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SEMIDISCRETE AND SINGLE STEP
FULLY DISCRETE APPROXIMATIONS
FOR SECOND ORDER HYPERBOLIC EQUATIONS (")

by Garth A. BAker (*) and James H. BRAMBLE (%)

Abstract — Fmite element approximations are analysed, for witial boundary value problems
Jor second order hyperbolic equations For both senudiscrete and fully discrete schemas, optimal
order rate of convergence estimates in L? are derwed, using L* projections of the mitial data as
starting values

A new class of single step fully discrete schemes is developed, which are high order accurate
m time The schemes are constructed from a class of rational approximations to e”?  analytic in
neighbourhoods of the imaginary axis The approximations require the solution of 2 s linear systems at
each time step, with the same real matrix, to yield convergence rate k*, where k is the time step and s is
an arbitrary posite integer

Résumé — On étudie des approximations par éléments fims de problemes aux hmites, avec
conditions imitiales, pour des équations hyperboliques du second ordre utilisant les projections L? des
données wmtiales comme valewrs de départ, on obtient des estimations d’ordre optimal du taux de
convergence, pour les schémas semi-discrétisés et pour les schemas complétement discrétisés

On introduit une nouvelle famille de schémas complétement discrétises & un pas, d’une précision
d’ordre élevée en temps On obtient ces schémas a par tir d’une famille d’approximations rationnelles
de e™*, analytiques dans des voisinages de I’axe imaginaire Ces approximations nécessitent la solution
de 2 s systémes linéaires d chaque pas de temps, correspondant @ une méme matrice réelle, et conduisant
a un taux de convergence en k°, ou k est le pas de temps et s un nombre entier positif arbitraire

1. INTRODUCTION

1.1. Notation

We consider approximating the solution of the following initial boundary
value problem. Let Q be a bounded domain in R¥, with smooth boundary Q
and let 0 < t* < oo be fixed. A function u : (0, t*] - R' is sought which
satisfies

U, + u=0 in Q x (0, t¥],
u=0 on 0Q x (0, t*],
o 1.1)
u0)=u° in Q,
u0) =u in Q,

(*) Manuscrit regu le 7 avril 1978
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chusetts (U S A) and Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau,
France
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76 G. A. BAKER, J. H BRAMBLE

u° and u? are given functions, and . denotes the second order elliptic operator
N

0 ou
Lu = — Z p <a”(x) e >+ ag(x)u,
1 J

,y=1

with a, =a,eC*Q), i, j=1,2, ..., N; ape C*(Q) and a, > 0 on Q.

& 1s assumed to satisfy the uniform ellipticity condition

Zzlau(X)&.é, > a;&.z, (1.2)

for all xeQ and for all (§,, ..., Ey) € RY, for some constant o > 0.

The following notation will be used throughout. For s > 0, H(Q) will denote
the Sobolev space of order s, of real valued functions on Q. The norm on H¥(Q)
we denote by || . ||gsq) In particular, the inner product on L*(Q) = H°(Q)
we denote by (., .), and the associated norm by || . ||.

We mtroduce certain subspaces of the Sobolev space H(Q), denoted by
H%Q). In order to define H¥Q), we first note that there exists a sequence
{ A, },>1 in non decreasing order of real positive eigenvalues of the operator £,
and a corresponding sequence of eigenfunctions { ¢, },5, = C*(Q), satisfying

Lo, =Ao, in Q, (1.3)
¢, =0 on 0Q.

The set { ¢, },>, is complete in L*(Q), and may be chosen orthonormal.
Define for s> 0, the space

@) = (v llvll = (310, 0) P13 < o0}

Then HYQ) = I*(Q), and it may be shown, [7], that
Q)= {veH(Q) : Lv=0 on 0Q, j<s/2},
and that on H%Q), the norms || . ||; and || . [lgs are equivalent.

For s < 0, H¥Q) is defined as the dual of H™%Q) with respect to L*<).
The norm on H™%Q) is given by

Holl-s= (X 1@ @) A9,  s=0.
J=1
The solution of (1.1) is formally given by
u(t) = i [, @) cos ¥t + &, *(u?, @)sin At]o,,
=1

R A1R O Analyse numénique/Numerical Analysis



SECOND ORDER HYPERBOLIC EQUATIONS 77

for t > 0, from which 1t follows that for 0 <t < t*,

Hu@ 1R+ w17 o= Nu® R+ [|u |-, forall s>0 (1 4)

In Section 2, we derive the estimates for semidiscrete approximations
JSup lue) = @1 < CEMTNu ey + [0 L], @9)

using standard finite element spaces of piecewise polynomial functions of
degree r — 1, r > 2 The estimates are obtamed with L? projections of the
mitial data as starting values These estimates were mn essence deritved prior
to this work by the first author in [3, 4}, using a special manipulation of an
energy formulation Here (1 5) 1s obtamed via a reformulation of (1 1) and
the semdiscrete approximation as approprate first order systems

We note also that Dupont [9] and Crouzeix [8], have obtained [? estimates,
however the choice of stating valves yield unnaturally higher smoothness
assumptions on the solution

1.2. Summary of the results

In Section 3, we consider single step fully discrete approximations via
rational approximations to e~* The rational functions are required to satisfy

) —e <Gy, lyl<o, (1 6)

for constants C, < o0, c>0and v>1

In addition such rational functions are divided 1nto two classes, according
to erther
[r@)| <1 for all real y, anmn

<
or
In@) <1 for |y|<a, (18

for some constant o > 0 The functions satisfying (1 7) we designate as Class
—1-1, and thosesatisfymg (1 8)as Class 1-11

For schemes defined by rational functions of Class 1-I, we obtain estimates
max || Wy — u(nk) || = C&*) { W16 oy + |9 [].]

