gradient at the interior vertex of T. Thus it takes the satisfaction of no
more than 3(2n+1) — 3 = 6n constraints to ensure that a function in Rn(T) is
actually in Sn{T). Therefore,

dim ^

To show that (T, Sn(T), En) is a well defined finite element we must show
that EB is a basis for the dual space of Sn(T), which we dénote {Sn{T))f. But we
have just shown that

Sn(T) = dim (Sn(T))f,

so it is enough to show that £„ spans (Sn (T))f. This is equivalent to showing that if
all the degrees of freedom for feSn(T) are zero, then ƒ vanishes identically.

When the degrees of freedom are all zero, in particular those of types 1, 2 and
3, ƒ and V ƒ vanish on the boundary of T. Thusf—pX2, where Pi = p | Tt is a
polynomial of degree n — 2 and p is continuous (because ƒ and X are continuous
and because X does not vanish in the interior of T). Since feC1 (71), V ƒ is well
defined on Ei-1 and hence can be expressed there by both

p i X2Vpi and 2pXVXi+x + X2

Therefore

1-pi) = 0 on Et-x. (1)

Since X{ai-1) = 0 and V(Xt + x -X t ) /0 (because the lines X{- 0 and Xt + x - 0
cannot be parallel) it foliows that p(ai-1) = 0. Now, suppose for a moment that
n = 3. (See also [8] and [26] for this case.) Then each pt is a linear polynomial
which vanishes at the exterior vertices ai-1 and ai+1 of the triangle Tit so pt

vanishes on the entire exterior edge of Tt. Hence pi = ciXi for some c£eR, so
ft^CiXf. Thus V/i(6) = 3ciVXi(fe). Since the vectors V^(ft), l ^ i ^ 3 , are
linearly independent and ƒ is differentiable at b [i.e., V fi{b) = V fi+l (b)], it
follows that all the c\ s are zero; i .e . , / vanishes identically. This finishes the case
n = 3. From now on we suppose that n^4. Then p(b) = O, since /(fc) = 0 and
M&) = 1, and V pi (b) = 0 since

vol. 13, nô 3, 1979



232 j . DOUGLAS m. et al

Thus p | £ j _ i is a polynomial of degree n —2 which vanishes along with its
derivative at b and is zero at a^x and the n —4 nodes of type 5 on Ei_i;
consequently, p\Ei^1 is identically zero. Therefore,

and

where qt is a polynomial of degree n — 4, since p£ = 0 on the two interior edges
of Tt and since A,i+1 — Xt vanishes on one of these edges while A,,- —^_ j vanishes
on the other. Also, using (1) and the fact that p = 0 on Et-lt we see that
Vpi = Vp i + 1 on £ i_ i . But on £*-!,

and

so since 'ki = Xi + x on £;_!, we find that qt= — qi + 1 onEt-lt In particular,
Qi(b)=-qi+i{b)f and

which implies that qt (fc) = 0. At this point we are finished if n = 4 because then gÉ is
a constant polynomial (cf. [26]). If n ̂  5, then V ƒ• = 0 at the n — 4 nodes of type 6
on Ei±1 because f = pX2 = 0 on £/±1. Since

1 - ^ ) on El±1,

it foliows that qt vanishes at the^ame n — A nodes on Ei+1 and Et^. As it also
vanishes at b and is a polynomial of degree n —4, it vanishes identically onE i + 1

and JEi-i- If n = 5, this means that ^ = 0, since it is linear. For n^6, this means
that

and

where r£ is a polynomial of degree n —6. Finally, since ƒ is zero at the nodes of
type 1, it folio ws that rt is also zero at these nodes and hence rt must vanish
identically because it has degree n — 6. / /

REMARK 1: Let af: [0, LJ -> r£f l ^ i ^ 3 , be a parametrization by arclength of
the exterior edge of Tt and let d/dnt dénote differentiation normal to this edge. If
for some i, l ^ i ^ 3 , the degrees of freedom along the exterior edge of Tt of
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C 1 ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 2 3 3

types 2 and 3 in the set ZM are replaced by

2.

and

3.

Jo

where { Pj} (resp. {q5} ) is a basis for the space of polynomials in one variable of
degree n — A (resp. n-3), then the result is a new (non-nodal) finite element of
degree n, which we dénote (T, Sn(T), £„). This follows from the proof of
theorem 1 because the number of degrees of freedom is unchanged and because
the degrees of freedom of types 1, 2 and 3 again uniquely détermine ƒ and V ƒ
on an exterior edge of T when feSn{T). Finite éléments using degrees of
freedom of type 2 were studied by Blair [4] in the context of second order
problems. If the sets { pj} and { qj} are chosen to be orthogonal polynomials, a
hierarchical structure may be achieved [25], / /

