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Abstract. Three properties characteristic for the Lorentz group are selected and all quantum groups
with the same poperties are found. As a result, a number of one, two and three parameter quantum
deformations of the Lorentz group is discovered. The deformations described in [1] and [2] are
among them. Only the Hopf *-algebra level is discussed.
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0. Introduction

The existence of several different quantum deformations of the Lorentz group
(cf. [1], [2]) raises the question of their classification. In this paper we give a
complete answer to this question. More precisely we describe (on the Hopf
*-algebra level) all quantum groups of 2 x 2 matrices having the following
properties.
1. The tensor square of the fundamental representation splits into a direct sum

of two components, one of which is the one-dimensional trivial representa-
tion.

2. The tensor product of the fundamental representation by the complex
conjugate one is irreducible and does not depend on the order of factors.

3. The group is not a proper subgroup of a group satisfying two above
conditions.

It is not difficult to show that among the classical groups, SL(2, C) is the only
one having the above properties.
Among quantum groups, the solution is given by a few families described in

Section 3. Half (roughly speaking) of those families turn out to be continuous
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deformations of SL(2, C). Among those continuous deformations we have one
three-parameter family (relations (29)-(35) and those in subsection 3.1.1). It
would be interesting to compare our classification with that of possible Poisson
group structures [3] on the Lorentz group (the latter classification is not
known to us at the moment; general statements on the classification of simple
Poisson groups, like Theorem 1 in [4] concerning the compact case, could be
very useful).
The paper is organized as follows. In Section 1 a general strategy is

presented. The quantum group satisfying properties characteristic for Lorentz
group is shown to be determined by two basic intertwiners, one of which is the
’twisted volume element’ E : C ~ K ~ K (K - the space of the fundamental
representation) related also to well known R-matrix R : K ~ K ~ K ~ K for
complex SLq (2, C) (cf. [5]). The second intertwiner, X : K ~ K ~ K ~ K (K is
the complex conjugate of K), tells how to commute the matrix elements of the
fundamental representation with their adjoints. The intertwiners have to satisfy
certain compatibility conditions. In Section 2 we classify the intertwiners
(satisfying required conditions) modulo the action of the general linear group
of K. In Section 3 we give a list of the corresponding commutation relations
defining the algebra of polynomials on the deformed Lorentz group. Lengthy
proofs are pushed to the last two sections.
Quantum groups considered in this paper are formulated on the (prelimi-

nary) Hopf *-algebra level. A Hopf *-algebra is a (complex) Hopf algebra
(A, A) with an additional star operation * (making A *-algebra) such that
A* = (* Q *)A (for Hopf algebras see [3] and references therein; more about
Hopf *-algebras can be found in [9, 13]). If a quantum group G is given by a
Hopf *-algebra (A, A) then elements of A are called polynomials on G. G is said
to be a quantum group of matrices if there is a distinguished finite-dimensional
representation (of G) whose matrix elements generate si (the representation is
called fundamental).
For the basic notation we refer to [10,1]. In particular, we shall use symbols

QQ and @ introduced in [10].
Let us mention that the approach to study quantum groups which are close

to a given classical group - by selecting some properties of representations - has
been used effectively in previous papers [1,11]. The procedure described in the
present paper may be applied to study complex quantum groups of the series
An, Bn, Cn, Dn (as given by [5]) as real groups (see the discussion of a
realification procedure in [13]).

1. General framework

Let G be a quantum group satisfying the requirements 1, 2 and 3 of Section 0,
A be the *-algebra of polynomials on G, u be the fundamental representation
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of G and K be the two-dimensional vector space carrying u : u E B(K) 0 si. The
*-algebra si is generated by matrix elements of u.