RN ey + [ [V}, @9
where k denotes the discrete time step and WY, the approximation at the
time level t = nk

For Class i-1I schemes, we obtain the same estimate conditionally That 1s,
provided k< Cah, for a constant C depending on 1nverse properties of the finite
element space Class 1-I schemes are unconditionally stable and convergent

Again the estimates (1 9) are obtained using I? projections of the initial
data as starting values

vol 13 n® 2 1979



78 G A BAKER, ] H BRAMBLE

Another development of this paper 1s the construction of a family of rational
functions {r(z) },5, of class i-I, which 1s done i Section 4 Briefly, for each
mteger s > 1, and any given real number x > 0, we establish the existence of
a sequence of polynomials { BY } 2. , with real coefficients, where B, 1s of degree
at most n, such that

(1 — x22e* = 5 BOx)z", (1 10)
n=0
for all z
For s =1, 2, , we then define the rational function

0 = YR - X2,

1
for |Re (z)| < — r, 1s analytic m a neighbourhood of the imaginary axis,
x
1
and has poles at z = + —on the real line r, will satisfy (1 6) with v = 25,
x
and we show that there exists a real number x* > 0 such that for the choice
x=x9, r, satisfies (1 7)

This famuly of rational functions provides schemes of arbitrary accuracy
m time, 1 € we have (1 9) with v = 2s In analogy with the work of Ngrsett [12],
and Thomée and the present authors in [5], for parabolic equations, the result-
ing scheme for r, requires the solution of 2s linear systems with the same real
matrix at each time level

Other examples of Class i-I rational functions are provided by Pade
approximations, 1n particular, the diagonal and first two lower codiagonal
entries In general, the use of Padé approximations requires the solution of
complex linear systems, i contrast

A table of the polynomials { B }25, and a convenient choice of the para-
meter x¥ 1s given for s=1, , 5 1n the Appendix

Crouzeix [8] has also analysed high order in time, single step, fully discrete
approximations There, the choice of starting values 1s motivated by [9]

Throughout the paper, C will denote a general constant, not necessarily
the same m any two places

2. SEMIDISCRETE APPROXIMATIONS

We mtroduce the solution operator T of the associated elliptic boundary
value problem T I*(Q) — L¥Q) 1s defined by

a(Tf,v) = (f,v), for all ve H{Q), for given fel*Q), (2 1)

R AIR O Analyse numerique/Numerical Analysis



SECOND ORDER HYPERBOLIC EQUATIONS 79

where a(., .) denotes the bilinear form
d 0w v
a(w, v) = L { ,,,z=:1a”5—>€, -a—x;}dx, for o, ve H(Q). (.1.0)

T has a discrete spectrum of real positive eigenvalues {u,},>,, where
u, = A, with A, given by (1.3). Now let > denote the space L*(Q) x L*(Q)
and define the operator J : 12 - [2? by

=7 0)

We now reformulate (1.1) in terms of the operator J as follows. Let

w-() ()

Then, (1.1) is equivalent to

JU, +U=0, t>0
2.2
U= U°. } @.2)

Now, let 0 < h < 1 be a parameter, and { T, }o<,<; @ family of finite dimen-
sional operators approximating the operator T. In particular, let

{ A(®)) }o<hs1 < HI(Q)

be a standard finite element space of piecewise polynomial functions of degree
r — 1, with the approximation property

inf {Ilm—xll+hllm—xlh}<Chsllwllus<m,

eSH(Q)

for all ®e HY(Q) n H(Q), for some constant C independent of h, 1 < s < r.
The operators T, : L2(Q) — Si(Q) are defined by

aT.f,)=(f,x), for all yeSyQ), for given feIl*Q). (2.4)

The family { T} }o<»<, has the following properties :
T, is symmetric, positive semidefinite on L*(Q), and positive definite on Si(Q) (2.5)
I(T = T NS CHI flly—zs forall feH™%Q), 1<s<r, (2.6)

for some constant C independent of h.

T, has a discrete spectrum of eigenvalues {0} U { p4, ph, ..., wy }, in non-
increasing order, for some integer M = M (h). Furthermore, there exists an
ho > Osuchthat for h < hy,p; < A, for some constant A > 0. 2.7

Proofs of (2.5)-(2.7) may be found in [1] and [6].

vol 13, n°® 2, 1979



80 G. A. BAKER, J. H. BRAMBLE

The semidiscrete approximation for the solution u of (1.1) is defined as
the mapping u”[0, t*] — Si(Q) satisfying

Tult +u"=0, 0<t<t*,
u"0) = Pu®,
u(0) = Pup,

(2.8)

where P denotes the L*(Q) projection operator onto Sj(Q). Using (2.1) it is
easily seen that (2.8) is equivalent to the definition of the standard semi-
discrete approximation, in variational form, using L?(Q) projections of u°
and «? as starting values, as given for example in [3]. For the subsequent
analysis, we now reformulate (2.8) as a first order system, in analogy with

(2.2). Set
_ u'(t) )
V() = (u:'(t)) t=>0;

then (2.8) is equivalent to
JV+V=0, 0<t<t*,}

2.9
V(0) = PU°, @.9)
where
0 T
Jy= ( "):[L2 - SO x [XQ),
~1 0
and P denotes the 2 projection operator onto Si(Q) x SH(Q).
We define a form ((.)) on L? by
(@, ) = ($1, V1) + (1392, V2), (2.10)
for
® = <¢1> and Y = <\h>e[L2.
P V2
The associated seminorm which we denote by (|| . ||| is given by
Hell = (@, o). 2.11)
We note that
(J,0,9)) =0, del?. (2.12)

The following theorem gives estimates in I?(Q) for the error u(t) — u’(t).