REMARK 2: In both the original element (T, Sn(T), £„) and the modified
element {T, Sn{T), £„), the exterior edges of Tneed not be straight but can bè
smooth curves which are just C1 close to being straight. Using the notation
introduced above, we say that the exterior edge of Tt is C1 close to being
straight if

sup

is small. It follows immediately from this définition that a C1 small perturbation
of a straight edge moves points on the edge and normals to the edge only slightly.
Thus if Thas exterior edges which are sufficiently C1 close to being straight, then
the degrees of freedom £„ or Z„ are close enough to those for the corresponding
element for the macrotriangle having straight edges and the same vertices so that
the degrees of freedom still détermine uniquely a function feSn(T).
(The distance between two degrees of freedom is measured in the dual space
ofCb, the Banach space of bounded C1 functions with bounded first
derivatives.) / /

REMARK 3: The éléments in theorem 1 have the virtue that they may be pieced
together to form C1 functions. For this reason, they may be referred to as "C1

finite éléments". To see why this is so, let Tl and T2 be two macro-triangles
that share (only) a common edge E (the vertices of £ are required to be vertices of
both T1 and T2). Let Ij, be degrees of freedom defined on S^T1), i = 1, 2, that
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234 j . DOUGLAS JR. et al

are consistent, i.e., the nodal points of type 2 and 3 on E for S * and l»2 pairwise
coincide. Let ftsSniT1), i = l , 2, be such that the degrees of freedom of types
1 — 3 of ƒ ! and f2 pairwise coincide, and let ƒ be defined on T1 u T2 by
ƒ | Tl = fit i = l , 2. Then ƒ e C1 (T1 u T2). (Proo/: Let xfc= r ' , i= 1, 2, be the
subtriangle having E as an edge. The polynomial P ~ ƒ x | x A — ƒ21 x2 vanishes to
second order at the vertices of E and at n~ 3 other points on E, and since the
degree of P is n, P | E = 0. Similar reasoning shows that the normal derivative of P
vanishes on E. Thus P vanishes to second order on E, and this means that ƒ is C*.)

The éléments in remark 1 can also be pieced together to give C1 fonctions,
requiring only a matching of the orientations of E, Eléments with curved edges
as in remark 2 will arise only when the curved edge lies on the boundary of a
domain; thus the problem of piecing together éléments across a curved edge is
avoided. Eléments of all three types can be attached to each other across straight
edges by matching the types of degrees of freedom on the shared edges. In fact,
while the degrees of freedom of types 2 and 3, or 2 and 3, will be required in
section 2 on the boundary of the domain, other ûnite éléments may be used in the
interior, with the appropriate matching. For n^ 5, there is a well known (cf. [34]
for the case n = 5) C1 finite element of degree n, which we shall dénote by
(x, P„(x), Ln), such that x is an ordinary triangle and the degrees of freedom E„
are

1. the value plus all first and second derivatives at each vertex,
2. the value at n — 5 distinct points on each edge,
3. the normal derivative at n — 4 distinct points on each edge, and
4. the value at (1 /2) (n — 4) (n - 5) distinct points in the interior of x chosen so

that if a polynomial of degree n — 6 vanishes at those points, then it vanishes
identically.

The transition from this element to the one in theorem 1 is via two
unsymmetric macroéléments, denoted (T, S;(T), Li) and (T, Sf

n'(T), Z;% for
which Sf

n(T) and S'n
f(T) are proper subspaces of Sn(T) consisting of functions

which have second derivatives at certain exterior vertices of T, and whose
degrees of freedom when n = 6 are presented in figure 3. In this figure a second
circle around a node means that all the second derivatives at that point are
degrees of freedom. We shall not write out the degrees of freedom 1^ and S^in
detail because the pattern should be clear. Proofs that these éléments are well
defined can be given along the same lines as in the proof of theorem 1. Note that
remarks 1 and 2 hold for these éléments. / /

We now quickly present the family of C1 quadrilatéral macroéléments,
discussing just the différences between this family and the family of triangular

R.AJ.R.O. Analyse numérique/Numerical Analysis



C 1 ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 2 3 5

macroéléments. For n2:3, an element of degree n in the family of quadrilatéral
macroéléments is a nodal fini te element (Q, Sn(Q), An) such that

(a) QcR 2 is a convex quadrilatéral triangulated by the four triangles Qh

l ^ ï ^ 4 , obtained by drawing in the diagonals of Q,

Figure 3. — Triangular transition éléments of degree 6.

Figure 4. - The degrees of freedom A6

(b) S.(0)
(c) after the obvious change of Tf s to Q' s, the description of An is the same as

the description of Sn, except that (when n^4) an extra normal derivative at a
point along just one of the interior edges of Q is added to the degrees of freedom
of type 6.

vol. 13, n° 3, 1979



236 j . DOUGLAS JR. et al

The proof that (Q, Sn{Q), An) is a well defined nodal finite element of degree n
is essentially the same as the proof of theorem 1 with only two changes of any
significance needed. The first change is necessary because the interior vertex in
the quadrilatéral macroelement is singular in the sense of [29]. Counting shows
that # A„ = 2 (n2 — n -f- 2), while the methods used in the proof of theorem 1 only
show that

However, in order to be able to proceed as before we need to know that
# A„ ̂  dim Sn (Q). In [29], it is shown that this is true since one of the constraints
on normal derivatives one expects to be necessary is actually redundant in the

Figure 5. - Quadrilatéral transition element of degree 6.

présence of the singular vertex. The only other change needed in the proof comes
when one is trying to show that the qt 's are zero at the interior vertex. The
alternating sign approach used before breaks down for the quadrilatéral
macroéléments because an even number of edges abut the interior vertex.
However, it is easy to see that the proof is rescued by the extra degree of freedom
of type 6 in A„ available when n^4.

