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1. Introduction

In this paper we study certain supersingular curves. The motivation for this
comes from the theory of codes. Binary Reed-Muller codes R(r, m) are one of the
oldest types of codes. The words of this code R(r, m) are obtained by evaluating
polynomials over F2 in m variables whose total degree is r at the points of
(F2)m, In case that r = 2 we obtain polynomial functions of degree 2 on (F2)m by
viewing the finite field Fq with q = 2m as a vector space over F2 and by
considering quadratic forms Tr[xR(x)], where R is a so-called linearized

polynomial over Fq, i.e. one in which only powers of 2 occur as exponents. The
code words then are intimately related to the curves y2 + y = xR(x); for example
the weight of such a word is determined by the number of points on this curve.
This leads us to the study of these curves and it turns out that they have
intriguing properties. For example, their automorphism groups over an al-
gebraic closure contain extra-spécial 2-groups and are very large. Moreover, our
curves are supersingular in the sense that their jacobians are isogenous to
products of supersingular elliptic curves (over an algebraic closure). We thus
find a beautiful family of supersingular curves.
We study in detail the automorphism groups of these curves and derive

consequences for the number of points on them and thus for the weights of our
code words. We have also been able to determine the number of curves in

families with a fixed number of rational points. In this way we can obtain in a
simple manner the weight distribution of certain subcodes of the second order
Reed-Muller codes, thus avoiding the tedious computations as in Berlekamp
[Be]. Moreover, this can be generalized to characteristic &#x3E; 2. As a corollary we
find curves over Fq with the maximal and minimal number of points possible for
any genus g equal to a power of 2 and g  y"/2]-i
The geometry of our curves over the given field IF q is determined to a large

extent by the kernel (or radical) of the symplectic form Tr[xR(y) + yR(x)] and
another (non-degenerate) symplectic form on this kernel. We use these forms to
study the automorphism group and the decomposition of the jacobian.
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The curves considered here have other applications too: curves of this type
were used by Shioda and Elkies to construct lattices ("Mordell-Weil lattices")
which are denser than the lattices known so far.

The organization of this paper is as follows. After giving the link between
Reed-Muller codes and our curves in Section 2 we study the equation for the
radical of the associated symplectic form in Section 3. In the next two sections
we determine the automorphism groups of our curves and use this to get the
number of rational points. Then in Section 6 we study how this number varies in
families with fixed kernel and in Section 7 how the dimension of the kernel varies

in general. These results are illustrated by the example of elliptic curves in
Section 8. The next two sections deal with the decomposition of the jacobian
both over if q and over Fq. In Section 11 we determine the representation of the
extra- special 2-groups of automorphisms on the first cohomology and in
Section 12 we determine the so-called a-number of the jacobians. We conclude
in Section 13 with a summary of analogs for characteristic &#x3E; 2.

In Part II we shall treat, among other things, questions of moduli, the
behaviour of the automorphism group in families, linear relations between the
frequencies of the weights and the case of characteristic p &#x3E; 2, and we shall give
more applications to coding theory.

It is our pleasure to thank N. Elkies, F. Oort and D. Zagier for their
comments on an earlier version of this paper.

2. Reed-Muller codes and curves

We recall some elementary notions from coding theory. We refer to [MacW-Sl]
for extensive explanations. Fix a finite field Fq* A linear code C over Fq of length
n~Z&#x3E;0 is a linear subspace of the Fq-vector space Fnq. An element of C is called a
word. The weight w(x) of x~ C is defined by

The weight distribution of a code C is the collection of non-negative integers

A linear code is cyclic if with every word c = (al, ... , an) E C also the word
(an,a1,...,an-1) belongs to C.
We recall the definition of the binary Reed-Muller code R(r, m) for natural

numbers r and m. Let P, be the F2-vector space
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Then the rth order binary Reed-Muller code R(r, m) of length n = 2m is

obtained by evaluating the elements of Pr at the points of (F2)m: it is the image of
the linear map

By deleting the component of each vector corresponding to Oe (F2)’ we get a

cyclic code of length 2m -1, denoted by R*(r, m). Note that this construction
works as well with 2 replaced by an arbitrary prime power q.

If we take r = 2 and set q = 2m then we can construct elements of P2 by
considering the F2-valued function Q(x) on Fq, considered as an m-dimensional
F2-vector space, defined by

where Tr is the trace map from Fq to F2 and R is a so-called (2-)linearized
polynomial

Indeed,

is a symmetric bilinear form, hence Q(x) is a quadratic form.
We set

and thus find that

is a subcode of R(2, m). The punctured code

is a subcode of R(2, m)*.
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Consider the cyclic code C of length q -1 over 0: q with generator polynomial
03A0hi=0(X - 03B12i+1), where a generates 0::. The dual C~ of this code is cyclic with
zeros

By substituting one verifies that these are precisely the common zeros in F. of the
polynomials

and this means that C~ = {[xR(x)]x~F*q: R E Rhl. Delsarte’s theorem asserts that
the dual of a restriction code is the trace of the dual code (cf. [MacW-S], p. 208):

Hence our code Dh = Tr(C~) is the dual of the binary cyclic code C|F2 with zeros
{03B12i+1: 0  i  h}. From this we conclude

dim

For h = 0,1, 2 the codes Dh are the duals of the 1-, 2-, 3-error correcting BCH
codes.

Consider now a word WR = (Tr[xR(x)])xEIF in Ch. Using the basic fact that an
element of Fq has trace zero if and only if it is of the form y2 + y for some y E IF q we
see that the weight of WR is given by

q - -1 [number of rational points on the affine curve y2 + y = xR(x)].

So the weight distribution of the codes Ch (and Dh) is closely connected to the
family of (affine) curves defined by the equations

with R running through Rh. We are thus naturally led to study these curves.
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3. The kernel équation of a symplectic form on FI,

In this section we study the symplectic form associated to the quadratic form
Q(x) = Tr[xR(x)] introduced in Section 2. View FI, for q = 2m as an F2-vector
space E of dimension m. Let S be the vector space of symplectic forms on E. We
consider the vector space Rh of linearized polynomials introduced in the

preceding section. We shall assume that 1  h  [m 2]. If R E Rh then the zeros of
R form an F2-vector space. To an element R~ Rh we associate a symplectic form
on E = Fq:

The radical (or kernel) of the symplectic space (Fq, FR) is defined by

This is an F2-subspace of Fq and if FR is not identically zero then

since the rank of a non-zero symplectic form is even.

