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R.A.I.R.O. Analyse numérique/Numerical Analysis
(vol. 12, n° 1,1978, p. 59 à 74)

AN ELASTO-PLASTIC CONTACT PROBLEM (*)

by Claes JOHNSON (2)

Communiqué par P. G. Ciarlet

Abstract. — We study the problem offinding the stresses and the displacements in an elasto-
piastic body <f in frictionless contact with a rigid body which is pressed against ê. We prove
existence of a solution and then we consider finite element methods for finding approximate
solutions of the problem.

ESTTRODUCTION

Duvaut [1] has studied the problem of finding the stresses in an elasto-
plastic body ê in frictionsless contact with a rigid body ^ which is pressed
against ê. In this note we extend the study of Duvaut by looking also for
the displacements of S and ^ . We shall consider a stationary case corres-
ponding to Henky's law. For simplicity we shall assume that ê is isotropic.

In Section 1 we prove existence of a solution to the contact problem assuming
that ê is elastic-perfectly plastic. In this case the displacements of ê may be
discontinuous (and even non-unique) and we have to use a formulation
requiring little regularity of the displacements. One way of obtaining more
regular displacements is to assume a suitable hardening of the elasto-plastic
material. Such a case is studied in Section 2. Then in Sections 3 and 4 we
consider finite element methods for finding approximate solutions of the
contact problem.

4.^EÀSTK>PERFECH* PfcASTI€ MATERIAk-

Suppose that initially the elasto-plastic body ê occupies the bounded
région Q c R3 with boundary T and that T contains an open set I \ in the
plane { x = (xl9 x29 x3) e R3 : x3 = 0 }. Moreover, suppose that initially the
rigid body âl occupies the région

B = { x 6 R3 : -x3 ^ 9 (*!, x2), (xlt x2) e f 0 },

where Fo is an open set compactly contained in I \ with smooth boundary
and q> ; Tx -» R is smooth, nonnegative and cp (x) = 0 for some x e Fo (see Fig.).

(*) Reçu avril 1977, révisé août 1977.
O Texte d'une conférence présentée aux Journées « Éléments Finis », Rennes, 4-6 mai 1977
(2) Chalmers University of Technology, Department of Computer Sciences, Göteborg,

Sweden.
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60 C. JOHNSON

r

Let the boundary of ê be fixed on the portion T2 = r \ r \ and free on Fv

Let & be acted upon by the vertical force F (F > 0) and suppose that M is
free to move vertically, whereas rotation and horisontal displacement are
prevented. We want to find the vertical displacement U of &, the stress
a = { Gij }, Ï, j — 1, 2, 3, in <f, and the displacement u = { ut }, i = 1, 2, 35

of <f, where wf is the displacement in the x£-direction. The référence configu-
ration is the one in figure. We shall assume that the displacements are small;
in particular this means that the relation u3 ^ U— cp can be used to describe
the compatibility of the displacements of <% and S,

We shall use the following notation : For m a positive integer and 1 S P ^ °°>
let || . ||mfP dénote the norm in the usual Sobolev space \W™ (Q)]rt with n
a positive integer. If m = 0 we omit this index and write || . \\p instead
of || . ||0(P. Let (., .) and || . || dénote the scalar product and norm
in [L2(Q)]n. Furter we define

H = ( x = *ji>h J = U 2, 3,

U ^ O on r 0 j ,

and the déformation e(w) = {zij(u)} associated with « e f by

^ij(M) = ^(uifj + uJtil Î J = 1,2,3,

where wtj = dw/dxj. We recall Green's formula:

(T, &(V)) = I XfjitjUids — (divx, Ü),
Jr

(1.1)
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AN ELASTO-PLASTIC CONTACT PROBLEM 61

where n = (nu n2, n3) is the outward unit normal to T and

((divT)j), i = 1, 2, 3,

Hère and below we use the summation convention: repeated indices indicate
summation from 1 to 3.