Let K be the complex conjugate of K. It means that an invertible antilinear

mapping K 3 x ~ x ~ K is given. For any m E B(K) and x ~ K we set m’x = mx.
Clearly, mj~B(K) and B(K)3 m H m’ E B (K ) is an antilinear multiplicative
bijective map. Let B(K)3 n ~ nj-1 ~ B(K) be the inverse map. The complex
conjugate (of the fundamental) representation is introduced by the formula

Property 1 means that there exist linear mappings E: C ~ K ~ K and
E’: K Q K - C such that E’E ~ 0 and

Let us notice that (E’ (8) idK)(idK Q E)E B(K p C, C ~ K) = B(K) intertwins
the representation u with itself. It follows immediately from property 2 that u
is irreducible. Therefore (Schur lemma), (E’ ~ idK)(idK ~ E) = 03BB idK, where
03BB ~ C. Assume for the moment that À = 0. Then E(1) is of rank 1 tensor:

E(1) = x ~ y, where x, y ~ K and using (1) one can easily show that the
subspaces Cx and Cy are u-invariant, so we get a contradiction with the
irreducibility of u. Therefore Â * 0. Rescaling E’ we may assume that

Due to this relation E’ is determined by E.
According to Property 2, the representations u QQ û and il  u are equivalent.

It means that there exists an invertible X E B(K Q K, K Q K) such that

Let us notice that (X (8) E’)(idK (8) X (8) idK)(E Q idK Q idK) E B(C O K Q K,
K Q K ~ C) = B(K (8) K) intertwins M QQ u with itself. Remembering that M QQ u
is irreducible (cf. Property 2) we get

where - denotes the equality modulo a non-zero complex numerical factor
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(we use this notation also in the sequel). Tensoring both sides (from the right)
by idK, composing with idK ~ E and using (3) we get

Let 03C3: K ~ K ~ K ~ K denote the linear bijection such that 03C3(x 0 y) = y Q x
for all x, y E K. One can easily verify that

Multiplying the both sides of (4) by 03C3 Q I we get

Applying now j-1 ~ j ~* to the both sides and using the two preceding
formulae we get

Since u Q M and ù Q u are irreducible, there exists at most one (up to numerical
factor) operator intertwining them. Therefore 03C3-1 (X03C3)j-1~j ~ X and

REMARK. By a choice of basis in K, relation (4) is equivalent to a system of
16 relations containing matrix elements of u and their conjugates. Due to (6)
this system is selfadjoint: applying * to the both sides of any relation of the
system we obtain a relation belonging to the system.

Property 3 means that (1), (2) and (4) are the only algebraic relations that
are imposed on matrix elements of u.

THEOREM 1.1. Let E: C -+ K (8) K, E’: K (8) K -+ C and X : K ~ K ~ K ~ K
be linear maps. Assume that E and E’ are of rank 2. Let d be the universal
*-algebra generated by matrix elements of u satisfying relations (1), (2) and (4).
Then there exists unique unital *-homomorphism. 0: A ~ A (8) d such that
(id (8) 0)u = u QQ u. (A, A) is a Hopf *-algebra.
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Proof. We give only a sketch, since the procedure is quite standard. Since the
value of A on the generators ukl (matrix elements of u in some basis of K) is
fixed:

the morphism A is unique, if exists. For the existence one has to show that Au§
satisfy the same relations as ukl (relations (1), (2) and (4)). One can check it by
a direct calculation (usually omitted in papers on the subject). However, one
can easily observe that this follows from the form of the defining relations,
which are given by intertwiners (for a general statement concerning this point
see e.g. [9]). The existence of the antipode is related to the invertibility of u,
which holds by the non-degeneracy of E and E’. Q.E.D.

REMARK. Theorem 1.1 is in fact very weak. It says nothing about the size of
the algebra A. If E, E’ and X do not satisfy relations (3), (5) and (6) then A
may be very small. In a generic case A is generated by single unitary element
v such that V2 = I (dim A = 2) and

Such a Hopf algebra is related to the Z2 group. On the other hand relations
(3), (5) and (6) imply that A is as large as the algebra of polynomials on the
classical Lorentz group SL(2, C). Indeed, we have

THEOREM 1.2. Let A be the *-algebra introduced in Theorem 1.1 and AN
denote the subspace in A of all polynomials (in matrix elements of u and u) of
degree  N. Let E, E’ and X satisfy relations (3), (5), (6) and assume that X is
invertible. Then dim AN is the same as for the classical Lorentz group.