Proof. As Tr is invariant under the Frobenius automorphism we have

Then x~ WR if and only if

which is equivalent to

and our proposition follows.



338

This proposition implies in particular

Note that Eh,R(X) is also a linearized polynomial, independent of the
coefficient aco of R. Furthermore we have

We shall denote this polynomial Eh,R simply by Eh and we shall call the equation
Eh = 0 the kernel equation for (the symplectic form associated to) R.
We can describe WR in an alternative way as follows.

Proof. The if-part is obvious. By equating coefficients we see that we always
can find a linearized polynomial B~XFq[X] and a scalar d~Fq such that
B2 + B = cR(X) + XR(c) + dX (cf. Remark (3.3) hereafter). Suppose that c~WR.
Then Tr(dx) is zero on F qand this implies d = 0. D

(3.3) REMARK. By equating the coefficients we find that a solution B~XFq[X]
of (1) is a linearized polynomial 03A3h-1i=0 bi+ 1X2i whose coefficients satisfy the
relations

The compatibility of this system comes down to Eh(c) = 0.

Now back to the kernel equation Eh = o. We want to factor the polynomial Eh .
The idea is that if c ~ 0 is a zero of Eh and if B is the corresponding solution of (1)
then because of B(c)2 + B(c) = cR(c) + cR(c) = 0 we have B(c) = 0 or 1. Note that
the polynomial B depends on c. We can thus split the polynomial Eh in a factor

X, a factor 03A0c~WR,c~0,B(c)=0(X-c) and a factor 03A0c~WR,c~0,B(c)=1(X-c), where
WR = {c~Fq:Eh(c)=0}. To make this explicit we introduce the auxiliary
polynomials
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(3.4) THEOREM. Let R = 03A3hi=0aiX2i ~ Fq[X] with ah ~ 0. Then there is a
factorization Eh = XE-hE+h, where

has degree 22h-1 - 2h - 1 - 1 and leading coefficient a2h-1h and

has degree 22h-1 + 2h-l and leading coefficient ar-le
Proof. Let c ~ 0 be a zero of Eh and let B be the corresponding solution of (1).

From B(c)2+B(c)=cR(c)+cR(c)=0 we see B(c)=0 or B(c)=1. If B(c)=0
(resp. = 1) then c satisfies an equation

From the equations (2) we derive

Substituting this in (3) we find

After reordering we find

In case B(c) = 0 we divide by c2h + 1 and obtain a polynomial equation of degree
2h-1(2h-1)-1 in c :

If B(c) = 1 the equation
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has degree 2h-1(2h+1). By replacing c by X we obtain the polynomials El.
A simple counting argument shows that E±h divide Eh and that

Eh = XE-hE+h. 0

This theorem yields us polynomials E±h or more precisely E±h,R. We shall
always suppress the reference to R. Even if ah=0 these expressions (in
al, ... , ah, X) make sense and we use them to define polynomials E±h also for
R~Rh with ah=0. In order to compute Eh and E+h we note that the expressions
for E±h in Theorem (3.4) imply

and

Here Eh-1 corresponds to R - ahX 2h, though ah-l may be zero. Moreover, we
have

(3.5) EXAMPLES. For h = 1, 2, 3 the polynomials Eh, Eh , E’ are as follows.

(3.6) PROPOSITION. Let Fq be an algebraic closure of Fq. The polynomials Eh
and Eh are irreducible over the purely transcendental function field if q(al, ... , ah).

Proof. We treat the case of Eh . Consider it as a polynomial in al. Then it is of
the form

with P E Fq[a2,...,ah, X]. This is obviously irreducible as a polynomial in a,,
since either P = 0 for h = 1 or (p/X2h-l_l) is not a square in iFq(a2,..., ah, X).
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From this we easily conclude that Eh is irreducible over if q(al, ... , ah). A similar
argument works for E:. D

Finally we return to our F2-linear map defined in the beginning of this section:

given by

(3.7) PROPOSITION. The kernel of the map (D is

and

Proof. Suppose R=03A3hi=0aiX2i with 03A6(R) = 0. Then the kernel equation is a
multiple of Xq-X = 0. For h  2 this implies that E,, ~ 0, so ai = 0 for i  1. For

h = m 2 we get Eh=a2hhXq + a2hhX, hence a2hh = ah and ai=0 for 1 i 1 K h -1. This
proves our proposition. D

Note that dim(S) = (2) and dim(Rh) = m(h + 1). Hence 03A6: R[m/2]~S is surjective.
Let us call the number 2h the virtual corank of the symplectic form 03A6(R) (for

2h  m). We can use the virtual corank to define a stratification on the space of
symplectic forms. This stratification is rougher than the stratification by the
usual corank. The virtual corank remains invariant if we replace our symplectic
form Trq[xR(y) + yR(x)] by Trqr[xR(y) + yR(x)]; the usual corank will change in
general.

4. The automorphism group of the curve y2+y=xR(x)

We consider the (non-singular projective) algebraic curve C = CR over Fq with
q = 2m defined by the affine equation y2 + y = xR(x) for R = 03A3hi=0 aix2i E Fq[x]. By
the Hurwitz-Zeuthen formula the genus of CR with deg R = 2h equals 2h-1. We
first determine the automorphism group over an algebraic closure F q.

(4.1) THEOREM. The subgroup AutO(C) of Aut(C) of -F q -automorphisms of C
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fixing the branch point of the hyperelliptic map C -+ IP 1 is the semi-direct product of
a normal subgroup G which is an extra-special 2-group of order 22h+1 and a cyclic
group of order g.c.d. {2i + 1 : i  1, ai ~ 01. This group G is the central product of
h -1 dihedral groups of order 8 and one quaternion group of order 8 with identified
centres. Moreover, Aut°(C) = Aut(C) for h  2.