Remarks 1 and 2 clearly apply to this family of quadrilatéral macroéléments,
and the ideas discussed in remark 3 may be extended to the present situation as
follows. First note that triangular and quadrilatéral macroéléments of the same
degree are compatible and can be used together in the same domain Q because
the degrees of freedom associated with exterior edges are the same for both types
of element. One may thus use the standard C1 triangular element (x, PM(x), £„),
n ^ 5 , as before, in the interior of Q and a layer of quadrilatéral macroéléments
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C 1 ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 237

one element thick along ôQ. Only one type of boundary layer quadrilatéral
macroelement is required for the transition, and this is depicted in figure 5 for
n = 6. Transition éléments of other degrees may be easily constructed using the
ideas discussed earlier. Note that the transition element in figure 5 may be used
as a boundary element directly without having an additional layer of éléments of
the type depicted in figure 4, if desired.

2. APPROXIMATION PROPERTIES

In this section we prove approximation properties for the finite éléments
introduced in section 1. We start by fixing some notation to be used throughout
the remainder of this section.

For any domain Q c R 2 having the restricted cône property and for any
smooth a r c F c R 2 parametrized by arclength, denoted by s, let

Jn
(0,«>)n= I v{x)w(x)dx

be the (real) inner product in L2 (Q) and let

< v, w >r = v(s)w (s) ds
Jr

be the inner product in L2(T). Furthermore, if m is a non-negative integer, let
i*]mM dénote the seminorm defined by

^et II-IIm,a be the norm for the Sobolev space Hm(Q) defined by

When m is a nonintegral positive real number, let m dénote the intégral part of
m and define the semi-norm [.]mfl by

\D«v(x)-D«v(y)\2

define the norm || \\mQ for Hm(Q) by
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238 j . DOUGLAS JR. et al

Let ||. ||_m fi dénote the dual norm for the space H " m (Q) = (ff m(Q)Y defined by

Similarly, for m a non-negative integer, let | . | m r dénote the norm for Hm(T)

defined by

, i2 ™ /ôjv ôjv\

F o r nonintegral positive real m, define the norm | . | m r for Hm(T) by

iï
JJr

dsdt
rxr d(s. 01+2(m"m)

where v(m)(s) = diiiv/dsr(x{s)) withx(s) parametrizing T and d(s, 0 is the
minimum are length on T between x(s) and x(t). Let

r), cp#O

be the norm for H~m(T) = (Hm{r))\ Finally, for m a non-negative integer, let
{•}m,n dénote the Cm(Q) norm defined by

Let Q be a fixed, bounded domain in R2 with C00 boundary dQ parametrized
by arclength. A triangulation of Q will mean a collection J = { Tx, . . . , T^} of
polygons each of which is a triangle, macro triangle, or convex quadrilatéral such

jv

that Cl = \J Tj and such that distinct polygons intersect at most in a common
j=i

vertex or a common edge. By a simple triangle in such a triangulation, we mean
either a triangle in </ (but not a macro triangle), a subtriangle of a macro triangle,
or a traingle obtained by subdividing a convex quadrilatéral by drawing its
diagonals. Simple triangles are assumed to have straight edges except that an
edge between two vertices on 3Q is assumed to be contained in ÔQ.

Now suppose that Q is provided with a family of triangulations Jh,
0 < / Î ^ / 2 0 ^ 1 , as described above, such that

(a) if TeJhl then diam (T)^h, and
(b) the family is non-degenerate in the sensé that there exists a number p>0

such that if r is a polygon in the family and x c T is a simple triangle, then x is
starlike with respect to a disk whose diameter is p diam (T).

R.A.I.R.O. Analyse numérique/Numerical Analysis



C 1 ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 2 3 9

Consider for a moment an arbitrary finite element (K, F, Z) with degrees of
freedom q>j, . . . , q>N that are continuous on Hm (X). We associate with (K, F, Z)
an interpolation operator

I I : Hm{K)-+F

by letting n v be the unique function in F such that

9 i ( n o ) = (p,(t)), i = l , . . . , AT.

Let ô = d i a ( ) { }
For any function ƒ defined on K, set/(x) = ƒ (x), and define an operator fï on

Note that ft is the interpolation operator associated with the finite element
(K, F, Ê), and that, for any ofthe finite éléments discussed in section l,including
that of remark 1, Ê has the same description as E (because dilations — as
opposed to arbitrary linear maps — preserve orthogonality).

