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HIGH ORDER ACCURATE TWO-STEP APPROXIMATIONS
FOR HYPERBOLIC EQUATIONS (*)

by Garth A. BAKER (*),

Vassilios A. DOUGALIS (2) and Steven M. SERBIN (2)

Communiqué par P. A. RAVIART

Abstract. — A new class oftwo-stepfully discrete approximation metkods ofarbitrary accuracy in
time is developedfor the initial-boundary value problemfor second-order hyperbolic équations. The
schemes are derivedfrom the explicit second-order character of the équation, as opposed to previously
developed high order accurate schemes based on a first-order systemformulation. Optimal order rate of
convergence estimâtes are derivedfor the error of the Juli discretizations in L2 and in U°. For a given
accuracy these schemes provide approximations to the solution with approximately half the
computational work requiredfor a single-step method of the same accuracy.

Resumé. — On propose dans ce travail une nouvelle classe de schémas à deux pas pour la résolution
numérique des équations hyperboliques du second ordre. Les schémas sont basés sur certaines
approximations rationnelles de cos z, et sont réalisés par une relation récursive naturelle pour les
équations du second ordre. En comparaison avec les schémas à un pas connus, on obtient la même
précision optimale dans Lœ et L1, avec moitié moins de calculs.

1. INTRODUCTION

In [3] a class of approximation schemes is developed for second-order
évolution équations in Hubert space of the form

v(0) = v°,

where 0<t*<oo is given and A is a self-adjoint, positive definite, possibly
unbounded linear operator. For a chosen constant k>0, the relation

v(t + 2k)-2 c
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is approximated by the différence équation

<Qn + 2-2r(kAli2)<üH+1+<oH = 0, 0ûn£[t*/k]-2, (1.1)

where r is a rational function which satisfies r(T) = cosT + O(xv+2) as x -• 0 for
some even integer v ^ 2 . (1.1) is initialized by a>° — v° and a convenient choice
of a»1 depending on r. Under suitable conditions on r, oo" approximates u (n/c) to
O(/cv) accuracy.

In this work we analyze the application of the above approximation method to
initial-boundary value problems for second-order hyperbolic équations, in
which case time and space discretizations are coupled. The problem of interest is
the initial-boundary value problem

«„=-/,«= £ JL(aij(x)p-)-a0(x)u inOx(0,t*L

u = 0 on 3Qx(0, t*],

M(0) = U° in Q,

ut(0) = uf in Q,

(1.2)

where Q is a bounded domain in RN with C00 boundary ôQ and w°, wt° are given
fonctions. The operator L is assumed to satisfy the uniform ellipticity condition

for some constant J > 0 , for ail x e Q and ail fëi, ^2. • • -. ^ N ) G R N a n d its

coefficients are such that atj = ajt e C00 (Ö), 1 ̂  i, ; ^ JV and a0 e C™ (Q) with a0 ^ 0

in Q.

In the remainder of this section we introducé the notation to be used, which
will enable us to define the fully discrete approximations and to state the
convergence results. Sections 2 and 3 are devoted to the proofs of the
convergence in L2 (Q) and L00 (Q), respectively. In section 4 we provide a family
of schemes giving arbitrary accuracy in time, using the rational approximations
of[3].

For integer m ̂  0 and 1 ^ ^ 0 0 , ^ 7 = ^ ( 0 ) will dénote the Sobolev space of
(classes of) functions on Q, having distributional derivatives of orders up to m in
LP = LP(Q). In particular, in the customary fashion, for p = 2 we shall write
Hm=W% and we dénote the norm on Hm by ||. ||Hm. The norm on Lœ we dénote
by | |- | |L«" The inner product on L2 we dénote by (., .) and its norm simply

by 11-11-
R.AJ.R.O. Analyse numérique/Numerical Analysis
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Let {^j}j^i dénote the eigenvalues, in nondecreasing order, of the elliptic
operator L and {<Pj},̂ i the set of corresponding eigenfunctions, a complete
orthonormal set in L2, with (p; = 0 on 3Q.

For 5^0we consider the spaces

j

For integer s^O it is known that

Hs={veHs : Ljv = 0 on dQ for integer j<[s/2]}

and that on Hs the norms ||. ||s and ||. ||H. are equivalent. For s^0H~s will dénote
the dual of Hs with respect to L2. It is easily seen that the induced norm o n H " s

is given by

We shall work with the solution operator T : L2 -• H2 of the associated elliptic
boundary value problem, defined by

a(Tf, Ü)=(X v), VüeH1, given feL2,

where a(., .) is the bilinear form

dv ôw \j „1
a*.--— \-aovw]dx, v,weH\

ii dxt dxj J

For the space discretization of (1.2) we assume the existence, for 0 < h ̂  1, of a
family of finite dimensional subspaces of L2, which we dénote by Sh = Sh {Q), and
a corresponding family of finite dimensional operators Th : L

2 -> Sh> which
possess the foliowing properties:

Th is self-adjoint, positive semidefinite on L2

and positive definite on Sh, (1.3)

there exists an integer r ^2 and a constant C such that

2f V/eff"2 , l ^ s ^ r , (1.4)

rfc has eigenvalues {0, \i\, ..., \ih
M} in nondecreasing order, for some integer

M = M(h). Moreover there exists an ho>0 such that for h^h0, there exists a
constant A, independent of h, such that \ih

M^A. (1.5)

vol. 13, n° 3, 1979
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It is well-known, for example for the standard Galerkin method, [4], in the
context of finite element approximations, where Sh<=Hx and Th is defined by

a(Thf, %) = {/,%), VxeSft, (1.6)

that the properties (1.3)-(l. 5) hold.
Following [1], the semidiscrete approximation to (1.2) is defined as the map

uh : [0, t*] -> Sh satisfying

uh(0) givenin Sh,

w?(0) given in Sh.

