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FOR HYPERBOLIC EQUATIONS (%)

by Garth A. Baker (%),
Vassilios A. DoucaLis (%) and Steven M. SErBIN (%)

Communiqué par P. A. RAVIART

Abstract. — A new class of two-step fully discrete approximation methods of arbitrary accuracy in
time is developed for the initial-boundary value problem for second-order hyperbolic equations. The
schemes are derived from the explicit second-order character of the equation, as opposed to previously
developed high order accurate schemes based on a first-order system formulation. Optimal order rate of
convergence estimates are derived for the error of the full discretizations in L? and in L*. For a given
accuracy these schemes provide approximations to the solution with approximately half the
computational work required for a single-step method of the same accuracy.

Résumé. — On propose dans ce travail une nouvelle classe de schémas a deux pas pour la résolution
numérique des équations hyperboliques du second ordre. Les schémas sont basés sur certaines
approximations rationnelles de cos z, et sont réalisés par une relation récursive naturelle pour les
équations du second ordre. En comparaison avec les schémas a un pas connus, on obtient la méme
précision optimale dans L*® et L?, avec moitié moins de calculs.

1. INTRODUCTION

In 3] a class of approximation schemes is developed for second-order
evolution equations in Hilbert space of the form
v+ Av=0, 0<t<t*,
v(0)=1°,
v,(0)=0,

where 0<t* < oo is given and A is a self-adjoint, positive definite, possibly
unbounded linear operator. For a chosen constant k>0, the relation

v(t+2k)—2 cos(k AV?)v(t+K)+v(H)=0, OSt<t*—2k,
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202 G. A. BAKER, V. A. DOUGALIS, S. M. SERBIN

is approximated by the difference equation

0"t =2rk AY) " +0"=0, 0=n=[t*/k]-2, (1.1)

where r is a rational function which satisfies r(t)=cost+ 0 (t¥*?) as 1 — 0 for
some even integer v=2. (1.1) is initialized by ©°=v° and a convenient choice
of o' depending on r. Under suitable conditions on r, ®" approximates u (nk) to
O (k") accuracy.

In this work we analyze the application of the above approximation method to
initial-boundary value problems for second-order hyperbolic equations, in
which case time and space discretizations are coupled. The problem of interest is
the initial-boundary value problem

uy,=—Lu= % 66 (au(x) >—a0(x)u in Qx(0, t*],
i, j=1 J
u=0 on 0Qx(0, t*], (1.2)
u(0)=u’ in Q,
4, (0)=u? in Q,

where Q is a bounded domain in RY with C*® boundary 0Q and «°, u? are given
functions. The operator L is assumed to satisfy the uniform ellipticity condition

N

Y a;(x)€€=d ;

i,j=1

for some constant d>0, for all xeQ and all €y, &y, ..., Ep)eRY and its
coefficients are such that g;;=a;;e C® (ﬁ), 1<i,jENandayeC® (5) with ag =0
in Q.

In the remainder of this section we introduce the notation to be used, which
will enable us to define the fully discrete approximations and to state the
convergence results. Sections 2 and 3 are devoted to the proofs of the
convergence in L2 (Q) and L*® (Q), respectively. In section 4 we provide a family
of schemes giving arbitrary accuracy in time, using the rational approximations
of [3].

For integerm=0and 1 < p < o0, Wy = W} (Q) will denote the Sobolev space of
(classes of) functions on Q, having distributional derivatives of orders up to min
L?=[L*(Q). In particular, in the customary fashion, for p=2 we shall write
H™= W7 and we denote the norm on H™ by ||. ||z- The norm on L*® we denote
by ||.||z=- The inner product on L? we denote by (., .) and its norm simply

by ||
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TWO-STEP APPROXIMATIONS FOR HYPERBOLIC EQUATIONS 203

Let {A;},5, denote the eigenvalues, in nondecreasing order, of the elliptic
operator L and { ¢;},,, the set of corresponding eigenfunctions, a complete
orthonormal set in L?, with ¢ ;=0 on 9Q.

For s=0 we consider the spaces
H={vel”:||v| ;= %0 ¢)|)*<w0}.
J

For integer s=0 it is known that
={veH*: L/v=0 on dQ for integer j<[s/2]}

and that on H* the norms || || and ||| - are equivalent. For s 2 0 H~* will denote
the dual of H*® with respect to L2. It is easily seen that the induced norm on HS
is given by

[oll-s=E A |@ @)Y, s20.

We shall work with the solution operator T : L? — H? of the associated elliptic
boundary value problem, defined by

a(Tf, v)=(f,v), VveH! given felL?,

where a(., .) is the bilinear form

N
a(v,w)=j(z ua ow +aovw>dx v, we H.
Q \i

=1

For the space discretization of (1. 2) we assume the existence, for O<h =1, ofa
family of finite dimensional subspaces of L2, which we denote by S, =5,(Q), and
a corresponding family of finite dimensional operators T), : L* — S,, which
possess the following properties:

T, is self-adjoint, positive semidefinite on L?
and positive definite on S;, (1.3)

there exists an integer r=2 and a constant C such that

[T=D) f|SCH|| fls-2,  VSfeH? 1=s=r, (1.4

T, has eigenvalues {0, 4, ..., p},} in nondecreasing order, for some integer
M =M (h). Moreover there exists an hy >0 such that for A< h,, there exists a
constant 4, independent of k, such that %, < A4. (1.5)
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204 G. A. BAKER, V. A. DOUGALIS, S. M. SERBIN

It is well-known, for example for the standard Galerkin method, [4], in the
context of finite element approximations, where S, H* and T, is defined by

a(Tuf, =%,  YXESH (1.6)

that the properties (1.3)~(1.5) hold.