Now, suppose h0 is small enough (see remark 2 of section 1) so that each
polygon Th }eJ>h,\ Sj ̂  Nh, can be given the structure (TK j, Fh j , Ehj _,•) of one of
the finite éléments of section 1 of some fixed degree r ̂  3 for 0 < h ̂  h0. Let nr> hj j
be the interpolation operator associated with (Tht j, FK j, Sfcf j) and let m0 be a real
number such that each cpeZ,,,- is continuous on Hm°(Thtj) for al l ; = l,
Nh and 0</z^/i0. We assume that the foliowing uniformity condition holds:

for 1 ̂  ĵ  ̂  Nfc, 0 < h S K, and v e Hm° (fh> j). (Here and throughout the rest of this
section, unless otherwise stated, C dénotes a generic constant which may be
different in different places and which dépends only on Q, r, /i0) and the families
of triangulations and interpolation operators.) The existence of such a
constant C follows from Sobolev's inequality (cf. Grisvard [19]), with m0 any
real number greater than one plus the highest order of derivative occurring as a
degree of freedom (hence note that m0 > 2 always). The condition can be satisfied
with C independent of h because the family of triangulations is non-degenerate :
there is room in the normalized (hatted) polygons for degrees of freedom that are
bounded away from degenerate configurations. Examples of degeneracy are
coalescence of two value nodes or colinearity of three value nodes in the interior
of a simple triangle associated with an element of degree 7. Now define a global
interpolation operator nr> h on Hm° (Q) by

(n^tolr^n,,^!^), j=i Nh.

vol. 13, n° 3, 1979



240 J. DOUGLAS m. et al

Let Sr h be the image of Hm° (Q) via the mapping ITr h. We assume that the family
of éléments is consistent (see remark 3 of section 1), namely, we assume that

(d) S ^ c C 1 ^ ) .

Since each function in Srt h is a polynomial in each simple triangle in Jh,
condition (d) implies that «Ŝ  h <= H2 (Q).

REMARK 4 : When each element in Jh is one of the macroéléments of degree r of

section 1 (except for the transition macroéléments described in figures 3 and 5),
then Sryh is the space of all C1 piecewise polynomials of degree r on the
triangulation Jh of Q obtained by considering all simple triangles in Jh

separately. As shown in [23], when r ̂  5, this space has a nodal basis, but of a
more complicated variety than considered in section 1: the macroéléments
pro vide a simpler nodal parametrization of Sri h. In the case r ̂  5, the theorems to
follow may be generalized to hold for Srth(Jh) for an arbitrary
triangulation Jh of Q, i. e., one not coming from a macro-triangulation, by
changing the nodal parameters in [23] at the boundary appropriately. The
essen tial change required is algebraic, as the analysis of this section in volves only
the simple triangles. / /

For the remainder of this section, we make the foliowing

ASSUMPTION: For 0<h^ho, the family of triangulations Jh of Q satisfies
conditions (a) and (b) and the associated family of interpolation operators ïlrht

r ^ 3 , satisfies conditions (c) and (d).

THEOREM 2 : Let q and m be real numbers such that O^q^l and m o ^ m g r + l ,
and letveHm(Q). Then

Proof: Let TK jeJh. From the fact that ftrj K j preserves polynomials of degree
r and the uniformity condition (c), it follows that, for any <pePr(fhij),

The folio wing version (proved in [17] and [20]) of the standard Bramble-
Hilbert lemma (see [5] and [10]) is now required:

LEMMA 1 : Given 0 < p < 1 and a positive real number m, there exists a constant
C = C(p, m) such that ifK <z R2 is a domain hoving diameter at most one that is
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starlike with respect to a dise of diameter p and ifveHm(K), then

inf \\v-<p\\m,K^C[v]mtK
<peP-(K)

where m is the greatest integer less than m. Il

Applying the lemma,

Since diam {TKj)i^h, the homogeneity of the norms implies that

\\v-nr,hv\ltHJschm-nv]m.ft.1- II

From now on, we shall make frequent use of the following easily proved
inequalities : if K <= R2 is a région such that diam (K) g 5 ̂  1 and K contains a dise
of diameter pô, p>0, then for <pePr(K) and any m,

i l l (*) (2)
and

H l U i l U , (3)
where C dépends only on p and r. The following lemma will be used in the proofs
of the remaining theorems of this section (for a proof, see the appendix of [30], or
use the trace theorem [22] with a little care).

LEMMA 2 : LetB {<fh) be the collection ofall simple triangles in Jh having an edge
on dÇTând letvefT^Q) with mç^m^r +1 . Th~ën~

Hi;!!^. //

THEOREM 3: Let veHm(Q) for some m satisfying m o ^ m ^ r + l . Then if
veHm(dQ),

(a) |»-n f i»»| t.

when 0^q£2. If ôv/dneH1"'1 (ÔQ), then

(b) ^—^-(n r hv)
dn on

when O^q^l, where d/dn dénotes differentiation normal to dQ.