Proof. Let G be the subgroup of Aut(C) generated by the automorphisms of C
the form

with c~Fq, B E xFq[x]. Comparing coefficients gives

This implies

As in Remark (3.3) equation (4) has a solution B in F. [x] if and only if
Eh(c) = 0. From (5) it follows that the elements of G correspond 2 -1 to the
elements of

which is an F2-vector space of dimension 2h. The center Z of G consists of the
two automorphisms in G with c =0. Namely, if 0 E G is determined by the pair
(c, bo + B,,) with c ~ 0 then 0 has centralizer
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identified centres then the number of elements of order  2 equals 2h(2h + 1),
while for the other type the number is 2h(2h-1).

Therefore we now determine the elements of order two in G. The pair
(c, bo + B) with c ~ 0 determines an element of order two if and only if

i.e. B(c) = 0. As we saw in Section 3 this amounts to Eh (c) = 0 and we know that
the degree of Eh equals 22h-1-2h-1-1. Including c = 0 we have 22h-1-2h-1
values of c, each inducing 2 elements of order 2 in G. This determines the
isomorphism type of our group.
For h  2 an arbitrary automorphism of C is of the form

since any automorphism commutes with the hyperelliptic involution y -+ y + 1
and thus induces an automorphism of its fixed field F, (x). We find 03B42 = 03B4, hence
03B4=1, and 03B12i+1=1 for i  1 whenever ai ~ 0. We denote the automorphism
given above by 03C303B1,c03B1b0,03B1.
The map 03B103B1,c03B1,b0,03B1 ~ 03B1 is a surjective homomorphism of AutO(C) onto a cyclic

group of order g.c.d. {2i+1: i  1, ai ~ 01 with kernel G. Since the order of G and
of Aut°(C)/G are coprime the extension Aut°(C) splits, cf. [Hu]. This proves our
theorem. D

(4.2) REMARKS. (i) Note that the automorphisms of order 4 in G come from the
zeros of Eh or in other words correspond to pairs (c, b0+B) with B(c) = 1.

(ii) The element ca satisfies the "affine" equation

The map CTl,Cl,bo.l ~ c1 induces the identification of the quotient group G/Z with
W 

(iii) Let c e W with c ~ 0. According to Proposition (3.2) there is a polynomial
Bc(X) associated to c. The centralizer Z, of 0 E G corresponding to c has order
22h and Zo corresponds to

We call the equation
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the centralizer equation of c. It is a linearized polynomial of degree 22h-1 in X.
We have a factorization

Finally, using (3.4) and induction one can show the formula

where Pn E Fq[a3, ..., 1 ah, c, X].

An important observation now is that the commutator defines a non-

degenerate symplectic form S(g, h) on G/Z and by Remark (4.2)(ii) then also on
W
One can define a quadratic form Q on G/Z by sending y = gZ to 0 or 1,

depending on whether the element g2 E Z is 0 or ~ 0 in Z. In our case the element
g is determined by (c, bo) and c determines a polynomial B. We have

and

This quadratic form defines a quadric, again denoted Q, in W We can define
other quadratic forms with the same associated symplectic form S by setting

Note that we have: c is a zero of XEh if and only if the quadric 6c has
2h-1(2h-1) points.
Of course, we also want to know the automorphism group Autfp (C) over Fq*

Note that the subgroup Z is defined over Fq. Hence the automorphism group

is a subgroup of G of order 2r for some r  2h + 1 which contains Z. If the
quadratic form g is non-degenerate on G(Fq)/Z then we find an extraspecial 2-
group. But Q can be degenerate when restricted to G(Fq)/Z, e.g. if r is even it is
degenerate.
From the proof of Theorem (4.1) we derive
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(4.3) THEOREM. Over Fq we have a bijection

where

Moreover,

5. The number of points of the curve y2+y=xR(x)

In this section we express the number of points on our curves in terms of the
kernel of the associated symplectic form. In the sequel we shall denote the vector
space WR by W Furthermore, we define the subspace

of W

Since x ~ Tr[xR(x)] defines a linear map W - F2 we have: either Tr[xR(x)] is
trivial on W or it vanishes on a subspace of dimension equal to dim W -1, i.e.

This demonstrates the following lemma.

In case dim V = dim W - 1 we find the number of points on C defined over

F,.

(5.2) PROPOSITION. If dim V = dim W - 1 then # C(Fq)=q+1.
Proof. Because V~W it follows that Tr[xR(x)] vanishes on half of all

elements of W For a E Fq and w E W we have

so Tr[xR(x)] vanishes on half of each coset of W in F q Hence, over half of all
elements of Fq there lie two points of C, so over Fq we find 2·q 2 = q points.
Together with the point at infinity we find q + 1 points. D
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If Tr[xR(x)] is identically zero on W then x - Tr[xR(x)] defines an F2-valued
map on Fq/W. This map is in general not additive. But we have:

(5.3) PROPOSITION. If Tr[xR(x)] is identically zero on W then

where w = dim W

Proof. We have

The contribution of the first term is 2"’q. Moreover, the contribution of the
second term is 0 since for fixed z ~ W the map from IF q to IF 2 defined by
x-Tr[xR(z)+zR(x)] is a surjective linear map. This proves our

proposition. D

The second assertion in this corollary can also be proved by looking at the
quadratic form Tr[xR(x)]. Assuming that it vanishes on W we find a non-

singular quadric in F,/ W It therefore has 2n - 1(2n:t 1) points (with m = 2n + w).
Hence there are

points
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6. One-dimensional families of curves y2 + y = xR(x) with fixed radical

We study the family F of curves y2 + y = x(R’ + aox), where R’ =

03A3hi=1 aix 2i E Fq[x] is a fixed polynomial with ah ~ 0 and where ao ranges over Fq.
The kernel equation Eh = 0 is the same for all curves in our family .9’. As always,
by w we denote the dimension of the F2-subspace W of zeros of Eh in IFq. Note
that Tr[xR’(x)] is a fixed quadratic form, while the expression

ranges over Hom(Fq, F2)-

(6.1) PROPOSITION. Suppose that C is a curve in F. The number of curves in,97
which are isomorphic over Fq to the given curve C equals at least

Proof. Apply to C an F -transformation

with

The image C’ of C has the equation

so C’ is completely determined by c. The image curve is equal to the original one
if and only if

and this amounts to Eh(c) = 0 (see Remark (3.3)) and accordingly our trans-
formation is an Fq-automorphism. For that reason F contains at least

