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SUPERCONVERGENCE OF THE GRADIENT
OF FINITE ELEMENT SOLUTIONS (*)

by Pierre LesainT (1) and Milos ZLaMAL (%)

Communiqué par P -A RAVIART

Abstract — Superconvergence of the gradient of approximate solutions to second order elliptic
equations 15 analysed and justified for a large class of curved 1soparametric quadrilateral elements

Résumé — On analyse et on justifie la superconvergence du gradient des solutions approchées
obtenues lors de la résolution d’équations elliptiques du second ordre & Uaide d’éléments
1soparamétriques courbes de type quadrilatéral, de plusieurs types courants

1. INTRODUCTION

Superconvergence of the gradient of finite element solutions was observed by
engineers when curved isoparametric linear and quadratic elements of the
Serendipity family were applied for stress computation at the so called Gaussian
points (see references introduced in [10]). In [9] and [10] the second of the
authors gave a justification of this phenoméﬁa}l for some cases. [10] contains a
complete analysis for quadratic elements of the Serendipity family. In this paper
we construct a large class of curved isoparametric quadrilateral elements of an
arbitrary degree n in each variable. We take a Dirichlet problem to a second
order elliptic equation as a model problem and we prove superconvergence of the
gradient at Gauss-Legendre points (called Gaussian points in the above
references). A relatively highest improvement of the convergence rate is achieved
when linear elements are used. The average convergence rate of the gradient
1s O (h) whereas at Gauss-Legendre points (in case of linear elements these are
centroids of the quadrilaterals) the rate is O (h?). The best numerical results were
won when computation of the element stiffness matrices and of the right-hand
sides was carried out by the Gauss-Legendre product 1 x 1 formula even if
superconvergence is true for other formulas, too (see theorem 4.1).

(*) Regu mai 1978
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(*) Computing Center of the Techmcal Umversity in Brno, Brno, Czechoslovakia
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140 P LESAINT,M ZLAMAL

There 1s a imitation of our results We need that the finite element partitions
be n-strongly regular, in particular that (2 6) be true A sufficient condition
for (2 6)(even if not necessary, seeremark 21n [10])1s that the elements are close
to parallelograms Numerical results indicate convincingly in case of hinear
elements the same what indicated numerical results won by quadratic elements
(see [10], section 6) superconvergence does not set in if the condition (2 6)1s not
satisfied Nevertheless we think that superconvergence of the gradient has a
considerable practical importance, especially when linear elements are used
mside the given domain and quadratic elements are applied along the boundary
if necessary The inner elements can often be chosen to be almost parallelograms
whereas along the boundary a better approximation by quadratic elements
guarantees the convergence rate O (h?) even if the elements are arbitrary convex
quadrilaterals Computing the gradient at Gauss-Legendre points and
interpolating 1t to internal nodes (in a similar way as proposed in [10], section 6)
we can expect the convergence rate O (h?) at all nodes The same situation 1s
expected 1n three dimensions

2. PRELIMINARIES

Let Q be a bounded domain 1n R? with a sufficiently smooth boundary ' We
consider the Dirichlet problem

Au=f(x), VxeQ, u|.=0,

29 ou 21
Au=— . le é}—l[al,(x)é—%]

here x=(x;, x,) Let us remark at this point that we could add a term ayu
with a5 =0 1n the defimition (2 1) of the operator Au All that follows applies
equally well to this case, with a straightforward supplementary analysis
To (2 1) there 1s associated the bilinear functional

2 ou ov
a(u, v)= a,,— ——dx 22
J;, . Jzzl Yox, 0x,
We assume that the coefficients are Lipschitz continuous on Q and that
2 2
alj(x)=a]l(x) Z au(x)éz&u%fxo Z §12'
1 g=1 t—1
VxeQ, oag=const >0
Hence a(u, v) 1s H} (Q)-elliptic
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GRADIENT OF FINITE ELEMENT SOLUTIONS 141
The weak solution of the problem (2. 1) is a function u € H § (Q) which satisfies
a(u, v)=(f, ) q, Vve H§(Q). (2.4)
We are using the usual notation for the Sobolev spaces
H"(Q)={ueL*Q), D*uel?*@),V|a|<m}, —m=0,1,...
Hy Q)= {ueH (Q), u|=0}.
The norm in H™(Q) is denoted by ||.||,, o and defined by
[ulln o= {;mIZSMIID“uI1iam}”2:
the inner product in H™(Q) is denoted by (., .),, o- Often we shall use the

seminorms I“lm o= {| z “Dun“iZ(m}I/Z’

o =m
2 1/2
[u]m Q= { } .
0Q

To construct the finite element space V), in which the approximate solution will
lie let us cover Q by curved 1soparametric quadrilateral elements defined as
follows: We consider the points {s;, s;}5 -0 where so=—1, s,=1 and
s(k=1, ..., n—1)arezeros of P, (s)(by P, we denote the Legendre polynomial
of degree n). The numbers s, (k=0, ..., n) are points of Lobatto formulas
(see [4]) and they belong to the interval [— 1, 1]. We call the points { s, s; }% =0
nodes of the square K : —1<§,<1, i=1, 2. We also use the notation 4, for the
nodes so that {4, }%*{" is the set of all nodes. We denote by P(n) the class of
polynomials of degree <n in the variables &;, £, and by Q(n) the class of
polynomials of degree <n in each variable £; and &,. Now any polynomial &
from @ (n) 1s uniquely determined by its values v, at 4,. Let namely #(4,)=0,
j=1, ..., (n+1)*. The function % (&, s,) is a polynomial of degree not greater
than n and it vanishes for £, =s,, k=0, ..., n. Therefore # (&, s;) =0. Similarly

2 o"u

o"u "u
0x%

m
0x]

0Q

we find 4(s;, £,)=0. Therefore 8(£,, &,) is divisible by ]_[ (E1—s5,)(Ey—s,). This
1=0

is a polynomual of degree n+ 1 in each variable, hence © must vanish identically
which proves the unisolvability of the Lagrange interpolation problem 4 (d,)=v,,
j=1, ..., (n+1)* Let N,(&,, £,)eQ(n) be basic functions, i.e. N,(a,)=07,.
Consider (n+ 1)* points a,=(x}, x}) in the x,, x,-plane lying in Q or on I" and
the mapping Fy : K — R? defined by

(n+1)*

x,=x: (&, &) = Z X{NJ(E1’§2)’ i=1, 2. (2.5)

J=1
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142 P. LESAINT,M. ZLAMAL

If (2. 5) maps the square K one-to-one on a closed domain K lying in the x;, X,-
plane we call K a curved quadrilateral element. The points a, are nodes of this
element.