In [1,2], optimal-order rate of convergence estimâtes for sup || uh (t) — u(t) \\

and sup || «*(*) — «(*) |U« have been derived.

In order to obtain fully discrete schemes, we discretize (1.7) with respect to
time according to (1.1). To this end we introducé the operator
Lh = PTh1 :Sh^Sh, where P is the L2-projection operator onto Sh, and
observe that, from (1.7), for any chosen time step /c>0,

- 2 cos (fcLj/2)u*(t+ *) + !!*(0 = 0, 0g t£ t* -2fc . (1.8)

We now seek a séquence of approximations {con}nè0<=Sj„ where CÛW will
approximate u(nk). Let r be a real rational function of the real variable T such
that there exist constants a > 0 , C< oo and an even integer v^2 such that

| r (x)-cosx|^CTv + 2 , O^T^CT. (1.9)

With appropriate choices of the initial values <o° and CÛ1 in Sh we define the
séquence of approximations co" by

œn + 2-2r(feLft
1/2)œn+1+a)n = 0, 0gn^[ t* /k] -2 . (1.10)

For convergence results we shall work with the following:

DÉFINITION I: The rational approximation r is defined to be ofclass C-I if r
satisfies (1.9) and there exists a constant x>0 such that

| r (x) |^ l for O ^ T ^ X . (1.11)

DÉFINITION II: The rational approximation r is defined to be ofclass C-ÎI if r
satisfies (1.9) and

j r ( T ) j ^ 1 for ail T ^ 0 . (1.12)

R.A.I.R.O. Analyse numérique/Numerical Analysis



TWOSTEP APPROXIMATIONS FOR HYPERBOLIC EQUATIONS 205

Clearly every class C-II function is of class C-L We make the distinction since
the use of class C-II rational functions in (1.10) yields unconditionaily convergent
schemes. whereas with C-I functions the schemes are conditionally convergent.

There remains the choice of the initial values co0 and co1 in order to apply
(1.10). These will be chosen in a spécifie way and will be directly computable
from the initial data u°, uf of (1.2). Since our error estimation techniques rely on
comparisons with the semidiscrete approximation (1.7), our choice ofœ°
and o 1 will be lucid when made through the choice of wh(0), w?(0) of (1.7),
bearing in mind that we require a>° to approximate w(0) = w°, and co1 to
approximate u(k).

To this end, we set ̂ h=Shx Sh and define

Uh (t) = [uh (t), M? (t)]T,

and rewrite (1.7) as
(1.13)

where Uh(O)=[uh(Q), u?(O)]ris to be chosen.

We shall also use the operators

0 Th\ /O - j

-10/ \L 0

In gênerai, we shall choose

C/fc(0) = ̂ ï * + 1 JSf2l+1[ii°f u?]T=[Ts
h
+1Ls+1u°, Ts

hUu?]T, (1.14)

for some integer s^O. For 5 = 0 we interpret Ts
hL*u? as Pu,0. For the optimal

L2-convergence of our scheme we choose s = 0 in (1.14) and for L^-conver-
gence s will depend on N, as will be seen precisely below. We note that the
computation of Uh{0) from (1.14) will require the solution of 2 s + l linear
Systems of équations of size dim Sh x dim Sh (elliptic projections) with the same
real matrix.

Now G>° and co1 will be obtained from Uh(0) as foilows. We choose

s + 1w°. (1.15)

A convenient choice of co1 will be to use a single-step procedure, following [1],
over one time step. We select a rational function r of the complex variable
z = x + iy satisfying for some constants o1>0 and C<oo,

\r(iy)-e-iy\£C\y\v + 1, all real y: \y\£ax. (1.16)

vol. 13, n° 3, 1979
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and

\7(iy)\SC for ail real y. (1.17)

We then define W=[Wlf W2]
Te ^h by

W=ï(k&h)U
h{0) (1.18)

and we set
c o ^ ^ V (1.19)

It will be seen in section 4 that, with the particular choice of rational
functions r to be used in (1.10), the computation of œ" for n ̂  2 will require the
solution of a fixed number (depending on v) of linear Systems of équations at
each time step with a fixed real matrix. It will also be seen, using the results
of [1], that the rational function r needed for the computation of œ1 from
(1.18), (1.19) may be chosen compatible with r, so that the same real matrix is
used to obtain oo1 by solving a fixed number of linear Systems.

In section 2 we analyze the convergence of the approximation in L2. We
prove in theorem 2.1 that, if r is of class C-II, r satisfies (1.16) and (1.17), ©° is
given by (1.15) with s = 0 and co1 is chosen by (1.18), (1.19), then there exists a
constant C = C(t*) such that

max 11 co" — M (nk) ||
ûn£[t*/k]

| | u 0 | | v + 2 + | | « t
0 | | v + 2)]. (1.20)

In theorem 2.2 it is seen that if r is of class C-I, r satisfies (1.16), (1.17) and co°, co1

are chosen as in the above announcement of theorem 2 .1 , then, if Th has the
property that

u^C^2, (1.21)

the estimate (1.20) holds, provided

with x as in (1.11).

For example, in the case of the standard Galerkin method (1.6), an inverse
assumption of the form

implies (1.21).