THEOREM 2.1 : Let u be the solution of (1.1) and let u" be the semidiscrete
approximation defined by (2.8), or equivalently (2.9). Suppose that ue HY(Q)
and u? € H'(QY). Then there exists a constant C = C,(t¥), such that

sup 1) ~ @l < SR Loy + [&0)]. @13)

R A.LLR.O. Analyse numérique/Numerical Analysis



SECOND ORDER HYPERBOLIC EQUATIONS 81

Proof : Set E = U — V, where U is defined by (2.2) and V by (2.9). Then
J.E,+ E=(J,— JU,, 0<t<t*, (2.14)
E©0)= (I — P)U°. (2.15)

Setting p = (J, — J)U, (2. 14) gives

(JE:, E)+((E, E))=(p, E)).
and so, by (2. 12)

5 d—t WED P =~ ((P(t), E®))) — ((p1), E(®))) -

Integrating this last equation, we get

WE@ 1 = [ EQ) 11> + 2((p(t), E(1))) — 2((p(0), EO))) — 2[ ((p(x), E(0)))d.

0 (2.16)
From (2.4), it follows that T,P = T,on L*(Q). Hence, from (2. 15), and (2.11),
HIEQ) | = [|u® — Pu°]], (2.17)

and

((p(0), E(0))) = ([T, — TIuy(0),u® — Pu®) = — (Tu,(0), u® — Pu°)
= % u® — Pu®) = ||u® — Pul||®>. (2.18)

Using (2.17) and (2.18) in (2.16),
E® 11? = 2A(p(e), E@)) — |u® — Pu® > — 2 L ((p1), E()))dr
< 2((p(t), E®)) — 2 L ((p), E(1)))d

1 * 1
< ZIHE(I)HIZ + 4l p@) [II> + 4¢* j HE e |I[? dt + 203U AMEE@IIZ.
0 Stst
Hence

,Sup I E@)1I1* < C{Osup I p(e) 1112 +T |||Pz(‘f)|||2d1}- (2.19)
<< <r<ex 0

Now, from (2.2), (2.6), and (1.4),

HEp@ I = 11T, — Du ) 1| = 1 (T, — T)Zu®)|]
< Ch|lu@ |, < CrT||u® ||, + [|w |}, ] 12.20)

Similarly (2.2), (2 6) and (1.4) give

JO e 111%de = | II(T, — Thuy(x) |Pde —J (T, — T)ZLu(v)|lde
< Chz’ Oil:g‘*Hu,(t)Hz < Ch[||u® ||+ o + || ]]]2. 2.21)

vol 13, n° 2, 1979



82 G. A. BAKER, J. H. BRAMBLE

Hence, using (2.20) and (2.21) in (2.19), we obtain
Jup ME@ N < C|ul [y + [[w? [].]-

The result of the theorem now follows.

REMARK : We point out that from the above theorem, it easily follows that
the optimal rate of convergence O(h") in L?(Q) is obtained using any choice
of starting values of u*(0) and u"(0) e Sj(Q) satisfying

[|u® — u"(0) || = O(h")
and
| u — uf(0)|| = O(").

3. SINGLE STEP FULLY DISCRETE APPROXIMATIONS

In this section, we define and analyse fully discrete schemes obtained from
rational approximations to e™%.

Let rbe a complex valued rational function defined for the complex variable z,
satisfying .
|r@y) — e ?|< Cly'""?, lyl<o, 3.1)

for constants 0 < C < o0, 6 > 0 and v > 0.
DErINITION 3.1 : 7 satisfying (3.1) is said to be of Class i-I if
|r@y) | <1, for all real y. 3.2
r satisfying (3.1) is said to be of Class i-II if, for some constant o > 0,
[riy)| <1, forallrealy, with|y| < a. (3.3)

Clearly, rational functions fo Class i-I are also of Class i-II. However a
distinction is made since Class i-I functions will yield schemes which are
unconditionaly stable and convergent. The schemes are defined as follows.

The solution of (2.9) is given by
V(t)=e™" PU°, t>0, (3.4
and hence for k > 0, the proposed discrete time step,
V(t+ky=e ' V(t), t=0. (3.5)
Now let 7(z) = D™ !(z)N(z), where D and N are minimal degree polynomials.

R.A.LLR.O. Analyse numérique/Numerical Analysis



SECOND ORDER HYPERBOLIC EQUATIONS 83

The fully discrete approximation to (1.1), derived from (3.5) we denote by
{W"}s0 = SHQ) x SHQ), and is defined by

wrtl = D YkJ ON(KI, YW, n=0,1, ...,
w° = PU°. } (3.6)
We derive estimates for ||u(nk) — Wi|| by comparing W" with the semi-
discrete approximation ¥V (nk), n=0, 1, . ... To this end, we define the function
Fz)=r"(z) —e ™, n=20,1,.... 3.7
From (384), (3.6) and (3.7), it follows that
W™ — V(nk) = F(kJ, *)PU°. (3.8)

The following simple result will be needed.