For the proof we refer to Section 4, in which further information on the
structure of A is contained.

Let G(E, X) denote the quantum group determined by a choice of E and X
as in Theorem 1.2. Relations (1), (2), (4) can be written as conditions for M.

(u OO u)(03C0E O I) = (nE O I) ((03C0E’ O I)(u O u) = ((03C0E)’ ~ I)

(X-1 O I )(û  u) = (u (D u)(X-1 ~ It
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where is the permutation in K (8) K. It follows that

since M can be treated as a fundamental representation of G(E, X).

2. Classification theorem

In this section we present all solutions of (3), (5) and (6). As before, K denotes
a 2-dimensional complex vector space.
For simplicity, we shall not distinguish between E and E(1) in the sequel.

Let E’y’ denote the symmetric part of E. The normal form of E is given by the
following algebraic lemma, stated in [11] (cf. also [7, 8]).

LEMMA 2.1. Let E E K ~ K be of rank 2. There exists a basis el, e2 in K such
that either

where q is a non-zero complex number (the case of rank Esym ~ 1), or

(the case of rank Esym = 1).
In the sequel we replace X by Q = 03C3 X ~ End(K (8) K). In terms of Q,

conditions (5) and (6) read as follows

where we have used the usual leg-numbering notation and Q = Qj~j-1.
In order to formulate our main result, we adopt the following notation.

Given a basis el’ e2 of K, we denote by Qe the matrix of Q in the basis e ~ e1,
el Q e2’ e2 Q el, e2 Q e2 (in another basis fi, f2 of K, the corresponding matrix
of Q is Qf, etc.). If Q = 03A3klelk ~ qt where elk = ek Q el (here el, e2 is the dual
basis and qkl ~ End(K), then
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where a, b, c and d are the matrices of qi, q2, q21 and q22, respectively.

THEOREM 2.2. Let E ~ K ~ K be of rank 2 and let an invertible

Q E End(K ~ K) satisfy conditions (10) and (11). Then there exists a basis el, e2
in K such that either 1. E is given by (8) and Qe has one of the following forms

For q = -1 we have additionally three following cases:
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or, II. E is given by (9) and Qe has one of the following forms

For the proof we refer to Section 5.

REMARK. It is possible to describe given by formulas (17)-(19) in a more
convenient form. Let 03C3x, 03C3y, 03C3z be linear operators in K with matrices

respectively. Then Q in formulas (17)-(19) can be written as follows:
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Matrices of 6x and or_, in the basis f, = e 1 + ie2, f2 = el - ie2 of eigenvectors
of 6y and the same as matrices of 03C3y and Qx in the basis el, e2. It follows that

in the case (23) (or (18)), and

in the case (22) (or (17)). In case (24) we pass to the basis fi = e 1 + e2,
f2 = e 1 - e2 of eigenvectors of (Jx and we have

In the new basis, E has no longer the form (8). Instead, it has the following
form:

(in all three above cases!).
The following table introduces notation for quantum groups G(E, X) corre-

sponding to pairs (E, Q) classified in Theorem 2.2.
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The range of parameters can be in fact restricted, because of the following
equalities implied by (7):

Additionally, due to the invariance of Qe in (13), (14) with respect to the

permutation e ~ e2, e2 ~ e1, we have the following equality:

3. Commutation relations

In this section we write down explicitly the commutation rules (1), (2) and (4)
corresponding to E and Q as classified in preceding section, thus giving a
detailed list of Hopf *-algebra deformations of SL(2, C).