Let D <= R9 be a given closed convex set with 0 e D and define the set
of plastically admissible stresses

\ Td(x)eDa.e. in
where

3

The tensor xd is the so called stress deviatoric associated to t. If a (x) s
(interior of D), then S is in an elastic state at the point xEQ and then we
have the linear strain-stress relation

e (M) = A cr,

(A a)l7 = A, tr (a) 6y + v a?y,

where X and v are positive constants. For notational simplicity we shall assume
below that v = 1. We define the bilinear form

and we note that
a(T sT)èaj|T||2 , xeH, (1.2)

where a = min (1, 9 X).
A natural formulation of the contact problem is now the foliowing: Find

(a, (M, V)) e P x K such that

o(a, x-cr)-(8(tt), T - a ) ^ 0 , VxeP, (1.3a)

(a, e (ö-u) )^F(F-C/) , V(u, F)eX, (1.36)

or, equivalently, find a saddle point (a, («, F) )ePx7^ for the functional
L : P x ^ - > R defined by

vol. 12, n° 1, 1978



62 C. JOHNSON

where || . ||* — a ( . , . ) . Ho wever, the regularity of the displacement u needed
in this formulation is in gênerai not possible to achieve in the perfectly-
plastic case. Therefore, we shall instead consider a formulation requiring
less regularity of u (cf. [3]). To be more précise, we shall seek u in the
space Y3/2, where for 1 ̂  p S <x>>

T o motivate this formulation we first note that be Green's formula (1.1),
it follows tha t (1 .3 6) is formally equivalent to the following relations:

d i v a = 0 in Q, (1.4)

F9 (1.5)- f
0, cy33^0 on Tu (1.6)

a 3 3 = 0 on T A r o , (1.7)

a33(x) = 0 if (M3 + (p-l/)(x)>0, xer 0 , (1.8)

which is the intuitive way of formulating the statical relationship in the
contact problem.

We shall seek the stress a in the space @>3 = P n^f3, where for 2 ̂  q < oo,

3&q = {xeH : divxG Yq and x satisfies (1.6) and (1.7)}.

Here (1.6) and (1.7) are to be understood in the following sense:

T33iüdsg0, we iT, IÜ^O, (1.10)

T33u?ds = 0 tbr weif such that w = 0 on F0. (1.11)l
Note that if x e H and div xeY2, then (see [2]) xy HJEH~^ (F) so that

(1.9)-(1.11) are meaningful. Now, taking X 6 ^ 3 in (1.3a) using Green's
formula and (1.6), we find with ^eW satisfying \|/ = 1 on To, that

0 ^ a(o, x — a)—(e(u), T —a)

= a(p, x-a) + (u, divx-diva)+

= a(v, x-a)+(w, divt-diva)+ (w3

f
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AN ELASTOPLASTIC CONTACT PROBLEM 63

so that
f

/, divT-diva)+ ty(U — <p)(t33-a33)ds ^ 0, (1.12)
since by (1.7>(1.8),

and by (1.10) and (1.11) assuming that («, U)eK,
l

We are thus led to the following formulation of the contact problem:
Find (a, w, U)e0>xYxR such that

a (a, x — a)-f (u, divt —diva)

+ | ty(U — <P)(T33 — o33)ds ^ 0, t e ^ , (1.13a)
Jr

(t>,diva) = 0, veYy (1.13 b)

»3* = F, (1.13c)- |

where ^ = ^ 3 and y = y3/2.

Remark: Note that the condition w3+cp— (7 ̂  0 on Fo does not appear
explicitety in this formulation, which is natural since the trace of u s Y on T
may not be defined.

To prove existence of a solution of (1.13) we shall need the following
«safe load hypothesis":

There exists 5 > 0 and

> 5
where dD dénotes the boundary of D and

E = \xeH: divx = 0 i n n 3 - \|/x33 = F> .

Note that with 8 = 0, this is a necessary condition for existence of a solution.

THEOREM 1 : If (1.14) holds then there exists (o,«,[/)e^xFxR>satisfy-
ing (1.13). Moreover a is uniquely determined.