LemMA 3.1 : Let r be of Class i-I11. Then, there exists a constant C* < oo
such that

| r"(iy) — e™™ | < nC*|y [, 3.9
for|y|€aand1<I<v+1L,n=12...,.
Proof Let 6*=min (o, 1). Then (3.1) holds with o replaced by c*. Hence
|r@y) — e | < Clyl', |yl<o*, (3.10)
fori1<l<v+ 1l

Now,if 6* < o, from(3.3),forc* < |y| < a,and anyinteger1 < I <v + 1,

%\ l i
Ir(iy) — e | < 2= 2|y|’(%> (—) <2lyfen) Y =c*yf, (.11
y (s}

with C* < co. Hence, from (3.10) and (3.11), we have for some C* < oo,
Iriy) —e | < C*yl', |yl<a, (3.12)
forl<i<v+1.

Now for an integer n > 1,
n—1
liy) = €7 = (liy) = e™) L P ly)e” (.13)

=0
Hence, using (3.12) and (3.3) in (3.13), we get for | y| < o,
n—1
| iy) — e™™ | < [r(iy) — e ) [riy) < nC*|y[, 1<I<v+1.
Jj=0
It is clear that, by choosing o = 0,(3.9) holds for Class i-1.

Let p%, ..., nhy, be the set of nonzero eigenvalues of T, with correspon-
ding eigenfunctions !, ..., {}, chosen orthonormal in L*(Q), i. e.

TV = iyt

vol 13, n° 2, 1979



84 G. A. BAKER, J. H. BRAMBLE

and
(\Il,h,\llj')=5”, Ly=12,..,M.

Now let S, denote the space S,(Q) x Sj(Q), furnished with the inner pro-
duct ((. , .)) and norm ||| . ||} .

It is easily shown that the operator J,: S, — S, posseses a corresponding
set of purely imaginary eigenvalues { n, })L _,, given by

n, =i(”?);
no= -, =12 M,

and corresponding eigenvectors { @, })L_,,, given by

0l ( ¥ )
T2\

1 h
o_ = ( .\I:,— >, =12 ..., M.
2\ i)
Since we shall subsequently work with complex valued functions, the pre-
viously defined inner product ((., .)) of (2.10) is naturally extended to

(@,'¥)) = (@41, V) + (T, \T/z); on §,,

where in general § denotes the complex conjugate of @. Since { ¥ )L, 1s
an orthonormal basis for S;(€), it is easily seen that { @, }) _,, forms a complete
orthonormal set in S,, with respect to the above inner product ((. , .)).

Hence, for any Z e 2, we have

PZ = f ((Z,0),, (3.14)
and '
M

|IIPZ|II=< ZMI((Z,‘D,))IZ);QIIZIII- (3.15)

j=-

LeMMA 3.2: Let r be a rational function of Class i-I. Then, there exists
a constant C, such that for Zel?, and nk =t < t*
| Fukdy WLZ ()| < CK= I Z ), (3.16)
1<i<v+ 1L
Proof : From (3.14), it follows that

M
FkJyViZ = ) F(kn;'i{(Z, @)@,

=M

R AIRO Analyse numérique/Numerical Analysis
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and so from (3.9) and (3.15), for 1 <I< v+ 1,

3

M

s izl =( £ 1760 )P In P 0l

s( f nZC*ZkZ‘|n,|‘“ln,|2'|((z,<1>,))|2>é (3.17)

J=—-M
M b
= nC*k’< Y.z, ®,))i2> S e*CTHIIZ N
J=—M
which gives (3.16).

LEMMA 3.3: Let r be a rational function of Class i-II. Suppose that the
operator T}, is such that

uy=Cy h?, (3.18)
for some constant C,; > 0, independent of h. Then, for k chosen such that

k < aCih, (3.19)
there exists a constant C such that, for Zel?,

l | Fokdi Wiz ||| < Ce=H || Z ]| (3.20)
for1 <I<v+ 1
Proof : From (3.18),

-1 _ (,h\—% —3p,-1
_gmax A1 = () < Cizht.

Hence, with (3.19) satisfied, we have
kim,|™!' <a.
With the above inequality and (3.9),
| F(kn;Y)| < C*nk'|m, |7, (3.21)

for 1 £ 1< v+ 1. Now using (3.21), the result follows by the same argument
as (3.17).

We remark that a sufficient condition for the assumption (3.18) to hold
is that the spaces S}(Q) possess an inverse property

Hxlly <Ch Miygll, forall  yeSyQ), (3.22)

for some constant C independent of h.
We note also the following stability result for the schemes defined by (3.6).
If r is of Class i-I, then for Z e L2,

WFkIOZ] < clZ]l], n=01,..., (3.23)

vol 13, n° 2, 1979



86 G. A. BAKER, J. H. BRAMBLE
and § o
(W < U (3.23a)

If  is of Class i-II with (3.22) and (3. 19) satisfied, then (3.23 a) holds.

Before proceeding to the derivation of the error estimates, we define the
following auxiliary functions.

