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A FAMILY OF C' FINITE ELEMENTS
WITH OPTIMAL APPROXIMATION PROPERTIES
FOR VARIOUS GALERKIN METHODS
FOR 2ND AND 4TH ORDER PROBLEMS (*) ()

by Jim Douatas, Jr., Todd Duponr (%)
Peter PerceLL (%) and Ridgway Scott (%)

Abstract. — Families of C' piecewise polynomial spaces of degree r23 on triangles and
quadrilaterals in two dimensions are constructed, and approximation properties of the families are
studied. Examples of the use of the families in Galerkin methods for 2nd and 4th order elliptic boundary
value problems on arbitrarily shaped domains are given. The approximation properties on the boundary
are such that the rate of convergence of the Galerkin methods is the optimal rate determined by the
degree r of the piecewise polynomial space.

Résumé. — Endimension deux, on construit des familles d’espaces de classe C*, formés de polynomes
de degré r=z3 par morceaux, sur des triangles et des quadrilatéres, et on étudie les propriétés
d’approximation de ces familles. On en donne des exemples d’application d des méthodes de Galerkin
pour les problémes aux limites elliptiques du 2° et du 4° ordre posés sur des domaines de forme arbitraire.
Les propriétés d’approximation de la frontiére sont telles que le taux de convergence des méthodes de
Galerkin est le taux optimal, déterminé par le degré r de I'espace des polynémes par morceaux.

INTRODUCTION

In finite element approximation of fourth order elliptic boundary value
problems and in some Galerkin methods for second order problems, C!
piecewise polynomial spaces are required in order to satisfy conformity. In
addition, if the boundary is curved, essential boundary conditions must be
closely approximated in a negative Sobolev boundary norm [2]. These two
requirements rule out the use of standard triangular and quadrilateral elements,
and the purpose of this note is to present families of macroelements that do
possess the necessary smoothness and boundary condition approximation
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228 J. DOUGLAS IR. et al.

properties. An additional bonus of the families is that they have minimal
smoothness: e.g., the standard 21 degree of freedom C* quintic [34] is C? at
vertices, whereas the elements described here comprise the full space of C*
piecewise polynomials, with no additional constraints.

A basic idea of the Galerkin methods treated here is to interpolate the
boundary conditions rather than attempt to satisfy them exactly, without
imposing a penalty on the nonsatisfaction of boundary conditions. This idea was
first studied in [2] and then amplified in [4] and [30]; in these papers, only second
order Dirichlet problems using C® piecewise polynomial spaces on triangles
were considered. Here, we treat fourth order problems, as well as general second
order problems using Galerkin techniques [13], [15], [16] that require C' spaces.
To achieve C* cpntinuity while retaining enough degrees of freedom at the
boundary to have the necessary approximation properties, macroelements
based on the Clough-Tocher [12] and Fraeijs de Veubeke-Sander [18], [27]
macrocubics are used.

The families of macroelements studied here were first considered in [32}, and
further developed in [21], [25], although accurate approximation of essential
boundary conditions was not treated. In these works, the convergence
parameter is the degree r of the piecewise polynomials. The point of view in the
present paper is that r is fixed and the convergence parameter is the mesh size h.

1. FAMILIES OF MACROELEMENTS

In this section we present a family of C! triangular macroelements
(also see [32]) for which we shall prove useful approximation properties. The
family contains an element of degree n for each n=3 beginning with the well
known cubic Clough-Tocher element [12], [8]. We shall discuss several
modifications of this basic family and also briefly discuss a very similar family of
quadrilateral macroelements which begins with the cubic Fraeijs de Veubeke-
Sander macroelement [18], [27], [11].

First we give some general definitions. Following Ciarlet [9], we define a finite
element to be a triple (K, F, Z) such that

(@) K<R? is a compact region having the restricted cone property,

(b) F is a finite dimensional vector space of real-valued functions on K, and

(c) X is a finite set of linear functionals @;, 1<i<N, called the degrees of
freedom of the finite element, which are defined on a vector space of functions
containing F and which have the property that for any real numbers a;,
1<i=<N, there exists a unique function fe F which satisfies

©;(f)=a,, 1<i<N.
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C! ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 229

A nodal finite element is a finite element (K, F, X) for which each degree of
freedom is a functional which picks out the value or the value of some derivative
at a point, called a node, in K. For n=0and U <R?, let P, (U), denote the space
of restrictions to U of polynomials (in the coordinates of R?) of total degree not
greater than n. The degree of a finite element (K, F, ) is the largest integer n
such that P,(K)c F or — oo if F does not contain P,(K) for any n=0.

Ta

Az

Aa=0

Figure 1. — A macrotriangle 7.

Now we define the family of triangular macroelements. For n=>3, an element
of degree n in the family of triangular macroelements is a nodal finite element
(T, S,(T), Z,) defined as follows:

(@@ T<R? is a macrotriangle; i.e., a triangle 7' triangulated by three
subtriangles T, T, and Tj (see fig. 1). Note that the point b is allowed to be
anywhere in the interior of T';

(b) S,(T)={feC(T):f|T;eP,(T), 1<i<3}, where the vertical bar
denotes restriction of a function;

(¢) The degrees of freedom X, are

1. the value and gradient (i.e. 9/0x and 0/dy) at the exterior vertices,

2. the value at n— 3 distinct points in the interior of each exterior edge of T,

3. the normal derivative at n— 2 distinct points in the interior of each exterior
edge of T,

and if n=>4,

4. the value and gradient at the interior vertex,

5. the value at n—4 distinct points in the interior of each interior edge of T,

6. the normal derivative at n— 4 distinct points in the interior of each interior
edge of T, and
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230 J. DOUGLAS JR. et al.

7. the value at (1/2) (n—4) (n—5) distinct points in the interior of each T;
chosen so that if a polynomial of degree n—6 vanishes at those points,
then it vanishes identically.

For an example of one of these macroelements, see fig. 2 1n which a dot denotes
a value, a circle denotes a gradient and a dash denotes a normal derivative.

] i | 1
v LI T T

Figure 2. — The degrees of freedom X

For use in the proof of the following theorem, let ;, 1 i< 3, be the (unique)
affine function on R? such that A;(b)=1 and A, vanishes at the exterior vertices
of T;. Furthermore, let A be the function on T defined by

)\'ITL=7\'1|7-'!' 1§i§3.
Note that A is well defined and continuous on Tbecause A;and A, ; agree on the
edge E;,,=T;n T;,, since both are zero at a;,, and one at b. (Here and

through the following proof, subscripts referring to triangles are counted
modulo 3).

TueoreM 1: (T, S,(T), Z,), n=3, is a well defined nodal finite element of
degree n.