(*) Hère m is assumed to be a non-negative integer for { } m t k to be defined.
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Proof: The proofs of part (a) and (b) are simiïar,so we just prove (a). Let TeJh

be an element with an edge e on dQ, let ô = diam T and let x c r be the simple
triangle having e as an edge. Note that since dQ is smooth, the length of e, l(e),
may be bounded by Cô. Let 9 be the polynomial in arclength on e of degree r
defined using the degrees of freedom associated with values, tangential
derivatives, or orthogonalities on e in the définition of IIrj h which interpolâtes
both vIe and ITrjhv e. Then

r + l •ai,.»»)
0, e,

for
+ 1

r + l (nr,fc^)

7urthermore,

gC51 / 2sup
0, e e

(nr.»t»)

for 1 ̂  m ̂  r +1 , where we have used the fact that nr> h v is a polynomial of degree
r on x and inequalities (2) and (3). Thus

Part (a) of the theorem now follows from lemma 2. / /

Up to this point we have made no essential use of the macroéléments of
degree r ^ 5 introduced in section 1: the results proved so far hold for the
Standard C1 element(x, Pr(x), SP), r ^ 5 , of remark 3, section l.Now, however,
we demonstrate that the use of the macroéléments of section 1 along dQ results
in a reduced interpolation error for boundary values and normal derivatives
when measured in négative Sobolev norms. We deal first with the case of non-
nodal degrees of freedom (see remark 1, section 1) on dQ because the proof is
easier and the result is better in the sense that less smoothness is required of the
function being interpolated. For F a smooth are in R2, let Pm(F) dénote the
space of functions on F which are polynomials in arclength of degree not greater
than m. Adopt the convention that P^i(Y) is the set consisting of the null
function.

THEOREM 4: Suppose that each element in Jh with an edge e in dQ is such that
forvelT°{Q)

(a) <ü-nPifctM|f>. = 0
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and/or

(b)

Suppose that m o ^ r a ^ r + l . TTien ffrere existe a C swc/i

(a) for v G Hm (Q) n tfm

and for
(b)for veHm{ÇÏ) such that dvj'dneHm~^ (dQ),

\m-1.3Q+\\v\\m,a),

Proof: Let <peHp (ÔQ) and let \|/eL2 (dQ) be such that \|/|eePF(e) for ail
boundary edges e in Jh and (c/. lemma 1)

Thus for m o ^ m ^ r + l and

pro ving part (a). Part (b) is similar. / /
Note that in part (a) the upper limit on p is just the number of value degrees of

freedom associated with the interior of an edge Iying on 9Q and in part (b) the
upper limit on p is the number of normal derivative degrees of freedom
associated with the interior of an edge Iying on d£l. It is clear that if the
standard C1 element (x, Pr(x), £r) were used along 3Q (after modification as in
remark 1), then a resuit simiiar to theorem 4 would hold except that the upper
limit on p would be reduced by two in both parts of the theorem.

When nodal degrees of freedom are used along dQ, the orthogonaiity
conditions in theorem 4 can no longer be satisfied exactly. Nevertheless
(see [30]), it is possible to place the nodes on ÔQ in such a way that the intégrais
involved in those orthogonaiity conditions are sufficiently smalî for the rates of
convergence of theorem 4 to be retained, as will now be shown.

Let e be an edge of Jh on ÔQ, let l(ë) be the length of e and suppose e is
parametrized by se[0, I(e)]. Let
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and let

Intégration by parts shows that

<Ar,e,i|/

and
v|/GPr_3(e).

It follows that Afj e, whose degree is r + 1 , has r — 3 distinct zeroes in the interior
of [0, l(é)] in addition to the second order zeroes at the endpoints and that BYt e,
whose degree is r, has r - 2 distinct zeroes in the interior of [0, / (e)] in addition to
the zeroes at the endpoints. The zeroes of Br e are the Lobatto quadrature points
for e. Quadrature rules based on both Ar,e and Bre were extensively used
in [14].

THEOREM 5: (a) Suppose that each element in <fh with an edge e on 3Q is a
macroelement with nodes on e placed so that v — TIrthv has the same zeroes on e
(each with the same order) as Arye. If rao^m^r+l, O g p ^ r —3, and

then

(b) Suppose that each element in Jh with an edge e on ÔQ is a macroelement with
nodes on e placed so that (d/dn) (v — Ylrhv) has the same zeroes on e as Bre. If

0 ^ p ^ r - 2 , veHm(Q), and dvldneHm+p'1(dO)t then

m+p_ l tSn

Proof: We give the proof of part (a); part (b) is similar.
Let T, x, e, 8 and / (e) be as in the proof of theorem 3. Let (p G HP (dQ). Choose v|/

as in theorem 4 so that

Note that pô ^ l(e), where p is the constant associated with the non-degeneracy
of the family of triangulations. Since

aad

as in the proof of theorem 4, we just need to estimate < v — Urh v, \|/ >ôn.
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Consider the linear functional E on C1 ([0, l(e)]) given by

where ft is the unique polynomial of degree r such that the set of zeroes
ƒ—ƒ include the zeroes (counting multiplicity) of Ar,e. Note that E(f) = 0
if ƒ is a polynomial of degree 2 r - 3 since ƒ-ƒ, factors into Art£ times a poly-
nomial of degree r —4. Thus, by the Peano Kernel theorem, there exists C
such that for ƒ eC*([0, l{e)])

2^k^2r-2.