Let Q be the smallest integer such that
kxi>1, for j20.
For given ve L*(Q), we define
v = 0o,
Then V® e C*(Q) and satisfies "

V&, <V s, (3.24)
and
||V—V”"||_,, < kP VL, for all s=20,p=20. (3.29

Also, for any m = 0,
NV <KV, (3.26)

(k) u®®
Ut ={ o ) (3.27)
t

THEOREM 3.1: Let u be the solution of (1.1), and let r be of Class i-I. Let
{ W"},50 be the sequence of approximations defined by (3.6). Then there
exists a constant C = C(r, v, t*) such that
oS /k]ll Wi —u@mk) || < C{RTI O N4 g + 11 1]
<n<{r%
+k"[||u°“v+1+||u?“,,]}. (3.28)

Define

Proof : Define the operator A = H*(Q) x L*(Q) - 12 by
A= ( 0 +1I )
. < 0

It 1s easily shown that in H"Y

FkJZ') = Y FkJg WiJ — J)A'™E + F(kJy DIPIAY T (3.29)

=0
From (3.8) and (3.29),
V(nk) — W" = F(kJ;*)U°® — U°®) + VZ F(kJy YJ — J)AH1Uo®
1=0
+ F(kJy WL PA LU L (3.30)

R AIR O Analyse numénique/Numerical Analysis
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Thus, from (3. 30),
I Vnk) — W ||| < ||| F(kJg YU — U ||| + ||| Fkdy NI = JHAU® )|

+ i | FukJy W — JIA US| + ||| F(kJy Yy EA U@ ||
1=o (3.31)
Now, from (3.23), (3.24), (3.25) and (3.6),
| F(kJy (U — UC®Y |12 < ||| U® — UOW )2
= C{||u® — u®®|® + (T, [u —? ©), u? —u) ¥)}

= C{||u® — u"®|> + (T, — D[u} — u?®], v — u?®)
+ (T[w — u?®], u) — uf:"‘))}
< C{llu® = u®PIP + |[(T — D[’ — w?®]| [|u? — u?®||
+ | Tl — w? @[ o] w? — w?® |- }

S CLR WO [[F +h | [l -k [l [l + &2 [ [[7-1 }
< LRl + [[u? (b + w | w l]-2 32 (3.32)
Also, from (3.23) and (2.6),
| FkJir I = JDAU® ||| < CIT = T)Lu®P || < CH ||l (3.33)

Now, from (3.16) of Lemma 3.2,

i | Fulkdy Wi — JYAF U ||| < sz:k"1 1 = JYAT U@ ||
1=1 1=1

(3.34)
For I + 1 even, we have

1+1
(P2 0
Attt =(-1)?2 1 (3.35)
0 »?
and for / + 1 odd, .
1
1—0 =22
AP =(-1D* 1., . (3.36)
z? 0

Thus a simple computation using (3.351 and (3.36) yields

I+l
T =T * %, I1+1 even,

MU = JIAFIU®@ )| = { (3.37)

L
(T — Tpe” Wwo®|, 1+1  odd.
Hence, from (3.37), (2.6) and (3.26), for I + 1 even,

I = JATURY | < Ch || @ ||,y 40 < CHETC VW], (3.38)
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and for | + 1 odd,
I — JDAFLU® ||| < CH [ u®® |, < CRETC D00 |4y . (3.39)

Also, from (3.16), (3.35), (3.24), (3.26) and (2.6), for v + 1 even
I F..(th_ I)J'\"+1'Av+on(k) 12
v+1 v+1 v+ 1
Ck2v”|Av+1U0(k)|”2 — Ck2v{ ”g 2 uO(k)HZ + (Th'g 2 u:)(k)’ % 2 u:)(k))}

< CE*{||u®||2+, + ((TH — T]Zv_;—lu?"", ,S:”H_z_luf""’) + (Txl%lu?‘k’, aZ’\LZ—luf’“")}

S G {||u® S+ B [0 [y [Py + |6l {2}

S CR> {{|u® [y + HE |l |l [[ o+ [ w212}

S C{RM[u [y + 1wl [B] + B2 [ ]17 } - (3.40)
Similarly, from (3.16), (3.36), (3.24), (3.26) and (2.6), for v + 1 odd,

“I F th— 1)Jv+1Av+lU0(k) l“

< Ck2v”|Av+1U0(k)”| — Ck2v”g2 O(k)HZ ng O(k)’ ‘g%

+ 1u0(k))

< R[] + (IT, - TIZ? "0, &7 0w) 4 (1.7 * o, 7 "2 o))
SCRZ [l |15+ 2| w0 ], oo [ oz + []6° R 1}
<Ol |18 + Bk |6 [la []0® oy + ([0 [R41 )
SC LR Ry + |1? [T + A2 | u® |3 (3.41)

Combining the inequalities (3.38), (3.39) in (3.34), we obtain

Z | Ekdi YT = TIA U@ || < CRI 6O [ 4y + ([0 ], (3.42)

Now combining (3.32), (3.33), (3.42), (3.40) and (3.41), in (3.31), we obtain

[l| V(nk) — W] < C{h'[||“0||r+1 + ““? ||r:| + kv[““°”v+1 + ||uzo ||\]}
(3.43)

The result of the theorem now follows from (3.43) and (2.13) of Theorem
2.1.

We have thus established the unconditional convergence with optimal
accuracy for schemes defined by Class i-I rational functions. For Class i-I1
functions, the same estimate (3.28) holds however, conditionally.

THEOREM 3.2: Let u be the solution of (1.1), and let r be of Class i-11. Let
{W"},>0 be the sequence of approximations defined by (3.6). Suppose that
the spaces Si(Q) satisfy an inverse property (3.22) and that k and h are related
by (3.19). Then, the error estimate (3.28) holds.
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Proof : The result is obtained via the same argument used in Theorem 3.1,
with the exception that the results of Lemma 3.3 are used instead of those
of Lemma 3.2. The proof is thus omited.