Proof: 1t is easy to see by simply counting that, for all n=3, the number of
degrees of freedom, denoted by # Z,, is (3/2) (n> —n+2). On the other hand, the
following argument due to Strang (see [29], [31] for example) shows that

3
dim S,(T)= E(n2 —-n+2).

Let R,(T), n= 3, denote the space of all (discontinuous) piecewise polynomials of
3

degree n on the macrotriangle T. Note that R,(T')isisomorphicto [] P,(T}).so
j=1
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C! ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 231

dim R,(T)=(3/2)(n+1)(n+2). Consider S,(T) to be a subspace of R,(T)
consisting of functions satisfying certain constraints imposed across the interior
edges of T. In general, it takes 2n+1 constraints (n+1 on values and »n on
normal derivatives) to make two polynomials of degree n agree in a C! fashion
along an edge. However, if a function in R, (T) satisfies the 2n+ 1 constraints
along two of the interior edges of T, then it automatically has a uniquely defined
value and gradient at the interior vertex of 7. Thus it takes the satisfaction of no
more than 3(2n+ 1)—3=6n constraints to ensure that a function in R,(T) is
actually in S, (7). Therefore,

dim S, (7)) dim R,,(T)—6n=%(n2—n+2).

To show that (T, S,(T), Z,) is a well defined finite element we must show
that Z, is a basis for the dual space of S,(7T’), which we denote (S, (7))’. But we
have just shown that

#X,=dim S,(T)=dim (S,(T)),

soitis enough to show that X, spans (S, (7))’. This is equivalent to showing that if
all the degrees of freedom for f€S,(T) are zero, then f vanishes identically.

When the degrees of freedom are all zero, in particular those of types 1, 2 and
3, fandV fvanish on the boundary of T. Thus f =pA?, where p;=p|T; is a
polynomial of degree n— 2 and p is continuous (because f and A are continuous
and because A does not vanish in the interior of T). Since fe C*(T), V fis well
defined on E;_; and hence can be expressed there by both

2pAVL+A2Vp, and  2pAVA L +A2Vpiy..
Therefore

2pV (Ais1—=M)+AV(pis1—p)=0 on E;_;. 1)

Since A(a;—,)=0 and V(A;,;—A;)#0 (because the lines A;=0 and A;;,=0
cannot be parallel) it follows that p(a;- ;)=0. Now, suppose for a moment that
n=3. (See also [8] and [26] for this case.) Then each p; is a linear polynomial
which vanishes at the exterior vertices a;_, and a;,, of the triangle T}, so p;
vanishes on the entire exterior edge of 7;. Hence p;=c; \; for some ¢;€R, so
fi=ciA}. Thus V fi(b)=3c;VA;(b). Since the vectors VA;(b), 1<i<3, are
linearly independent and f is differentiable at b [i.e., V f;(b)=V f;,, (b)], it
follows that all the ¢;s are zero;i.e., f vanishesidentically. This finishes the case
n=3. From now on we suppose that n=4. Then p(b)=0, since f(b)=0 and
A(b)=1, and V p;(b)=0 since

0=V f(B)=2pAV2r+2>Vp)(b)=V p;(b).

vol. 13, n® 3, 1979



232 J. DOUGLAS JR. et al.

Thus pIE,-_1 is a polynomial of degree n—2 which vanishes along with its
derivative at b and is zero at gq;., and the n—4.nodes of type 5 on E;_g;
consequently, p| E;_, is identically zero. Therefore,

Pi=qi(hiv 1 —A)(Ai—Aimy)
and
fi=qi}\‘iz(?"i+1 —A)Ai—=Ai—q),

where g; is a polynomial of degree n—4, since p;=0 on the two interior edges
of T; and since A;,; — A; vanishes on one of these edges while A; —A;_, vanishes
on the other. Also, using (1) and the fact that p=0 on E;_,, we see that

Vpi=Vp;yyonE;_;. Buton E;_,,
Vpi=qihi—Xi—))V(hiv1—M)
and
Vpoiv1=qir 1 i1 —Ais ) V(A1 =205

so since A;=XA;4; on E;_;, we find that ¢;=—g¢;,, on E;_;. In particular,
q:(b)= —q;+, (b), and

2:(D)=—qi+1(b)=qi+ 2 (b)= —q;(b),

which implies that g; (b) =0. At this point we are finished if n =4 because then g; is
a constant polynomial (c¢f. [26]). If n=5, then V f;=0 at the n —4 nodes of type 6
on E;,; because f =pA?=0 on E,,,. Since

Vj;=qi?‘i2(7\'i_)"iil)v(>"i¢l_)"i) on E; 4,

it follows that g; vanishes at the same n—4 nodes on E;,; and E;_,. As it also
vanishes at b and is a polynomial of degree n—4, it vanishes identically on E; , ,
and E;_;. If n=>5, this means that g; =0, since it is linear. For n= 6, this means
that

gi=ri(hiz1—A) A —Xi- 1)

and
fi=r; 7»;'2 g1 — 7»:')2 =2 1)2:

where r; is a polynomial of degree n— 6. Finally, since f; is zero at the nodes of
type 7, it follows that r; is also zero at these nodes and hence r; must vanish
identically because it has degree n—6. //

REmARK 1: Let o;: [0, L;] —» T;, 1 £i<3, be a parametrization by arclength of
the exterior edge of 7} and let d/0n; denote differentiation normal to this edge. If
for some i, 1<i<3, the degrees of freedom along the exterior edge of T; of
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C! ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 233

types 2 and 3 in the set X, are replaced by

L,
3, f—>J pi(s) f(ou(s)ds, O0=<jsn—4,
0
and
L
3. f**f 40 L ulshds,  0Sjsn=3,

where { P j} (resp. { g;}) is a basis for the space of polynomials in one variable of
degree n—4 (resp. n—3), then the result is a new (non-nodal) finite element of
degree n, which we denote (T, S,(T), £,). This follows from the proof of
theorem 1 because the number of degrees of freedom is unchanged and because
the degrees of freedom of types 1, 2 and 3 again uniquely determine f and V f
on an exterior edge of T when f€S,(T). Finite elements using degrees of
freedom of type 2 were studied by Blair [4] in the context of second order
problems. If the sets { p; } and { g, } are chosen to be orthogonal polynomials, a
hierarchical structure may be achieved [25]. //