We “cover Q” by such elements and we suppose that every partition of Q by
these elements is a n-strongly regular partition. By a k-strongly regular partition
we understand a partition with the following properties:

(a) for every element the mapping (2.5) is a C**!-diffeomorphism [in
particular, (2.5) is invertible];

(b) to every element K there is associated a positive parameter h, and the
mapping (2.5) is such that on K:

|D*xX €y, &) Se bl V]e|Sk+1, i=1,2, (2.6)
ez hg S| k@ €| Seahi. 2.7

Here #,(&;, &,) 1s the Jacobian of (2.6) and c,, ¢, are positive constants
independent on hy as well as on the chosen partition (they depend on n which we
do not denote). If h is defined by

h= max hy,
K

then the constants ¢y, ¢, are independent of A, too.

k-strongly regular partitions were introduced in [10] and we refer the reader to
remarks 1, 2, 3in [10]. In particular, we may assume that for every element K:

FrE1,8)>0,  VEek. (2.8)

We will consider a family of n-strongly regular partitions of Qsuch that h — 0.
We denote by Q;, the interior of the union of all elements of the given partition (in
general, Q,#Q); I';, is its boundary.

The functions v from the finite element space V}, are defined piecewise

(n+1)?

v(xy, xz):ﬁ[éf(xl, X2), §12<(x1’ x2)], 0(&y, &)= Z v, N, (&4, &2). 2.9

=1

Here &, =£X(x,, x2), i=1, 2, is the inverse mapping to (2.5) and the values v,
of v at nodes lying on I'" are equal zero, hence it is easy to see that ”In=0-
Evidently,

VicCQy),  VicHJ(Qy).

Let us notice the special cases of V;, corresponding to n=1, 2, 3. If n=1Q,
consists of straight quadrilaterals. The nodes are vertices of these quadrilaterals

R.A LR.O. Analyse numéngue/Numencal Analysis



GRADIENT OF FINITE ELEMENT SOLUTIONS 143

and the functions  are bilinear polynomials. If n=2 the square K has 9 nodes.
These are vertices, midpoints of sides and the center of K. The polynomials © are
biquadratic polynomials with 9° of freedom (in [10] we considered an element
with 8° of freedom). If n=3 the element has 16° of freedom. The nodes are points
{s,,, s,},f,,=o with s, = —\/5/5, sz=\/§/5. The polynomials # are bicubic
polynomials.

To define the approximate solution of the problem (2.4) we proceed in a
similar way as in [3]. We extend the solution u and the coefficients g,, according
to Calderon’s extension theorem (see Necas [7], p. 80) to R? and denote this

~

extensions by # and a,,, respectively. We also extend f as follows:

2 6 [~ ou
f=- X, —<a—>

Denote by a(w, v) the bilinear functional

~ 2 . 0w 0
a(w, v)= Y a war

lj— A
o ni=1 0x, 0x,

Due to v |, =0 we get for any ve ¥, by Green’s theorem a (u, v)=(7, v), o, For
simplicity of writing we will leave out the sign ~ and write

a(u, v)=(f, U)o,n,,: VoeV,,

2 ~
a(n, v):J Y a,,j—u 2 ax. (2.10)
—J% LJ=1 X, axT* -

This will not cause any confusion in the estimates carried out later. All constants
will depend on ||u#]|,,5 . This norm is bounded, according to Calderon’s
theorem, by ||u/|,., o If the extensions of the coefficients are continuous the
matrix {a,(x)}2,-, is positive definite also in a greater domain Q° SQ.
As Q,=Q° for 4 sufficiently small it holds under these conditions

2

S a0 zu Y B VxeQ, @.11)

,1=1

where o is a positive constant independent on h.

In general, numerical integration is the usual and only possible way how to
compute the bilinear functional a(u, v). To this end let us consider quadrature
formulas (@) for the square K of the form

[@)=Y 4,¢(0) (2.12)

r

vol. 13, n° 2, 1979



144 P LESAINT,M ZLAMAL

We make the assumption that the points Q, of the formula belong to the interior
of K or are nodes of K and that the coefficients A, are positive (the last
assumption 1s not necessary but 1t yields simpler proofs) Any such formula
induces a quadrature formula I, (¢) for the element K of the form

IK ((p)zz Ar(P (Qr)r Ar=/ir/K (Qr)’ Qr=FK (Qr)

and

I (@=1(F« ) 2 13)
Here we use the following notation [1n agreement with the notation m (2 9)] for
any function g defined on Q, §(&;, &,)=g[x¥ (€., &) x5 (&, &)l on every K

Expressing a (w, v) and ( f, v), o, as sums of mtegrals over the elements K we get
the approximate values a, (w, v) and ( f, v), of a(w, v)and ( f, v), ,, Tespectively

2 ou Ov Suw v
,v)=Y 1 ) 1 a,
a2 ; 1<<”Z=14,ax ) Z (jKuzl ) ox, 5";)

(2 149
U)hzz IK(fv)zzf(ijé)

Our assumption concerning the points 0, guarantees that, at least for h
sufficiently small, we do not need for the computation of a,(w, v) and (f, v),

values of data at other points than at points from Q Now the approximate
solution u, € V,, 1s defined formally by

ah(u}u (f )lv Vve Vh (2 15)

All quadrature formulas considered in the sequel are such that a,(v, v) 15 a
positive definite quadratic form on ¥, This implies existence and unicity of u,

3. SOME LEMMAS

In what follows we denote by C a generic positive constant not necessarily the
same 1 any two places which does not depend on hy, h and on some functions (1t
depends on n) It will be clear from the context of which functions the constant 1s
independent

Lemma 3 1 We have for any teQ(n)
8], ¢ =C[o]. e 0=1<y 3 1)

max |D*8|<C|0|, .  |2]|20 32
K

R AIR O Analyse numerique/Numerical Analysis



GRADIENT OF FINITE ELEMENT SOLUTIONS 145

Lemma 3 2 We have for any ge H' ()
9], kSChc gl & 0ZiZn+1 (3 3)