Let e1, e2 be a basis as in Theorem 2.2. The commutation relations (1), (2)
for the elements of

turn out to be the following (cf. [11])
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in the case E = Eq, q =1= 0, and

in the case E = Especial (see also [6, 7]).
The commutation relations between and (u7)* are given by

Corresponding to différent solutions for E and Q given by Theorem 2.2 we
have several particular cases of commutation relations. We list them in three
following subsections.

3.1. The case of E = Eq, where q is a complex non-zero parameter

In this case we have relations (29)-(35) for a, 03B2, y, ô and the following four

possibilities for rules (44) (corresponding to (13), (14), (15), (16)).
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3.1.1. Gq,t; t real, non-zero

REMARK. In the case q = t, we obtain the quantum deformation of SL(2, C),
related to the Gauss decomposition as investigated in [2].

3.1.2. Gq,t; t imaginary, non-zero

Relations in this form do not lead to a commutative algebra for q = 1.
However, passing to a new basis f, = |s|-1/2 e1, f2 = e2 we obtain relations of
the following form (cf. the prototype of (15) given in (72) below for r = 1,
t = q-1):

where s is an arbitrary real number (s = 0 is admitted by 3.1.1). The com-
mutative case is now recovered in the limit s ~ 0, q ~ 1. Quantum groups
corresponding to the same q and the same sign of s are isomorphic.
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REMARK. The above relations in the form corresponding to s = q2 - 1 have
been studied in [1] as a first example of a deformation of the Lorentz group.
This case turns out to be both the quantum double and the real complexifica-
tion (cf. [9]) of SUq(2). The case s = 1 - q2 corresponds to real complexifica-
tion (quantum double) of SU,(l, 1) (cf. [9], formulae (3.77)-(3.80)).

3.1.4. Gq ; q imaginary

3.2. Three additional cases for q = -1

We use here the form of E given in (28), which yields the following commuta-
tion relations for a, f3, y and b :

We have three following cases (corresponding to (25)-(27)).

3.2.1. Gt-1; t real, non-zero
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3.2.2. Gt 1; t imaginary, non-zero

In this case we have relations (36)-(43), which can also be written in the
following equivalent form (cf. [12]):

Now follows two cases of commutation rules (44) (corresponding to (20), (21)).
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and

REMARK. Relations in Section 3.3 do not contain an explicit deformation
parameter (cf. remark in 3.1.3). We can introduce it passing to a new basis
f i = 03C4-1 e1, f2 = e2l where is an arbitrary non-zero complex number. This is
equivalent to replacing p by P/7: and y by 03B303C4 in the commutation relations. If

we do this, equations (45)-(47) have again the same form with the commutator
[·,·] replaced by 1/T[’,’]. In 3.3.1 the only change consists in replacing r by
rl’l’12. In 3.3.2, if we use (78) with r = -1 instead of (21) and i = -hE iR, the
corresponding quantum Lorentz group contains SLh(2, R) of [12] as a sub-
group (and seems to coincide with its real complexification [9]).

4. Proof of Theorem 1.2

Theorem 1.2 follows from two following propositions.

PROPOSITION 4.1. Let .si be the *-algebra introduced in Theorem 1.1 and

.si hol be the subalgebra of .si generated by matrix elements of u. Assume that E,
E’ and X satisfy relations (3), (5) and (6). Then

1. Ahol is the universal algebra generated by matrix elements of u satisfying
the relations (1) and (2).

2. Any element a ~ A is of the form

where ar, br E d hol (r runs over a finite set).
3. The decomposition (48) is unique in the sense that the sum

is determined b y a.
Proof. Since K is finite-dimensional, it follows from (3) that

(identifying elements of V Q W with linear maps from W * to g formula (3)
means that E’ E K* (8) K* is the inverse of E E K ~ K). By (5),



226

for some number c. Tensoring both sides (from the right) by idK and com-
posing with (idK (8) idK 0 E’) (from the left), we get

hence also

Tensoring by idK (from the left) and composing with (E’ ~ idK) (also from the
left) we obtain

Let  be the free *-algebra generated by matrix element of u, 1 be the
*-ideal of  generated by the relations (1), (2) and (4). Then

Let dhol ~  be the (free) subalgebra generated by matrix elements of u,
9-h., be the ideal dhol generated by relations (1) and (2) and 5""2 be the ideal
of ÀÎ generated by relations (4). It is sufficient to show that

Indeed, Statement 1 is equivalent to (54), Statement 2 follows from (52) and
Statement 3 is implied by (53).