(# C(Fq)-1)/2 · 2"’ members which are Fq-isomorphic to C. D

We let t = q + 1 - # C(F.), the so-called trace of Frobenius. Then we have:
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(6.2) PROPOSITION. In the family F the three possible values of the trace of
Frobenius t = 0, t = + q2w and t = - q2"’ occur with multiplicities

and

respectively.
Proof. Since W is fixed for all curves in e7 the indicated values of t follow from

Corollary (5.4). Suppose that Tr[xR(x)] is identically zero on W for some
member of F. Then t ~ 0 for this curve. The kernel of the map from Fq onto
Hom(W,F2) which associates to a~Fq the linear map La(x)=Tr[ax2] has
dimension m - w. Hence there are q/2w elements in e7 with t ~ 0. So we find

From

we derive

As a result of (6), (7) and (9) we find the claimed multiplicities. To finish the proof
we have to see that not all members of F have t = 0. But t = 0 for all members

contradicts (8). D

Coding theorists may notice that the weight distribution of a coset of the
Reed-Muller code R(1,m) in R(2, m) follows at once from this theorem

(cf. [MacW-S]).
The equation y2+y=xR(x) with R E Rh defines a proper curve Ch over
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Spec(Fq[a0,...,ah-1,ah,a-1h]). It is easy to see that this variety is a rational
variety. Using the results above we can easily calculate its number of points over

IF q.

(6.3) COROLLARY. The number of points on the variety Ch over Fq equals
q hl ’(q - 1).

7. The variation of the dimension of the radical WR

In this section we study the behaviour of w = dim WR as R ranges over

Rh = {R = 03A3hi=0 aix2i: ai E Fq}. Since W is independent of ao we shall assume that
ao = 0. Set Rh = {R~ Rh: a, * 01. For 1  h  m/2 we define

and

We have

For convenience we set

Note that n(h)w = 0 if w ~ m (mod 2).

(7.1) THEOREM. The numbers n(h)w satisfy the following linear relations:

and

or more generally, for 0  r  h
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while for r = h and m even

These identities determine the n(h)w uniquely.
For a full discussion and proof of these and other identities we refer to Part II.

Here we restrict ourselves to giving a proof of the first few relations. We prove
(100), (101), (111), (102) and (112).

Proof. The equalities are shown by identifying both sides as the cardinality of
the same set. Recall that for a fixed R the commutator defines a symplectic form
S on W = WR and by restriction also on W = WR. The form is non-degenerate
on W but can be degenerate on W
We first show (100). We have:

Next, we show (101). Consider the set

Obviously, # A = 03A3w(2w-1)n(h)w. On the other hand, A can be viewed as the set of
Fq-rational points of the algebraic set given by Eh=O, ahX ~ 0 in al, ... , ah, X-
space :

As we saw in Section 3 the polynomial Eh splits as X Eh Et and accordingly the
algebraic set A splits into two components given by the equations
X2h+1E-h(X)=03B4 with ô e {0,1}. Since there is only one term involving al in Eh
and since it is of the form X2h-1-1a2h-11, each choice of a2,..., ah, X uniquely
determines al. We thus find # A = 2qh-2(q-1)2. From a geometric point of
view the two equations X2h+1E-h(X)=03B4 define purely inseparable coverings of
Spec(Fq[a2,...,ah-1,ah,a-1h,X,X-1]). These two coverings thus each possess
(q-1)2qh-2 points. We find

The proof of (111) is analogous to the proof of (101) except that

X3E-1 = X3a1 = 0 does not contribute, while in X3E-1 = 1 the choice of X

determines a,. We thus find #A=q-1 here.
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Let now h &#x3E; 2. We shall prove (102) by showing the identity

observing that (10’2) = (102) + 2·(101).
Consider the set

For every R~R0h the radical WR contains (2W -1)(2W - 2) 1F2-independent pairs
(c1,c2) and hence the left-hand side of (10’2) expresses the cardinality of B.
To get the right-hand side of (10’) we observe that B can be viewed as the set

of h + 2-tuples (a1, ..., ah, X, Y)~Fh+2q satisfying

This latter set consists of 23 components corresponding to the equations

where we write Zh(X, Y)=BX(Y)+BY(X) for the centralizer polynomial intro-
duced in (4.2)(iii) and where ô, e, 11 E {0,1}.

Since we can write

where

each component has 23qh-3(q-1)2(q-2) points. This proves (10’2) and hence
(102). In geometric terms we use the fact that each of the components is a purely
inseparable covering of the affine space

For (112) we note that if h = 2 then P,, = 0 and we find that b = e = q = 0 leads to
a2 = 0, so we find one component less. Moreover, if ô = e = ~ = 1 the equation
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reads

so we must exclu de the solutions of X4 + X 2 y2 + y4 = 0. Hence we find here

points satisfying the equations (*). Hence

Combining this with (101) for h = 2 we obtain (112). 0

We refer to Part II for an exhaustive discussion and proofs of the remaining
identities and similar relations in characteristic p &#x3E; 2.

(7.2) REMARK. One can prove more refined identities like

f

where p = dim(rad(W)). This formula together with (10r) with r = 0,1,2 gives
finer information.

Combining the relations from (7.1) with Proposition (6.2) one gets the number
of curves in the family {CR:R~Rh} with a prescribed number of F -rational
points. Thus this theorem yields a way to derive the weight distribution of
subcodes of the second-order Reed-Muller codes without making use of the
MacWilliams identities, in contrast with the method of Berlekamp in [Be]. His
method does not seem to generalize to characteristic p &#x3E; 2. In Part II we shall

discuss these matters in more detail.

(7.3) EXAMPLE. From (100) and (101) we deduce

From (100), (101) and (112) we deduce
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Combining Proposition (6.2) with these expressions for n(2)w we easily obtain in a
direct way the weight distribution of the dual triple error correcting BCH codes

of length n = q -1 (cf. [MacW-S], p. 669).
Finally we give another application of Theorem (7.1). From (11h) we derive

immediately

The formula for N(’) reveals that we have found infinite families of maximal and
minimal curves. These are curves of genus g over IF q with the maximum number
and minimum number of points (equal to the Hasse-Weil bound q + 1 ± 2gq),
cf. [Se].