ReMARk 2: In both the original element (7, S,(T), £,) and the modified
element (T, S,(T), £,), the exterior edges of T need not be straight but can bé
smooth curves which are just C! close to being straight. Using the notation
introduced above, we say that the exterior edge of T; is C' close to being
straight if

is small. It follows immediately from this definition that a C* small perturbation
of a straight edge moves points on the edge and normals to the edge only slightly.
Thusif Thas exterior edges which are sufficiently C* close to being straight, then
the degrees of freedom Z, or £, are close enough to those for the corresponding
element for the macrotriangle having straight edges and the same vertices so that
the degrees of freedom still determine uniquely a function fe€S,(T).
(The distance between two degrees of freedom is measured in the dual space
of C!, the Banach space of bounded C' functions with bounded first
derivatives,) //

sw{Mm@w%mmwl

0<ssL,

RemARrk 3: The elements in theorem 1 have the virtue that they may be pieced
together to form C* functions. For this reason, they may be referred to as “C’
finite elements”. To see why this is so, let 7' and T? be two macro-triangles
that share (only) a common edge E (the vertices of E are required to be vertices of
both T'! and T'?). Let Z! be degrees of freedom defined on S,(T), i=1, 2, that

vol. 13, n° 3, 1979



234 J. DOUGLAS JR. et al.

are consistent, i.e., the nodal points of type 2 and 3 on E for £} and X7 pairwise
coincide. Let f;€S,(TY), i=1, 2, be such that the degrees of freedom of types
1—3 of f, and f, pairwise coincide, and let f be defined on 7' U T? by
f|T'=fi,i=1,2. Then feC*(T"' U T?).(Proof: Let 1,=T', i=1, 2, be the
subtriangle having E as an edge. The polynomial P= f, |1, — f, |, vanishes to
second order at the vertices of E and at n—3 other points on E, and since the
degreeof Pisn, P | E=0. Similar reasoning shows that the normal derivative of P
vanishes on E. Thus P vanishes to second order on E, and this means that fis C'.)

The elements in remark 1 can also be pieced together to give C* functions,
requiring only a matching of the orientations of E. Elements with curved edges
as in remark 2 will arise only when the curved edge lies on the boundary of a
domain; thus the problem of piecing together elements across a curved edge is
avoided. Elements of all three types can be attached to each other across straight
edges by matching the types of degrees of freedom on the shared edges. In fact,
while the degrees of freedom of types 2 and 3, or 2 and 3, will be required in
section 2 on the boundary of the domain, other finite elements may be used in the
interior, with the appropriate matching. For n> 5, there is a well known (cf. [34]
for the case n=5) C! finite element of degree n, which we shall denote by
(t, P,(7), f,,), such that tis an ordinary triangle and the degrees of freedom X,
are

1. the value plus all first and second derivatives at each vertex,

2. the value at n—35 distinct points on each edge,

3. the normal derivative at n—4 distinct points on each edge, and

4. the value at (1/2) (n—4) (n—5) distinct points in the interior of t chosen so
that if a polynomial of degree n—6 vanishes at those points, then it vanishes
identically.

The transition from this element to the one in theorem 1 is via two
unsymmetric macroelements, denoted (7, S,(7T), Z,) and (7, S,(T), Z,), for
which S, (7T) and S, (T’) are proper subspaces of S,(T) consisting of functions
which have second derivatives at certain exterior vertices of T, and whose
degrees of freedom when n=6 are presented in figure 3. In this figure a second
circle around a node means that all the second derivatives at that point are
degrees of freedom. We shall not write out the degrees of freedom X, and X,'in
detail because the pattern should be clear. Proofs that these elements are well
defined can be given along the same lines as in the proof of theorem 1. Note that
remarks 1 and 2 hold for these elements. //

We now quickly present the family of C' quadrilateral macroelements,
discussing just the differences between this family and the family of triangular
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C! ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 235

macroelements. For n2 3, an element of degree n in the family of quadrilateral
macroelements is a nodal finite element (Q, S,(Q), A,) such that

(@) Q<R? is a convex quadrilateral triangulated by the four triangles Q;,
1<i<4, obtained by drawing in the diagonals of Q,

Figure 4. — The degrees of freedom A,

(b) $.(Q={feC*(Q): f|QieP,(Q), 1<i<4}, and
(c) after the obvious change of T's to Q's, the description of A, is the same as
the description of £, except that (when n=4) an extra normal derivative at a

point along just one of the interior edges of Q is added to the degrees of freedom
of type 6.

vol. 13, n° 3, 1979



236 J. DOUGLAS IR. et al.

The proof that (Q, S,(Q), A,)is a well defined nodal finite element of degree n
is essentially the same as the proof of theorem 1 with only two changes of any
significance needed. The first change is necessary because the interior vertex in
the quadrilateral macroelement is singular in the sense of [29]. Counting shows
that # A, =2 (n? —n+2), while the methods used in the proof of theorem 1 only
show that

dim S, (Q) =2 (n*—n+2)—1.

However, in order to be able to proceed as before we need to know that
# A,=<dim S, (Q). In[29], it is shown that this is true since one of the constraints
on normal derivatives one expects to be necessary is actually redundant in the

Figure 5. — Quadrilateral transition element of degree 6.

presence of the singular vertex. The only other change needed in the proof comes
when one is trying to show that the g;’s are zero at the interior vertex. The
alternating sign approach used before breaks down for the quadrilateral
macroelements because an even number of edges abut the interior vertex.
However, it is easy to see that the proof is rescued by the extra degree of freedom
of type 6 in A, available when n=4.

Remarks 1 and 2 clearly apply to this family of quadrilateral macroelements,
and the ideas discussed in remark 3 may be extended to the present situation as
follows. First note that triangular and quadrilateral macroelements of the same
degree are compatible and can be used together in the same domain Q because
the degrees of freedom associated with exterior edges are the same for both types

of element. One may thus use the standard C! triangular element (t, P, (1), =)
n25, as before, in the interior of Q and a layer of quadrilateral macroelements

R.A.LLR.O. Analyse numérique/Numerical Analysis



C! ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 237

one element thick along 0Q. Only one type of boundary layer quadrilateral
macroelement is required for the transition, and this is depicted in figure 5 for
n=6. Transition elements of other degrees may be easily constructed using the
ideas discussed earlier. Note that the transition element in figure 5 may be used
as a boundary element directly without having an additional layer of elements of
the type depicted in figure 4, if desired.

2. APPROXIMATION PROPERTIES

In this section we prove approximation properties for the finite elements
introduced in section 1. We start by fixing some notation to be used throughout
the remainder of this section.