LemMMmA 3 3 (special case of Bramble-Hilbert lemma on linear functionals,
see [1]) Let &/ be any subset of the set of multi-indices of length k+1 which
contains the wdices of the form (k+1, 0), (0, k+1) The set of polynomials such
that D*p=0 for all o€ o will be denoted by P, Let f be a continuous hnear
functional on H**1(Q) satisfying f(p)=0, VpeP, Then there 1s a
constant ¢=c(k, Q) such that

f@[=ClflEia XD 0o YoeH*"'(Q) G4

Two extreme cases of </ are the set of all multundices of length k+ 1 and the set
(k+1,0) (0 k+1) Then P_,=P (k) and P_,=Q (k), respectwely and (3 4) has
the form

lf(v)l§0“f”3‘+m|0|k+1g 395
VveH* 1 (Q)
|f@] Sl f 0 albh o 3 6)

The Bramble-Hilbert lemma allows to estimate the mterpolation error for a

given function The interpolate @, of a function ¢ defined on K 1s the
(n+1)?

polynomial Y, @,N,(&,, &,) where ¢, are values of ¢ at the nodes 4, of K The
=1

nterpolate g, of a function g defined on Q, 1s the function which 1s on each
element K C§,, of the form (2 9) with ¢ interpolating g

Lemmva 3 4 If e H" 1 (K) then

|6—¢/l, xSCl@luss x»  0Zy=n+1, 37
Also

|I(f’—(f)l||w;(R)§c[¢’].1+1K Yy n>1, } 3 7
f n=1

”(f’—(f)zuwg(k)éc{[(f’]z x+ [0l K}

The proofs of lemmas 3 1, 3 2 and 3 4 differ little from proofs of the
correspond lemmas of [10] with one difference To prove the second part
of (3 7') one must use lemma 3 7 introduced later

We shall need estimates of the error functional E (¢)= J ¢ dE—I(¢) Such
K
estimates follow immediately from (3 6)

vol 13 n® 2 1979



146 P LESAINT,M ZLAMAL

Lemma 3 5 Let I(¢) be a formula which integrates exactly all polynomials
from Q (k) If e H***(K) then

|E(®)| =Cl¢)ys1 ¢ G 8

LemMA 3 6 Let the finite element partitions be O-strongly regular and the
formula I(®) be either the Lobatto product n+1 xn+1 formula or a formula
integrating exactly the class Q (2n) Then{a,(v, v)}*'*1s anormon V, equvalent
uniformly with respect to h to the norm |v|1 o, 1€ there 1s a constant ¢,
independent of h such that

i 1o o Sa 0=cslofa, Ve G 9

for h suffiently small

Proof From positivity of the coefficients 4, (Lobatto formulas have positive
cocfficients) and from (2 11) we casily get (see part b) of the proof of lemma 3 6
n [10])

N - b \? o \?
(v, )2CY 1), ¢=(a—a§«l) +(%> (3 10)
(3 9) follows 1f we prove
fzc|slf « (3 11

If I integrates exactly the class O (2n) then I ()=|5|? ¢ So let I be the Lobatto
formula The term ||, 15 a norm over the fimte dimensional factor
space 0 (2n)/P(0) When we show that from [({)=0 1t follows #=const,
{I(¥)]*/2 1s also such a norm and (3 9) 1s true

From I ({)=0 1t follows

(s s)
ok,

As 06/0€, 1s a polynomual of £, of degree not greater than n—1 1t follows

06 (s, s1) _
08,
Further, 06 (§,, ,)/0€, 1s a polynomual of £, of degree not greater than n Asit

vanishes for £,=s5;,, =0, ,n 1t follows 85/65,=0 on K Similarly,
0v/0¢,=0 on K, thus =const

0 for §&,=s, k=0, , N

0 for &,e[-1,1]

Remark 1 The Gauss-Legendre product nxn formula 1s exact for all
polynomials from Q(2n—1) as 1s the Lobatto product n+1xn—1 formula

R AIR O Analyse numenique/Numerical Analysis



GRADIENT OF FINITE ELEMENT SOLUTIONS 147

Gauss-Legendre formula has less points, namely n?, and this 1s why
{af (v, v)}*? where ajf (v, v) 15 the approximate value of a(v, v) computed by
means of Gauss-Legendre n x n formula s not equivalent uniformly with respect
to htothenorm |v|, , It was noticed by Girault [5]for n=1 Nevertheless, 1t 1s
a norm on V,, too To prove it we remark first that (3 10) where Gauss-
Legendre n x n formula I* (¢) stands for I (¢)1s again vahd Hence 1t 1s sufficient

to prove that from 3 *)=0 1t follows v=0 on Q, Denote by
K

te(k=1, , n) the zeros of P, The points of the formula I* are {(t,,, t,)};(‘, =1

As 06(&,, t))/0E, vanishes for &, =t;, k=1, ,n and 1t 1s a polynomial of

degree not greater than n—1 1t vanishes 1dentically As 06 (€,, £,)/08; 1s a
polynomial of the variable &, of degree not greater than n vanishing for

E,=t,(l=1, ,n) 1t must be of the form a(§,) [](,—1t), hence
1=1

b=a* () f[l(az— £) Sumilarly, 5= p* (&) ["[1(&1 1), thus
wE)  PE)

Ijl(&l—t,) ["Il(ﬁz—a)

which can be true only if these ratios are constant It follows
b=c[] (&1—t)(E2—1t) c=const Take first a boundary element & vanshes
1=1

on a part of the boundary of K, therefore c=0 and =0. We can repeat the
reasoning for neighbors of boundary elements and prove successively that v=0
on Q,

Lemma 3 7 Let f be a continuous hnear functional on H**'*1(Q)
satisfying f (p)=0, VpeP(k) and YpeQ(k), respectively Then there is a
constant c=c(k, r, Q) such that

k+r+1

|f(u)|§c||f“;ck+r+lﬂ =§H|”|sn (3 12)
and Yoe H**r+1(Q),
k+r+1
FCIEL P o G 13

respectiely

The proofis given 1n [6] (lemma 3, p 8), nevertheless we shall repeat 1t We shall
need the following

vol 13 n° 2 1979



148 P LESAINT,M ZLAMAL

Tartar’s lemma Let E be a Banach space and E,, E, be two normed spaces
We consider two linear continuous operators 4,€ £ (E, E,), 1=1, 2 such that

() v~ || Ay v||g, +1|| A2 0], 15 @ norm on E equivalent to |||,

(1) 4, 1s compact

Let P be the kernel of the operator A, Then the mapping v — || A, vz, 15 2
norm on the quotient space E/P equivalent to the usual quotient norm

wf||v+p|

peP

Tartar’s lemma (private communication) was not published A different proof
of a slightly more general lemma can be found in Brezzi, Marini [2] (p 25,
lemma 4 1)