Proof: The proof will be divided into three parts: First we prove existence
of a solution of a regularized problem depending on a parameter |x > 0.
Then we establish some a priori estimâtes for the solution of this problem
and finally we obtain a solution of the original problem by passing to the
limit as \i tends to zero. The uniqueness of a is easy to prove.
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64 C. JOHNSON

(a) The regularized problem

For [L > 0 we consider the following problem: Find a saddle point
(CTn> (*V ^ii)) e 7/x ATfor the regularized Lagrangian L^: HxK—>R defined
by

where

and 7t is the orthogonal projection in R9 onto D. ïn other words, we seek

;(aM), T)- (T S e(W,)) = 0, xeH, (1.15a)

(1.15 6)

where / ' (x) = (l/^i) (T —TCT). Existence of a saddle point (a^, («M, i y ) will
follow easily if we can show that the problem

sup g|l(t>, 7), (1.16)
(v>V)eK

where
gll(i;, F )= infLM(x,(z;, F)), (1.17)

TGJtf

has a solution. The infimum in (1.17) is attained for x = x satisfying

e(u)—AT = -(x — TCX),

i. e.,

s(o)*-ï< = i ( t - -«? 1 ) , (1.18)

tr(s(t;))-Xtr(T) = O,

since by the définition of D, tr (X-KX) = 0 for x e H. But (1.18) implies
that nxd = 7C8 (t;)d and thus

x = itr(e(ü)) + -* i - s(i;)d+ — ne(i>/f
X 1 I

R.A.I.R.O. Analyse numérique/Numerical Analysis



AN ELÀSTO-PLASTIC CONTACT PROBLEM 6 5

which gives after a simple computation

8>(v' v ) = 1 1 ^ ^ 1 1 2 1 | ( ) d | 1 2

Since g^ : if x R —> R is concave (being the infimum of a set of linear
functions) and continuous and K is closed and convex in if x R, to prove
existence of a solution of the problem (1.16) it remains only to prove that gM

is coercive, i. e.,

gv(v,V)^-ao as \\(v, F) | | ^ X K ^ oo, (v, V)eifxK.

But this follows easily from Korn's inequality (see [2])s

|H |^C | |£ ( tO | | , veif,
the trace inequality,

IN|L«(ro)âCH|,r, veiT,
and the fact that

V ̂  i73 + cp on Fo,

if (u, V)eK, Thus the problem (1.16) has a solution (wM, [ / ^ e l .
The extremality relation can be written

with

= - tr(8(u,))+
X

Thus (1.15 i) holds and it is easy to check that also (1.15 a) is satisfied
and therefore (rrit? (wH, ^ ) ) ^ ̂ x T̂ is a saddie point for L^

(b) A priori estimâtes

By varying {v, V) e X in (1.15 b) one concludes that aM satisfies the rela-
tions (1.9)-(1.11) and

divaM = 0 in Q, (1.19)

- ^33^-0, (1.20)

, , 3 3 ^ = 0. (1.21)

vol. 12, n° 1, 1978 5



66 C. JOHNSON

Thus, replacing x in (1.15a) by x — aM where T G ^ and applying Green's
formula, paralleling the proof of (1.12) we find that

a ( < * , * , x - ^ ^ , ^

+(uM,divx-divaM) + ^(U^-^^-G^^ds ^ 0. (1.22)

If we now take T = x> where x is given by assumption (1.14) and use the
fact aM as well as % satisfies (1.19) and (1.20), we get

. . 0 . (1-23)

But, as is easily seen, (1.14) implies that

Using also the estimate (see [2]):

and (1.19), we now conclude from (1.23) that

;C, (1.25)

\W<*J\\i£C9 (1.26)

with C independent of [i. Using the équation (1.15 a), it then follows that

IhMIi^C, (1.27)
so that

II « II < r* (\ i%\
by using the estimate

| |«| |3 /2 è C\\e(v)\\u ve'W.

A proof of this resuit in the case F2 = \|/ can be found in [3]. The proof
can easily be modified to cover also the present case.