Let

Remembering that X is invertible one may rewrite relations (4) in the following
form:
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where a, b, a’, b’ ~{11, 12, 21, 22} and Yb’a’ab are complex numbers depending on
matrix elements of X.

By definition, elements of  are linear combinations of linearly independent
words composed of characters a, fl, y, £5, a*, fi*, y* and 03B4*. Let ts (s = 0,1, 2, ...)
be the linear operator acting on  in the following way:

If a word w E  is of the form

w = w’u*aubw", (55)

where w’, w" are words and the length of w’ is s then

Otherwise (w is not of the form (55)) tsw = w. One can easily verify that

for any x ~ . Moreover, if XE fl2 then

where xs ~ ker ts. (Elements of !!I2 are linear combinations of elements of the 
form

where y, z are monomials in matrix elements of u, M. Clearly, tsx = 0 where s
is the length of y.) Let s  r be nonnegative integers. Using the braid relations
(57) we get

By virtue of (56), (tot 1... tr)tr = tot 1... tr. Therefore setting T = (t0t1, ... tr)r+ 1

we get
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for s = 0, 1, 2,..., r. Using (58) we obtain

for any XE d. If r is larger than the length of any word entering x then clearly
Trx ~ holhol and (61) shows that

Assume that x ~ 52. Then x is of the form (59) and choosing r larger than
all s in (59) and using (60) we get

On the other hand if x ~hol*hol then ts x = x for all s and T x = x. This way
we showed that hol*hol ~ J2 = {0} and (52) follows.

Let " -= " denote the equality in  mod J2. Using (50) one can easily show
that

Similarly using (51) one may verify that

By virtue of (62) these relations show that

Therefore denoting by 1’ the right hand side of (53) and using once more (62)
we see that  J’ ~ J’. It means that J’ is a left ideal in . On the other hand
.r2 is *-invariant (see remark following relation (6)), so is 56’. It shows that î-’
is a *-ideal in A. Remembering that 56 is the smallest *-ideal in A containing
9-h,,, and .r2 we obtain (53). Relation (54) follows immediately from (52)
and (53). Q.E.D.
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Clearly, the algebra dhol introduced in Theorem 1.2 depends only on E and
can be identified as the algebra generated by four elements a, /3, y, b satisfying
relations (29)-(35) or (36)-(43).

PROPOSITION 4.2. Let ANhol be the subspace in A of all polynomials (of a, /3,
y and b) of degree  N. Then

Proof. Indeed, for the case of relations (36)-(43) see [11]. For relations
(29)-(35): using the representation

it is easy to show that {03B1k03B2m03B3n}k~Z,m,n0 (where ak = ak for k  0 and 03B1k = 03B4-k
for k  0) is a linearly independent set. It is therefore a basis and (63) follows
easily (cf. the last paragraph of Section 3 in [11]). Q.E.D.

Using the above propositions one can make the following remarks on
representation theory of the quantum group introduced in Theorem 1.1 under
assumptions of Theorem 1.2.

REMARK 1. Let V be a finite-dimensional vector space and let

v1 ~ B (V) ~ Ahol, v2 ~ B(V) ~ A*hol be corepresentations of dhol and W* hol
(respectively), such that the matrix elements of v 1 commute with the matrix
elements of v2. Then v = vlv2 E B(V) 0 -W is a corepresentation of A. Each
corepresentation of A is of this form (cf. Prop. 6.2 of [1]).

REMARK 2. Except cases when E = Eq = el Q e2 - qe2 Q el with q being a
root of unity, an analogue of Theorem 6.3 of [1] holds.