ReMARK : We point out that with the results of the above theorems, the
optimal rate of convergence 0(h" + k") is obtained with any starting values
WP, W2 e SiQ) satisfying

| WP = | = o),
and
| W2 —u || = O(h).

4. RATIONAL APPROXIMATIONS OF e”

In this section, we give examples of rational functions yielding the results
of Section 3. Particularly, we contruct below a family of Class i-1.

4.1. A family of Class i-/

Let s be a positive integer, and y > 0 a real parameter, and consider the
complex valued function g(t) = (1 — 12)%, defined for complex 1. g is ana-
lytic, and so there exist functions o{(y), n = 0, 1, .. ., such that

ol — 2 = S ooy, forallt. @.1)
n=0
It follows easily that the functions o must satisfy
ag(y) =1 4.2)
() =2 ,0), n=12.., 4.3)
where

, d
ol (y) = o o(y),

— P T 1r€> n=01,..,s. *'
a0) = n 4.4

0, n>s,
a’2n+1(0)_0 n:0,1,...‘

It is clear from (4.2)-(4.5) that o is a polynomial of degree n, in the real
variable y. The set { a! }2, also has the following properties.

LeMMA 4.1: Let s > 1 be an integer. Then, there exists a real number y*© > 0
such that for 0 < y < y®

(= 1Y)
(= 1yo80)

, n=01,...s, 4.6)

20
<0, n=12...,s, 4.7
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and (—1Fof,(y)<1. 4.8)

Proof : From (4.4) and (4.3),
(= 1/o§iy) = (= 1a§)0) + (— 1) J Sy (dp = (:) + (- 1)"J o) ()dp

0 0 4.9
1/s
= E(n)’

(s) — i (s)
y 112:1125 Yn's

Hence choosing y¢ > 0 such that

9
j o) (w)dp

0

and

the result (4.6) follows.
Also, from (4.3), (4.4) and (4.6),for 0 < y < y9,

(= Yal)0) = (— 1Y) + (— 1y j "o
0

y
- J (= 1 el y(Wdp < 0
which gives (4.7). ?
For n=sin (4.9), for 0 <y < y¥,

y
(= D'ofiy) =1+ (= l)sj gl (wdp < 1,
0

by virtue of (4.7), which gives (4.8).
LemMMA 4.2: Let R(y, 1) be the complex valued function

R(y,7) = § aly/(1 — ), (4.10)

n=0

defined for | Ret| < 1. And let y® be chosen as in Lemma 4.1. Then

R, <1, (4.11)
for 0 <y < Y9, for all real .
Proof : Define the functions ’
fo, =Y d0)y", (4.12)
n=0
d
- F,8) = [0, i8)/(, — i8). (4.13)
Then, from (4.10), we have
| R(y, i) |> = F(y, &)/ + £¥)*°. 4.14)

From (4.1) and (4.12),
f(OaT) =(1 - TZ)S,
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and so, with (4.14),
| R(O, &) > = 1. 4.15)

We now show that (y, £) <O0for0<y<y.
From (4.12) and (4.2) and (4.3),

af 2s 2s
oy 00 = Loh0)= T L aP0) — o) = <f0,7) - et
n=1

n=0 4.16)
Now, from (4.13), (4.16),

OF 0

S8 = 2Re{—a£<y, i€)1(y, — i&)}

= 2Re {[68)f (3, &) — (E*1 oy ()£ . —i8)) 2

= = 2Re (" oR0M 0, — )} = — 2500Re {(EF7* X oGI0X- i)

= 2@‘530)2 o)y ()(— DPHeFIERHSTD = 20§)(y) Z oS — g 1 (W — 1)E2™

n=0 m=s+1

= 2(— 1)°o5Xy) Z (= D", - (E*™ < 0, (4.17)

m=s+1

for0<y <y, by virtue of (4.6) and (4. 7). (4. 11) now follows from (4. 14), (4. 15)
and (4.17).

We now define the polynomials

1
B¥(x) = (— 1)"x"cx§f)(—), n=01,..., (4.18)
x
for real x > 0.
1 — .
~ Making the change of variables x = —, z = — ty in (4.1), we obtain
y
e™(l — x*z%) = Z BE(x)z", 4.19)
n=0

valid for all x >0 and forall z, s =1,2,....
We now define the family of rational functions { r, };» by

W= 3 B — X222y, (4.20)

n=0

for | Rez| < 1/x.
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From (4.19) it follows that there exists a constant C(x) such that
le™* —ri&)| < Cfx) 1§ 1>*, (4.21)
for all real €, with |E] < 1.
Also, from the definition (4.20) and Lemma 4.2, it follows that for given
s > 1, there exists an x®® > 0 such that
[r (8 <1, (4.22)
for all real &, for the choice x > x©.
The above results we summarize in the following theorem.

THEOREM 4.1: For each integer s = 1, there exists a set of polynomials
{ BY }us1 with real coefficients, with B having degree at most n,n = 0,1, .. .,
such that

K1 — X2 = 3 B,
n=0
for all real x, and for all z.

If for x > O, ry denotes the rational function
2s
rn(z) = 2 BYx)z"/(1 — x*2%), (4.20)
n=0

defined for | Rez| < 1/x, then there exists constants x'9 > 0 and Cy(x) such
that for X < x < oo,

|7 (i8) — e | < Cx) &>, Jor lEl <1, (4.21)
|r ()| < 1, Sor all real § .
A table of the polynomials B, n =0,1,...,2s, for s=1,...,5 along
with convenient choices of the parameter x' is given in the Appendix.