Following [1], the semidiscrete approximation to (1.2) is defined as the map
u" : [0, t*] > S, satisfying

Tyul+u"=0, O0<t<t*,
u"(0) givenin S,, 1.7

ul (0) given in S,,.
In [1, 2], optimal-order rate of convergence estimates for sup ||u"(1)—u(?)||
ot

and sup || ut () —u(t) || .- have been derived.
0stst*

In order to obtain fully discrete schemes, we discretize (1.7) with respect to
time according to (1.1). To this end we introduce the operator
L,=PT;!':S,— S, where P is the L?-projection operator onto S,, and
observe that, from (1.7), for any chosen time step k>0,

W (t+2k)—2 cos (k Ly?)u" (t + k) +u" (£)=0, 0Zt=t*—2k. (1.8

We now seek a sequence of approximations {®"},,,<=Ss where ®" will
approximate u (nk). Let r be a real rational function of the real variable t such
that there exist constants 6 >0, C< oo and an even integer v=2 such that

|r(t)—cos t|SCt*?,  0=1=<o. (1.9)

With appropriate choices of the initial values ©° and ©! in S, we define the
sequence of approximations " by

0" ?2-2rk LY 0" +0"=0, 0<n<[t*/k]-2. (1.10)
For convergence results we shall work with the following:

DerFiNITION I: The rational approximation r is defined to be of class C-I if r
satisfies (1.9) and there exists a constant ¥ >0 such that

|r@|=1  for 0Zt=x. (1.11)

DeFiniTiON I1: The rational approximation r is defined to be of class C-11 if r
satisfies (1.9) and

lr(t)l<1 forall 120. (1.12)

R.ALR.O. Analyse numérique/Numerical Analysis



TWO-STEP APPROXIMATIONS FOR HYPERBOLIC EQUATIONS 205

Clearly every class C-II function is of class C-1. We make the distinction since
the use of class C-II rational functions in (1. 10) yields unconditionally convergent
schemes, whereas with C-I functions the schemes are conditionally convergent.

There remains the choice of the initial values ®° and ®! in order to apply
(1.10). These will be chosen in a specific way and will be directly computable
from the initial data u°, u? of (1.2). Since our error estimation techniques rely on
comparisons with the semidiscrete approximation (1.7), our choice of @°
and o' will be lucid when made through the choice of u*(0), u!(0) of (1.7),
bearing in mind that we require ®® to approximate u(0)=u°, and 0! to
approximate u (k).

To this end, we set &, =S, xS, and define

$“=<£,. 01) T T
Ur@=["(), wt ()", 0=t=<t*,
and rewrite (1.7) as
Ut+2,U"=0, 0=t=t*, (1.13)

where U*(0)=[u"(0), u(0)])” is to be chosen.
We shall also use the operators

0 T, 0 -1
—3 =
7 (—1 0)’ < <L 0)‘

In general, we shall choose
Uh(0)=g~'%s+ 1 $2s+ 1 [uo’ u?]T=[Tﬁ+1 Ls+1 uO, Tf, L u?]T' (1 . 14)

for some integer s=0. For s=0 we interpret T§ L*u? as Pu?. For the optimal
L2-convergence of our scheme we choose s=0 in (1.14) and for L®-conver-
gence s will depend on N, as will be seen precisely below. We note that the
computation of U"(0) from (1.14) will require the solution of 2s+1 linear
systems of equations of size dim S, x dim S, (elliptic projections) with the same
real matrix.

Now o° and w! will be obtained from U"(0) as follows. We choose
@’ =ut(Q)=T3** Lt 0. (1.15)

A convenient choice of »! will be to use a single-step procedure, following [1],
over one time step. We select a rational function r of the complex variable
z=x+iy satisfying for some constants o; >0 and C< o0,

|riy)—e ?|<C|y|"*!, all real y. |y|So;. (1.16)

vol. 13, n° 3, 1979



206 G. A. BAKER, V. A. DOUGALIS, S. M. SERBIN

and
|F(iy)|SC for all real y. (1.17)
We then define W=[W,, W,]Te &, by
W=r(k £, U"0) (1.18)
and we set
ol=w,. (1.19)

It will be seen in section 4 that, with the particular choice of rational
functions r to be used in (1. 10), the computation of ®” for n=2 will require the
solution of a fixed number (depending on v) of linear systems of equations at
each time step with a fixed real matrix. It will also be seen, using the results
of [1], that the rational function 7 needed for the computation of @' from
(1.18), (1.19) may be chosen compatible with r, so that the same real matrix is
used to obtain ®! by solving a fixed number of linear systems.

In section 2 we analyze the convergence of the approximation in L?%. We
prove in theorem 2.1 that, if r is of class C-II, 7 satisfies (1. 16) and (1.17), @° is
given by (1.15) with s=0 and " is chosen by (1.18), (1.19), then there exists a
constant C= C(t*) such that

max || ©"—u(nk)||
0Sn(e*/k)

<CU (| w2+l 2]l )+ R0 vzt [0 s 2. (1.20)
In theorem 2.2 it is seen that if r is of class C-I, 7 satisfies (1. 16), (1. 17) and ®°, o’

are chosen as in the above announcement of theorem 2.1, then, if 7}, has the
property that

wizCyh?, (1.21)
the estimate (1.20) holds, provided
k/h§nC1”2, (1.22)

with « as in (1.11).

For example, in the case of the standard Galerkin method (1.6), an inverse
assumption of the form

lxfs=Ch™Hlxll.  VxeS.
implies (1.21).
The analysis of convergence in L® of the approximation scheme, done in

section 3, is based on L®-estimates for the approximation of the associated
Dirichlet problem. Such estimates are conveniently stated, following [4], as

R.AIR.O. Analyse numérique/Numerical Analysis



TWO-STEP APPROXIMATIONS FOR HYPERBOLIC EQUATIONS 207

follows. In addition to (1.3)-(1.5) we require
| Twoll-=C|| Tv| s,
| Tuo||£C|| To||1, (1.23)
1T -2y B To | e

for some constant C, where typically for Galerkin methods y(h)=CH’, if r>2;
Yy(h)=Ch? In h™ 1, if r=2. For the derivation of (1.23) we refer to [4] and the
references cited therein:

In addition let J, be a positive integer such that for some hy>0, for all
0<h=Zhy:

Y <C<oo, (1.24)
J

for some constant C independent of k. It is shown in [2] that in the case of the
standard Galerkin method (1.6) we may choose Jo=N. As noted in [2] and the
references cited therein, the existence of such a J, will depend on the fact that the
spectrum of L, approximates that of L and on known estimates for the
asymptotic distribution of the eigenvalues of L.