5. The proof of Theorem 2.2

The most important observation used in the proof is that equations

Q13Q23E12 - E12 and E’12Q13Q23 = E’12 (64)
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(i.e. (50) and (51); we can consider equalities in (64) instead of the - signs by
the scaling argument) are equivalent to equations (29)-(35) (if E is given by
(8)) or (36)-(43) (if E is given by (9)) with a, 03B2, y, à replaced by 2 x 2-matrices
a, b, c, d (see formula (12)).
Using explicitly the matrix elements of the blocks in (12):

etc., we can write (11) as follows:

where is a complex number of modulus 1 (because Q ~ 03C3Q03C3-1 is an

antilinear involution).
Now we pass to considering specific cases. In each case we start with a basis

el, e2, in which E has its canonical form (8) or (9). The matrix Qe of Q has the
form (12). We solve conditions (64), (65) for a, b, c, d. We sometimes change
than the original basis el, e2 to a ’better’ basis fl, f2, in which E has also a
canonical form. The final basis fl, f2 has then to be taken as el, e2 appearing
in the Theorem.

In this case a, b, c, d generate a commutative subalgebra in End(C2). Such a
subalgebra is generated either by a projection, or by a nilpotent. We have two
cases:

In the first case, 03C3Q03C3-1 = P Q Â + (I - P) Q B, hence from (11) it follows that
A, B are functions of P. Using the canonical basis f l, f2 for P (the matrix of P

being 1 0 0 0]), we obtain
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and from ad = I we have s = tr, hence

From (65) we obtain 0 ~ r ~ R and |r| = 1, hence r = ± 1. This gives (13) and
(14).

In the second case, A, B are functions of N (the same reason as before). Let

fi, f2 be the canonical basis for N (the matrix of N being [0 1 0 0]). We obtain

and it follows from ad = I that r = 0. From (65) we obtain s = 0, t E R, hence

We may assume that t =1= 0. Passing to a rescaled basis, g1 = kfl’ g2 = k - lf2,
where k4 = |t|, we obtain fi - k-2g21, hence tf21 (D Il = tk-4g21 (8) g21 =
±g21 O g21. This is (15) for q = 1.
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We consider several cases.

5.2.1. The abelian case: a, b, c, d form a commuting set

First assume that Q is of the form (66). From (64) we have

hence

which, according to (64), has to be E12 = E ~ P + E ~ (I - P). It follows that
(A Q A)E = E = (B Q B)E. There are two possibilities. In the basis el, e2,

(i) A, B are diagonal,
(ii) A diagonal, B anti-diagonal

(the case when both are anti-diagonal is excluded because I is a combination
of A and B, by (11)).

Considering (i) we see that P is also diagonal and

as in (68). From (65) we obtain (13) and (14).
If we assume (ii), we obtain A = 1 and the matrix of B is of the form

[0 k k-1 0]. 0 It follows that B is an involution and P = 1(/ ± B). The minus sign
is however excluded by (11). Changing the basis, f, = fiel’ f2 = (1/k)e2,
we obtain 1 as the matrix of B, hence (19).
Now let us assume that Q is of the form (67). From (A 0 A)E = E it

follows that A is either diagonal or anti-diagonal (in the basis el, e2). Since A
is non-degenerate and a combination of 7 and N, we have tr A ~ 0. This
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shows that A is diagonal, hence A = I. Now, B = rI + sN gives Q =

I ~ I + rI ~ N + sN ~ N. This and (11) imply r = 0. Solving (A ~ B +
B Q A)E = 0 explicitly in components, we obtain also s = 0. This excludes the
nilpotent case.

5.2.2. The case a = 0

By (65), in this case b, c and d have to be of the form

where * denotes entries not determined yet. It follows from bc - 7 that b and
c are anti-diagonal. From (65) we have

with some number r. Since bd = - db, we obtain r = 0, hence d = 0, and we
return to the abelian case, considered previously.