(7.4) THEOREM. Let m be even. The curves C = CR with R E Rh such that w = 2h

and Tr[xR(x)] is identically zero on W are curves of genus 2h-l with q + 1:t 2hq
points over IF q. They are either maximal or minimal curves. For every h there exist
maximal and minimal curves.

Proof. The Hasse-Weil bound for a curve C of genus g is

For the curves indicated above either the upper or lower bound is attained.

From the formula for N2hh and Theorem (6.2) it follows that both signs occur for
every h  m/2.

For h = m/2 we only have maximal curves. However, by replacing for a
minimal curve the expression xR(x) by xR(x) + c, where c~ Fq has trace equal to
1, we obtain a minimal curve. D

8. Supersingular elliptic curves

As an easy illustration we consider the family of elliptic curves 03B5 with equations
y2 + y = xR(x), where R(x)=ax2+bx with a~F*q and b~Fq, so h=1. By a
coordinate change

the equation of such a curve changes into
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This is a family of supersingular curves. For m odd we have w = 1 and for m even
we have w = 0 or w = 2. Theorem (7.1) implies

and consequently

If we combine these results with Proposition (6.2) we easily derive

(8.1) THEOREM. In the family of supersingular elliptic curves d’ the frequency f of
the value t of the trace of Frobenius is as follows :

f q = 2m with m odd:

Note that Theorem (8.1) gives an alternative approach to computing the
weight distribution of the dual of the double-error correcting BCH-code of
length q -1 (cf. [MacW-S]).
Now we shall show that for q &#x3E; 4 every Fq-isomorphism class of supersingular

elliptic curves occurs in the family G. Let E be an elliptic curve over Fq. It can be
given in Weierstrass form

with discriminant 0394~ 0 and j-invariant j = a121/0394. If the invariant j = 0 then the
coordinate change x ~ x+a2 gives us the standard form

where now 0 = a43. Such a curve has an automorphism group of order 24 over an
algebraic closure of Fq, cf. Theorem (4.1). It is well-known that the j-invariant
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classifies elliptic curves up to isomorphism over an algebraically closed field. In
order to classify elliptic curves over Fq one needs Galois cohomology. The
"twists" of a given elliptic curve E, i.e. the F -isomorphism classes of elliptic
curves which are F -isomorphic to a given elliptic curve E over Fq, are in 1-1-
correspondence with the elements of the cohomology set

Note that the elliptic curves occurring in.0 are those which possess a standard
form

(8.2) LEMMA. If q &#x3E; 4 the curve E with j = 0 given by y2 + a3Y =X3 + a4x + a6
has at least three points over F..

Proof. By dividing the equation by a23 and by applying a simple coordinate
change the equation becomes

Note that

Suppose that

Then

which contradicts the assumption q &#x3E; 4. D

(8.3) PROPOSITION. Assume that q &#x3E; 4. Any supersingular elliptic curve E over

Fq is isomorphic to a curve from é.
Prof Let E be given by y2 + a3 y = X3 + a4x + a6. According to Lemma (8.2)

this curve possesses a non-zero point (c, bo). By applying the transformation
x ~ x + c, y ~ bo + cx we find an equation y2 + a3y = x3 + a4x + a6 with

a6 = 0. D

By a slight modification of the method used in Proposition 6.1 we obtain:
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(8.4) REMARK. The number of curves in our family 03B5 which are Fq-isomorphic
to a fixed curve C from the family (ff equals

where Aut0Fq(C) is the subgroup of automorphisms fixing the origin.
We could use this to derive the frequencies in Theorem (8.1) in an alternative

way.

9. Decomposing the jacobian over the algebraic closure

In this section we shall show that the jacobian of a curve y2 + y = xR(x) with
R~ Rh of degree 2h is isogenous to a product of supersingular elliptic curves over

iFq. We decompose the jacobian using the non-hyperelliptic involutions in G.
If 0 is a non-hyperelliptic involution we let

We now show that CtjJ is of the form y2 + y = xS(x) with S a linearized

polynomial of degree 2h-l. In fact, we can compute an equation for Co.

(9.1) PROPOSITION. Let 0 be a non-hyperelliptic involution of CR given by
x--*x+c, y ~ y + b0 + B. Then CIO is the curve with equation

where u = x(x + c), v = y + c-1x(b0c-1x + B) and where P(u) E Fq[u] is a linearized
polynomial of degree 2h-l.

Proof. For an involution 0 we have B(c) = 0. One checks that u and v are
invariant under 0. Furthermore, one has

By (4) and (5) of Section 4 we have
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Substitution gives:

The linearized polynomial

has zeros 0 and c, so can be written as a linearized polynomial P in u and our
result follows. 0

Let 0 be an involution not in Z = ~l~. Then the norm map of the function
fields IF q( C) -+ Fq(C~) induces a morphism Nm~: Jac(C) ~ Jac(C.). On the other
hand, if 03C0~ is the canonical morphism C ~ C~ we have an induced morphism

In characteristic 2 arguments similar to those used in [Mul, Section 1] show
that 03C0*~ and Nm~ are each other’s transpose. Moreover, Nm~·03C0*~ is multiplica-
tion by 2 on Jac(C~). If 1 denotes the hyperelliptic involution we have

Nm~l·03C0*~ = 0 and Nm - n* = 0, as one sees by computing its effect on divisor
classes. We thus find an isogeny

Its transpose is 03C0* = (ng + n*,). We thus see that

and

with [2] denoting multiplication by 2. Since 03C0~ is separable and ramified 03C0*~ and
similarly ng, are closed immersions and hence the kernel of 03C0* is a group scheme
H of Jac(C~) x Jac(C~l) which is the graph of an isomorphism

such that H is maximal isotropic for the Weil-pairing, equivalently, that

(Jac(C~) x Jac(C~l))/H has a principal polarization. Here [2] denotes the kernel
of multiplication by 2. We summarize.
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(9.2) PROPOSITION. Let 0 be a non-hyperelliptic involution of C. Then Jac(C) is
isomorphic to the quotient [Jac(C4» x Jac(C~l)]/H, where H is a subgroup scheme
of order 22 

1 

which is the graph of a symplectic isomorphism J ac( C 4»
[2] ~ Jac(C~l) [2].