In theorem 3.1 we prove that if r is of class C-II and r satisfies (1.16), (1.17)
and if U*(0) is chosen by (1.14) with s=[N/2]+Jo +1 and in turn o° by (1.15)
and o' by (1.18), (1.19), then we have for some constant C = C(t*):

max ||@"—u(nk)|| < Cly W) (| u|,, +] 4« lfs,- )

Osn<[ev/k)

+h'(|| u’ “2s+r+2 + “ up ”25+r+ 1)+kv(|| u® ||2s+v+2 +|u || 2s4v+2)], (1.25)

where so=2s+r+[N/2]-1.
In theorem 3.2 we prove that if 7 is of class C-I, 7 satisfies (1. 16), (1.17) and if

®°, o' are chosen as in the above announcement of theorem 3.1 then the
estimate (1.25) is valid, under the condition (1.22), if (1.21) holds.

We close this section with a brief introduction to the rational functions to be
used in section 4. We shall use from [3] the family of rational functions
r(t)=r,(x; 1) which satisfy

Ty (X; ‘C)=< io o (x)r“) (1 +x2?)", (1.26)

with a=v/2, where v>2 is an even integer, and x > 0 is a real parameter. ¢ will
be areal polynomial of degree nin x2. In particular (1.9) will be satisfied and we

vol. 13, n° 3, 1979



208 G. A. BAKER, V. A. DOUGALIS, S. M. SERBIN

show the existence of a x>0, which is explicitly computable, such that for
x2x@ r,(x; 1) will be of class C—~1I.

It is then readily seen that for every n the computation of @"*? from @"*!
and o" in (1.10) requires the solution of v/2 linear systems (v is even). In [1] a
family of rational functions r(z)=r,(x; z) is constructed, which satisfies

a3 z)=( Y. B ) z") (1—x? 27, (1.27)
n=0

with o = 1 integer given by a =v/2, v even, where B is a polynomial of degree at

most nin x. With the same value of xin(1.27)asin(1.26), (1.16)and (1.17)are

satisfied. Also it is seen that the computation of @* in (1.18), (1.19) due to this

special choice of 7 requires the solution of v real systems with the same matrix

used by (1.26) for the computation of w", n=>2.

We also point out that one of the main computational advantages of the
schemes developed here lies in the fact that, for a given order of accuracy v of the
time stepping procedure, approximately one half the computational work is
required to produce an optimal approximation to the solution, as compared
with the single-step schemes of [1].

We remark that two-step schemes producing second-order accuracy in time
for second-order hyperbolic equations have been proposed in [7, 8}, and [6]. For
high order single-step methods, ¢f. [5, 1, 9] and for multistep methods, cf. [8, 6].

Throughout the rest of the paper all constants appearing in the error estimates
will be denoted by the generic C. Also, conditions of the type h<h, (i.e.,
requiring h to be sufficiently small) will be implicitly assumed whenever needed.

2. CONVERGENCE IN L?

We first find an explicit expression for ®” for 2 < n < [t*/k}in terms of ©°, @*,
via (1.10). Let r (1) be a rational function of class C-II and &, &, be the roots of
the quadratic equation

E2-2r(1)E+1=0, 1=0. 2.1
Then, obviously,
E@=r@+i(l-r2(O)2, & @®=E (1), 120 2.2)
and
|§j(1:)|=1, j=1,2, al 1t=0. 2.3)

It can be easily seen that the difference equation (1.10) has the solution
n—1
o"=81 (kLi?)a®+ Y €17 (L) E (kL) [0 8 (kL)) (2.4)
i=o

R.A.LR.O. Analyse numérique/Numerical Analysis
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Let y/ denote the (L?-orthonormal) eigenvectors of T}, corresponding to its
eigenvalues p/. For every ve L? we then have the spectral representation

L= Y. 0, V)V 2.5)
J

and more generally, for a function g analytic in a neighborhood of the spectrum
of L,

g(Lwv=73 g(m)™") (v, YV} (2.6)

We interpret €. g. (2.4) in the light of (2.6).
Now, let p;, p, be the roots of the quadratic equation

p?—2costp+1=0, 12=0. 2.7
Obviously,
py (1)=¢'", pa(t)=e"'", all 120, (2.8)
ie.:
|p;()|=1, j=1,2, all ©120. 2.9)

From (1.8) we conclude then that

u" (nk)=p1 (k L)) u" (0)
n—1

+ Y 1 T (k Li?) ph (k Li?) [w” (k) — py (K Li*)u" (0)).  (2.10)
ji=1
We now let E"=a" —u"(nk), 0 < n < [t*/k]. We also let
fP=Ew—-pix), j=1,2, n=1,23,... (2.11)
From (2.4) and (2. 10) we then obtain, using ®® =u"(0), the representation

E"=f{V(kLi*)u" (0)

+ 20 g1 (k L) B (k L) [(* —u () — £ 2 (k Li?)u* (0)]

+Y LKLY £, (kL) (= s (k L) (O]
j=o

n—1

+ Y P IR L) fP (R LI W () —py (kL) u* (0)]. (2.12)

j=o

vol. 13, n° 3, 1979



210 G. A. BAKER, V. A. DOUGALIS, S. M. SERBIN

We now state the first main result of this section

THEOREM 2.1: Let r be of class C-I1, r satisfy (1.16) and (1.17), U" (0) be given
by (1.14) for s=0, ®° be given by (1.15) with s=0 and ' be chosen by (1.18),

(1.19). Then there exists a hy > 0 and a constant C=C (t*) such that for all h:
0 <h < hg,

max ||@"—u(nk)||
0= ns[e*/k]

< COH ([ {fn+ o )+ R (0 a2+ [ [[va )l 2.13)
The proof of this theorem will be given in a series of lemmas:

LEmMMA 2.1: Let r be of class C-11 and let f * be defined by (2.11). Then there
exists a constant C such that for all Tt = 0:

|fP@|<nCd,  j=1,2, 1ZISv+l, n=1,2,... (2.14)
Also

|lf9@| <2, j=1,2, n=1,2,... (2.14")

Proof: The proof follows from (1.9), (1.12), (2.2), (2.8) and the proof of
lemma 2.3 0of [3]. W