For any domain Q < R? having the restricted cone property and for any
smooth arcI” = R? parametrized by arclength, denoted by s, let

(v, W)Q=J v(x)w(x)dx

be the (real) inner product in L?(Q) and let
{v, w>r=j v(s)w(s)ds
r

be the inner product in L2 (I). Furthermore, if m is a non-negative integer, let
1{.1,.0 denote the seminorm defined by

WRa= Y (D%, D*v)g,;

|a|=m

let ||.||..o be the norm for the Sobolev space H™(Q) defined by
[ollma= X (-
j=o

When m is a nonintegral positive real number, let m denote the integral part of
m and define the semi-norm [.],, o by

o D= 2
T LT

|x_y|2+2(m-®

define the norm || ||, o for H™(Q) by

“ v“rzn.ﬂ= ” v” %,9"'[“]3.,9-

vol. 13, n°® 3, 1979



238 J. DOUGLAS JR. et al.

Let ||.||,. o denote the dual norm for the space H ~™(Q)=(H™(Q))’ defined by
o] —m.n=sup{M|— . g H" (), <p¢0}.
[ @lmo

Similarly, for m a non-negative integer, let |.|, - denote the norm for H™(T)
defined by

v oo
olr=2 (5 a)

j=0 S/ r

For nonintegral positive real m, define the norm |-|m,r for H™(I') by

o) (Y — m) (£]2
|v|i,r=|v|%,r+Jj | o (s)— o™ (t) ] dsdt
I'xI

d(S, t)l+2(m—rﬁ)

where v™ (s)=0"v/0s™(x(s)) with x(s) parametrizing I" and d(s, t) is the
minimum arc length on I" between x(s) and x(z). Let

|U|-m.r=sup{~|<v' 24 t@eH™(I), w#O}
| (P |m,l'

be the norm for H~"(I')=(H™(I'))’. Finally, for m a non-negative integer, let

{.}.q denote the C™(Q) norm defined by

{v}m,n=sup{lD“v(x)| :xeQ, 0=|a|Sm}.

Let Q be a fixed, bounded domain in R? with C* boundary dQ parametrized
by arclength. A triangulation of Q will mean a collection £ ={ T}, ..., Ty} of
polygons each of which is a triangle, macrotriangle, or convex quadrilateral such

N

that Q= \J 7; and such that distinct polygons intersect at most in a common
ji=1

vertex or a common edge. By a simple triangle in such a triangulation, we mean
either a triangle in .# (but not a macrotriangle), a subtriangle of a macrotriangle,
or a traingle obtained by subdividing a convex quadrilateral by drawing its
diagonals. Simple triangles are assumed to have straight edges except that an
edge between two vertices on dQ is assumed to be contained in 0Q.

Now suppose that Q is provided with a family of triangulations .#,,
0<h=Zhe=1, as described above, such that

(a) if Te #,, then diam (T)<h, and

(b) the family is non-degenerate in the sense that there exists a number p>0
such that if T is a polygon in the family and t = T is a simple triangle, then 7 is
starlike with respect to a disk whose diameter is p diam (T’).

R.A.LLR.O. Analyse numérique/Numerical Analysis



C! ELEMENTS WITH OPTIMAL APPROXIMATION PROPERTIES 239

Consider for a moment an arbitrary finite element (K, F, X) with degrees of
freedom @4, ..., @, that are continuous on H™(K). We associate with (K, F, X)
an interpolation operator

In: H*(K)— F
by letting ITv be the unique function in F such that
o:(IMv)=¢;(v), i=1,...,N.

Let §=diam (K) and let £=x/8 and K={%: xeK}.
For any function f defined on K, set f()z)-—: f(x), and define an operator IT on
H™(K) by
6=Iv, veH™(K)

Note that IT is the interpolation operator associated with the finite element
(K, F, £), and that, for any of the finite elements discussed in section 1, including
that of remark 1, £ has the same description as £ (because dilations—as
opposed to arbitrary linear maps — preserve orthogonality).

Now, suppose hq is small enough (see remark 2 of section 1) so that each
polygon T, ;€ #,,1<j< N,,can be given the structure (T}, ;, Fy, ;, Z;, ;) of one of
the finite elements of section 1 of some fixed degree r=3 forO<h=h,. LetI1, ,, ;
be the interpolation operator associated with (T}, ;, F;, ;. Zy, j) and let m, be a real
number such that each g €Z, ; is continuous on H™(T), ;) for all j=1, ...,
N, and 0<h=<hy. We assume that the following uniformity condition holds:

© (1L 58025, =€

imn- fh.[

for 1Sj<N,,0<h=<hy, and 6 H™ (T, ;). (Here and throughout the rest of this
section, unless otherwise stated, C denotes a generic constant which may be
different in different places and which depends only on Q, r, h,, and the families
of triangulations and interpolation operators.) The existence of such a
constant C follows from Sobolev’s inequality (¢f. Grisvard [19]), with m, any
real number greater than one plus the highest order of derivative occurring as a
degree of freedom (hence note that my > 2 always). The condition can be satisfied
with C independent of & because the family of triangulations is non-degenerate:
there is room in the normalized (hatted) polygons for degrees of freedom that are
bounded away from degenerate configurations. Examples of degeneracy are
coalescence of two value nodes or colinearity of three value nodes in the interior
of a simple triangle associated with an element of degree 7. Now define a global
interpolation operator II, , on H™(Q) by

(H,,,,v)lT,,,J-=H,.,,,,j(v|T,,,j), ]=1, ...,Nh.
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Let S, , be the image of H™(Q) via the mapping I, ,. We assume that the family

of elements is consistent (see remark 3 of section 1), namely, we assume that
@) S, n=C' Q).

Since each function in S, , is a polynomial in each simple triangle in 4,

condition (d) implies that S, , = H*(Q).

ReMARK 4: When each element in £, is one of the macroelements of degree r of
section 1 (except for the transition macroelements described in figures 3 and 5),
then S, , is the space of all C! piecewise polynomials of degree r on the
triangulation S, of Q obtained by considering all simple triangles in £,
separately. As shown in [23], when r=5, this space has a nodal basis, but of a
more complicated variety than considered in section 1: the macroelements
provide a simpler nodal parametrization of S, . In the case r 2 5, the theorems to
follow may be generalized to hold for S,,,,(},,) for an arbitrary
triangulation },, of Q, i. e., one not coming from a macro-triangulation, by
changing the nodal parameters in [23] at the boundary appropriately. The

essential change required is algebraic, as the analysis of this section involves only
the simple triangles. //

For the remainder of this section, we make the following

AssumpTION: For O0<h=h,, the family of triangulations .#, of Q satisfies
conditions (a) and (b) and the associated family of interpolation operators I, ,,
r =3, satisfies conditions (c) and (d).

THEOREM 2: Let g and m be real numbers such that 0<q<2and my<m=r+1,
and let ve H™(Q). Then

lo—11, 4[|, oS CH"4[0], 0.