Proof of lemma 3 7 We apply Tartar’s lemma with E=H**""1(Q),
E,=H"(Q), E,=(L*(Q))" where N denotes the number of all derivatives of
order s where k+1=<s<k+r+1 A,1s the identity operator and the
operator A, 1s defined as follows for each function ve H**"*1(Q) 4, v denotes
the set of all derivatives of v of order s, k+1=<s<k+r+1 A, 1s a compact
operator from H**"*1(Q) into H*(Q) The kernel of A, 1s the set P(k) The

norm on E 1s equvalent to |4, vl +]||4,v||;, By Tartar’s lemma the
k+r+1

semmorm Y. |v|,o 15 a norm on the quotient space H**"*!(Q)/P (k)
r—h+1

equivalent to the usual quoticnt norm 1nf |[v+p ||, 41 o
peP(h)

Now let fe(H**"**(Q))* be such that f(p)=0, VpeP(k) We have
f@)=f@w+p), VpeP(k), hence

k+r+1
O 18s aint [0+ pllesrs o Sl AlEaa 3 ol
peP(k) s—k+1

The proof of (3 13) 1s quite similar

4. LOBATTO AND MORE ACCURATE FORMULAS

We 1ntroduce the norm

|v|p={d} @ v)}'?
S T~
ov

e )

B n? - . /a; . 2 /av\ - 2T 1/2
—{; P fK(Q,)[<a—xl(Qr)> +<5X—Z<Q,)> ]} 41

R AIR O Analyse numerique/Numerical Analysis
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where d (v, v) 1s the quadratic functional associated to the Laplace operator

o)+

and df(v,v) 1s 1ts approximate value computed by means of Gauss-
Legendre n xn formula [*(¢) According to remark 1|v]|, 1s a norm on ¥,
Notice that the sum appearing on the right-hand side of (4 1) 1s a sum over
Gauss-Legendre points, 1 ¢ over all points which are maps of the points
{(tk, )}k =1 We will denote the set of all Gauss-Legendre pomts by G
The space Q (n) contains the space P (n), however 1t does not contain P (n+ 1)

Therefore (see Ciarlet and Raviart [3]) the best estimate of the error u —u, 1n the
H'-norm 1s

“u—“hlllﬂﬁﬂ,§Chn 42

We shall prove that | u—u, |, < Ch"*" and this s the reason that we speak about
superconvergence Infact,let us denote by N, the number of all Gauss-Legendre
points and by e(P) the error of the gradient

o(P) [( i(n_;f:_)@ )2 +(i(1;;t:) (P) )2]”2

mesQ, =Y J dx=Y J FIdESCh? Ny,
K K K

K

We have

therefore N;=Ch™2 By the Cauchy equality we prove eas@ under the
additional assumption
h _
ng), 9 =const>0, h=min hy, (4 3)
K

that
NG' Y e(P)ZClu—ul, 4 9
PeG
Hence 1t follows that the arithmetic mean of errors of the gradient at Gauss-
Legendre points 1s O (h"* 1)

In this section we prove superconvergence in case that the evaluation of
a(w, v) and (f, v)yq 15 done either exactly or there 1s used an integration
formula I which integrates exactly the class O (2n) or I 1s the Lobatto product
n+1xn+1 formula [this mtegrates exactly 0(2n—1) but not §(2n)] We
assume that the finite element partitions are n-strongly regular Numerical
results mdicate convincingly (see also [10], section 6) that superconvergence

vol 13 n° 2 1979



150 P LESAINT,M ZLAMAL

does not set 1n 1f the condition (2 6)1s not satisfied Condition (2 6) with k=n1s
Just characteristic for n-strong regularity

We shall need one more property of the finite element partitions, namely that
for any two adjacent elements K, K’ we have
L Ox5 oxy xK oxX

I ey 6&1 G, |SCh mImL2 @9

This condition 1s satisfied if e g the meshes consist of elements which differ little
from parallelograms having sides nearly parallel to sides of its neighbors We
refer the reader to remark 6 in [10]

THEOREM 4 1 Let the finite element partitions be n-strongly regular and
satisfy (4 5) Let the functional a(w, v) and (f, v), o, be evaluated erther exactly or
by means of a formula which integrates exactly the class Q (2 n) or by means of the
Lobatto product n+1xn+1 formula Finally, let the solution u belong to
H"*3(Q) and, in case of numerical integration, let the coefficients a,, belong to
C"*2(Q) Then we have

lu—up|sSCH* uf|is0 (46
Proof Subtracting a, (u;, v) (4,;1s the interpolate of u) from both sides of (2 15)
we have

an(up—uy, V)=(f, V) —an(u;, v)=(f, Vhh—an(u, v)+a,(u—u, v)
Hence
a, (u;—uy, v)=a, W, v)—(Au,v),+a,(u,—u, v), YveV, 47

(4 7)1s true also 1n case of exact evaluation 1f instead of a;, (4, v) and (Au v), we
set a(u, v) and (A u, v), o, Suppose that we prove

|ah(u' v)—(Au, U)h|§Ch"H“““n+3n|vlln,, } VoeV, 4 8
|an(u—uy, )| SCR"* | u||ps2alv]i o 49

Putting v=u;—u, €V, 1n (4 7) and using (3 9) we get
I”l—'uhlln,,§Chn+l”””nHQ 4 10

The quadratic functional df (v, v) =| v |,f satisfies also an iequality of the form
B39,1¢

citlv|io Sd (v, v)Sca|v|?o,  VveV,

Therefore by (4 10)
Iul—uh|h§Ch"+l||u||n+3n @ 11

R AIR O Analyse numerique/Numerical Analysis
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It is sufficient to prove
= [y SCH* ||z (4.12)

and (4. 6) follows by the triangle inequality.