The analysis of convergence in Lm of the approximation scheme, done in
section 3, is based on L°°-estimates for the approximation of the associated
Dirichlet problem. Such estimâtes are conveniently stated, following [4], as

R.A.I.R.O. Analyse mimérique/Numerical Analysis
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follows. In addition to (1.3)-(l. 5) we require

\\TUV\I.ZC\\TV\\K.

\\T.vUC\\Tv\U,
(Th-T)v\\L^y(h)\\Tv\\w,„,

(1.23)

for some constant C, where typically for Galerkin methods y{h) = C hr, if r> 2;
y(h) = Ch2 ïnh~1,ifr = 2. For the dérivation of (1.23) we refer to [4] and the
références cited therein:

In addition let Jo be a positive integer such that for some ho>0, for ail

(1.24)

for some constant C independent of h. It is shown in [2] that in the case of the
standard Galerkin method (1.6) we may choose JQ = N. As noted in [2] and the
références cited therein, the existence of such a Jo will depend on the f act that the
spectrum of Lh approximates that of L and on known estimâtes for the
asymptotic distribution of the eigenvalues of L.

In theorem 3.1 we prove that if r is of class C-II and r satisfies (1.16), (1.17)
and if Uh(0) is chosen by (1.14) with s^ [N/2] + J o + 1 and in turn œ° by (1.15)
and (o1 by (1.18), (1.19), then we have for some constant € =

m a x | | a > » - ( ) | | L [ y ( ) ( | | | | S o | | L
k]

| |o |Us-*-.+2 + ||"t° lUs^.+ i)-l-fcv(||^0|Us + v + 2-l-||w?lU.-4-v^2)], (1.25)

where so = 2s + r + [N/2]-L
In theorem 3.2 we prove that if r is of class C-I, r satisfies (1.16), (1.17) and if

o 0 , co1 are chosen as in the above announcement of theorem 3.1 then the
estimate (1.25) is valid, under the condition (1.22), if (1.21) holds.

We close this section with a brief introduction to the rational functions to be
used in section 4. We shall use from [3] the family of rational functions
r(x) = ra(x; x) which satisfy

(1-26)

with a = v/2, where v ̂  2 is an even integer, and x > 0 is a real parameter. (pj,a) will
be a real polynomial of degree n in x2. In particular (1.9) will be satisfied and we

vol. 13, n° 3, 1979



208 G. A. BAKER, V. A. DOUGALIS, S. M. SERBIN

show the existence of a x(ot)>0, which is explicitly computable, such that for
x^x(ot), ra(x; x) will be of class C-I I .

It is then readily seen that for every n the computation of con+2 from œ"+1

and co" in (1.10) requires the solution of v/2 linear Systems (v is even). In [1] a
family of rational functions r{z)^ra(x\ z) is constructed, which satisfies

o W W A A1 " x2 z2T> t1 • 2 ? )
with oc ̂  1 integer given by a = v/2, v even, where (3*,°° is a polynomial of degree at
most n in x. With the same value of x in (1.27) as in (1.26), (1.16) and (1.17) are
satisfied. Also it is seen that the computation of œ1 in (1.18), (1.19) due to this
special choice of r requires the solution of v real Systems with the same matrix
used by (1.26) for the computation of <x>n, n^2.

We also point out that one of the main computational advantages of the
schemes developed hère lies in the fact that, for a given order of accuracy v of the
time stepping procedure, approximately one half the computational work is
required to produce an optimal approximation to the solution, as compared
with the single-step schemes of [1].

We remark that two-step schemes producing second-order accuracy in time
for second-order hyperbolic équations have been proposed in [7, 8], and [6]. For
high order single-step methods, cf [5, 1, 9] and for multistep methods, cf. [8, 6].

Throughout the rest of the paper all constants appearing in the error estimâtes
will be denoted by the generic C. Also, conditions of the type h^h0 (i.e.,
requiring h to be sufficiently small) will be implicitly assumed whenever needed.

2. CONVERGENCE IN L2

We first find an explicit expression for co" for 2 ^ n ^ [t* /k] in terms of©0, (o1,
via (1.10). Let r (%) be a rational function of class C-II and §l9 ^2 be the roots of
the quadratic équation

£2-2r(T)^ + l=0 , T £ 0 . (2.1)
Then, obviously,

^(T) = r(i) + i(l-r2(T))"2, ^ ( T ) = | 7 C Ö . * ê 0 (2.2)
and

| = l , j - 1 , 2 , al lx^O. (2.3)

It can be easily seen that the différence équation (1.10) has the solution

CD- = y (k LV2) (0° + Y « - l -j {k Li12) & (k LV2) [CO1 - %x {k Li12) cû°]. (2.4)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Let \|/J dénote the (L2-orthonormal) eigenvectors of Th corresponding to its
eigenvalues jij. For every veL2 we then have the spectral représentation

I* »=!>})-M».*}) 10 (2-5)
j

and more generally, for a function g analytic in a neighborhood of the spectrum
ofZ*.

g{Lh)v= Zgiitf)-1) (v, ̂ )i|/J. (2.6)

We interpret e.g. (2.4) in the light of (2.6).
Now, let p lf p2 be the roots of the quadratic équation

p 2 - 2 c o s x p + l = 0 , x^O. (2.7)

Obviously,
Pl(T) = e

i\ p2(T) = e - ^ a l l T ^ O j (2.8)

i.e.;
|P J .(T)| = 1, j=l,2. all x^O. (2.9)

From (1.8) we conclude then that

+ "Z pV'-^kLl^piikLl^nuHk^pAkLi^u^O)]. (2.10)