Proof: Let T, ;€ #,.From the fact that fI,, », j Preserves polynomials of degree
r and the uniformity condition (c), it follows that, for any peP, (T b i)

“ ﬁ_ﬁr, h.jﬁHq.Tn,;:”(ﬁ—(P)-ﬁr. h.j(ﬁ_(‘p)“qvfn.; écHﬁ—(p”m»Tnl

The following version (proved in [17] and [20]) of the standard Bramble-
Hilbert lemma (see [5] and {10}) is now required:

LemMma 1: Given 0<p <1 and a positive real number m, there exists a constant
C=C(p, m) such that if K < R? is a domain having diameter at most one that is
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starlike with respect to a disc of diameter p and if ve H™(K), then
inf ”v—(p”m,l(éclv]m,K

9ePL(K)
where m is the greatest integer less than m. [/
Applying the lemma,
611, 4, ;5|7 S C Bl .
Since diam (T}, ;) £ h, the homogeneity of the norms implies that

lo=TLs0ll s SCH = leh, /7

From now on, we shall make frequent use of the following easily proved
inequalities: if K = R?is aregion such that diam (K) <8 < 1 and K contains a disc
of diameter pd, p>0, then for ¢ € P,(K) and any m,

{0}mxSCO |0||lmx * )
and

|@lmxsC "|0],x, 0Sj<m, 3)

where C depends only on p and r. The following lemma will be used in the proofs
of the remaining theorems of this section (for a proof, see the appendix of [30], or
use the trace theorem [22] with a little care).

LemMa 2: Let B(F#,) be the collection of all simple triangles in £, having an edge
on 0Q and let ve H™(Q) with myEm=r+1. Then ’

( 3 Molln-r 0" SCh2 [o]lna. 7/

1€ B(S,)

THEOREM 3: Let ve H™(Q) for some m satisfying mo=m=r+1. Then if
ve H™(0Q)),

(@ |o=T0, 4 0}4. S CH"~4(| 0}y 0+ (|2 [|m.0)
when 0<q<2. If v/dne H™ 1 (8Q), then

»_0
on On

17

on

(b)

(Hr, h U)

sciei(

+olo)

when 0= g =1, where 0/0n denotes differentiation normal to 0Q.

q,0Q m—1,3Q

(*) Here m is assumed to be a non-negative integer for { }, x to be defined.
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Proof: The proofs of part (a) and (b) are similar,so we just prove (a). Let Te .,
be an element with an edge e on 0Q, let §=diam T and let t = T be the simple
triangle having e as an edge. Note that since 6Q is smooth, the length of e, I(e),
may be bounded by C3. Let ¢ be the polynomial in arclength on e of degree r
defined using the degrees of freedom associated with values, tangential
derivatives, or orthogonalities on e in the definition of IT, , which interpolates
both v|e and I, ,v|e. Then

0, e)

lv_Hr,hv|q,eélU_(qu,e+|<p_r‘[r,hv|q,e

r+1

1%
Py (IT,, yv)

§C<8m“1|v|m,e+8""“

for 0<q <m. Furthermore,

r+ 1

ar+l a
as,—+1(nr.hv)

Frzsy (IT,, 5 v)

<C8"sup

O,e
écallz{Hr,hv}r+1,t=C61/2{Hr.hv}r,1
écs_l/znnr,hv“ <C8m—'—(3/2)”nr,hv”m—l,w

rtT=

for 1 =m=r+1, where we have used the fact that I'l, ,visa polynomial of degree
r on T and inequalities (2) and (3). Thus

|v_nr,hv|q,eécsm_q(|vlm,e+8—1/2“Hr,hv“m—l,t)
éChm_qulm,e-"h-”z Hnr,hl}“m—l,t)-
Part (a) of the theorem now follows from lemma 2. //

Up to this point we have made no essential use of the macroelements of
degree r=5 introduced in section 1: the results proved so far hold for the
standard C! element (t, P, (1), f,), r=5, of remark 3, section 1. Now, however,
we demonstrate that the use of the macroelements of section 1 along 0Q results
in a reduced interpolation error for boundary values and normal derivatives
when measured in negative Sobolev norms. We deal first with the case of non-
nodal degrees of freedom (see remark 1, section 1) on dQ because the proof is
easier and the result is better in the sense that less smoothness is required of the
function being interpolated. For I a smooth arc in R, let P,,(I') denote the
space of functions on I' which are polynomials in arclength of degree not greater
than m. Adopt the convention that P_,(I') is the set consisting of the null
function.

THEOREM 4: Suppose that each element in #, with an edge e in 0Q is such that
Jor ve H™ (Q)

(a) <v—nr,hvt \l!>e=0 when Weﬁ,_4(e)
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and/or
0 -
(®) n (v—1II, ,v), ¥ )e=0 when YeP,_5(e).
Suppose that mo<m=r+1. Then there exists a C such that

(a) for ve H™(Q) n H™(0Q),

[o=T0,40] S CH™*?(|0], a0t |[0]lna).  0=p=r-3,

and /or
(b) for ve H™(Q) such that ov/one H™ 1 (0Q),

0
‘%(U*Hr,hl))

SCh™ 7 (o] st ||0]lma),  OSpsr—2.
—p, 0Q

Proof: Let g e H? (3Q) and let yeL? (6Q) be such that |, € P;(e) for all
boundary edges ¢ in £, and (¢f. lemma 1)

|@_‘l’10,aQ§Chql‘P|q,anr 0=g=p.
Thus for my<m<r+1 and ve H™(Q) n H™(0Q),

<U—Hr,hux Qo= v—1I1, 10, =V >4
= Iv_nr,hvlo,anl@"‘|’|0,ag§Chm+P(lvlm,aQ+ "U“m,Q) |‘~P|p,anr

proving part (a). Part (b) is similar. //

Note that in part (a) the upper limit on p is just the number of value degrees of
freedom associated with the interior of an edge lying on dQ and in part (b) the
upper limit on p is the number of normal derivative degrees of freedom
associated with the interior of an edge lying on Q. It is clear that if the

standard C?! element (t, P,(t), f,) were used along 0Q (after modification as in
remark 1), then a result similar to theorem 4 would hold except that the upper
limit on p would be reduced by two in both parts of the theorem.

When nodal degrees of freedom are used along 0Q, the orthogonality
conditions in theorem 4 can no longer be satisfied exactly. Nevertheless
(see [30)), it is possible to place the nodes on 6Q in such a way that the integrals
involved in those orthogonality conditions are sufficiently small for the rates of
convergence of theorem 4 to be retained, as will now be shown.

Let e be an edge of £, on 9Q, let I(e) be the length of e and suppose e is
parametrized by s€[0, I(e)]. Let

r—3

d
Ar,e(s)= dsr—3

CAUGCED )
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and let
r—2

d y— r =
Br,e(s)= ds’ 2 (s l(l(e)_s) 1)-
Integration by parts shows that

<Ar,e’ \|’>e=01 ‘l’e‘ﬁr-«#(e)
and
<Br,e: V>.=0, \|l€§,_3(e)‘

It follows that A, ., whose degree is r+ 1, has r — 3 distinct zeroes in the interior
of [0, I(e)] in addition to the second order zeroes at the endpoints and that B, ,,
whose degreeis r, has r — 2 distinct zeroes in the interior of [0, [(e)] in addition to
the zeroes at the endpoints. The zeroes of B, . are the Lobatto quadrature points
for e. Quadrature rules based on both A4, , and B, , were extensively used
in [14].