We now recall some notation from [1]. Given k > 0 let J be the least integer for
which kAj/?2 > 1 for j = J. Then, given ve L?, we define

#=Y 0. ) o
=1
It is easily seen that v® e C*(Q) and that the following hold:
|o®||s+m < k" ™||v]l,, all m,s20. (2.15)
lv—v®||, <k ?|v],, all s20 and allreal p. (2.16)

LemMMmA 2.2: Under the hypotheses of theorem 2.1, there exists a constant
C=C(t*) such that for j=1, 2, and 1 < n < [t*/k] we have

| £ 9 (k Ly [ (k) — py (k L) u O]
< CRIE 6 [z |0 [[va )+ B0 w2+ [ [ ) 2.17)
Proof: From (1.7) we have that
u" (k)=cos (k L}/*)u"(0)+ L, */*sin (k Ly/*) u} (0),
from which, using (2.8) and (1.14) with s=0 we obtain
FOU L "y —py (kL2 ™ (0) (2.18)
=f ALy YLy Vsin(k Ly 2yul —if Pk Ly ?)sin(k Li'?) T, Lu®.

R.A.LLR.O. Analyse numérique/Numerical Analysis
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The first term of the right-hand side of (2.18) can be written as
FPULY?) Ly 2 sin (k L) uf = £ 9 (k LY?) Ly V2 sin (k L) (uf — u0®)
+ lvf()ff."’(kLi’Z)L{”Z sin (k Ly?) T4 (T~ T,) L' u)®
+ [P (kLYY Ly Y2 sin(k LY T2 L2100 (2.19)

We first observe that for any x € L2, using (2. 6), (2. 14’) and the fact thatsin x < x
for x = 0, we have

| £k L) Ly Y2 sin (k L) |
=122 e (i)™ Y2) (2 sin (k ()~ 2/2) (. W) WA ||

< kmax | fQ k@™ )] lx || = Ckf|x]. 2.21)
q

Also, for 1 £1<v/2 by (2.6) and (2. 14) we have for e L?:
| f & (e L) Ly ¥ sin (k Li/?) T |

< emax | £ (k) 2)| ' [| ]| < Crkk! || ]| < R 2]f, (2-22)
q

and similarly, using (1.5) and (2.14) with [=v+1,
I[£ 9 (e La2) Ly V2 sin (kk L) T2+ |

< kmax | £ 9 (k) 2) | by 1|
q

< Cnkk** max ()2 || x|| £ C x|l (2.23)
q

Now by (2.21) and (2. 16) we obtain
£ 9 Kk L) L 2 sin (kL) @9 —uf @) || < Clot |||, (2.24)
Similarly, (2.21), (2.15) and (1.4) give that
| f QKLY Ly 2 sin(k Li?) (T—T) Lup® || £ Ckh' ||« |,.  (2.25)
Also by (2.22), (2.15), and (1.4) we see that for 1 S 1< v/2:
Il £9 (kL) Ly V2 sin (k L) T4(T— T) L' w2 @
< CRH||u0®||50s, < CRI |40 ||2r. (2.26)
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Finally, by (2.23), (2.15) and (1.5) we obtain
| £k Li?) Ly Y2 sin(k LE?) Ty2 41 L2+t u®|| < Ck*t Hu? ||V+2. (2.27)
Hence, by (2.19), (2.24)-(2.27) we conclude that
| £k Ly Ly Y2 sin(k L) ul || < Ch(k* || uf |2+ 8| u ||;+1)- (2.28)

Now, for the second term of the right-hand-side of (2. 18) we have

f 9k LY?)sin (k LY?) T, Lu®
=f 9 (k L}?)sin (k L}?) Ty, L (u® — u®®)

vi2—1

+ Z ff:” (k L;/Z) sin(kL,{/Z) Tffl (T—- Th)LHZuO(k)
1=0
+fP (k L}?ysin(k LL/?) T2+t LY2+100 (2.29)

Using now (2.6) and (2.14) we observe that for any yeL? and for
01 v/2—-1,

179 GeLyysin (e i) T4t |

< max | £ 9 (k ()™ ) sin (k ()~ 12) | Gy || x|

< Cnk?™ U max (uh) =20 e (uy =12 (i1 || ||
q

SCR™Y|x]l- 2.30)

Similarly, for x € L? we see by (1.5), (2.6) and (2.14) with [=v+1, that
| f Pk Li?)sin(k L) Ty y || < CRH 2] (2.31)

Hence we conclude by (2.29), (2.30) and (2.31) in analogy with previous
calculations that

| £ PG Li) sin(k Li?) T, Lu® || S Ch(k* || [y 42+ [[40]]142)- (2.32)

Finally, (2.18), (2.28) and (2.32) prove (2.17). W

LEMMA 2.3: Under the hypotheses of theorem 2.1, there exists a constant
C=C(t*) such that

| F P KL O)|| £ Clelk||ul ||y 2+ [[u° ]|+ 0). (2.33)

R.A.LLR.O. Analyse numérique/Numerical Analysis
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Proof: We have

SPELE O =19 G LI T, L6 —u0®)

v/i2=1

+ l=zo f(ll)(kL'llIZ) T:,+1(T— Th)Ll+2u0(k)
+ O L) T L2100, (2.34)

Using(1.4),(2.6),(2.14)withn=1and (2. 15)in an analogous way as in previous
calculations we obtain

||f(1”(kLi/2) n+1 (T— Th)LquO(k)” é Ckhr”uo

|r+1,

0Isv/2-1. (2.35)
Also, by (2.6), (2.14) with n=1, [=v+1, (1.5) and (2.15) we obtain
[ f LKL T2+ L2 10| < CR |0 |y 2 (2.36)
Finally by (2.6), (2.14) with n=1, =2 and (2. 16) we see that
| fP KLY T LW —u®@)|| < CR ™ ||u®| )4y (2.37)

Now, (2.34)-(2.37) give (2.33). B
Let L2 =L2(Q) x L*(Q). Then we define, following [1], (., .)): L2 = C by

(X, ¥N=01, V) +(Tht2, V2),

where X =[x, %] and ¥ =[{;, {,]". Note that ((., .))is an inner product on &,
The associated seminorm (norm on &,) we denote by ||| X ||| =((X, X)"/*.