We now let En = (ùn-uh{nk), 0 g n S [t*/k]. We also let

/L i )W = y(T)-pï(T)( 7 = 1,2, 11 = 1,2,3. . . . (2.11)

From (2.4) and (2.10) we then obtain, using (ù° = uh(0), the représentation

) ƒ ^ ! - j,(k m [uh (*) - P l (/c Lft^
2) ii* (0)]

vol 13, n° 3, 1979



210 G. A. BAKER, V. A. DOUGAUS, S. M. SERBIN

We now state the first main resuit of this section

THEOREM 2 . 1 : Let r be ofclass C-II, rsatisfy (1.16) and (1.17), Uh(0) be given
by (1.14) for s = 0, co° be given by (1.15) with s = 0 and oo1 be chosen by (1.18),
(1.19). Then there exists a h0 > 0 and a constant C—C{t*) such thatfor ail h:
0 < h S h0,

max ||œn-w(n/c)||
0S«g[t*/fc]

| | ° l | | | ^ | | | |u0 | |v+2+||u?| |v+2)]. (2.13)

The proof of thîs theorem will be given in a séries of lemmas:

LEMMA 2A:Letrbe ofclass C-II and let f f be defined by (2.11). Then there
exists a constant C such thatfor all x ̂  0:

7 = 1 , 2, 1 £ / g v + 1 , n = l, 2 , . . . (2.14)

| / « > ( x ) | ^ 2 , 7 = 1,2, n = l , 2 , . . . (2.14')

Proof: The proof follows from (1.9), (1.12), (2.2), (2.8) and the proof of
lemma 2.3 of [3]. •

We now recall some notation from [1]. Given k > 0 let J be the least integer for
which kXj12 > 1 for7 ^ J. Then, given veL2,v/e define

j-i

v(k)= Z (ü> CP;)CP;-

It is easily seen that ü(fc)eCco(Q) and that the following hold:

[[*;<*> ||s + m ^ - ' « | | i;||s, ail m, s ̂  0. (2.15)

| | u - ü ( k ) | | p ^ l f - p | H | , , all 5 ^ 0 and all real p. (2.16)

LEMMA 2.2: Under the hypotheses of theorem 2 .1 , there exists a constant
C = C(t*) such thatfor7=1, 2, and 1 ̂  n ̂  [t*/k] we have

I I l i 1 1 U I I H i l l U - ^ ^ > ] - ( 2 - 1 7 )
Proof: From (1.7) we have that

uh (k) = cos (k Li12) uh (0) + L,-1/2 sin (k Li12) u\ (0),

from which, using (2.8) and (1.14) with s = 0 we obtain
(2.18)

R.A.I.R.O. Analyse numérique/Numerical Analysis



TWO-STEP APPROXIMATIONS FOR HYPERBOLIC EQUATIONS 211

The first term of the right-hand side of (2.18) can be written as

sin(fcL,1'2)(u? - I

1 = 0

>. (2.19)

We first observe that for any % e L2, using (2.6), (2.14') and the fact that sin x S
for x ^ 0, we have

= || I ƒ V' (* GO"1/2) (nS)1'2 sin (k(ti)-112) (X. 0 ^S ||

â fcmax| ƒ ^(fc(^)-1 / 2) | . ||x || ^ C k || x ||- (2-21)

Also, for 1 g / g v/2 by (2.6) and (2.14) we have for %BL2:

g C ^ ' l l x l l , (2.22)

and similarly, using (1.5) and (2.14) with / = v + 1 ,

^ / 2 | | x | | S Cfcv + 1 | | x | | . (2.23)

Now by (2.21) and (2.16) we obtain

|| (W?-M (
o w) | | â Ck v + 1 1| «? ||v. (2.24)

Similarly, (2.21), (2.15) and (1.4) give that

\ \ \ \ ||u,°||r. (2.25)

Also by (2.22), (2.15), and (1.4) we see that for 1 ^ l g v/2:

| | | | i i f
0 | | r + 1 . ( 2 . 2 6 )

vo l . 13 , n ° 3 , 1979
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Finally, by (2.23), (2.15) and (1.5) we obtain

\\f^(kU'2)L^^Sm{kLl'2)Tr + iUl2^u^\\èCk^l\\u°\\v+2. (2.27)

Hence, by (2.19), (2.24)-(2.27) we conclude that

\\f^{kLll2)L^^Sm{kLnu?\\^Ck(k^\\u°\\v+2 + h'\\u?\\r+1). (2.28)

Now, for the second term of the right-hand-side of (2.18) we have

ƒ «(fc Li") sin(fc Li'2) rfcLu°

= ƒ ü) (k Li'2) sin (k L\>2) Th L (u° - u°«)

1 = 0

uom. (2.29)

Using now (2.6) and (2.14) we observe that for any %eL2 and for
O ^ / g v / 2 - 1 ,

|| ƒ </> (k Ü'2) sin (fc Li'2) n + 1

||x||. (2.30)

Similarly, for %eL2 we see by (1.5), (2.6) and (2.14) with Z=v + 1, that

(2.31)

Hence we conclude by (2.29), (2.30) and (2.31) in analogy with previous
calculations that

u0 | |v+2 + ̂ | |u0 | |r+2). (2.32)

Finally, (2.18), (2.28) and (2.32) prove (2.17). •

LEMMA 2.3: Under the hypotheses of theorem 2.1, there exists a constant
C = C(t*)such that

| | | | |K|| r+1). (2.33)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Proof: We have

ƒ ?> (* Ü'2) uh (0) = ƒ \» (k Ll'2) Th L («° - il0*»)

w0(k). (2.34)