By virtue of the results (4.21), (4.22) and Theorem 3.1, the fully discrete
schemes defined by (3.1) using the rational functions r, of (4.20) yield the
stability (3.23 a) and the rate of convergence estimates (3.28), with v = 2s.

We now examine the computational steps involved in using the rational
functions r,. In this case (3.6) is equivalent to

S Th + x2k21 0 s(wptl
(=1 252 n+1
0 T, + x*k*1 )\ W3

Y (= DR T B Ws — kBS)+ 1 (x) W3]
J=0

and

Y (= 1P kP Tk — BS)- 1 (W]
1=0
with B9, =0, 8., =0,and BY =B, n=10,1,...,s
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The above equations thus uncouple, into
(Ty + XPWIH = Y (= WRPT;[BO0WE — KBS, cows],  (4.23)
1=0
(T, + XKWt = 3 (= DR T RBS WS — B - 0Wil, (4.29)
1=0

It is now easily seen that each of the above equations is equivalent to s
systems of linear algebraic equations. As an example, we outiine the computa-
tional steps for the case s = 2. From (4.23) and (4.24), for s = 2, we have

(Ty + K2X2IPWitt = TR[BRx)WT — kBP(x)W3]
~ kT, [kBR)WT — k2pP(x)W3] + BR(x)K* WY, (4.25)
(Ty + KEXEIPWEHt = T2RP(x)WS + kT, [BP()W} — kBP(x)W3]
+ k“B‘”(x)Wg — k3 Bgz’(x)W;'. (4.26)

@) x
Set 4, =T, + x2k21, and Z = W;H'l - B ( )

427 = T;?[(ﬁ‘z’( ) — Bm(’”) - ks‘f’(x)ws]

+ kTh[kZﬁg”(x)Ws - (B‘Z’(x) +uP ?)wl]

W7. Then (4.25) becomes

or

AhTh—lAhZ = Th[(ﬁ(z)( ) — B(Z)( )

>W" — kBP(x )W"]
B‘z’( )
+ k[kZB%Z’(x)WS - (Bm( ) + 2k ) ]

Now set Y = T, 'A4,Z. Then Y is obtained as the solution of

)
(X):I(le )_kB(IZ)(x)( n )

(2),
Pitx )} a(Wy,x),

(Y, 0) + x*k*a(Y, x) = |:B‘2’( ) —

+ KB (x)a( W3, x) — [B‘z)( ) + 2k
for all y € S,(€2). Z in turn is obtained as the solution of
(Z, %) + x*k*a(Z,x) = (Y,x),  XESHD).

B,

X

Finally
WI:+1 =27 +
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W5*! may be solved for similarly, the whole procedure thus requiring
4 linear systems to be solved at each time level.

For the above scheme (s = 2), we thus have the error bounds (3.28) with
v =4

4.2. Other Class i-I schemes

In [5] and [12] the following rational approximations are discussed. For
any real b > 0, it is shown that

n+1
“i= b , 4.27
L Sl ) o
for Rez > — 1/2b. Here P,(b) is a polynomial of degree n, given by
b"L{(1/b)
P(b) = ————, =0,1,...,
b) n+1) "

where L{" denotes the Laguerre polynomials of order 1, of degree n.
Using (4.27) the rational functions R, are defined by

R&rw-zP@Cjb) ,

Re(z) > — 1/2b, v = 2, where b > 0 will be a parameter chosen to give R,
certain desired properties. In particular, Nersett [12] shows that for v = 2, 3,
b = b,_,, where b,_, denotes the smallest zero of L2, R, satisfies (3.1)
and (3.2). For v = 4, with the choice of b as the next to smallest root of
LY, = L{), R, satisfies (3.1) and (3.2). See [12] for details.

Padé approximations.

The general entry of the Padé table is given by
?5.42) = N, (2)/D, [(2), where, p=20,4q=20,

and ( !
s (P+g-)!q!
N = — 1Yz
0= 2% cantg -
- pta—plpt
<o+ a!jlqg—n!

It is known that r, , satisfies (3.1) with v = p + g. (3.2) is satisfied by r, ,
for p>1and p—-2<q<p Infact |r, (iy)| = 1 for all real y. A partial
table is contained in [13].

Using the rational functions r, (z) in (3.6), we thus have estimates (3.28)
with v=p+g, p=12,...,p—2<g<p The estimate (3.28) for

and
D, (2) =
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p = g = 1 was prior to this work derived by the first author [3]. Crouzeix [8]
also derives error estimates for schemes defined by Padé approximations,
using different techniques for starting values.

5. NONSTANDARD METHODS

In this section, we point out that certain nonstandard Galerkin methods
proposed for approximating solutions of the associated Dirichlet problem,
provide discrete solution operators T}, which satisfy the conditions (2.5)-(2.7).
These methods thus fit into the framework of this study. In particular, the
three methods reviewed below have been proposed with the aim of relaxing
the restriction of having the subspaces Sj(Q) satisfy the boundary conditions.

5.1. Nitsche’s method [10]

Spaces Sy(Q) = H'(Q) of continuous piecewise polynomial functions of
degree r — 1, for r > 2 are used. The spaces are required to satisfy
xeisrrl(fm{ll V=2l +hilV = xilae }+ RV = X L2

+h7||V—X|\|H1(an)}<Chs“V“s 5.1

for 2 < s < r, for some constant C.

In addition, the following inverse property is required
oy
on
for all y e S}(Q), for some constant C,.