Recalling the definition of the operator 7, from the introduction we note that
7 , restricted to &, possesses a set of purely imaginary eigenvalues {1, i

given by n;=i(u))"/?, n_j=—i(W)"?, 1 <j < M and a set of corresponding
eigenvectors { @, }, orthonormal with respect to ((., .)) given by

1 - .
¢¢,=-\/—§Nl§', i) Y, 1SisM.

Wealsoset V¥ =[V{, VP for V=[V,, V,]"€L?, and define the operator 7 by

0 T
r:
(% 3)
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We have

LeEmMMA 2.4: Under the hypotheses of theorem 2.1 we have for some constant
C=C(t%) that

ot~ ()| < CRIK ([ [lvan+ [ ) 4R ([l [y + |0 (2.38)

Proof: Under the hypotheses of theorem 2.1, with notation introduced in
section 1 we see that

o' —u'(ky=w,-U" (k), (2.39)

where W=[W,, W,]"is given by (1. 18) and U"(t) =[u" (1), u" (1)]” satisfies for t =0
(1.14) with s=0. Hence, introducing U° =[u°, 4°]" and

F(2)=r(z)—e?, (2.40)
we have, cf. [1],

W—U"k)=F (kL) T, L (U°—U°®)
v—1
+ ¥V FhLY)THNT —T )L H2UPLF (kL) TLH £V U,
=0

Hence, by (lz .39):
lo*—w w0 <[l w-U*®|
< ([ Fle 2 T4 2 (U= US|+ | F (e £0) 74T — T 22 OO
+ vil Fk2) Tt (T —F,) L+2U0||
| Fk ) T3t 2+ UW||. (2.41)

Asin[1],lemma 3.1, by (1.16),(1.17) we easily deduce that there is a constant C
such that

|[F@y|sCly]', 0=ZI<v+1, allrealy. (2.42)
We conclude for XeL? that for 1 £ I < v+1,

1 F G20 74| = |2 Feng Hnb (X, 00, < CR| X[ @.43)

Now, by (2.43), (2.15), (2.16) and (1.5) we see that
Ik 27, 2 W - U™ < it 2 VO - 0o
=CR[|u) —ul® || +(TW(Lu® — Lu°®), Lu® — Lu®®)]
< CI(||u0 =10 ® >+ || Lu® —Lu® |?)
SICRT([u |vaz+][w [ OP. (2.44)
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Also, by (2.43), (2.15) and (1.4) we conclude that
NFkZLT (T -T)L2UP|| < Ckl||(T -T2 UR||
=Ck|[(T-T)Lu®|| < Ckh || u?||,. (2.45)
Since (1.4) and (2.15) give
=Ty o) 5 Ch ] o

(7 —g)L*2u°®|| < I even,
(T —T) L4372 0@ < CH 0B, 1 1as,

! odd,
we conclude by (2.43) that

\Fk L) T (T ~T )L +2 U

SCKHMH|(T =T ) L7200 < Ckbr (|| u®]], 41 +]|w?]],). (2.46)
Finally, since v is even we obtain by (2.43) and (2.15):

| Fk £y Tyt v+t UO|l < crkr(|ul]lver+]| ]|y (2.47)

Combining now (2.41), (2.44)-(2.47) we obtain (2.38). B
We now return to the proof of theorem 2.1. We have for 0 < n < [t*/k],

||o"—u(nk)|| < ||@"—u" (nk) || + || u" (nk) —u (nk) || (2.48)
By (2.12), using (2.3), (2.9) and (2. 14'), we obtain for 0 < n < [t*/k],
o= || < n |0 —u*®) || + || F Ok L) O

+  max i 1/ 9 & L) [ () —p (k L) u" (0)] }.

0SmE[/h J=1
Hence, by (2.17), (2.33) and (2.38) we see that
"= k| < Clkv ([} D) 0 o+ 0] ) 2.49)
Now, [2], lemma 2.2, with s=0 implies that for 0 < n < [t*/k]:

|| unk)—ut (k) || < CH (||u |41 + || 2] (2.50)

v+2+”uto|

Hence (2.13) follows from (2.48)-(2.50) and the proof of theorem 2.1 is now
complete. H

We now turn to the case when r (1) is a rational approximation of class C-1. It is
now clear that the conclusions of lemma 2.1 hold for 0 < t < «, with % defined
by (1.11). Under the additional hypothesis (1.21) it is clear that the condition
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(1.22) implies that k|n;|~* < «, all j. Retracing the steps of the proof of
theorem 2.1, modifying them appropriately, we can verify the following result,
the proof of which we omit:

THEOREM 2.2: Let r be of class C-1, ¥ satisfy (1.16), (1.17), U*(0) be given by
(1.14)for s=0, ®° be given by (1. 15) withs=0 and »* be chosen by (1.18),(1.19).
Suppose that T, satisfies (1.21). Then for h sufficiently small, provided (1.22)
holds, the estimate (2.13) is valid for some constant C=C(t*). B

Remark: It is clear that if instead of (1.17) we have
|7(y)| < C forreal y:|y| < o,

for some constant o5, then it is possible to prove (2.13) under an appropriate
bound on k/h, provided (1.21) holds.

3. CONVERGENCE IN L”

The main result of this section is:

THEOREM 3. 1: Let r be of class C-11, 7 satisfy (1.16) and (1.17), U"(0) be given
by(1.14),@°by(1.15) and ' by (1.18),(1.19) withs =[N /2]+J o+ 1, where J is
defined by (1.24). Let so=2s+r+[N/2]—1 and in addition to (1.3)-(1.5) let T,
satisfy (1.23) as well. Then there exists a ho >0 and a constant C = C (t*)such that
for all 0<h<h,,

max || 0" —u(mk) || == Cly () (|| u®[|s,+ |4 {|s,-1)

Osng(t*/k)

+hr(“uo”2s+r+2+ ”ulo”2$+r+1)+kv(”u0”23+v+2+ ”u20”23+v+1)]' (3.1

The proof will be given in a series of lemmas. We first observe, as a
consequence of the hypotheses of theorem 3.1 and of lemma 3.1 of [2], that we
have the following L®-estimate on the eigenvectors Y} of T},

|V -=Clmy| " =C @)%, (3.2)
when K=[N/2]+1.