THEOREM 5: (a) Suppose that each element in £, with an edge e on dQ is a
macroelement with nodes on e placed so that v—TII, ,v has the same zeroes on e
(each with the same order) as A, .. If mySm=r+1, 0Sp<r-3, and
ve H®(Q) n H™*?(3Q), then

|o=T1, 40| _p, .0 S CH™ 2 (| 0] sy o0+ || 0]lm o)

(b) Suppose that each element in $, with an edge e on 0Q is a macroelement with
nodes on e placed so that (0/0n) (v—1I1,,,v) has the same zeroes on e as B, ,. If
meSmsr+1,0Sp=<r—2,ve H"(Q), and dv/one H"*?~1(3Q), then

i 2 tlolla)

on on
Proof: We give the proof of part (a); part (b) is similar.
Let T, t, e, 0 and I (e) be as in the proof of theorem 3. Let ¢ € H? (0Q). Choose
as in theorem 4 so that

R o =Vlo, et |V]|ge2Clo|ge 0=q=p.

0
- a (Hr, h U)

éChm+p_l<

—p, 0Q m+p—1,0Q

Note that pd <I(e), where p is the constant associated with the non-degeneracy
of the family of triangulations. Since

Kv=I1, 40, @ dsa=<v~1I1, 4v, =Y Dso+<v—1II, 1 v, ¥ D50
and
Cv—T1, 4, <P—\ll>an§Chm+p(|v|m. ot ”U“m‘ﬂ) I(Plp.an

a5 in the proof of theorem 4, we just need to estimate {v—1II, ,v, ¥ Dy
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Consider the linear functional E on C* ([0, /(e)]) given by
1 (e)
E(f)=L (f()— fi(9)ds,

where f; is the unique polynomial of degree r such that the set of zeroes
f—f include the zeroes (counting multiplicity) of A, .. Note that E(f)=0
if f is a polynomial of degree 2r—3 since f—f; factors into 4, . times a poly-
nomial of degree r—4. Thus, by the Peano Kernel theorem, there exists C

such that for fe C*([0, I(e)])
d k
(&)

Let \llef’;(e). Then by Schwarz’s inequality
,E(f‘ll)! §Cl(e)k|f|k,e {\’llp,e

|E(f)| SCl(e)* ,  25kg2r-2.

L0, (o))

for k an integer in the range 2<k=<2 r—2, with C independent of y. Viewing
f— E(f V) as alinear functional, it follows by interpolation [22] that the above
holds for all real k in that range.

Let 6P, (e) be such that 8 —v (as a function of arc length) vanishes at the
zeroes of A, . (counting multiplicity). Then

<v—nr,hv' \1’>e= <U—9, ¢>e+ <9_Hr,hvr \‘,>e
gC(S"‘*l’lv—Blmﬂ,e-&—Sz'“z|9—Hy,hvlzr—z,e) I\l’lp,e'

Using an argument similar to that in the proof of theorem 3, we see that
|0, k0|22, SCE 32|10, 40 ||m-1,
Since 0 is a polynomial, we see that
87 7210|2-3,.=8%72]0|, . SC8*™ 30|,y . SCF ™3 | ] iy e
Thus from the above estimates and the fact that p<r—3, we see that
Co=T0, 40, ¥ De SCE™? [0]msp, e + 8™ 72| T 0|l m-) [ W],

Summing over e and applying lemma 2, we get

(v—I0, 40, ‘1’>an§Chm+p(|U|m+p,an+ “U“m,n) I(Plp.an,

which finishes the proof. //
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The last result in this section is that we can extract from the proofs of
theorems 3, 4 and 5 the fact that S, , contains subspaces consisting of functions
with “nearly zero” boundary values and normal derivatives (see [24] and [30]).

THEOREM 6: Let SO, be any subspace of S, ,, such that if y € S° , and e is an edge
of I, 0ncQ, then

(@) x=0 and 0y/0s=0 at the endpoints of e, and either {y, ¥ ».=0 for
Ve P,_,(e) or y vanishes at the zeroes of A, . in the interior of e, and/or

(b) 8y /dn=0 at the endpoints of e and either { dy,/dn,  >.=0for e P,_;(e)
or 0x,/0n vanishes at the zeroes of B, . in the interior of e,

Then, for x €SP, and 0<m<2,

(a) |Xl—p,méc"m”m,z)||X||m.n
when —2=<p=<r—3 and m+p+1/220, and/or

o

®) on

échm+p—-(1/2)“XHm o
—p. eQ '

when —1<p=<r—2and m+p—1/2=0

Proof: As usual, we only prove part (a).

Let e be an edge of ., on 09, let I(e) be the length of e, let t be the simple
triangle associated with .#, which has e as an edge and let & be the diameter of 1.
Since the family of triangulations is non-degenerate,

C 18<I(e)<C8.

No matter which version of (a) is satisfied on e, if €S} ,, then xle has
r+ 1 zeros, counting multiplicity, so by the Poincaré inequality,

leq,eécsr—q+l |XIr+1,e

for 0=<g=r+1. As in the proof of theorem 3, the inequalities (2) and (3) imply
that, for 0=m=<r<j,

[x]s,eSCE W2 Iy |, o @)
Thus, for 0<g<r+1 and 0Sm<r,

[ X g e SCE T2 [yt ||
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Summing over all e and using the fact that § <h, we obtain
[x|g .S CHm= Oy ||, g,

for 05¢=<2,0<mZ2, provided that m—q+(1/2)=0. Letting g= —p, we see
that part (a) of the theorem is now proved for —2=<p=0.