Let U be a maximal isotropic subspace of W ~ G/Z for the non-degenerate
symplectic form induced by the commutator. Let p : G~G/Z be the canonical
homomorphism. Then U’=03C1-1( U) is an abelian subgroup of G since the
symplectic form comes from the commutator. It is a maximal abelian subgroup
of order 2h+1 and of type (4, 2, ... , 2), cf. [Hu, p. 355]. Let A be an abelian
subgroup of U’ of order 2h-l and exponent 2 such that A n Z = {e}.

(9.3) LEMMA. The quotient C/A is a supersingular elliptic curve.
Proof. This is obvious for h = 1. We carry out induction on h. Note that for

non-trivial ~~A the curve CIO is again of type y2 + y = uR’(u) for some

linearized polynomial R’ of degree 2h-1. If Z~ is the centralizer of 0 then
H = Z~/~~~ is an extra-special 2-group contained in the automorphism group
of CIO. The subgroup A determines an abelian subgroup A’ of H and this is a
group of order 2h-2 and exponent 2. By induction C/A=(C/~)/A’ is a

supersingular elliptic curve. D

For each choice of a group A in 03C1-1(U) we find a factor of the jacobian of C.
For fixed U we have 2h-1 possibilities for A and we thus find 2h -1 factors EA .

(9.4) THEOREM. Over the algebraic closure F qthejacobian Jac(C) is isogenous to
the product of these 2h-1 supersingular elliptic curves EA. In other words, C or
Jac(C) is geometricall y supersingular.

Proof. We use induction on h. It is true for h = 1. By induction we may assume
that it is true for the factors Jac(C4» and Jac(C~l) of (9.2). As observed in the proof
of (9.3) A induces A’ in Aut(CO) and C/A = C~/A’. Hence the factor EA, of Jac(C4»
can be identified with EA . D

(9.5) REMARK. If 0 and 03C8 are two distinct commuting non-hyperelliptic
involutions in Aut(C) then the intersection of Jac(C.) and Jac(C03C8) inside Jac(C) is
of dimension 2h-3 for h &#x3E; 2 and can up to isogeny be identified with

Jac(C/~~, 03C8~). The elliptic curve EA is contained in all factors J ac( C 4» with 0 E A.

10. The décomposition of the jacobian over Fq

The decomposition of the jacobian of y2 + y = xR(x) into isogeny factors over F.
is much more subtle than over Fq. In order to split this jacobian up to isogeny as
a product of abelian varieties (or even jacobians) of dimension 2k it suffices to
find an abelian subgroup B in G(Fq) which is of order 2h-k and of exponent 2 and
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which contains Z. Indeed, such a subgroup B contains 2h-k-1 subgroups B’ of
order 2h-k-1 with B’ n Z = {e}. Then C/B’ is a curve of genus 2k and defines a
factor of Jac(C). The product of the 2h-k-1 factors Jac(C/B’) of dimension 2 k
constitutes up to isogeny the jacobian Jac(C).
We thus look for the maximal abelian subgroup B of exponent 2 (and

containing Z) in G(Fq). Suppose that # B = 2d. Then B/Z defines an isotropic
subspace U of dimension d -1 in G/Z. Recall

We write

with rad(V) the radical of the symplectic space (V, S |V). Since S is non-

degenerate on the 2h-dimensional space W we have

with r(V) = dim(rad(V». A maximal isotropic subspace U of V has dimension

We study here the case that W is maximal.
We define for a non-singular projective curve X defined over Fq the

polynomial P(X/Fq, T)~Q[T] by

with Z(X/Fq, T) the zeta function of X over Fq. Furthermore, for a jacobian
A = Jac(X) of a curve over Fq we put P(Al F., T) = P(XI Fq, T).

(10.1) THEOREM. Suppose that m is even and that W is maximal (i.e.
dim(W) = 2h). Then the jacobian of C splits up to isogeny as a power of a

supersingular elliptic curve over Fq or as a product of a g/2th power of a

supersingular elliptic curve with trace of Frobenius + 2q and a g/2 th power of a
supersingular elliptic curve with trace of Frobenius - 2q.

Proof. (a) We first prove that the jacobian is isogenous to a product of elliptic
curves.

If V = W then we can find an isotropic subspace of dimension h. Lifting it to

G(Fq) we find an abelian subgroup B of order 2h+1 and this must be a maximal
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abelian subgroup, hence of type (4, 2, ... , 2). By the argument above Jac(C) is
isogenous to a product of elliptic curves.

If V is of codimension 1 in W then rad(V) has dimension 1 and combining a
maximal isotropic subspace H of V and rad(V) we obtain a total isotropic
subspace of dimension h contained in V. By the argument above this suffices.

(b) We prove that if V = W all factors are isogenous to each other. We do this
by induction. It is trivially true for h = 1. Assume that h  2. Since dim(W)  4
we have dim(V)  4. So we have at least one non-hyperelliptic involution 0. The
curves CIO and C/~l have maximal kernel space. By our induction hypothesis
the jacobian of each of them is a power of a supersingular elliptic curve (say E.
(resp. E,,,». But since dim(V)  4 there exists another non-hyperelliptic invol-
ution gl different from 0 and 0 1. Then Jac(C/03C8) is up to isogeny a power of an
elliptic curve E, and admits non-trivial maps Jac(C/03C8) ~ Jac(C/~) and

Jac(C/03C8)~Jac(C/~l) using the projections on both isogeny factors. Therefore
we find a non-trivial morphism of the elliptic curve Et/! to E, and to E~l and this
implies that they are all isogenous.

(c) If V ~ W then the trace of Frobenius satisfies t = 0. Over IFq2 we have
V = W and the jacobian is (up to isogeny) a power of an elliptic curve E/lFq2
with trace of Frobenius tE = ± 2q. But then the trace of the factors of Jac(C) over

Fq is zero if tE = - 2q and ± 2jq if tE = + 2q. Hence the factors of Jac(C)/ F. are
elliptic curves with trace of Frobenius all equal to zero (and then they are

isogenous to each other) or equal to ± 2jq and in the latter case there must be
as many factors with a plus sign as with a minus sign since t = 0. D

THEOREM (10.2). Suppose that m is odd and dim( W) = 2h -1. Then the

following holds.
(i) If Y = W the jacobian Jac(C) splits up to isogeny as a gth power of a

supersingular elliptic curve with P = 1 + 2q T -f- qT2.
(ii) If V:0 W and r(V) = 2 then Jac(C) is up to isogeny the product of the g/2th

power of a supersingular elliptic curve with P =1 + 2q T + qT2 and the g/2 th
power of a supersingular elliptic curve with P = 1 - 2q T + qT2.