Using(l. 4), (2.6), (2.14) with n = 1 and (2.15) in an analogous way as in previous
calculations we obtain

O g / g v / 2 - 1 . ) (2.35)

AIso, by (2.6), (2.14) with n=l , / = v+l , (1.5) and (2.15) we obtain

| | /i1)(fcii / 2)rx / 2+1iv /2+1M°w||^cfcv+1 | |M0 | |v+2 . (2.36)

Finally by (2.6), (2.14) with n= 1,1 = 2 and (2.16) we see that

rhL(W
0-M

0^))| |gcfev+1 | |u0 | |v + 1. (2.37)

Now, (2.34H2.37) give (2.33). •

Let L2 =L2 (Ü) x L2 (Q). Then we define, following [1], ((., .)): L2 -^ C by

where X = [%x, %2]
T and *F = [\|/j, \ | / 2 ] r . Note that ((.,.)) is an inner product on S?h.

The associated seminorm (norm on S?h) we dénote by | | |X| | |=((X, X))1/2.

Recalling the définition of the operator ,Th from the introduction we note that
'T h restricted to SP h possesses a set of purely imaginary eigen values { rj ±J} f= i
given by "n^iOx})1'2, r\-j= -i{\fyll2> 1 g j ^ M and a set of corresponding
eigenvectors {^± J}, orthonormal with respect to ((.,.)) given by

v 2

Wealsoset F w = [Fp>, Vff for K=[Jr
1, K2]

re L2, and define the operator ^ by

O T

- ƒ O
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We have

LEMMA 2.4: Under the hypotheses of theorem 2.1 we have for some constant
C = C(t*) that

^ C7/c [/c-( || w° | w? jl^)], (2 .38 )

Proof: Under the hypotheses of theorem 2.1, with notation introduced in
section 1 we see that

(o1 - uh (k) =WX- U\ (k), (2.39)

(2.40)

(1.14) with 5 = 0, Hence, introducing U° = [u°, u°f and

we have, cf. [1],

V

1 = 0

Hence, by (2.39):

v - 1

+ z
1 = 1

As in [1], lemma 3.1, by (1.16), (1.17) we easily deduce that there is a constant C
such that

\ \ \ (2.42)\F{iy)\^C\y\l, O g / ^ v + 1 , all real y.

We conclude for l e L 2 that for 1 ̂  / ^ v + 1,

(2.43)

Now, by (2.43), (2.15), (2.16) and (1.5) we see that

^ Cfc2|||j?(C/0-[/0<*>)|||2

«(°||v)]2. (2.44)
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Also, by (2.43), (2.15) and (1.4) we conclude that

= Ck\\{T-Th)Lu?w\\ ^ CW\\u?\\r. (2.45)

Since (1.4) and (2.15) give

even,

/odd,
we conclude by (2.43) that

2c/0«|| | ^ cfcfc'dl"0!!.*!-!-!!»*?!!^- (2.46)

Finally, since v is even we obtain by (2.43) and (2.15):

I J l F C f c ^ f ^ ^ r 1 ^ ^ 1 t70( fc> | | | ̂  C ^ + 1 ( | | W ° | | v + 1 + | | W ? j | v ) . ( 2 .47 )

Combining now (2.41), (2.44)-(2.47) we obtain (2.38). •

We now return to the proof of theorem 2 .1 . We have for 0 g n ̂  [£*/&],

||a)"~ ïi(n/c)||^||(ôn-W
;ï(nfc)|| + ||W

h(n/c)-W(n/c)||. (2.48)

By (2.12), using (2.3), (2.9) and (2.140, we obtain for 0 S n ̂  [t*/k],

|| ƒ ̂ (

+ max

Hence, by (2.17), (2.33) and (2.38) we see that

|| co« —w^C^fc) || ̂  C7[fcv( j | M ° j|v__2 H- i| w? | | v ^ ^ > -l-Zz-CH w° ||̂ 3̂ -î-1{ wp j l , . ^ ^ ) ] . ( 2 . 4 9 )

Now, [2], lemma 2.2, with 5 = 0 implies that for 0 ̂  n g [t*/k]:

| | r + 1 + | | ^ | | r ) . (2.50)

Hence (2.13) follows from (2.48)-(2.50) and the proof of theorem 2.1 is now
complete. •

We now turn to the case when r (T) is a rational approximation of class C-I. It is
now clear that the conclusions of lemma 2.1 hold for 0 ̂  x ̂  x, with x defîned
by (1.11). Under the additional hypothesis (1.21) it is clear that the condition
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(1.22) implies that / C I T ^ I " 1 g x , ail j . Retracing the steps of the proof of
theorem 2 . 1 , modifying them appropriately, we can verify the following result,
the proof of which we omit:

THEOREM 2.2: Let r be ofclass C-I, r satisfy (1.16), (1.17), Uh{0) be given by
(1.14) for s = 0, (o° be given by (1.15) withs = Oand œ1 be chosenby{l. 18), (1.19).
Suppose that Th satisfies (1.21). Then for h sufficiently small, provided (1.22)
holds, the estimate (2.13) is valid for some constant C = C(t*). M

REMARK: It is clear that if instead of (1.17) we have

\r(iy)\ S C for rea l y:\y\ ^ a 2 ,

for some constant a2, then it is possible to prove (2.13) under an appropriate
bound on k/h, provided (1.21) holds.