Proofof (4.8):1f a(u, v) and (A u, v), o, =(f, v), o, are evaluated exactly we have
nothing to prove. So let at this moment [ denote any quadrature formula of the
form(2.12)and let I be theinduced formula (2.13). Using the symmetry a,,=a,
we have

2 ou ov 0 ou
a,(u, v)—(Au, v), =;IK( Zﬂ[augg 5x—l+5—£<a,ja—xl>vj|>. (4.13)

LJ

We estimate only the sum of terms with i=j=1. The other three sums can be
estimated in the same way. Setting oc=ag(0u/0x;) we have to estimate
Y1 ((8/0x1)[o v]). Using the transformation (2.9) we get

K

] 0 . oxE\ . o . 0xK
>E’K<a:[“”]) =‘é{’<a["“"aa)"(a—a;[‘”]a)}

L 0 [ oxk }) A< Gl [3x'§ ) :D
=N1I| —| =60 |)-YI| =—| ==—=60|). (4.14
+ (aal [ % )2 &, | a, )
Again we restrict ourselves to estimation of the first sum which appears on the
right-hand side of (4.14), i. e. :

x5 .
S=21 (aal[aaz"”])' @1

First let I be a formula which integrates exactly the class Q (2n). Setting

« 0x5 . ox§5 . oa

=—2&=—"@G;,;,—, 4.16
a&zc 0%, auaxl ( )

we have

RN Gvay 2
S= ZI<3§1 (2 )—;{I<5§1 ZKU]>
1
—j_ll(fKﬁ)(l,?';2)-—(2“5)(—1,52)]61&2}-
We could subtract the sum Y j ' [(Z%D) (1, &) —(2%0) (—1, &,)]dE, from S
K -1

because it is equal to zero. In fact, in this sum they appear either integrals over
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element sides which lie on I'j, and as ”‘1',=0 these are equal to zero Or they
appear couples of integrals over a common side of two adjacent elements taken
1n opposite directions with integrands which are the same The functions ¢ as
well as v assume namely the same values on such side (they are continuous on Q,),
also x5 and hence dx% /9€, and consequently the function z defined on each K by
z, =zX assume the same values on such side

Set

-1

F(, ﬁ)=f<azlliﬁ])—j [ED) (1, &)= @D (=1, EldE,, (4 17)

so that
S=Y F(£~, 9) 4 18)

X
LemMA 4 1 We have for ze H""2(K)

|F(z, 0)|=C{|8], x[Busr x+ 8]0 x[usz k) (4 19)
Proof We express F (z, ©) as follows

FGE 0)=F@E 6—9)+F(, 89, °=5(0,0) (4 20)

Consider first n>1 %— F(2, 5—°) 1s a continuous hnear functional on
H"*1(K) bounded by

|F @, 6—0%)|=C||s—4°

|1K“Z“n+1K§C|U|1K“Z n+1 K

If 2e @ (n) then 260 (2n) and
P& i—i%)= L s Eo—d

—J_l[(i(i—ﬁo))(l ) —(E@E—3")(—1, &)1 dE, =0

According to (3 6)
|F(2, 1}_60)|§C|6|1K[2]n+1 R» n>1 (4 21)

Further, 2 — F (%, ©°) 1s a continuous hinear functional on H" "2 (K) bounded by

C||3llo || £]|.s2x f n=1 By the same argument 1t follows
F(2, °=0,V2eQ(n+1) Therefore by (3 6)

|F(z 0%)|=C

0|0 k[Zlus2 k- nz1 4 22)

Forn>1(4 19)follows from (4 20),(4 21)and (4 22) Ifn=1then F (, { —°)1s
a continuous linear functional on H*(K) bounded by C|8|, ||Z]|s« and
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vanishing for Z2e Q (1). We use (3.13) and get
|Fz, 6—0%)|2C|o], ¢ {[Elar+[Ehsg}- (4.23)

For n=1 (4.19) follows from (4.20), (4.22), (4.23) and (3.1).

Now let the integration formula be the Lobatto product n+1 xn+ 1 formula
denoted by [°. As before we must estimate

s=p (g5, °0)

=z{f°(az ) (T E D, &)~ E D) (1, &2)]}

K
Here J° is the Lobatto n+ 1 formula over the interval[— 1, 1]. We could subtract
the sum Y J° ([(2* ) (1, &,) — (25 6) (— 1, £,)]) because it is equal to zero from the
K

same reason as above. Set

Fe, ﬁ)=f°<%[2ﬁ]>—j°((2ﬁ)(1, &2)—(E0)(—1, &2)). (4.24)
1

Again (4.18) holds.
LemMa 4.2: (4.19) is true also for F defined by (4.24).

Proof: The arguments are the same or similar to those above. Let us only show
that

F(i 6-19=0, Vzeld(n). 4.25)

Py

J° is of the form J°(¢)= Y m@(s)- Then I°(@)= Y Mm@ (se, s). If
k=0 k,1=0

2e((n) the derivative (8/0¢,)(20) is a polynomial of degree <2n—1 of the
variable &,. As J° integrates exactly such polynomials we have

sof O 3 c -
() Ei (Lol

n ~ Ao a
=1 OHzJ <(é—&,—1[21)>(§1151)>

2
n (1 d
= l;) ulj (E[ZDO(&L s1)d&y

n

Z mlE0) (1, s)—(E)(—1, s)l =T°([(ED) (1, &) —(ED)(—1, Ey))),

which proves (4.25).
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To finish the proof of (4.8) we return to (4.18) where F is defined either
by (4.17) or by (4.24). In both cases (4.19) is true. Thus by (3.3):

SISCY o] ks b oo 0z g} (426
K
Denote
. oxX 5 b oil
- aaz 11> - axl s
then 2X=3& . Using Leibnitz formula we obtain
n+1
[2°] [0],41-, &- (4.27)
1= 5(‘,] L*(K) sk
Using again Leibnitz formula we get
“gﬁ é i ar+1 K 61—1-6:111
5&, L*(R) r=0 aéz 6&1 L= (R) 6&} "l (K)

<C Zoh;”h;yuauuw. L ZCHS |agy || =0 (Y.

In the last inequality we used the fact that

+1
0" XZ

Chr+1
08,085 | —
if r<n and
D*xK=0 if a;=2n+1 or ay=n+l. (4.28)
From (4.27) and (3.3) it follows
[EK]n+l KéCh"KH “WHn+1 K§Ch'1l<+1 “““n+3 K- (4.29)
In the same way we prove
[2K]n+2 KéChnK+2||ull)l+3 K- (430)

As a matter of fact, in addition to (3.3) we must use the estimate

an+2 n
H E1 987 ||o

SCH ulla k0 @a=0,1 or ay=0,1 (4.3)

which follows from (3.3) and (4.28).
From (4.26), (4.29) and (4.30) we have

lS| éC;h;?-leHl Knu”n+3 K§Chn+1”U“1 Q

u Hn+3, Q-

R ALR O Analyse numérique/Numerical Analysis



GRADIENT OF FINITE ELEMENT SOLUTIONS 155
u is, in fact, the extension #, and by Calderon’s theorem

|n+3 Qkécwuunm Q-

Further v|rk=0, therefore from Friedrich’s inequality (applied to a fixed

domain Q,>Q, so that the constant of the inequality does not depend on A) it
follows ||v||; o, £C|v]|, o, hence

|1 SCH* fullus alols

il

which proves (4.8).