Let y\reP-(e). Then by Schwarz's inequality

for /c an integer in the range 2 ^ l c ^ 2 r - 2, with C independent of \|/. Viewing
ƒ -> £( ƒ vj/) as a linear functional, it follows by interpolation [22] that the above
holds for all real k in that range.

Let QePr{e) be such that 8-u (as a function of arc length) vanishes at the
zeroes of Ar e (counting multiplicity). Then

Using an argument similar to that in the proof of theorem 3, we see that

|nr > f c I;|2 r_2 ) e^c8m-''-3^||nr i f t I;| | i n_1 , t .

Since 0 is a polynomial, we see that

Thus from the above estimâtes and the fact that pgr —3, we see that

Summing over e and applying lemma 2, we get

which finishes the proof. / /
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The last result in this section is that we can extract from the proofs of
theorems 3,4 and 5 the fact that 5rj h contains subspaces consisting of functions
with "nearly zero" boundary values and normal derivatives (see [24] and [30]).

THEOREM 6: LetS®hbeanysiibspaceofSrhsuch that ifxeS^hand e is an edge
oj Jh on CQ, then

(a) x = 0 and d%/ôs = 0 at the endpoints of e, and either (%, v|/>e = 0/br
\|/ejPr_4(e) or % vanishes at the zeroes of Ar e in the interior of e, and/or

(b) ôx/dn = 0 at the endpoints of e and either (d%/dn, \|/>e = 0/or \|/ePr_3(e)
or d%/dn vanishes at the zeroes ofBre in the interior of e,

Then, for % e Sr°

when —

when -

-3 and ^ 0 , and/or

dn -p, dQ

-2 and

Proof: As usual, we only prove part (a).

Let e be an edge of Jh on dQ, let l(e) be the length of e, let x be the simple
triangle associated with Jh which has e as an edge and let 8 be the diameter of x.
Since the family of triangulations is non-degenerate,

No matter which version of {a) is satisfied on e, if X ^ ^ A , then %\e has
r + 1 zéros, counting multiplicity, so by the Poincaré inequality,

for 0 5g q ̂  r + 1 . As in the proof of theorem 3, the inequalities (2) and (3) imply
that, for O^m^r^j,

— ( 1 / 2 > | | x | L v (4)

Thus, for O ^ ^ r + l and O^m^r,

I YI <C5m~*+(1/2)ll Y II
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Summing over all e and using the fact that 5^/i, we obtain

for 0^g^2 , 0^m^2 , provided that m-q + (1/2)^0. Letting q^-p,we see
that part (a) of the theorem is now proved for - 2 g p ^ 0 .

To prove part (a) in the range O^p^r — 3, let cp and \|/ be as in the proof of
theorem 5. Then

for 0 ̂  m ̂  r. Furthermore, either < %, v|/ >e is automatically zero by the définition
of S,t h in terms of orthogonalities or %\|/ vanishes at the zéros of Art e. Therefore,
as in the proof of theorem 5,

Using (4) and the définition of \|z,

<X,vl/>e^CS"+'

For O^m^r and 0^p^r — 3, we therefore have

<X- 9>. = <X. <p-*>.+ <X. vl/>e^CÔm+

Thus, for 0gm^2 , 0 ^ p ^ r - 3 , and m+p+1/2^0,

which complètes the proof. / /

REMARK 5: Since the techniques of proof in Theorems 2-6 are purely local, it is
not necessary to segregate the methods of orthogonality and interpolation.
Indeed, when the boundary data is singular, it would be wise to use
orthogonality to impose the boundary conditions near the singularity, while
interpolation could be used away from the singularity (cf the different
smoothness requirements on the data in theorem 4 versus theorem 5). Also, it is
not necessary to require that 3Q be smooth globally; if ÖQ is piecewise smooth
and if a boundary vertex is placed at every point of dQ where it is not C00, the
same results foliow. / /

REMARK 6: It may be désirable to impose the orthogonalities in theorem 4 by
evaiuating the intégral over e using a numerical quadrature rule:
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In the case that the weights wt are all nonzero and {zt} corresponds to the set of
zeroes of Art e (resp. £,, e) in the interior of [0, / (e)] then orthogonality of v - IIr) h v
to *FePr_4(e) [resp. (d/dn) (v-Ur>hv) to TeP r_3(e)] with respect to the
quadrature on e is equivalent to vanishing at the quadrature points, i.e., the
situation covered by theorem 5. The error induced by using other quadrature
rules may be studied using the techniques in the proof of theorem 5. /

3. APPLICATION TO THE PLATE BENDING PROBLEM

Consider the bilinear form a (., . ) on H2 (Q) defined by

a(u,v)= — { Au Av-(1 - v ) {uxxvyy + uyyvxx-2uxyvxy)} dxdy,
L Jn

where D and v are constants such that D>0 and 0 ^ v ^ l / 2 .