LemMA 3.1: Under the hypotheses of theorem 3.1, there exists a constant
C=C(t*) such that for j=1,2 and 1 <n<[t*/k] we have

| £ e L3 [ (k) — py (k L") u* (0)) || -
ng[k"(” u0“23+v+2+ Hu?”25+v+2)
+hr(”u0”2s+r+2+ ”u?“2s+r+1)]' (33)
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Proof: In analogy with (2.18) we now have
SO L) [uh (k)= py (kL) u" (0)]
=fPkLy*) Ly ?sin(k L) T5 L* w?
—if Yk LE?)sin(kLF?) TP L5 u®. (3.4)
Now,
SPRLLPYLy P sin (k L% T3 L w)
=[P L)Ly P sin(k L) TH L (u —u @)
v/2
+ Y SPULY) Ly VP sin (LY T3 (T—T) L+ 1w ®
=0
+fOKRLY?YL ;P sin(k L) Tstv2+t [stY2+1000  (3.5)

For yeL? let K=[N/2]+1 and 1<I<v/2. Then, using (2.6), (2.14), (3.2)
and (1.24), since s=K+J,, we have

| fOKLY?)Ly 2 sin(k L) T3+ | L
= |3 9 (ke (ul) = 12) ()12 sin (k ()~ 72) (i) o0, W VG || e

S k(Y] S )™ | (e W]z N

< Chnk® (3 (W) 5% (uh)")

x| SCk| x|l (3.6)

Similarly, using (2.6), (2.14"), (3.2) and (1.24) we conclude for any y € L? that
|79 G L) Ly sin (k L) Th || - S C k[l 1] (3.7)

Finally, using (2.6), (2.14) with I=v+1, (3.2), (1.24) and (1.5) we obtain
for ye L2:

||f${’(kL,§’2)L,,"1/zsin(kL,{/2)T;*V/Z“x||Lm§Ck"“ ||x|| (3.8)
Now, (3.8) and (2. 15) give
" f;j)(kL;J;/Z)Lh_I/Z sin(kLi/Z) Ti+v/2+1 Ls+v/2+1 u? (k)”L‘”
§Ckv+1”u?”2s+v+2- (3.9
By (3.7), (2.16) we have
| £ U LE2) Ly 2 sin (k LH2) T5 L0 =0 @) || 1. SCR*[|u? ]| 204v- (3. 10)
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Now, (3.7), (2.15) and (1.4) give
| fP U LA2) Ly V2 sin (k L) T5(T— T L+ 1 4 ©| -
SCKIT-THLH 1w ®|| SCRR || u) || 254, (3.11)
In addition for 1<1<v/2,(3.6), (1.4) and (2.15) give
| £ UL Ly V2 sin(k L) T35 (T=T) L+ 0 @ o
SCKH(T-T) L 1w ® )| SChR ||l || 254r41- (3.12)
Combining now (3.5), (3.9)-(3.12) we obtain
| F@ Ly Ly V2 sin (k L) THE 40 | -
SCROF||60 | ag 01+ |8 [ 20002). (3.13)
We now write
SOLY?)sin(k L2y T35 L5t u®
=fD(kL}*)sin(kL}?)T5H Lt w®—u®)
+ V/lzz—olfﬁ,j’(kL,{’z)sin(kL,{’z)Ti,““(T— T,) L2y W
+fD(kLE?)sin(k Ly TtV Ls+vi2t1,000 0 (3.14)
Using similar estimates as above (cf. also the proof of lemma 2.2), we now have
| /@K Ly?)sink L) T3 L4 0| -
_S..Ck(hr“u0”25+r+2+kv”u0||23+v+2)' (3.15)
Finally, (3.4), (3.13) and (3.15) give (3.3). MW

LeMMA 3.2: Under the hypotheses of theorem 3.1, there exists a constant
C=C(t*) such that

| SL K LAY (0)]| - SC R ||| 254 v 2+ K[| 40| 254 v2)- (3.16)
Proof: Using (1.14) we ot;tain
O (kL) ©)=fP (L) T3 L1 u
=f(11)(k L'I.IZ) T;+ 1 Ls+1 (uO_uO (k))

v/iz—-1

+ Z f(ll)(kL%IZ)Ti+l+1(T_Th)Ls+l+2u0(k)
1=0

_’_j(ll)(kL;/Z) Ti+v/2+1 Ls+v/2+1 uo (k)‘ (3 17)
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Now, for yelL?, 0<I<v/2, s2Jo+K, K=[N/2]+1, using (2.6), (2.14),
(3.2), (1.24) and (1.5) we obtain

| fL LT3 g || o ST L2 @)™ 12 @iy || A ) || |
q

< Ckl+1 (Z(pz)s—lo—l(ﬂlﬂ)(u:).lo)“ x “ éckzl-i-l " x “ (3 . 18)
q

By (3.18) with =0, using (2.16), we have
| A0 GLI) T3 L4 @0 =0 9) o
SCE| L @ —u® W) || SCR |4 || 264 v42- (3.19)
Also, by (3.18) with 0<I<v/2—1, (2.15) and (1.4) we obtain
| /O G LA T3+ 1 (T = T) L2 6 ©| o SCh || 6° || 264542 (3-20)
Finally, (3.18) with I=v/2 and (2.15) give
| fO U LYY T2 L4924 10 0| < CR* |40 pevaa. (3.21)
Combining now (3.17), (3.19)-(3.21) we obtain (3.16). W

LemMA 3.3: Under the hypotheses of theorem 3.1 there exists a constant
C=C(t*) such that

” ml _uh(k)”L"’§Ck[kv(" u() |]23+v+2+ ” u? ”2s+v)
+hr(n u0‘||2s+r+1+ “1“?”2s+r)}‘ (322)

Proof: Using (2. 39), (1.18), (1.14), (2.40) and setting U ® =[u°, u?]” we obtain
W — Uh(k)=F(k gh) g—£5+ 1 22s+ 1yo =F(k$h)f%s+l $2s+ 1 (UO — UO (k))

v—1

+ Z F(kgh)f,%“'“'l(3-—.7;,)323+‘+2 UO(k)
1=0

+F(k$h)g~%s+v+l $2s+v+1 UO(h). (323)