5.2.3. The case d = 0

This case leads to the abelian case, by similar reasons as above.

5.2.4. The case c = 0

By (65), in this case a, b and d have to be of the form

(as before, * are not determined entries). The commutation rule ab = - ba
implies that b is of the form
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It follows from (65) that a, d are diagonal. If t = 0, then we have an abelian
case. If t ~ 0, then ab = - ba, db = - bd imply tr a = 0 = tr d. One can assume

that a = 1 0 From (65) we obtain

where t is a real number. Substituting el = xf l, e2 = x-1f2, we obtain

For an appropriate x we obtain (15)

5.2.5. The case b = 0

Similarly as in the preceding paragraph, we obtain

The substitution e = f2, e2 = f1 leads exactly to the previous case.

5.2.6. Remaining cases

We assume that a, b, c, d do not form a commuting set and all are nonzero.
It follows that a2, b2, c2, d2 commute with the elements of a non-

commutative subalgebra in End(C2), hence they are multiples of I. There exist
u, v, u’, v’ E End(C2) and numbers p, r, s, t such that
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By the anti-commutativity, none of operators u, v, u’, v’ is a multiple of I. From
uu’ = u’u we obtain u’ = + u. Similarly, v’ = + v. We can assume that u’ = u,
v’ = v, hence

where

and pt + rs ~ 0 (since ad + bc ~ 0).

From (11) it follows that tr p 0 0 t] = tr (a combination of û and v) = 0, hence
t = -p, p2 ~ rs. We can write Qe in a form

with p2 ~ h2. Passing to the basis f 1 = Ikel, f2 = (1/k)e2, we obtain
Qf ~ u0 ~  + gv0 ~ , where g ~ ± 1, g ~ 0,

and û and D satisfy the same algebraic relations as u and v in (69). It follows
from (11) that û and b are linear combinations of û, and Do :

It is easy to check that conditions (69) for û and b are fulfilled if and only if
x2 + y2 = 1 = z2 + t2 and xz + yt = 0, or, equivalently, if t = + x, z = ~ y
and X2 + y2 = 1. We have therefore

( ± sign absorbed in g), where X2 + y2 = 1 and g ~ + 1, g ~ 0. Now, from (11)
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it follows that there exists a complex number s of modulus one, such that
x = sx, y = sgy and gx = sgx. We have the following implications

We have then either x = 0 or y = 0.

If x = 0 and y ~ 0 then Igl = 1 and

hence (17).

hence (18).

Lemma 5.1. a and d are invertible.

Proof. We have ad ~ 0, because if not, then bc = -q-1I and da =

(1 - q-2)I is invertible.
Similarly we have da =1= 0.
Assume now that rank(ad) = 1, then also rank (da) = 1. Then (I + qbc),

(I + q-1bc) are of rank 1, hence bc can be diagonalized in a basis vi, V2:

We have bc(aV2) = q-2a(bcv2) = -q-lav2’ hence av2 = kv1 for some number
k. We have also bc (av 1 = q-2a(bcv1) = -q-3av1, hence avi = 0 (because
q-1 ~ q-3 ~ q). Since a ~ 0, we have k ~ 0 and

On the other hand, bc(dv2) = q2d(bev2) = -q3dv2’ hence dv2 = 0. We have
obtained d = 0 in contradiction with ad ~ 0. Q.E.D.

LEMMA 5.2. b2 = 0 = c2.

Proof. From aba-1 = qb it follows that det b = 0 and tr b = 0. Q.E.D.

LEMMA 5.3. Either b = 0, or c = 0.

Proof. Let us assume that b =1= 0 ~ c. In view of Lemma 5.2, matrices
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commuting with b are of the form t1I + t2b. It follows that c = tb for some
number t. Since ab and ba are also nilpotents commuting with b, we have

It follows that qs, s are eigenvalues of a, hence a is diagonalizable: there exists
a one-dimensional projection P E End(C2) such that

We have Pb = b and bP = 0.