3. CONVERGENCE IN L°°

The main resuit of this section is:

THEOREM 3 .1 : Let r be ofclass C-II, r satisfy (1.16) and (1.17), Uh (0) be given
by(lA4)t(o°by{lA5)and(ù1by{lA$)>(lA9)withs^[N/2] + J0 + l,where Jois
defined by (1.24). Let sö = 2 s + r + [N/2] - 1 and in addition to{\. 3)-(l. 5) let Th

satisfy (1.23) as well. Then there exists aho>0 and a constant C = C(t*) such that
for allO<hSho,

m a x | | a > - — M ( n f c ) | l j t [ y ( ) ( l | | | J I o || ? | U 0 i )

+ ^( | |« 0 | | 2 s + , + 2+| |"r°| |2S + r + l ) + fcV(||«0||2, + v + 2+| |«? | |2S + v+l)]. (3.1)

The proof will be given in a series of lemmas. We first observe, as a
conséquence of the hypotheses of theorem 3.1 and of lemma 3.1 of [2], that we
have the following L^-estimate on the eigenvectors \|/J of Th:

| | $ | | | , | } - * , (3-2)

when K = [N/2] + l.

LEMMA 3 . 1 : Under the hypotheses of theorem 3 . 1 , there exists a constant

C = C{t*) such that for j=l, 2 and l g n ^ [ t * / f c ] we have
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Proof: In analogy with (2.18) we now have

1 Ls+l u°. (3.4)
Now,

s^2 + lu^k\ (3.5)

For %eL2 let X = [AT/2] + l and l ^ / ^ v / 2 . Then, using(2.6), (2.14), (3.2)
and (1.24), since s^K + JOt we have

^i^T^'^y^hW ^Ck2l\\x\\. (3.6)

Similarly, usingt2.6), (2.14'), (3.2) and (1.24) we conclude for any %eL2 that

I l l I x H . (3.7)

Finally, using (2.6), (2.14) with Z = v+1, (3.2), (1.24) and (1.5) we obtain
for %eL2:

\ \ \ \ 1 \ \ x \ \ . (3.8)

Now, (3.8) and (2.15) give

sin(fc Li'2) r r v / 2 + ' U+«2 + 1 u? « |
1 | |M t

0 | |2 s + v + 2 . (3.9)

By(3.7), (2.16) we have

||/V>(*Li'2)I'ir1/2sin(fcLi/2)rïZ,i(«,0-«,0W)||£. gCfcv+1 | |u,°||2s+v. (3.10)
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Now, (3.7), (2.15) and (1.4) give

U+1u°M\\ gCkh'\\u?\\2s+r. (3.11)

In addition for l ^ f g v / 2 , (3.6), (1.4) and (2.15) give

\\U+l+1u°^\\^Ckhr\\u?\\2s+r^. (3.12)

Combining now (3.5), (3.9)-(3.12) we obtain

||u{) | |2s+r+1+/C||«?||2s+v+2). (3.13)

We now write

P 1 Ls+1 (u° -uOik))

£ /„J)(/cL»1/2)sin(feL4
1/2)rr1+1 (T-Th)U+1+2u0™

1 = 0

u0{k\ (3.14)

Using similar estimâtes as above (cf. also the proof of lemma 2.2), we now have

\\f»(kLl>2)sm(kLl>2)T°h
+1U+1u°\\L„

^C/c(h'| |uo | |2s+r+J + r | |Mo | |2 s + v + 2). (3.15)

Finally, (3.4), (3.13) and (3.15) give (3.3). •

LEMMA 3.2: Under the hypotheses of theorem 3.1, there exists a constant
C = C(t*)such that

| | /^(kZ.^2)M"(0)|j i .^Ck(^|jw0 | |2 s + r + 2 + k-||M
0 | |2s+v+2). (3.16)

Proof: Using (1.14) we obtain

= /V>(k L i12) Tl* * Ls+1 {u°-u°ik))

1 = 0

feLfc
1/2)7Tv/2 + 1 L s + v / 2 + 1 M 0 ( ' t ) . (3.17)

R.A.I.R.O. Analyse numérique/Numerical Analysis



TWO-STEP APPROXIMATIONS FOR HYPERBOLIC EQUATIONS 2 1 9

Now, for xe£ 2 , Og/gv/2, s^J0 + K, K=[N/2] + l, using(2.6), (2.14),
(3.2), (1.24) and (1.5) we obtain

. (3.18)
4

By (3.18) with Z=0, using (2.16), we have

\ \ \ \ 1 \ \ u o \ \ 2 s + v + 2 . (3.19)

Also, by (3.18) with Og/^v/2-1 , (2.15) and (1.4) we obtain

Finally, (3.18) with Z=v/2 and (2.15) give

||A1>(*I.i/2)7'r»'2+1L'+v'2 + 1M0*>||L-gCik*+'1||«0||2.+v+2. (3.21)

Combining now (3.17), (3.19)-(3.21) we obtain (3.16). •

LEMMA 3.3: Under the hypotheses of theorem 3.1 there exists a constant
C = C(t*)suchthat

| | | | | | | | } . (3.22)

Proof: Using (2.39), (1.18), (1.14), (2.40) and setting U° = [u°, u°]r we obtain

V£ F{k&h)3rls+l+l{3r-$-h)<e2s+l+2 u0lk)

1 = 0
s + v + 1 UOik). (3.23)

Let now XeL2. For Og/^v, by (2.42) and (3.2), since
K=[N/2]+l, we obtain

X h i l I ^ I I I I l N l l l ^ l l l . (3.24)
j
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From (3.24) with / = 0, (2.15), (2.16) and (1.5) we obtain

(u°-uom), Ls+1(u°-uow))]