The nonstandard bilinear form Nj(.,.): H*Q) x Si(Q) — R! is used,

< Clh_%”X“Hl(m, (5.2)
L2(6Q)

Ni(@, V) = a(o, ) — j

o

((pa—‘l’+\ll?—(g—yh‘1(p\b)dc, (5.3)
on on

where a(. , .)is defined by (2.1 a), and v > 0, is a specific constant. Nitsche [10]
shows that with the assumption (5.2) and v chosen sufficiently large with
respect to C,, N}, is positive definite on Sj. The discrete solutions operator T,
is now defined b

’ NUT.f, 0 = (£ 1), (5.4)
for all y e Sy(Q), for given f e L*Q).

5.2. Nearly zero boundary conditions
A second nonstandard method due to Nitsche [11] uses the spaces Sj(Q2)
of 5.1, with the additional assumption of « nearly zero » boundary conditions

Hx ||L2(an) < Cohi [l x HH‘(Q) > (5.9
for all y € S}(Q), for some constant C,,.
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The bilinear form N)(y = 0) is used. With (5.2) and (5.5), and C,, C, suffi-
ciently small, N is positive definite on S}(Q). The discrete solution operator,
T,, is defined by

Nh(Thf’X)z(f’X)5 (5.6)

for all y € S;(Q), for given f e L%(Q).
5.3. A Lagrange multiplier method of Babuska

In [2] Babugka proposes the following method. Subspaces S(Q) = H}(Q)
are chosen satisfying

inf {{IV =xll+hllV = xllaa} < CEIVI,

XeS[(Q)
for all V € HY(Q), for some constant C, 1 < s <.

In addition subspaces S, (0Q) = H'(dQ) are employed, satisfying

‘e isf:&ﬂ){llé” A — % lasee) + HEIA — ||H—é(an)} < CW | A lgsoq) »
3

1
for all A e H%(0Q), for§ <s<r-— ok

Also an inverse property is required,
% e < CRTHIX 2@y, X € Sk (@9).

Babuska shows that for the ratio h/p sufficiently small, the form «f. , .)
is positive definite on the subspace

S,,={Ve SH(Q): J Vido=0, or all Le S,(00);.
aQ
The discrete solution operator T, in this case is defined by
aTf, ) =(f, %), (5.7
for all y €8, for given f e L%(0Q).

For proofs that the operators T, defined by (5.4), (5.6) and (5.7) satisfy
the properties (2.5)-(2.7) required in this work, see [1] and [6].

APPENDIX

The following is a tabulation of the polynomials { B(x) }2%,,fors =1, ...,5.
For each 5 > 1, a convenient choice of the parameter x' is as follows.

Examinating the details of Lemma 4.1, we have merély to consider the
behavior of the polynomials

PRy = (= 1yaf3p), n=12...s.
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We first note that form (4.2)-(4.5),
1
ngy)==s _'Eyz’ s = 1,

and hence P{ always has a real positive zero. In general, for n > 1, if P§)
has a real positive zero, we set Y to be the smallest positive zero otherw1se
we set Y = o0.

We then choose y¥ = min ¥ and x'9 = [y~ 1. The procedure is

clearly well defined and yxelds x“’ with 0<x" < oo.
Now since

P(s)( ) = (- 1)"y2"ﬁ(23;(£>, n=1,...,s,

the above procedure is equivalent to a root finding procedure on the poly-
nomials { B$) }5_, viz. For each n > 1if B) has a real positive zero, we set x
to be the largest positive zero of B%): otherwise we set x{¥ = 0. We now choose

x = max x®.
1€n<s

Hence, with an efficient root finding algorithm, the parameters x are
easily obtained from the polynomials { B%) }5_

The tables are constructed simply from the formulae (4.2)-(4.5), and the
relation (4. 18).

s=1,v=2

BSx) = 1
B0 =

1
B =5 - %

s=2,v=4

BRI = 1
HEE

BP(x) = = — 2x?

1
BP0 = — -+ 2¢°

1
B(ﬁ)(x) — 54_ — x4 x*
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s=3,v=6

BR(x) = 1
BPx) = — 1

1
BP(x) = 57 3x?

1
BPx) = — s 3x?

3
ﬁ(i)(x)=——-z-xz+3x‘
B(s’(x)=—L+—x2—3x4

120 2
1 3
By N - _ .22 4 6
P =207 T2 %
s=4,v=2_8§
BPx) = 1

BPx) = -1
1

BP(x) = 37 4x?

(4) ! 2
BPx) = — s + 4x
BP(x) = 1 2x% + 6x*

¢ 24

1 3

(x) = — — + —x2 — 6x*

PR =~ e 73 &

1 3
Bé(x) = — — = x? + 3x* — 4x°

720 8

BY(x) = — L + ix2 — x* + 4x°
? 5040 = 40

BH(x) = ———— — —1—x2 + lx“ —2x% + x®
8 40320 80 4

s=5v=10
B =1
px) = — 1

1
BRx) = 37 5x?

1
B3(x) = — P + 5x?
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—

=}

10

vol

s=5v=10 ﬁ
BP(x) = 512 - ;xz + 10x*
BEx) = — -1%) + %xl — 10x*
BY(x) = a;—O - szz + 5x* — 10x®
Bx) = - L + L —x* + 10x®
5040 24 3
BRx) = w0530~ mxz + %x“ — 5x° + 5x8
B0 = — 3621880 * F)%%xz - Tlix4 * gxs -5
1809 = 3638800 ~ §olﬁxz M ;ix4 Xt ;xa oA
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