Further, to bound U^ we note that by the easy to prove trace inequality

f \w\ds^C\\w,3\\u weW,

and (1.27), we have

f I I <
J To

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Since U^ ̂  ŵ 3 +9 on Fo we thus find that £/M ̂  C. Moreover, taking x = a^
in (1.15 a) and (v, K) = 0 in (1.15 £) and adding we see that

But since Jj, is monotone and J^ (0) = 0, (J^ (CT )̂, a^) ̂  0 and thus Î7M ̂  0
so that

| t7j£C. (1.29)
(c) Passage to the limit

From (1.19), (1.24)-(1.27), (1.28) and (1.29) it follows that there exists
(c, (w, U))e0>x YxR with diva = 0 and a séquence n tending to zero
such that

CT^-XT weakly in H,
a33 u^'^sa weakly in H~1/2(F)

(1.30)
«„-*« weakly in Yy

Passing to the limit in the relation

a (a^, x - CjJ + (w ,̂ div x - div aM)

which follows from (1.22) using the monotonicity of ƒ£, we now obtain (1 * 13 a)
without any dfficulty recalling that div <rM = div a = 0. Finally, (1.13 c)
follows from (1.30) by passing to the limit in (1.20). This complètes the proof.

2. HARDENING MATERIAL

To describe the hardening of the elasto-plastic material {cf. [4]) we shall
use a hardening parameter £ = { E; }7 / = 1, . . . , m9 where m is a positive
integer. We shall use the notation

[a, x] = a(a, x) + Yfe Î]), a = (a, %), x = (T,

where y is a positive constant. Let now D be a closed convex set in i?9+m,
the set of admissible combinations of stress deviatorics and hardening, such
that 0 e D and define

{xeH: (xd,r))(x)eJDa.e. in Q}.

voi. 12, n° 1, 1978



68 C. JOHNSON

The elasto-plastic contact problem can now be formulated in the following
way: Find (CT, (w, U))ePxX such that

[ê, 9-CT]_(e(tt), T~CT)^O, \fxeP, (2.1a)

(a, z(v-u))^F(V~U\ V(i>, K)eK, (2.15)

or, equivalently, find a saddle point (a, (u, U)) for the functional L : Px K-* R
defined by

To prove existence of a solution of (2.1) we shall use the same method
as that used in Section 1 for the regularized problem (1.15). Thus, we consider
the problem

sup g(t>, F), (2.2)
(v,V)eK

where

g(v, F ) s in f£( r , ( i ; , F))

with

and TC being the projection in H onto P. Since g(v, V) is clearly concave
and continuous on f f x R , existence of a solution of (2.2) will follow if g
is coercive on K, i. e., if

g(i>, *0 — °o if IK*. F)||ir->°o, (v,V)eK. (2.3)

A solution (u, U) e K of (2.2) is characterized by the variational inequality

(TO(U), S(t?-u)) ^ F(F-Ü) , (w, FjeK. (2,4)

Thus, having a solution (M, £/) of (2.2) we obtain (a, (M, U))ePxKsatisfy-
ing (2.1) by setting o = ne (M). We therefore have the following result:

THEOREM 2: If (2.3) holds, then there exists (CT, U)) e P x X satisfying (2.1).
Moreover, a is uniquely determined.

Remark. It is easy to verify that (2.3) holds in the following two cases
important in applications (for definiteness we use here the von Mises yield
criterion, cf [4]).