1 ( | | a 0 | |2 S + v + 2+ | |u?| |2 s + v)]2 . (3.25)

Now from (3.24) with 0 ̂  / ^ v — 1 we obtain, using (1.4), (2.15) and analogous
computations with the ones of lemma 2.4 that

hr\\u°||2s+r+1, l odd

Finally, by (3.24) with / = v, (1.5) and (2.15) we see (since v is even) that

SCkl *}**••>•• ' " M (3.26)
[hr\\u°||2s+r+1, l odd . J

12
|2s + v

Hence, since CÛ1 - uh (k) = ( W- Uh (k)^, (3.23)-(3.27) give (3.22). •

We now return to the proof of theorem 3.1 . For 0^n^[£*/fc], we have

| |©"-K(nfc)| |£ .^ ||cD--tt*(n*;)||L.+ ||uh(nk)~u(nk)\\L„. (3.28)

Now, by (2.12), using (2.3), (2.9) and (2.140 we obtain

+ max i||/^(feL^2)[^(/c)~Pl(/cLP)Wn0)]||LTO). (3.29)
0£m£[t*/k] j=l

Hence, (3.3), (3.16), (3.22) and (3.29) give

+ ^ ( | | u ° | | 2 s + r + 2 + | | w (
0 | | 2 s + r + 1 ) ] . (3.30)

Finally, [2], theorem 2.2, gives

+ ftp(||u0||2,+r+1+|K°||2l+r)]. (3.31)
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Therefore, (3.29)-(3.31) prove (3.1) and the proof of theorem 3.1 is now
complete. •

We state now without proof the entirely analogous resuit for rational
approximations of class C-L

THEOREM 3.2: Let r be of class C-I and let all other hypotheses of theorem 3.1
be satisfied. In addition, iet Th satisfy (1.21). Then for h sufficiently
small, provided (1.22) holds, the estimate (3.1) is valid for some
constant C = C(t*). M

4. EXAMPLES AND IMPLEMENTATION

In this section we give examples of high order accurate in time methods which
possess certain computational advantages over other existing methods.

Let a ^ 1 be an integer. We define the family of real polynomials {(pj,a) }„è0 of
the real variable x by

<*?{*)= t fejrf a )x2*-n. « = 0,1,2 (4.1)
j=o (2;) \\n-jj

where we shall use the convention I . 1 = 0 for j > a.

For x > 0 and z complex we define the corresponding family of rational
functions

(iA/l+x2z2T for jlmz^x"1 . (*.2)

In [3] we established the foliowing results.

LEMMA 4 .1 : Let oc^l be an integer and x > 0 . Then there exists a constant
C = C(a, x) such that

\rOL(x;z)-cosz\SC\z\2«+2, \z\<x"1. (4.3)

Furthermore, there exists a x (o )>0 such for ail x^x(a):

\ra{x\-z)\£l, ail x^O. (4.4)

Proof: For a proof we refer to proposition 3.1 of [3]. •

LEMMA 4.2: Let a ^ 2 be an even integer. Then (p^li possesses at least one
positive zero x^+1. Ifwe define

r*(z) = ra(x?i1;z), (4.5)
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then there exists a constant C = C(a), such that

|ra*(z)-cosz|:gC|z|2a+4 for ^ K ^ i i ) " 1 . (4.6)

Furthermore, there exists a constant x = x(a)>0 such that

|r*(T)|gl for O ^ T ^ X . (4.7)

Proof: cf. proposition 3.2 of[3]. •
In [1], the following is established.

LEMMA 4.3: For integer ot^l, there exists a séquence {Pi,a)}„èo of real
polynomials of the real variable x, ofdegree n such that for any x>0:

(l-x2z2)°e-z= £ ^{x)zn
t all complex z. (4.8)

M=0

Furthermore, ifwe define the rational functions

-x2z2rt iRez^x- 1 (4.9)

then there exists a constant C = C(a, x) such that

|?a(x;z)-e-z |^C|z|2 a +\ \z\^(2x)-\ (4.10)

and
|Fa(x;z»|^C, ail real y. (4.11)

Proof: The resul^(4.8) is contained in4heorem 4.1 of [1], (4.10) and (4.11)
follow from (4.8) and (4.9). •

For this work we shall use as examples of class C-II rational functions the
family defined by (4.2). That ra(x) = ra(x; T) is of class C-II for a^ 1 and x^x{a)

follows from lemma 4.1. We remark that a simple procedure for Computing x(ot)

is given in [3].
Our special examples of class C-I, which are not of class C-II, and which are of

practical importance consist of the family r* (T) defined by (4.5). That r* (T), for
a ^ 2 even, is of class C-I is the essence of lemma 4.2.

The initial approximations co° and oo1 will be generated by using a single-step
procedure following [1], with the rational function ra defined by (4.9). We note
that a table of the polynomials Pi,a) is provided in the appendix of [1],

For consistency with the notation of the previous sections we shall set v = 2 a,
and ra becomes rv/2.
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4 .1 . Class C-II schemes

Having determined the parameter x(v/2) such that (4.4) holds for x^x ( v / 2 ) ,
assuming that for w^O, co" and (ùn + 1 are known, we obtain G>" + 2 frora (1.10) as
follows. Set Z~((on+2~\-(ùn)/2 and (4.2) yields the computational procedure

rw2 n
[ƒ + (x(v/2) k)2 Lh]

vl2 Z = £ (p^2> (x^V) k2j L{\(on + 1, (4.12)

<on+2 = 2 Z - û ) \ (4.13)

Since v is even it is easily shown that in the case of known Galerkin methods,
the détermination of Z from (4.12) (and thus of con+2) requires the solution of v/2
linear Systems of équations with the same real matrix. We shall show this in the
spécifie case of the standard Galerkin method with v—4. The argument used can
be extended by induction to the gênerai case.