To prove part (a) in the range 0<p=<r—3, let @ and | be as in the proof of
theorem 5. Then

o 0=V D= |%oe | 0= Vo, SCE P2 || x [l < | @], e

for 0=m<r. Furthermore, either { x, V ). is automatically zero by the definition
of S7 , in terms of orthogonalities or y\s vanishes at the zeros of 4, .. Therefore,
as in the proof of theorem 5,

W DeSCO 72 | |ar2,e [ W], e

Using (4) and the definition of V,

A WD SCF Dy || o [V e
For 0=m<r and 0<p=r-—3, we therefore have

CH @2e=Co @ =YD+ x, YD SCIF PR |y || 0],

Thus, for 0=m=<2,0<p=<r—3,and m+p+1/220,

e @ = CH 7 U2 Iy || a |01, 00
which completes the proof. //

REMARK S: Since the techniques of proof in Theorems 2-6 are purely local, it is
not necessary to segregate the methods of orthogonality and interpolation.
Indeed, when the boundary data is singular, it would be wise to use
orthogonality to impose the boundary conditions near the singularity, while
interpolation could be used away from the singularity (cf. the different
smoothness requirements on the data in theorem 4 versus theorem 5). Also, it is
not necessary to require that dQ be smooth globally; if 0Q is piecewise smooth
and if a boundary vertex is placed at every point of dQ where it is not C*, the
same results follow. //

REMARK 6: It may be desirable to impose the orthogonalities in theorem 4 by
evaluating the integral over e using a numerical quadrature rule:

Jf~";1 w;f (z;)
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In the case that the weights w; are all nonzero and { z; } corresponds to the set of
zeroes of 4, . (resp. B, ) in the interior of [0, I (¢)] then orthogonality of v —IT, , v
to YeP,_,(e) [resp. (8/dn) (v— IT, ,v) to YeP,_,(e)] with respect to the
quadrature on e is equivalent to vanishing at the quadrature points, i.e., the
situation covered by theorem 5. The error induced by using other quadrature
rules may be studied using the techniques in the proof of theorem 5. /

3. APPLICATION TO THE PLATE BENDING PROBLEM

Consider the bilinear form a (., .) on H*(Q) defined by

D
a(u, v)= 5 J { AuAv —(1— V) (tyx Vyy+ thyy Uy — 2ty Uy)} dx dy,
o

where D and v are constants such that D>0 and 0Z5v=<1/2.

Let ¥ be the subspace of H?(Q) consisting of functions that vanish on Q.
Since a(v, v)=(1/2)D(1-v)[v];,, it follows from Rellich’s lemma [1,
chapt. 10] that for some y < c,

1
a(v, v)g§ |v]|2q for all veV. %)
Given FeH™? (Q) and ge H? (Q), there is a unique ue H2(Q) such that

u—geV(i.e.,, u=g on 0Q)
and

a(u, v)=F(v) forallveV

(the Lax-Milgram theorem). Suppose that the inner product with F is given by

F(v)= J fvdx+J MéE ds,
Q 0 on

where fe L? (Q) and M € L? (8Q). Then u is the solution to the simply supported
plate bending problem corresponding to a loading f, an edge displacement g,
and a moment M applied to the edge. The constant v in the definition of a(., .)
is Poisson’s ratio and D is the flexural rigidity [3]. When fe H* *(Q),
ge Hs -2 (5Q), and M e H*~®/2(0Q), then ue H*(Q), with the obvious norm
inequality (s =2), since u is related to ( f, g, M) by a properly elliptic boundary
value problem [22], [1]. We now consider a Galerkin approximation to u.
Let I1, ,, 0<h=h,, be a family of interpolation operators as studied in the
previous section, and let Sy, , be the image of ¥ ~ H™ (Q) via the mapping IT, ;.
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Suppose that .
a(x, x) ;%—Hx”zﬂ for all xeS?, (6)

(As can be seen from [30], (6) follows from (5) for h, sufficiently small.) Then there
is a uniquely determined u"€S, , such that
u*—T1, ,g€S? ,(i.e., u" interpolates g on 9Q)
and
a(u", y)=F(y) forall xeS?,
Note that u and u" depend only on the values of g on 9Q.

The Galerkin methods above are direct generalizations to a fourth order
elliptic boundary value problem of the methods studied by Blair [4] and in the
papers [2] and [30].

TueOREM 7: Let I, , be as in either theorem 4 or 5. Suppose that (6) holds for
0 < h < hy and that ue H™(Q) for m in the range 7/2 <mo < m <r+1. Then

|u—1]|,0 < ch™ 2 || u]|ne-
Suppose further that ge H"(0Q) and that I1, , is as in theorem 4. Then
[u=u|lsa < ch"*(|ullma+|g]mac)
for 3—r £s<2. When 11, , is as in theorem 5, suppose that geHT ™ (0 Q),
0=qg=r—3.Then
“u—-u “sQ < ch™” S(””Hm’)"‘ |g|m+qan)
for —g<s<2.

Proof: As 1n 30, section A . 1] (6), Green’s theorem and the trace theorem [22]
imply that, for m > 7/2,
lu—u |0 S Collu—TLpu [aa+ca |l qsup 1%l22=mon
XEST ” ”m

Thus theorems 2 and 6 yield the first conclusion. Now let ¢ e H*(Q),
0<k=r-3, and let ®eV solve (*), a(®), v)=(¢, v) for all ve V. By elliptic
regularity theory (see above), | @ ||,.,4 o =¢|| @ ||, o Integration by parts (Green’s
theorem) and the trace theorem yield

u—u*, @) < |a(u—u*, @11, , D)|
+c “ @ ||k+4,Q | g—u' | —)-kaetC ” u ”m,Q' IL, , @ ‘7/2—-m.6Q'

(*) Hence forth (., .) and ¢ ., . ) will denote (., .)g and <., . Ds.
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Using the first part of this theorem, theorem 2, and either theorem 4 or 5,
@—u",@) < c(h"**|lullma+9="| 1p-ra0 [| @ lc+e0

(recall that ®eV,i.e., ®=0 on 0 Q, so that the restrictions of theorems 4 and 5
are the same). Thus regardless of the type of interpolation,

lu—1t]| _q < c™ || |lma+ |9~ | —am-r.00)
Now consider u". Theorem 6 implies that
|9=4"| pm-roa S |@* =T nut| _uy-xoat |9 =Thntt| -2-x.00
S w10, u 0+ |u—T0 0 u| g /y-k.00

Inserting (u — u) in the first term and using the triangle inequality, the first part of
this theorem and theorem 2 imply that

[|u—u" || ko Sc(mE H u “m.a + | u—II, hu | —/) ko)

Apply either theorem 4 or 5 to estimate the second term on the right hand side,
and the result follows. //

The above theorem can clearly be extended to allow more general coefficients
ina(.,.). The clamped plate problem may be treated by simply changing ¥ 'in the
above to be the subspace of H2 (Q) consisting of functions that vanish to second
order on 0 Q and using part (b) of theorems 4-6.