Proof of (4.9): 1) Set ® =u —u,. Let I (@) denote either the integration formula
(i.e. a formula which ntegrates exactly Q(2n) or the Lobatto product

n+1xn+1 formula) or let f(¢)= j @ d&. Using (2.5) we get

K

2 0o v - o0 56
_ W\ _sif 3 p BN 45
a (@, v) E,;IK(.Zla”ax 6x> ; <L,JZ=1 Y 0E, 5@) 32

<a,,(03, v)=a(o, v) in case [ ((f))=J (T)d&). The coefficients b,, are easy to
I3

calculate by means of the coefficients a,, and the functions x; (&, ,). The
explicit formulas are given m [10], equation (3.15). Denote by b the
values b,,(0, 0). Then

o6 0b 2 o ob
a (@, v)= Z Zb <5§l 6é1> +,Z Y1 ([b,, bl 5 5&) (4.33)

L, y=1 ,!=1 K

Asa, are Lipschitz continuous and x* satisfy (2. 6) for | a | <2 we easily estimate
that b, —b%=0(hg) on each element K. By (3.7) || @||p: =, = Cldl,y, &

if n>1. As I is of the form (2.12) or [ ()= J @ dE we get
I3

2

= 6(0 0b
L= 1 ;I< y= 0] 08, aE_,J> CZh [,:1 al8] 1%
SCY R ullyar k|0]s xSCH |t]lnss 2| v]1 - 4.34)
K

For n=1 we get

2 . o0 0b
I(b,—b°
X, LTs—bidar o

2) It remains to estimate the first sum in (4.33). We must investigate
separately the case i=j and i#j. Consider the first case and take i=j=1. The

<CR | ull; o|v], q (4.34)
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functional f(@#)=1I ((0®/0&,) (66/0E,)) 1s lmear and bounded on
H"*2(K) by Cl ]1 K”“”nn ¢ [t follows from (3 7) and (3 2)]
It vamishes for #eQ(n) because ®=0 It also vamshes for #=Eg4*!
because dd/0¢, =0 If a=¢%"* then by inspection we find

ﬁ/=§'i+1 -

i—1P, (&)

where ¢, 1s the coefficient at &7 of the Legendre polynomial P, (£;) Hence
0B 1

e _ 2_
k& ne, d&, [(g

Evidently, (00/6¢,)(06/0&,)€ O (2n—1), therefore

o= |5 2

As 06/0E; 1s a polynomial of degree <n—1 1n &; and integration with respect
to &, 1s done over the interval [—1, 1], f (i) vanishes, too So f (%) vanmishes for

aeQm+ {11, g5} =0 (m+1)— {p=E1"1EF, 1Sa, <n+1}
—{p=88"" 1S, Sn+1]

) 4 35)

By (3 4)
rolse{| T+,
- aaaaa - Z&Tu ox}m”* 39
and by (4 31), (3 3)
| f@| Ch | ullss x|v & 4 37)

The same bound 1s true for i1=j=2 Hence

3 ver(2 )

SCY h  |ufl ez x|0]s xSCH ™ |u
K

n+2 QIU|1 Q (4 38)

3) Consider the case 1=1, j=2 and first let I be the formula which mte-

grates exactly 0(2n) or let I(9)= j @dt Denote by L(ii) the func-
K
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tional  [((0®/0&,)(05/0¢,)) We have to estimate S= Y 6%, L(%)
K
Express S as follows

S=Yb%L{L@) -H@} + Y63 H@),
K K

o[t e Y
H (@)= J e, V=80, Dlde, @ 39

Lo ), .
_j—lT[u(ﬁl—l)—v(O, — 1)]dE,

We begin with estimation of 2 b?, H (1) In this sum they appear either integrals
K

over element sides which lie on I', and these integrals vanish Or they appear
couples of integrals over a common side of two adjacent elements taken in
opposite directions with integrands which are the same The factors b?, need not
be the same, however their difference 1s O (h) on basis of (4 5) (see remark 6
1n [10]) Therefore using the mequality

| wausclolte  voer'®

we easily get by (3 2),(3 7, (3 3)

S6% H@| gc:«z{\%w—am, £1)

K K 1 1K
éCh;”d)Hzf(lﬁllk§Ch;[ﬁ]n+1Klﬁll I

éCh;hnK“u“n+l K|v|1 kSCh™*! “u”n+l nlvll Q (4 40)

To estimate the sum Y b%,{L(#)—H(#)} consider the functional
K

f@=L(@)—H (@) It 1s a continuous hnear functional on H"*2(K) bounded
by C|d|, kl||#|l.s ¢ Ewvidently, 1t vamshes for #eQ(n) and
a=E3"1 If 4=E""" then [see (4 35)]

Eéi_n+1

P
and 5&1 Cn n (E.: 1)

f@)=

A J 5 dEadts

_n+1

J_l P,E)[B(E:, -5, —1)]dE,=0
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Exactly as before we prove (4 37) Consequently
|S|=Ch*Hull,is alv]i o (4 41)

Let the integration formula be the Lobatto product n+1xn+1 formula
denoted before by 1° Now we choose

o[ 0B 6v>
L@a=1 (a?;l 0&2
H(a)=J‘°<5°"(§“ D5, n-s0, 1)1>

7
0(0(&1: - )
—J( ke -0, —m)

and we make use of the argument which we used to prove (4 25) Proceeding as
before we get again the estimate (4 41), (4 33), (4 34),(4 34),(4 38)and (4 41)
mply (4 9)

Proof of (4 12) We set again @ =u—u, We first estimate f (&) =0& (0 *)/6¢;
Let, say, j=1 f(#) 1s a continuous linear functional on H"*?(K) bounded
by C||4||,42 ¢ It vamshes for 4eQ(n) and for a=&4** By (4 35) 1t also
vanishes for #=£%"! because the coordinates of Q * are zeros of P, As before
[see the estimation of f (&t)=1((6d/8%,)(88/0E,))] 1t follows

|f @] =Chi"* ||u]],ra & (4 42)