Now we shall use the following fact

where F = E, qkl are matrix components of Q : Q = ek Q qkl and z is a number.
To prove formula (70) it is sufficient to insert Q ~ 03C3Q03C3-1 = qkl ~ elk into
Q13Q23E12 ~ E12.
Using (70), we obtain

where

In particular,

hence (b 0 b)Fe = 0. We can choose a basis fl, f2 such that Pf, = fi, Pf2 = 0,
bfi = o, bf2 = fi and then F22 = 0 (F e = Fk fk ~ f ).
We have also

and this means that
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Since F12 and F21 cannot vanish simultaneously (rank Esym = 2), the determi-
nant of this system of equations is zero, hence

On the other hand, we have

Since F12 and F21 cannot vanish simultaneously, we have (qs2)2 = 1, and, by
(71), we have q2 = 1. Q.E.D.

In view of the above Lemma, we consider now two cases.

By (65), in this case a, b and d have to be of the form

and from Lemma 5.2,

Again by (65), it follows that a and d are diagonal. From ad - 7 we obtain
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From (65) we obtain 0 ~ r E R and |r| = 1, hence r = +1, and

For s = 0 we obtain (13) and (14).
If s ~ 0, then ab = qba implies t = q -1 and we obtain (15) and (16) (one can

rescale s to be + 1 by passing to a new basis of the form f, = xe,, f2 = e2).

Repeating the method of the preceding paragraph we obtain

We can limit ourselves to the case s ~ 0. In this case t = q. Passing to the basis

fi = e2, .f’2 = el, we return to the case of the preceding paragraph (with q
replaced by q-1).

LEMMA 5.4. c = 0.

Proof It is easy to see that c is not invertible, because otherwise from (40)
we would have
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which is impossible for 2 x 2 matrices. From (40) we have tr c’ = 0. Since also
det c’ = 0, C2 is a nilpotent, hence also c is a nilpotent.
Now, let us assume that c ~ 0. It follows from [a, c] = 0 and [d, c] = 0 that

a = 03BE1I + 11IC and d = ç21 + ~2c for some numbers 03BE1, 03BE2, ~1, ~2. We have

therefore [a, d] = 0 and (03BE1 - 03BE2)c = c(d - a) = [a, d] = 0. It follows that

03BE1 = 03BE2 = 03BE for some 03BE. We have 2 = tr I = tr a2 = 03BE2 tr I, hence 03BE = + 1.
From bc = ac + ad - I and cb = - ca + da - I we have

Since ad = I + 03BE(~1 + ~2)c and ac - c, we have also

From tr c = 0 and det c = 0 we have the following form of the matrix of c:

If z = 0, then x = 0, hence

therefore (76) implies

It follows then from (65) then c = 0.
Assume that z ~ 0. The following change of basis does not change the form

of E:

(here t is a parameter). From
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we obtain c’ = c, and the matrix of c in the new basis equals

If we set t = x/z, we obtain

Then, by (65), a’ and d’are of the form and, as functions of c’, have
to be diagonal, hence

It follows from (76) (for primed quantities), that b’ = 0 and then, by (75),
c’ = 0. Q.E.D.

Now we investigate the case c = 0. We have d = a-I and

is the only relation to be satisfied.
We have tr a2 = 2 = tr a-1 and

(using (65)).

LEMMA 5.5. x2 + y2 = 2 = x-2 + y-2 ~ x = x +1,y= +1.
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Proof. The proof is elementary.
By Lemma 5.5, we have now two possible cases.
1.

By (65), we have

It follows from (77) that t = 0 or t = 1. From t = 0 we obtain (20). If t = 1,

and passing to a new basis f1 = el, f2 = e2 - (r/4)e 1, we obtain (21) as the
matrix of Q.

but this is in contradiction with (65).

Note added in proof

Poisson structures on the Lorentz group have been classified recently in [14].
The classification is similar to the one given in the present paper.
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