Let V be the subspace of H2 (Q) consisting of functions that vanish on ÖQ.
Since a(v, v)^(l/2)D(l -v)[v]la, it follows from Rellich's lemma [1,
chapt. 10] that for some y<oc,

a(ü, ü)^-||ï?||f iQ for all veV. (5)

Given FeH~2 (Q) and geH2 (Q), there is a unique ueH2{Çl) such that

u — ge F(i.e., u = g on dQ)
and

a(u, v) = F(v) f o r a l l veV

(the Lax-Milgram theorem). Suppose that the inner product with F is given by

F(v)= fvdx +
Jan dn

where ƒ e L2 (Q) and MeL2 (ÔQ). Then u is the solution to the simply supported
plate bending problem corresponding to a loading ƒ an edge displacement g,
and a moment M applied to the edge. The constant v in the définition of a (., . )
is Poisson's ratio and D is the flexural rigidity [3]. When / e i / i = 4(Q),
geHs~ai2)(dQ)f and Metfs- (5/2)(3Q), then ueHs(Q), with the obvious norm
inequality (s^2), since u is related to ( ƒ, g, M) by a properly eiliptic boundary
value problem [22], [1], We now consider a Galerkin approximation to u.

Let Tlrth> 0<h^h0f be a family of interpolation operators as studied in the
previous section, and let S£ h be the image of Vn Hm° (Q) via the mapping nr> h.
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Suppose that

a ( X , X ) ^ | | x i | 2
2 n for ail xe5?,,. (6)

(As can be seen from [30], (6) folio ws from (5) for h0 sufficiently small.) Then there
is a uniquely determined uheSrfh such that

uh — Hr^geSr,*,(i.e., uh interpolâtes g on 3Q)
and

forallXeSr°.fc.

Note that u and uh depend only on the values of g on <3Q.
The Galerkin methods above are direct generalizations to a fourth order

elliptic boundary value problem of the methods studied by Blair [4] and in the
papers [2] and [30].

THEOREM 7: Let Tirh be as in either theorem 4 or 5. Suppose that (6) holdsfor
0<h^hoand that ueHm{Q)for m in the range 7/2 < m0 ^ m S r+ 1. Then

Suppose further that geHm(ôQ) and that Ur>h is as in theorem 4. Then

for 3 - r ^ s ^ 2 . When Tlrjh is as in theorem 5, suppose that geHq+m(dQ)t

O^q ^ r - 3 . Then

for -q^s^ 2.

Proof: As in [30, section A. 1] (6), Greerf s theorem and the trace theorem [22]
imply that, for m > 1/2,

h-u'l^c.Wu-n^u H2.Q+C2NUSUP
\X\\2,Q

Thus theorems 2 and 6 yield the first conclusion. Now let <peHk(Çl),
O^/c^r -3 , and let Oe V solve (*), a(O), w) = (q>, v) for ail ve V, By elliptic
regularity theory (see above), ||O||fc+4fi^c||(p||feQ. Intégration by parts (Green's
theorem) and the trace theorem yield

{u-uh, <p)^ \a{u-uh, O-n r j A O) |
+ c II ̂  IU+4,a | ̂  - w" | _ ( i / 2 ) - ^ a + c II M ||m Q | n r ï h o j 7 / 2 _ m ÔQ.

(*) Hence forth ( . , .) and < ., . > will dénote ( . , . ) n and < . , . } e n ,
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Using the first part of this theorem, theorem 2, and either theorem 4 or 5,

(recall that OeF , i . e . , $ = 0on3Q,so that the restrictions of theorems 4 and 5
are the same). Thus regardless of the type of interpolation,

Now consider u\ Theorem 6 implies that

\g — U \-(i/2)-k,dQ = \U ~1H-r,hU\_{U2)-k,dn+

Inserting (u — u) in the first term and using the triangle inequality, the first part of
this theorem and theorem 2 imply that

Apply either theorem 4 or 5 to estimate the second term on the right hand side,
and the result foliows. / /

The above theorem can clearly be extended to allow more gênerai coefficients
in a (.,.)• The clamped plate problem may be treated by simply changing Kin the
above to be the subspace oiH2 (Q) consisting of functions that vanish to second
order onôfl and using part (b) of theorems 4-6.

4. THE i^-GALERKIN METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS

Consider the Dirichlet problem

) = f in Q,
u = g on ÔQ,

where a = a(x) is a smooth, positive function on Q. Again let
V= { v e H2 (Q) : v = 0 on d Q } , and let Sr° h be the image of V n Hm° (Q) under the
mapping nr>h, where Urh is determined by either the interpolation procedure
associated with theorem 5 or the orthogonality conditions associated with
theorem 4. Assume that g has a (theoretical) extension to ifm°(Q), so that
Urh g is defïnable; practically, this involves only the values of g on ôQ. Then
the H1-Galerkin method for approximating the solution of (7) consists of finding
uheSFih such that

(o)
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H^Galerkin methods have been proposée! earlier in [16] for both elliptic and
parabolic problems for the special case L = A, and the nonlinear Dirichlet
problem based on (7) with a = a(x, u), plus a linear problem with lower order
terms included, have been treated in [13]. In both these papers the Dirichlet
boundary condition was imposed weakly through penalty-like terms on the
boundary. The method (8) corresponding to interpolation was mentioned briefly
in [13], but no analysis was given in that case. The orthogonality method (8)
présents an H1 analogue of the method of Blair [4].