From (4 1) we easily find out using (2 6) and (2 7) that

loh £ C{Y e ul2n " SO sz 0

5. GAUSS-LEGENDRE INTEGRATION

In this section we consider the case that the evaluation of a(w, v)and (f, v), o,
18 done by Gauss-Legendre product n xn formula which has the smallest
number of points among formulas integrating exactly the class  (2n—1) The
functional af (v, v) 18 not bounded from below by C | vlf o, uniformly with
respect to h (see remark 1, section 3), nevertheless we prove that superconver-
gence of the gradient at Gauss-Legendre points sets 1n, too In fact, numerical
experiments show that we can expect results better than those won by Lobatto or
by more accurate formulas

Concerning the finite element partitions we do not need condition (4 5) We
needed this assumption to prove (4 9), but we did not need 1t to prove (4 12)
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and therefore we shall not need it to prove (5.9). However, we assume that the
partitions are topologically equivalent to rectangular meshes in the following
sense: If g, is a corner node (i.e. a node which is map of a corner of K) we call
neighbors of this node all corner nodes g, such that a, and g, are endpoints of an
element side. A finite element partition will be called topologically equivalent to
a rectangular partition if its corner nodes can be numbered by two indices
i,j(i=j=0, 1, ...)in such a way that all neighbors of a corner node a,, belong
to the set {a,1,, Q-1 Qyyirs a,,_l}. Let the numbering be such that for a
given j we have 0<m,<1<M, and for a given i we have 0=<n,<j<N,. Let
M=max M,, N=maxN, Ax=M"'  Ay=N"'
J T

In the sequel we assume that all finite element partitions, besides being
topologically equivalent to rectangular partitions, are such that

min (Ax, Ay) >

h2<c.AxAy, T T > >0, 5.1
=0 AXaY max (Ax, Ay) =Cs> 1)
where the constant ¢5 does not depend on h.

THEOREM 5.1: Let the finite element partitions be n-strongly regular,
topologically equivalent to rectangular partitions and satisfy the condition (5.1).

Letue H""?(Q),a,eC"*? (5). Finally, let the evaluation of a(w, v) and (f, v), o,
be carried out by means of Gauss-Legendre product n xn formula. Then

|lu—up |nSCH"* ||| 13, 0 (5.2

Proof: (4.7) 1s true if instead of a, and (f, v), we set af and (f, v)f,
respectively. Hence

af (u;—uy, v)=af (u, v)—(Au, V)§ +af (u;—u, v), YveV,. (5.3)
We prove later that
|ai (u, v)— (Au, 0 | SCH" M u|l 5 0| 0] VVEVi (5.4

From positivity of the coefficients of Gauss-Legendre formulas, from ellipticity
of the operator Au and from boundedness of its coefficients it follows

C*|z|p<af(z, )SC|z|p (5.3

for any function z such that dz/dx,, 1=1, 2, exist at all Gauss-Legendre points.
Therefore by (4.12) and (5.5):

|af (w—uy, )| SCH"* || u],pz o |o] ne YveV,. (5.6)
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Setting v=u,—u, eV, in (5.3) we get by (5.4), (5.6) and by (5.5):

|, —up [, < CH* Y || u

‘n+3 Q

(5.2) follows by the triangle inequality.

Proof of (5.4): Proceeding as in the proof of (4.8) we find out that we have to
estimate certain sums a prototype of which is

N oxX . ou
§S=Y I* —2"13), K= 2, —.
2 (aal[ ] %, 1ox,
Denote by Vv, (k=1, ..., n) the coefficients of the one-dimensional Gauss-

Legendre formula. From the same reason as above

ST 910 6)—(E)(~ 1, £)]=0.

K I=1

Therefore the sum S can be written in the form

where

FE9=3 0 3 Sa i)t 8) — 3, WIEDL )= (—1. 0]

k
1=1 k=1 6&1 =1

LEmMMA 5.1: We have for e H" *(K).

o /6\ 2 /6\ 2 2
£, v)I§C{[f*(fK[(éxil> +(5x1> m [Eher ¢
S U L 2 k}. 5.7

Proof- Let #,_, be the interpolate of 5 in Q(n—1) determined uniquely
by values of # at the points (¢, t), k, [=1, ..., n. We write

F@G 0)=F & 6—1tn 1 0)+F (2 fty_y D)

and estimate f(2) = F (£, 1), b= — #,_ , 6. We consider f (£) as a linear functional
on H"*!(K). It is a bounded functional because we easily get

n n a»\ o 2 1/2
D R R R e R R e [ ET R

=1

Now

n . ,t 2 n An , 2
3 w(ai("‘—‘)) +@2 (1, ) +@(~1, 8) <C Y ok<"”(t" t’)> .
k=1 08, =1 3
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This 1s true because if the right-hand side vanishes then (&, ¢;) =const and the
left-hand side also vanishes Hence

| £ @) gc{l; Olél 0k<§ﬁatg;_t’)>z}m
L[l 90 2

C{’ ([aa D}

>\ 2 AR\ 2 1/2
sel (G (I

If 2 € Q (n) then (9/0E,) (2 1) 15 a polynomual of degree <2n— 1 of the variable &,
Therefore

|Z“n+1 R

Zl|ln+1 R

|n+1 K (5 8)

1 n

F(z, )= _Z \Z ag ) €y, t)dE; — =Z V[(F @) (1, 1) = (2 ®) (=1, £)]=0

From (5 8) and the Bramble-Hilbert lemma 1t follows

AN\ 2 1/2
s ([ (S P e o9

We estimate the other term, 1 e F (2, #,_, 5) We have
|E G, foue8)| SCl| a1 Bll1 |2 ]lnsz & SCllRa-1 8]0 [l 2][ns2 ¢
As
n

z Ui 9 [(Rn= 1 D) (8, )] “zil Uy 0,02 (8, 1) =1*(8?)