Let now XeL2 For 0<ZI<v, by (2.42) and (3.2), since s=K+J,,
K=[N/2]+1, we obtain

|(F ez T2t Xy |l e =272 L F ooy i (X, @)V |-
J
<272 Fleng Y Iy [ =) M Xl
J
SCRHHE P Pl x (| s c kX 629
i
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From (3.24) with =0, (2.15), (2.16) and (1.5) we obtain
[IF(k £)) T3t 2241 (U0 - U°®)), || s Cl2||| 22+ (U0~ U°®) |2
SCRPT|| Lo —u @) ||2 +(T5 L1 @ —u® @), L+ (u® —u® @))]
SCR? (k|| uf [|3ery + K2 ][ 60|34 +2)
=CI (|22 syt [l |25+ M2 (3.25)

Now from (3.24) with 0<I/<v—1 we obtain, using (1.4), (2. 15) and analogous
computations with the ones of lemma 2.4 that

“ [F(kﬁf,,)f%””l(f—fh)gzs“*z UO(k)]1 ||L°°
§Ckl+1 H' (F_g—h)$2s+l+2 UO(k) |H

B || || 254, 1 even, }
<Ck 3.26
= {h’||u°||2$+,+1, lodd. | ©-29

Finally, by (3.24) with I=v, (1.5) and (2.15) we see (since v is even) that
” [F(kgh)fizls+v+l $ZS+V+1 (jO(k)]1 ||21§Ck2 (v+ 1)”| 323+v+1 UO(k)”lZ
=Ck2 (v+ 1)[” Ls+v/2 u? (k) ”2+(Th Ls+v/2+1 uO (k)’ Ls+v/2+1 uO (k))]
§.Ck2(v+1)(“u?“%s+v+ Hu0||%5+v+2)' (327)

Hence, since o' —u" (k)=(W—U"(k));, (3.23)-(3.27) give (3.22). N
We now return to the proof of theorem 3.1. For 0=<n=<[t*/k], we have

||co"—u(nk)||Lm§ ||m"—u”(nk)||Lm+ ||u"(nk)——u(nk)||Lm. (3.28)
Now, by (2.12), using (2.3), (2.9) and (2.14’) we obtain
lo" = )| - <n (]| 0 ()| -+ || L K LY (O)]| <

+ max Y || fRELI?) W ER)—py (kLi)u"O)]-). (3.29)

0=mg[t*/k) j=1
Hence, (3.3), (3.16), (3.22) and (3.29) give
“mn_uh(nk)”L“’_S_ C[kv( “ uO ”25+v+2 + " “?[i23+v+2)
+h'(||“0“2s+r+2+ "u?”25+r+1)]' (3.30)
Finally, [2], theorem 2.2, gi.ves
'u(nk)—u* (nk) || = S Cly () (|| ® ||, + || |, -0)
+hr(”u0 “25+r+1+ “u?”25+r)]' (331)
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Therefore, (3.29)-(3.31) prove (3.1) and the proof of theorem 3.1 is now
complete. W

We state now without proof the entirely analogous result for rational
approximations of class C-I.

THEOREM 3.2: Let r be of class C-1 and let all other hypotheses of theorem 3.1
be satisfied. In addition, let T, satisfy (1.21). Then for h sufficiently
small, provided (1.22) holds, the estimate (3.1) is wvalid for some
constant C=C(t*). W

4. EXAMPLES AND IMPLEMENTATION

In this section we give examples of high order accurate in time methods which
possess certain computational advantages over other existing methods.

Let a>1 be an integer. We define the family of real polynomials { ¢}, of
the real variable x by

"(=1Y [ o .
@ () — 2 () _
0= ) =0 L2 @.1)

where we shall use the convention (o.(>=0 for j>a.
J

For x>0 and z complex we define the corresponding family of rational
functions

ra(x; z)=(io(pﬁf‘)(x)zz">/(l+xzzz)°‘ for |Imz|<x™'. (4.2

In [3] we established the following results.

LemMA 4.1: Let a=1 be an integer and x>0. Then there exists a constant
C=C(a, x) such that

|7 (x; z)—cos z| SC|z|>**2,  {z]<x™1 4.3)
Furthermore, there exists a x® >0 such for all x=x®:
|ra(x; ‘r)|§1, all t=0. 4.4
Proof: For a proof we refer to proposition 3.1 of [3]. H

Lemma 4.2: Let a=2 be an even integer. Then o) possesses at least one
positive zero x%.,. If we define

ri (@) =r.(x1; 2), (4.5)
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then there exists a constant C=C(a), such that
[r¥(@@)—cos z| =Clz|****  for |z|<(x{y)7 4.6)
Furthermore, there exists a constant v =x(o)>0 such that

|r¥()|st for 0St=u. 4.7

Proof: cf. proposition 3.2 of [3]. H
In [1], the following is established.

LemMA 4.3: For integer .21, there exists a sequence {P®},5, of real
polynomials of the real variable x, of degree n such that for any x> 0:

(1—x222re "= Y B9 (x)z", all complex z. 4.8)
n=0
Furthermore, if we define the rational functions
ro(X; z)=<z Bff"(x)z")/(l—xzzz)‘, |Re zl<)c”l 4.9
n=0

then there exists a constant C=C (a, x) such that
|Falx; 2)—e™2|SC|z|2**?, |z]=2x)~1, 4.10)

and
|7a(x; iy)|SC,  all real y. 4.11)

Proof: The result (4.8) is contained in theorem 4.1 of [1]. (4.10) and (4.11)
follow from (4.8) and (4.9). W

For this work we shall use as examples of class C-II rational functions the
family defined by (4.2). That r,(t)=r,(x; 1) is of class C-II for «=1 and x=x"®
follows from lemma 4. 1. We remark that a simple procedure for computing x®
is given in [3].

Our special examples of class C-I, which are not of class C-1I, and which are of
practical importance consist of the family r¥ (t) defined by (4.5). That r¥ (1), for
a=>2 even, i1s of class C-I is the essence of lemma 4.2.