Note that the algebraic équations arising from (8) do not, in gênerai, generate a
symmetrie matrix, and care must be taken to show that a solution of (8) exists.
There are significant practical advantages of (8) over least squares
methods [6, 7], particularly for nonlinear problems and in applications to
transient problems, since the algebraic équations become simpler. The analysis
of (8) below is similar to that given in [13], but the details are noticeably different.
Both rely on ideas discussed by Schatz [28] earlier.

LEMMA 3 (Garding inequality): There exist constants h0 > 0, p > 0, and C such
that

forO<h^h0 and ?th

Proof: Since a is bounded below positively and V a is bounded, it is trivial to
see that

(Lv, Av)^p1\\Av\\la-C1\\v\\lQ, veH2(Q).

For veSr>h, theorem 6 implies that |t>|3/2,3Q^Cft||u||2(ft. Since | |U||2,Q and
II Au | | o n + |u | 3 / 2 ö a are equivalent [22], a simple version [1] of interpolation of
Sobolev norms implies that

for veSrth and h suffîciently smalL

LEMMA 4: If^ = u-uh and s e [ - 2 , r -3 ] , then

Proof: Let weHs{Q) and détermine xetfs+2(Q) and tyeHs+ill2)(dQ) such
that
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for all veH2 (Q). The existence of % and \|/ follows from lemma 6.1 of Douglas-
Dupont [15]; also the following bound holds:

(yty — a(d%/dri)\ôil whenever the latter makes sense). Let 9 solve Poisson's
équations:

A(p = x in Q,

cp = O on 3Q.
Then cp e JJS+4(Q) and

Since (LÇ, Ar) = 0 for üeS°h , an appropriate choice of veSrth yields

(Ç.w) = (I.C,A(9-»))+<Ç,^>
^ C HÇ ||2iOfcs+ 2 II 9 | | s + 4 a + IÇI_ s_ (1 /2 ) .af iI• |5+(i/2,.an

^ C ( | | Ç | | 2 . o f c ' + 2 + | Ç | _ I _ ( 1 / I , a o ) | | w | U
and the proof is finished. / /

LEMMA 5: Let ot = O if orthogonality détermines Tlr,h, and let a = s + (l/2) ij
interpolation détermines Hr,h- V —1/2 ^ s ^ r — (7/2),

m0 ^ m ̂  r -f 1.

/- Let - 1 / 2 g s ^ r-(7/2). Then

Apply either theorem 4 or 5 to the first term on the right hand side and theorem 6
to the second. After a trivial simplification, the desired inequality results. / /

Logically it would perhaps have been better to show existence and uniqueness
of a solution of (8) before treating lemmas 4 and 5, but it would have induced an
unnecessary duplication of argument.

LEMMA 6: For h sufficiently small there exists a unique solution uheSrth of (S).

Proof: It is clear that uniqueness implies existence and that the différence z of
two solutions of (8) is an element of Sj?ft satisfying (Lz, Av) = 0 for v e S^h- Thus, z
corresponds to Ç in the case w = 0, and lemma 3, 4, and 5 with s=0 imply that

Hence z = 0 for small h. / /
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THEOREM 8: Let C) = u-uh, where u is the solution of{l) and uh is the unique
solution of(8)for small h. Let m0 ^ k S r + 1

m = m(p) = max{m0, k — p—(1/2)},

where m0 appears in condition (c) of section 2. Then, ifr^4,

where a = 0 for ïlrh determined by orthogonality and a—1/2 for Ur h determined
by interpolation. Ifr = 3, \g\m+ctiôSi should be replaced by \g|ra+a+(in»rn in f^e

inequality. If 0 ^ s ^ r - (7 /2) , then

II s | | -s ,n = |

n = max (m0 , k —(1/2)} and P™0 or s + (1/2) i/ Hrh is determined by
orthogonality or interpolation, respectively. If r—(1/2) ^ s ^ r - 3 , then

where t = max (m0, k + s — r + 3) and y = 0 or r — Zfor Hrh as above.

Proof: We have seen that ||Ç||0iO ^ Cft2||i;||2,Q + |C|_1 / 2 , s n . Let

^ = n r th u-uheS°,h,

and apply the Gârding inequality to Ç. Then

= (L(Ilr,hu-u)

and

Thus,

For small h and by lemma 5, if r ^ 4,
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Choose m = max{m0, fc —5/2} as called for in the statement of theorem 8 to
obtain the desired bound for p = 2 and r ̂  4. The remainder of the proof consists
of a careful application of lemmas 4 and 5. / /

The two Hl — Galerkin methods for the Dirichlet problem can be used to
motivate H1 — treatments of par abolie problems. See [16] for a simple case
(however, with penalty-set boundary values) and [15] for a somewhat analogous
development. See also [33] for another related concept.
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