With v = 4, we find, cf. [3], that x(2) = (1 /2 + y5724)1 /2 . Nevertheless a sharper
analysis, cf. [3], section 4, shows that the schemes satisfy (4.4) for
x^c0 = (1 /4 + yï724) 1 / 2 . Hence we set x = c0 and Ah = Th -hx2 k2 L Then (4.12)
becomes

A2 Z = F | cpi2) (x) k2j Tî"jlû)n+ x • (4.14)

Since
I = (xky4(A2

h-T
2
h-2x2k2Th)t

setting
7 = Z - cp̂ 2) (x) œn+ x /x4 , (4 .T5)

a staightforward substitution in (4.14) gives

Al Y=[%{x)n+^{x)ThW
+\ (4.16)

where

and

Thus (4.14) is equivalent to

Ah Tn ' Ah Y= [9o(x) Th + Qx(x)I]<*n+1, (4.17)

which we reduce to

^^löoWn+e^xl/lco^1 , (4.18)
AhY=ThÇ (4.19)
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Thus, by (1.6), Ç is obtained from (4.18) as the solution of

(C>X) + x2/c2a(Ç,x)-eo(x)(o)"+ 1 ,x) + e1(x)a(a)" + 1 ,x), VXeSft, (4.20)

and Y in turn, as the solution of

{Y, x) + x2k2a(Y, x) = (Ç, x), VXe5, . (4.21)

Finally, from (4.15) and (4.13),

x)cù" + 1/x4]-co". (4.22)

From (4.20)-(4.22) it foliows that o n + 2 is obtainable from the solution of two
linear Systems with the same real matrix.

To generate ©° and oo1 we shall use over one step the single-step method
defined by the rational functions ra of (4.9). To choose ra compatible with (4.12)
we set v = 2oc and x = x(v/2) in (4.9). Then we define

(4.23)

and
<ùl = Wlf (4.24)

<o° = u*(0)=rfcZu°. (4.25)

The hypotheses of theorem 2.1 are then satisfied and with the choice (4.23)-
(4.25) we obtain the optimal L2-convergence resuit (2.13).

We note that from (4.23) the détermination of co1 requires the solution of v
linear Systems of équations with the same real matrix which is used at subséquent
time steps obtained from (4.12). For details see [1]. Thus the entire computation
may be carried out with a single matrix décomposition.

It is clear from the above that for a given accuracy v ^ 2 of the time-stepping
procedure, the above schemes pro vide approximations with optimal accuracy
with approximately half the computational work as that required for single-step
schemes of the same accuracy. In particular for the single-step schemes
developed in [1] an approximation to the solution at î = nk, rc^2 is obtained by
solving nv linear Systems. For the present methods we obtain co" by solving
v + (nv/2) similar Systems.

Our examples of class C-II schemes above also satisfy the hypotheses of
theorem 3.1; if we choose

W= ?v / 2 [k &h) Uh(0) = 7v/2 (k J?h) [Ts
h
+1U+ ' u°, T%U uf]T,

for s ̂  [N/2] + Jo + 1 and œ1 = Wx, ©° = Ts
h
+1 Ls+ x M0, the optimal Z^-estimate

(3.1)holds.
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4.2. Class C-I schemes

We now give some interesting, from a computational standpoint, examples of
class C-I schemes which are not of class C-II. These schemes will be only
conditionally convergent, a condition k/h^C being required for convergence.
But for a given amount of computational work, in terms of the number of linear
Systems to be solved at each time step, they are more accurate in time by two
orders than the corresponding unconditionally convergent class C-II schemes.

We again set v = 2 a, this time for a ^ 2 an even integer, and choose r*/2 (x) by
(4.5). A root xji x of q>Ji : is of course computable and the constant x = x(a) of
(4.7) is easily estimated from the details of proposition 3.2 of [3]. We now
choose rv/2 +1 (x) = rv/2 +1 {xtyfl i; x) by (4.9), in which case the same real matrix is
used as before.

Because of (4,6), the hypotheses of theorem 2.2 are satisfied with v replaced
by v+2 . Hence we obtain the optimal L2-convergence result (2.13) with v
replaced by v + 2.

Basically the higher accuracy of two orders is obtained this way since, for the
special choice of the parameter xtyil i , we have c p ^ i i {x§f£+1) = 0, giving (4.6).
This however forces the scheme to be conditionally convergent.

We give the example for v/2 — a = 2 which will be O (k6) in time and will require
the solution of two linear Systems at each time step. From (4.1) an easy
computation yields that x(

3
2) = ((5 + yÏ5)/60)1 / 2 is a root of cp(

3
2). Hence with rj (x)

given by (4.5) and f3 (x3
2); x) given by (4.9) with x = x(

3
2\ we obtain following the

gênerai procedure (4.12):

£ f ] (4.26)
=o J

•ö)n+2 = 2 Z - a ) n
) (4.27)

which requires two linear Systems to be solved at each time step and may be
implemented as in (4.20)-(4.22) above. The associated bound x of (4.7) is found
to be 2.53724, cf. [3]. Hence, with k/h^C as in (1.22):

max

by theorem 2.2. This scheme for a = 2 was constructed in [10] and discussed in the
context of applications to Systems of ordinary differential équations in [10, 3].
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