(i) Isotropic hardening: In this case m = 1 and

B = {(%, r | )eR9xR: |xd| }

R.A.I.R.O. Analyse numérique/Numerical Analysis



AN ELÀSTO-PLASTIC CONTACT PROBLEM 6 9

(ii) Kinematic hardening: In this case m — 9 and

It is easy to see that also (u,U) is uniquely determined in these two cases-

3. FINTTE ELEMENT METHODS: HARDENING MATERIAL

We shall only briefly discuss the case of a hardening material assuming
that the coercivity condition (2.3) holds. In this case we simply take a finite
dimensional subspace HTh of if, define Kh = Wh n K and seek a solu-
tion (uh, Uh) of the problem

sup g(v, F),

or, equivalently, we seek (uh , Uh) e Kh satisfying

(TO(uh\ £(v-uh)) ^F{V-[/„), (t>, V)eKh. (3.1)

Since g is coercive it foliows that such a (uh, Uh) exists.
It is also easy to obtain an estimate for || ne (u) — ne (uh) || in the following

way: Using the fact that since P is convex,

and adding (2.4) and (3.1) with {v, V) = (uh, Uh) in (2.4), we obtain for
ail (v, V)eKh,

||îc8(u)-^8(uft)||
2 ^ (nl{uh\ v-u) + F(U- V).

Having an a priori estimate of the form

RC, (3-2)

this will then give an estimate for || Tcê (M)- fcê (uh) ||. In the particular cases
discussed in Section 2. (3.2) is easily seen to hold and in these cases we
also have

4. FINITE ELEMENT METHODS: PERFECTLY PLASTIC MATERIAL

We shall now consider a finite element method based on the formula-
tion (1.13). We shall restrict ourselves to a two-dimensional problem (plane
stress or plane strain) and we shall then use the notation of Section 1 with
the obvious change from three to two dimensions. The x2-axis will now
correspond to the x3-axis in the three-dimensional case. For simplicity we
shall assume that I \ and Fo are line segments (cf. Fig.). In the two-dimensional
case Theorem 1 holds with 9 = 0>2

 a nd Y = Y2.

vol. 12, n° 1, 1978



70 C. JOHNSON

The finite element method will be the following: Given finite dimensional
spaces 0>h c= ̂ 2 and Yh c F2s find (a„, wft, Uh)e0>hx YhxR such that

hi divx-divoA)

i>, diva„) = 0, p6y f c (4.16)

We shall now consider a particular choice of the space 0>h and Yh. For
simplicity we shall assume that Q is polygonal Let {<$h } , 0 < h < 1, be
a regular family of triangulations of Q

Q= U «,

indexed by the parameter h denoting as usual the maximum of the diameters
of the triangles K e ^h. We assume that nodes are placed at the endpoints
of Fo and I \ . We shall construct a finite dimensional space Jtfh c jf2 and
then define 0>h ~ 34?h n P. The finite element method will be an equilibrium
method, i. e., the spaces J#*h and Yh will satisfy:

lf xeJfh and (divx, i?) = 0 for ve Yh, then divt = 0 in Q. (4.2

Methods of this type including the present one have been studied in [5]
in the^case of linear elasticity. To define 3tfh each triangle K is divided into
three subtriangles Tk9 k = 1, 2, 3, by Connecting the center of gravity with
the three nodes of K. For each Kec€h we introducé the finite dimensional
space Hk defined by

HK = {x = {xy} : xis = Xji is linear on Tk,

fc = 1, 2, 3, Î, j = 1, 2, and divxe[L2(X)]2}.

One can prove (see [5]) that an element teHK is uniquely determined
by the following 15 degrees of freedom:

the value of x*n at two points of each side of K, (4.3)

x, W = l , 2 , (4.4)L}K
where x*n = (x1± nx +x12 n29 x2i «i +x22 ^2) an(^ n = (ni> ni) ^s ^ e outward
unit normal to the boundary of K. The space 3^h can now be defined:

and div

R.A.I.R.O. Analyse numérique/Numerical Analysis
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If X \KeHK> Ke^h, then d ivxe Y2 if and only if x*n is continuous at
the interelement boundaries, i. e., if for any side S common to the triangles K
and K',

x \ K * n ~ x\K>*n o n S ,

where n is a normal to 5. Therefore the degrees of freedom for an element xeHh

can be chosen as follows: the value of x*n at two points at each side of <€h

and the values given by (4.4) for K e ^h.
Finally, defining

Yh = {veY2:v is linear on K, Ke^h),

the particular case of the finite element method (4.1) we want to consider
has been fully described.