4. THE H'-GALERKIN METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS

Consider the Dirichlet problem

Lu=V-(@aVu)=f in Q,

7
u=g on 90Q, @

where a=a(x) is a smooth, positive function on Q. Again let
V={veH*(Q) : v=00n 0Q}, and let S, be the image of ¥ n H™ (Q) under the
mapping I, ,, where II, , is determined by either the interpolation procedure
associated with theorem 5 or the orthogonality conditions associated with
theorem 4. Assume that g has a (theoretical) extension to H™(Q), so that
I1,,, g is definable; practically, this involves only the values of g on ¢ Q. Then
the H'-Galerkin method for approximating the solution of (7) consists of finding
u" €S, , such that

(Lu*, Av)=(f, Av), veS?,,

h 0
u'—1II, ,geSy,,

®
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H'-Galerkin methods have been proposed earlier in [16] for both elliptic and
parabolic problems for the special case L=A, and the nonlinear Dirichlet
problem based on (7) with a=a(x, u), plus a linear problem with lower order
terms included, have been treated in [13]. In both these papers the Dirichlet
boundary condition was imposed weakly through penalty-like terms on the
boundary. The method (8) corresponding to interpolation was mentioned briefly
in [13], but no analysis was given in that case. The orthogonality method (8)
presents an H' analogue of the method of Blair [4].

Note that the algebraic equations arising from (8) do not, in general, generate a
symmetric matrix, and care must be taken to show that a solution of (8) exists.
There are significant practical advantages of (8) over least squares
methods {6, 7], particularly for nonlinear problems and in applications to
transient problems, since the algebraic equations become simpler. The analysis
of (8) below is similar to that given in [13], but the details are noticeably different.
Both rely on ideas discussed by Schatz [28] earlier.

LemMa 3 (Garding inequality): There exist constants hy > 0, p > 0, and C such
that

(Lo, A)zpllv|Za—C][v[l3a
for 0 < h < hy and veSy,.

Proof: Since a is bounded below positively and V a is bounded, it is trivial to
see that

(Lo, Av) Z py || Av||2a—Ci 0|70,  veH?(Q).

For veS?,, theorem 6 implies that |v|y, oS Ch| v|,q. Since ||v],q and
| Av||gq+|?|3/2.00 are equivalent [22], a simple version [1] of interpolation of
Sobolev norms implies that

(Lo, 8) 2 pa |02 —Ci G [vllZa+e7" [of50) 2 plloflZa—Cllv ][5

for veS?, and h sufficiently small.
LemMa 4: If {=u—u" and se[—2, r—3], then
el -0 = C{r*2||C o+ |E] -s-umea -

Proof: Let we H*(Q) and determine y e H**%(Q) and Y e HS* /2 (9 Q) such
that

(v, wy=(Lv, )+ v, ¥>
vol. 13, n° 3, 1979
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for all ve H2(Q). The existence of x and { follows from lemma 6.1 of Douglas-
Dupont [15]; also the following bound holds:
1% lls+20+ ¥ iramee <C [|w]]s.0

(Y=a(@y/0 n)Lm whenever the latter makes sense). Let ¢ solve Poisson’s
equations:

Ap=y in Q,

¢=0 on 0Q.
Then pe H**4(Q) and

€ wy=(LE, Ap)+ <L, .
Since (L¢, Ar)=0 for veSy,, an appropriate choice of ve S?, yields
@ w)y=(LE, Ale—v))+<EL ¥ )
sC “ 4 Hz.n h*? “ ] “s+4,Q + |q-s—(1/2),aol‘l’ ls+(1/2).6§2
2 C(lgllaah T +1E] —mamen) | @loa

and the proof is finished. //

LeMMA 5: Let a=0 if orthogonality determines I, ,, and let a=s-+(1/2) if
interpolation determines 11, ,. If —1/2 < s £ r—(7/2), then

18] s-amon S CH 2| L]0+ CH U2 ([[u] 0+ ]9 |nraco)
formy=sm=r+1.
Proof: Let —1/2<s < r—(7/A2). Then
18] -s—armon S [u=T0u|__amy o0+ T nu—1"]_q/m00-

Apply either theorem 4 or 5 to the first term on the right hand side and theorem 6
to the second. After a trivial simplification, the desired inequality results. //

Logically it would perhaps have been better to show existence and uniqueness
of a solution of (8) before treating lemmas 4 and 5, but it would have induced an
unnecessary duplication of argument.

LemMa 6: For h sufficiently small there exists a unique solution u"€ S, ,, of (8).

Proof: It is clear that uniqueness implies existence and that the difference z of
two solutions of (8) is an element of S , satisfying (L z, Av)=0for ve S ,. Thus, z
corresponds to { in the case u=0, and lemma 3, 4, and 5 with s=0 imply that

lz]la < CH?|| 2{|20-
Hence z=0 for small h. //

R.A.LR.O. Analyse numérique/Numerical Analysis
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THEOREM 8: Let {=u—u", where u is the solution of (7) and u" is the unique
solution of (8) for small h. Let my S k £r+1 and

m=m(p)=max {mg, k—p—(1/2)},

where my, appears in condition (c) of section 2. Then, if r = 4,

“C"PQ é C(hk_p“u”k,ﬂ+hm+(1/2)|g|m+m,69)’ 0 é p é 2’

where o.=0 for I1, , determined by orthogonality and o.=1/2 for I1, , determined
by interpolation. If r=3, | g|,asq Should be replaced by |g|, . ,s1 ) :q in the
inequality. If 0 < s < r—(7/2), then

[Cll—ca < COH**|u]la+m"* =+ |g|, 1 p5.00),

where n=max {mo, k—(1/2)} and B=0 or s+(1/2) if I1, , is determined by
orthogonality or interpolation, respectively. If r—(7/2) < s £ r—3, then

el -ca = CHT*ullia b2 g]irrz0)
where t=max (my, k+s—r+3) and y=0 or r—3 for I, ;, as above.
Proof: We have seen that ||¢]loq £ Ch?||G|l1a+|6]-1/2.00- Let
E=11, ,u—u"eSy,,
and apply the Garding inequality to &. Then

pllelizas (LE, AB)+CIE|2,
=(L(I0, , u—u), AE)+C| & |24

< C||M,, u—ull0llE |l +ClIE]R
and

Elloa = Clullia P2+ |E]loa)  moSk=r+l
Thus,

”C“za = C(”““k,n W24 “C“o,n) = C(”““k,n h2 4 “C“zn h? + 1Cl-1/2.an)-
For small & and by lemma 5, if r =2 4,
”§||2.9§ C(“““k,n B2 4|8 n0a)

s C{” u”k,Q hk_2+hm+(1/2)(” “”m.ﬂ+ |g|m+a.an)}~
vol. 13, n°® 3, 1979
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Choose m=max { mo, k—5/2 } as called for in the statement of theorem 8 to
obtain the desired bound for p=2and r = 4. The remainder of the proof consists

of

a careful application of lemmas 4 and 5. //
The two H! — Galerkin methods for the Dirichlet problem can be used to

motivate H!—treatments of parabolic problems. See [16] for a simple case
(however, with penalty-set boundary values) and [15] for a somewhat analogous
development. See also [33] for another related concept.

N =

10.

11.

12.

13.

14.

15.
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