(iii) If V ~ W, r(V) = 0 and over IFq2 we have V = W, then Jac(C) is isogenous to
the g/2 th power of a simple abelian surface with P = ( 1- qT2)2 or is isogenous to
the g th power of a supersingular elliptic curve with P = (1 + q T 2).

(iv) If V ~ W, r(V) = 0 and over F q2we have V ~ W, then Jac(C) is up to isogeny
the product of the g/2th powers of two elliptic curves El and E2 with

P1 = 1 + 2qT + qT2 and P2 = 1 - 2qT + qT2.
Proof. (i) A maximal isotropic subspace lifts to an abelian subgroup of G of

order 2h+1 and type (4, 2, ..., 2). Applying the arguments of (10.1) gives the
decomposition of Jac(C) as a gth power of a supersingular elliptic curve with
P = 1 + 03B1T + qT2 with a = ± 2q if V = W by (5.4).
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(ii) There is an involution ~ ~ 1 with 0 mod Z E rad(V). The quotient curves
CIO and CIO t have V = W and W is maximal. We then apply (i) to them and
note that for C the trace of Frobenius equals zero.

(iii) and (iv). If V ~ W and r(Y) = 0 then we can find an abelian subgroup B of

G(Fq) of order 2h - 2 and exponent 2 with B n Z = {e}. We claim that for h &#x3E; 2 the

jacobian Jac(C) is a power of an abelian surface A over Fq. Indeed, as in part b of
the proof of Theorem (10.1) we find an involution q5 and by induction the
jacobian of CIO (resp. Cloi) is a power of an abelian surface A. (resp. A~l). Also
we find another involution 4( and non-trivial maps A. - A, (resp. A~l ~ A03C8)
which over Fq2 have to be isogenies, hence they are isogenies over Fq.
We first assume that V = W over Fq2. Then we know that over Fq2 A is (up to

isogeny) a power of an elliptic curve E with

Using the relation

and

we find

If P(A/IF q, T) = (1 + qT2)2 then A is (up to isogeny) a second power of an elliptic
curve, while if P(A/ Fq, T) = (1- qT2)2 then by [T] the abelian surface A is simple.

Next, if over IFq2 we have V ~ W then we have by Theorem (10.1)

In the first case we find as above

and A is isogenous over Fq to a product of two elliptic curves with traces of

Frobenius + 2q and -.j2q. In the second case we have

P(A/ Fq, T) = (1- q2 T4), and this is impossible. D
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As a partial converse to Theorems (10.1) and (10.2) we have:

(10.3) PROPOSITION. If the jacobian Jac(C) is isogenous over IFq to a power of a
supersingular elliptic curve then we either have V ~ W or dim(W)  2h - 2. I n
particular, if m is odd then W is maximal.

Proof. Let Jac(C) be isogenous to Eg. Then on the one hand we have t(C) = 0 or

t(C) = ± q2w, while on the other hand t(C)=2h-lt(E), where t() denotes the
trace of Frobenius. Hence either t(E) = 0 and hence t(C) = 0 or

t(C) = ±2h-1 q2w(E) with 0  w(E)  2 and w(E) - m (mod 2). Thus we have
w=2h-2+w(E). D

From the zeta function Z(C/Fq, T) of the curve we can determine whether
V = W in extensions of IF q.

(10.4) EXAMPLE. Let CR be a curve over F q with m odd and with

w = dim(W)=2h-1, V = W and with trace of Frobenius t = -q2w. From
Theorem (10.2) it follows that

where g = 2h-1. If we write

then

We easily derive that

Note that this is an integer. The result now reads:

So for C with W maximal and # C(Fq) = q + 1 + q2w we have

V ~ W over IFqk if and only if k - 2 (mod 4).
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Finally, as an example we consider a case where W is relatively small
(h = 2, v = w =1) and prove simpleness.

(10.5) PROPOSITION. Let h = 2 and m odd. Suppose that v = w =1. Then Jac(C)
is simple over F q .

Proof. We have V = W, so t = ± 2q. If there exists a non-hyperelliptic
involution ~ then J = Jac(C) is isogenous to C~ x C~l, and both of the factors
have v = w =1, hence t = ± 2q. So t(J) = 0 or t(J) = 2, /2q, in contradiction
with t = ± 2q. Therefore, 03C1-1(V) ~ Z/4Z = ~03C8~. Suppose that J contains an
elliptic curve E defined over Fq. If 03C8(E)=E we find an elliptic curve with
# Aut(E)  4. It is supersingular and has either t(E) = q or it is of the form CR for
some R~R1 by (8.3); hence v a 1, w  1, so v = w and t(E) = ±2q. By
Poincaré’s Complete Reducibility Theorem (cf. [Mu2], p. 173) we can find
another elliptic curve E’ in J. If again 03C8(E’) = E’ then t(E’) = ± 2q and
t(J) = t(E x E’) = 0 or ± 22q, a contradiction. So we find a supersingular elliptic
curve E such that 03C8(E) ~ E and J is isogenous to E2. Again, t(E) = q or t(E) = 0 or

t(E) = + 2q. But then t(J) = 2t(E) = 2q, 0 or + 2,F2q, again a contradiction. So
J does not contain elliptic curves. This proves our claim. D

11. The induced représentation on cohomology

Here we determine the type of the representation on the first cohomology
induced by the action of G c Aut(C). The representation theory of our group is
well-known, cf. [Hu, p. 562]. Let C = CR with R E Rh of degree h. Then the

cohomology group H1ét(C/Fq, Qz) for a prime 1 ~ 2 is a Qrvectorspace of
dimension 2g = 2h. The action of G on C induces an action of G on

Call this representation 03C8.