In addition to (4.2) the spaces 3^h and Yh have the following property
{see [5]) important for the analysis: There is an interpolation operator
%h : 3^2^3^h such that

(div %h T, v) = (div T, v), v s Yh> (4.5)
and

Given t e / 2 ) sufficiently regular e. g. xe[Wx (fi)]4, the interpolant nh x
is defined to be the unique element in Hh satisfying for any side S of <€h with
normal n,

1 —nh x) • n) • vds = 0 for Ü linear,

K

and for any Ke<êh,

r
î> ï 7 ) r f s=% Uj-1,2.

We observe that if div x = 0 in il then by (4.2) also div %h x = 0 in Q.
Existence of a solution of the finite element problem can be proved under

the following "discrete safe load hypothesis":

There exists 5 > 0 and %he&>hnE such that

dist (Xk(x)9dD)^S9 xeQ, (4.6)

where C and 8 are independent of h. We note that if the % in the safe load
hypothesis (1.14) for the continuous problem is sufficiently smooth (e. g. if %
is continuous), then (4.6) will be true for h sufficiently small of we choose
%h = ** X.

vol. 12, n° 1, 1978



72 C. JOHNSON

Let us now consider the convergence of the finite element method (4.1).
We have the following resuit on weak convergence:

THEOREM 3: If (4.6) hoïds, then for any p, 1 ^ p < 2, there exists
(a, u, U)e&>qxYpxR satisfying (1.13) with 0> = 0>q and Y = Yp, where
Q-I4)+Ö*IP) = U # ^ # séquence {h{} tending to zero, such that

ah-+o weakly in H as h -> 0,

uA( -• u weak star in Yp,

Proof: The theorem follows easily from the following a priori estimâtes:

KINC, (4.7)
||«*NC, (4.8)

\Uk\£C. (4.9)

The estimate (4.7) follows directly by taking x = %h in (4.1 Û), where X/i
is given by (4.6).

Next, (4.9) follows by choosing x == %h + nh % in (4.1 a\ where % e C00 (Î2) n /f
satisfies

= 0 in Q,

|| X | | o o ^ ~ -

2

Such a % can easily be constructed by solving a suitable linear elastic problem.
Finally, (4.8) will foliow by choosing x = %h +nh % in (4.1 a), where % e 34?z

satisfies

where g ranges over the bail { g e Yq : \\g\\q Û ! ^}J with n > 0 sufficiently
small. For instance one can choose % — & (w)? where u satisfies

div (e (u)) = g in Q,

e (u) • n = 0 on öQ,

and O is a domain with smooth boundary such that Q, <= O, Fx c= ôQ and g
is suitably extended outside Q. To see that x = %h +nh % e 0>h for î sufficiently

R.A.I.R.O. Analyse numérique/Numerical Analysis



AN ELASTO-PLASnC CONTACT PROBLEM 7 3

small, we note that by elliptic regularity (see [6]) one has

which by Sobolev's imbedding theorem implies that % is continuous and

Now, (4.1a) and (4.5) together with the previously obtained estimâtes (4.7}
and (4.9) show that

(«* »g) = («a, div%) = (uh, divTiftX) é C,

if \\g \\q ̂  u, which proves (4.8). This complètes the proof.
Finally, we shall obtain an estimate for G — Gh i*1 terms of the quantity

a = inf{$:3TheJfhnE such that ( l-P)x f teP and ||CT — xfc|| ^ p}.

If a is sufficiently regular then by choosing %h ~ %h a we see that a —> 0
as h—•O.

THEOREM 4: If (4.6) holds then there exists a constant C independant of h
such that for a < 1,

Proof: Choosing x = ( l-2a)x f t in (4.1 à) where xheJ^hr\ E satisfies
a — xh || g 2 a, and x = ah in (1.13 a) and adding, we easily find that

|a -a , | | a
2 ^

±
Thus, using the estimâtes (4.7), (4.9) and (1.24) we obtain the desired

estimate.
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