=185 &

we get
|FG ey )] SC{I* @} 12|12 &

We prove 1n the same way as above that F (2, #t,_,5)=0 for 2eQ(n+1) The
Bramble-Hilbert lemma gives

lﬁ(é, ﬁn—lﬁ)iéc{f*(ﬁz)}llz [2]n+2 K>

which together with (5 9) proves (5 7)

We continue 1n the proof of (5 4) We introduce the norm || ||, on ¥, defined
by

lolh={3 PO
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As J, = chh2 we get by (5 7), (4 29) and (4 30)

/6\ 2 /6\ 2 1/2
sscpa () (E) ] o

SN us }

<CR {[o|u]|ullrz ot [[o]lall4]laes o)
(5 4) follows from the following discrete analog of Friedrich’s mmequality

LEMMA 5 2 Let the fimite element partitions be O-strongly regular and
topologically equivalent to rectangular meshes in such away that (5 1)1s satisfied
Then there 1s a constant ¢ =c(Q) such that

ellnScloln  YoeV, 5 10)

Proof We consider the umt square S' 0<x, <1, 0<x,<1 and the mesh
{GAx, jAY)},_y u We denote by W, the space of tral functions

=0 N
defined on this mesh (of the same form as the functions ve V,, of course, (2 5)1s

the (linear) mapping corresponding to rectangular elements of the mesh
{GAx, Ay)}) and vanishing on 88! To every ve V, we associate a we W, in the
following way 1f K 1s an element of a given partition of Q then the numbering of
corner nodes by two indices associates a unique rectangular element R of S The
function w assumes at all nodes of R (not only at corner nodes) the same values
as the function v at the corresponding nodes of K At all remaining nodes of S* w
1s equal to zero We remark that either #w=47 or #v=0 and w vanishes on all
elements R<=S* to which no K<, 1s assoctated We have ¢ ,=(1/4) AxAy
Therefore

ollZ=3 I* (£ <Ch*Y [*@)=Ch?Y I*(@?)
K K R
<CAxAyY I*(?)=4 cy I*(f 10?)
R R
Denote

J1olh= (5 1+ 2

fr (N

We have just proved
leln=cllwlls (5 11)

R AIR O Analyse numernique/Numerical Analysis



GRADIENT OF FINITE ELEMENT SOLUTIONS 163

Suppose that we prove

1. e. that we prove (5. 10) for a uniform rectangular mesh of the unit square S*.
Then

wle=y (2 (ig) +Z\—(§“i>>

hence
|w|,<C]ols. (5.13)

(5.11) and (5.13) gives (5.10).

Proof of (5.12): As ib is a polynomial of degree <n of the variable &, it holds

max |, t,)lgc{f B s t,)dg,}”z.

125,51

Therefore

1

1 n n
“w“f:ZAxAyZ Y Z e 0 (£, 1)) <CAxAyZ Z \ W2 (&, 1) dEr.
R k=

=1 -
Denote by R,, the element with corners (i Ax, jAy), (i+1) Ax, jAy), (i+1) Ax,
(j+1)Ay), (iAx, (j+1)Ay). The mapping (2.5) has for R,, the form

1 1
=5 AXQI+14E), X =5 AyQj+1+8).

Let (g}, g!) be the map of (t, t,) by this mapping. Then

1+ 1) Ax

lwliscas, s, $ j W (. gl dy

Ax
N-—-1

n 1
=CAy Y 3. Ozj w?(xy, gf)dx;.
4]

j=0 I=1
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Applying the one-dimensional Friedrich’s inequality we get

N-1 n 1 2
lwllzscay ¥, Zo‘j (.M) dx,
7 =1 0

=0 6x1

-1 n - (1+1)Ax
—cayy R ;f | (aw("l’g')> dx,

=2C—=% Zlf/k{’z(—‘wéz; tl))

- ()| =])

copr () (B e

This proves (5.12).

6. NUMERICAL RESULTS. SERENDIPITY FAMILY

1) The following problem was solved (3):

—Au=—12x—2y+16 x> +54 xy

+16y*—4x3—42x?y—12xy*—14y* in Q,

ulp=0, Q: O<x<l1, O<y<l.

The exact solution is u(x, y)=x (1 —x) y(1—y) (1+2x+7y). We used bilinear
polynomials (n=1) and partitions consisting of square elements with vertices
{Gh, jm}™, o, M=h"", h=1/4,1/6, 1/8, 1/10. There were applied Gauss-
Legendre product 1x1 formula, Gauss-Legendre product 2 x2 formula

(substituting exact integration) and Lobatto product 2 x2 formula (product
trapezoidal rule). The norm | u —u, |, is denoted by E; and is equal in this case to

N: ou— u;.)(p) +<6(u—uh)(p) 2]}1/2

Here N;=4h" 2 is the number of Gauss-Legendre points. Also the gradient at
vertices of square elements was computed (the unique values of the gradient were

(®) The authors are indebted to M. Kovafikova who carried out all computations on the
computer DATASAAB D21
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won by averaging) and as a measure of the error the number

O T N L R
aefoe gl () (52 )

1s taken The set V consists of all vertices of square elements with exception of the
vertices of Q In table I Gauss-Legendre product 1 x 1 formula was used The
table shows on one hand the superconvergence and the big difference between
the magnitudes of E; and E,, on the other hand it shows that E, goes to zero just
fast as h

TABLE 1
Eg h™2E¢ Ey h~'E,
1/4 0055 087 027 107
1/6 0025 090 018 107
1/8 0014 090 013 107
1/10 00091 091 01t 107

Table II compares the values h~? E, when Gauss-Legendre product 1 x 1 and

2 x2 formula and Lobatto product 2 x 2 formula were used

TaBLE II
" G—-L1x1 G-L2x2 Lob2x2
1/4 0874 0980 1462
1/6 0897 0994 1 504
1/8 0906 0998 1519
1/10 0910 1001 1526

Evidently, Gauss-Legendre 1 x 1 formula gives the best values

2) In engineermg applications the curved isoparametric elements of the
Serendipity family (see Zienkiewicz [8]) are mostly used The linear elements of
this famuly are the simplest elements defined in this paper (n=1) The quadratic
and cubic elements are different from elements introduced here for n=2 and
n=3 Instead of complete biquadratic and bicubic polynomnals, respectively,
there are used incomplete polynomials formed from these classes In the first case
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P LESAINT,M ZLAMAL

there 1s mussing the term £2£2 (as nodes we take eight nodes of the class 0 (2)
lying on the boundary of K), in the second there are missing the terms £2 £3,
E3E2,E2E3, £3£3 (as nodes we take twelve nodes of the class O (3) lying on the
boundary of K) Superconvergence of the gradient at Gauss-Legendre points can
be proved by the same technique which we used for polynomuals from Q () The
proof 1s simpler because the functional g, (v, v) 18 bounded from below by
C| v|%q, umformly with respect to h even for Gauss-Legendre formulas

10
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