(11.1) PROPOSITION. The representation 03C8 of G on Hét is the unique irreducible
representation of G of dimension 2 h for which the center acts by scalar

multiplication.
Proof. The hyperelliptic involution acts by -1 on the jacobian, hence by -1

on the l-adic cohomology. Since the group G affords only one irreducible
representation on which the center Z acts non-trivially and this has dimension
2 h(see [Hu, Ch. V, Thm. 16.14]) the proposition follows. ~
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12. The a-number

Let A be an abelian variety over a field k of characteristic p. Let ap be the group
scheme Spec(k[X]/(Xp)) with comultiplication given by

Since End(cxp)=k we can view the group Hom(ap, A) as a k-vector space. One
defines the a-number a(A) of A as the dimension of the vector space Hom(ap, A).
One has 0  a(A)  dim(A). Moreover, one has a(A x B) = a(A) + a(B), so a
product of g supersingular elliptic curves has a-number g. If A is supersingular,
that is, if A is isogenous to a product of supersingular elliptic curves, we have
1  a(A).

(12.1) THEOREM. For a linearized polynomial R E F. [x] the jacobian Jac(CR)
has a-number equal to 2’-’for h  2 and 1 for h = 1.

Proof. We compute the Hasse-Witt matrix. The space of regular differentials
has a basis {03C9i =xidx:0i2h-1-1}. The Cartier operator acts by C«02 i) = 0,
C(03C92i+1)=03C9i. Therefore, the rank of the Hasse-Witt matrix is zero if h = 1 and
2h-2 for h &#x3E; 1. Since the kernel of multiplication by 2 on Jac(C,) is a group
scheme of type local-local the a-number is the rank of the kernel of the Hasse-
Witt matrix. D

(12.2) COROLLARY. For h2 the jacobian Jac(C) is not isomorphic to a direct
product of supersingular elliptic curves.

13. The case of characteristic p  3

Most of the results for p = 2 have analogs for p  3. We indicate a number of
them.

Let IF q be the finite field with q = p’" elements, where p is an odd prime and m is
a positive integer. For 0  h  m/2 we consider the set of p-linearized
polynomials

and the corresponding family of Artin-Schreier curves CR (or C) defined for
R E Rh by
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By Hurwitz-Zeuthen this curve CR has genus !(P-1)ph for R of degree ph. To R
we associate the bilinear form

on Fq, where Tr is the trace map from F q to Fp. Now the bilinear form is
symmetric, but no longer alternating. Again we have a kernel

The analog of Proposition (3.1) reads as follows.

(13.1) PROPOSITION.
where

As in Proposition (3.2) the condition c ~ WR is equivalent to the existence of a
polynomial B~XFq[X] such that Bp-B=cR(X)+XR(c). For h=0 we have
Eo = 2aoX, and for h  1 the polynomials satisfy the recurrence relation

where Eh - 1 is the polynomial associated to R - ahXPh. Note that Eh/X, viewed as
a polynomial in ao is of the form

where P lies in Fq[a1,..., ah, X]. Then the analog of Proposition (3.6) becomes:

(13.2) PROPOSITION. Let 1Fq be an algebraic closure of IFq. The polynomial
Eh/X is irreducible over the purely transcendental function field 1Fq(ao, a1,..., ah).
The analog of Theorem (4.1) for the automorphism group of CR is as follows.

(13.3) THEOREM. The group Aut°(C) of 1Fq-automorphisms of C fixing the point
at infinity is the semi-direct product of a normal subgroup G of order p2h+1, and a
cyclic group of order
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where e = 2 if the i’s with ai ~ 0 have the same parity, otherwise e = 1. In case
h &#x3E; 0 the subgroup G is an extra-special p-group of exponent p, while it is cyclic for
h = 0.

As for p = 2 an important instrument is the symplectic form on G/Z (with Z
the center of G) defined by the commutator in G. Moreover, we can identify G/Z
with

However, unlike the case p = 2 the quadratic form Tr[xR(x)] now always
vanishes on WR, so Aut0Fq(C)~G has order p dim(W) 

+ 1.

By counting points on quadrics we find immediately (cf. [Jo]):

(13.4) PROPOSITION. Let w = dim( WR) and set n = m - w. Then

with the " + " sign depending on the type of the quadric Tr[xR(x)] =0 in Fq/W.
The counterpart of Proposition (9.1) is:

(13.5) PROPOSITION. Let 0 be a non-central automorphism of CR, R E Rh with
h  1, given by x - x + c, y - y + bo + B. Then C/~ is the curve with equation

where u = xP -Cp-1X, v = y + c-2b0x2-c-1xB and where P(u) E Fq[u] is a lineari-
zed polynomial of degree ph - 1.
We now turn to the decomposition of the jacobian. Let U be a maximal

totally isotropic subspace of W Let p : G - G/Z be the canonical homomorph-
ism. Then U’ = p - l(U) is a maximal abelian subgroup of G of order ph+1. This is
an elementary abelian p-group. Let A be a subgroup of order ph with
A n Z = {e}. There are exactly ph such subgroups A. The analog of Lemma (9.3)
is now

(13.6) LEMMA. The quotient CIA is a hyperelliptic curve over F q with an equation
of the form yP - y = X2. This is a supersingular curve.

Proof. By the proposition above we find that C/A is the curve with equation
yp - y = x2 over a finite field extension k. This curve is obviously hyperelliptic
and of genus (p -1)/2 by Hurwitz-Zeuthen. Curves with equations yp - y = x03BC
have been studied by Hasse and Davenport [H-D]. They assert that the
eigenvalues of Frobenius on Hlt are the p - 1 ordinary Gauss sums. This implies
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that over a quadratic extension of k all eigenvalues are equal. Consequently, the
characteristic polynomial is a (p -1)th power of a linear polynomial, and hence
Jac(C) is isogenous to a product of elliptic curves. Q

(13.7) THEOREM. Over F q the jacobian of CR is isogenous to a product of
supersingular elliptic curves.

For more results we refer to Part II of this paper.

(13.8) CONCLUDING REMARK. In the same vein as the family of curves CR
with equation yp - y = xR(x) with R~Rh we can treat the curves CR with
equation yp - y = xR(x) with R~R(t)h, where

Here p is a prime, t a positive divisor of m and 1  h  [m/2t]. The polynomials
in R(t)h are pt-linearized which means that the vector spaces involved are Fpt-
vector spaces. This generalization is suggested by coding theory.

Another generalization is obtained by looking at equations ypt - y = xR(x)
with R E R(t)h. The corresponding groups of automorphisms G are special p-
groups instead of extra-special ones.
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