The initial approximations ®° and o' will be generated by using a single-step
procedure following [1], with the rational function r, defined by (4.9). We note
that a table of the polynomials B® is provided in the appendix of [1].

For consistency with the notation of the previous sections we shall set v=2aq,
a=1 and r, becomes r,;.
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4.1. Class C-1I schemes

Having determined the parameter x/?) such that (4.4) holds for x=x?,
assuming that for >0, ®" and ®"** are known, we obtain @"*? from (1.10) as
follows. Set Z=(0"*? +®")/2 and (4.2) yields the computational procedure

v/2

U+ R LI Z=[ Y @2 (x2) k2 Lﬁ} ot 4.12)
j=0

"t 2=2Z—a" (4.13)

Since v is even it is easily shown that in the case of known Galerkin methods,
the determination of Z from (4. 12)(and thus of ®" * 2) requires the solution of v/2
linear systems of equations with the same real matrix. We shall show this in the
specific case of the standard Galerkin method with v=4. The argument used can
be extended by induction to the general case.

With v=4, we find, ¢f. [3], that x') =(1/2+./5/24)'/2. Nevertheless a sharper
analysis, c¢f. [3], section 4, shows that the schemes satisfy (4.4) for

x2Zco=(1/4+./1/24)"/* Hence we set x=co and A, =T,,+ x> k*> 1. Then (4.12)
becomes

2
A2Z=| Y P (x)k? Tf"]m"“. 4.14)
=0
Since
I=(xk)"*(AF—T; —-2x* K> T)),
setting

Y=Z-0@ (x)o""1/x*, (4.15)
a staightforward substitution in (4. 14) gives

A Y=[80(x) T} +6, (x) T,] 0" 1, (4.16)
where
0o (x) =@ (x) — 0% (x)/x*
and
8, (x)=k? [0 (x) -2 ¥ (x)/x?].

Thus (4.14) is equivalent to

AT A, Y=[0,(x) T,+0, (x) No"*?, 4.17)

which we reduce to
A,=[0o(x) T, +6, () [N"**, (4.18)
A, Y=T,(. 4.19)
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Thus, by (1.6), { is obtained from (4.18) as the solution of
€ 0 +x*k*a@, x) =00 ()(@" 1, 1) +0; () a@" !, x),  VYES, (4.20)
and Y in turn, as the solution of
(Y, )+x*k*a(Y, x)=, %), Vy €S (4.21)
Finally, from (4.15) and (4.13),
"2 =2[Y+¢P (x) 0" /x*] 0" (4.22)

From (4.20)-(4.22) it follows that ®"*? is obtainable from the solution of two
linear systems with the same real matrix.

To generate ®® and w! we shall use over one step the single-step method

defined by the rational functions 7, of (4.9). To choose 7, compatible with (4. 12)
we set v=2a and x=x“? in (4.9). Then we define

W=tk Z)U"0)=7y, (k Z) [T, Lu®, PulY", (4.23)

and
o'=Ww,, (4.24)
®°=u"(0)=T, Lu°. (4.25)

The hypotheses of theorem 2.1 are then satisfied and with the choice (4.23)-
(4.25) we obtain the optimal L 2-convergence result (2.13).

We note that from (4.23) the determination of ' requires the solution of v
linear systems of equations with the same real matrix which is used at subsequent
time steps obtained from (4.12). For details see [1]. Thus the entire computation
may be carried out with a single matrix decomposition.

It is clear from the above that for a given accuracy v=2 of the time-stepping
procedure, the above schemes provide approximations with optimal accuracy
with approximately half the computational work as that required for single-step
schemes of the same accuracy. In particular for the single-step schemes
developed in [1] an approximation to the solution at t=nk, n=2 is obtained by
solving nv linear systems. For the present methods we obtain ©" by solving
v+(nv/2) similar systems.

Our examples of class C-II schemes above also satisfy the hypotheses of
theorem 3.1; if we choose

W=r, ok L) UM Q) =Tya (k LT3 L0, T5 L wT,

for s=[N/2]+Jo+1and o' =W, @®=T3** L+ 4°, the optimal L®-estimate
(3.1) holds.
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4.2. Class C-I schemes

We now give some interesting, from a computational standpoint, examples of
class C-I schemes which are not of class C-II. These schemes will be only
conditionally convergent, a condition k/h < C being required for convergence.
But for a given amount of computational work, in terms of the number of linear
systems to be solved at each time step, they are more accurate in time by two
orders than the corresponding unconditionally convergent class C-II schemes.

We again set v=2uq, this time for « =2 an even integer, and choose r¥, (1) by
(4.5). A root x) ; of e, is of course computable and the constant x =x(a) of
(4.7) is easily estimated from the details of proposition 3.2 of [3]. We now
choose 7,2 41 (1) =Tyj2 4+ 1 (X5 15 T) by (4.9), in which case the same real matrix is
used as before.

Because of (4.6), the hypotheses of theorem 2.2 are satisfied with v replaced
by v+2. Hence we obtain the optimal L*-convergence result (2.13) with v
replaced by v+2.

Basically the higher accuracy of two orders is obtained this way since, for the
special choice of the parameter x{J/2) , , we have {7} (x{/7) 1) =0, giving (4. 6).

This however forces the scheme to be conditionally convergent.

We give the example for v/2 = o= 2 which will be O (k®) in time and will require
the solution of two linear systems at each time step. From (4.1) an easy
computation yields that x = (5 +/15)/60)!/? is a root of ¢$?’. Hence with r (1)
given by (4. 5) and 75 (x§; 1) given by (4.9) with x =x%, we obtain following the
general procedure (4.12):

2

[T+ (x§ k)2 177 Z=[ Y 0P (x) K T%‘{' ", (4.26)
=0

O"T?2=2Z—-o" 4.27)

which requires two linear systems to be solved at each time step and may be
implemented as in (4.20)-(4.22) above. The associated bound « of (4.7) is found
to be 2.53724, of. [3]. Hence, with k/h<C as in (1.22):

max ||u(nk)—o"||=0 (" +k°)

0<n<[r*/k]

by theorem 2. 2. This scheme for o =2 was constructed in [10] and discussed in the
context of applications to systems of ordinary differential equations in [10, 3].
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