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Introduction

The starting point of the theory of non-singular projective curves is the

following well-known theorem of Abel:

Let C be a non-singular projective curve, and J(C) be its jacobian

which is an abelian variety. To a divisor D of degree zero on C is associated a
point y(D) of the jacobian by integration, and so-called Abel’s theorem states
that the image of D in the jacobian vanishes if and only if D is rationally
equivalent to zero, i.e., D is a divisor of a rational function of C, in other words, it
gives an algebraic condition for y(D) = 0, whereas the jacobian is defined

complex-analytically.
We put Pic’ C = the divisors of degree 0 on C modulo rational equivalence.

We have then an injection Pic’ C - J(C) and the map is bijection (so called
Jacobi’s inversion problem). Let C’ be another curve, and Z be an (algebraic) 1-
cycle on the product C x C’. The cycle Z induces a map Pic’ C ~ Pico C’, a
correspondence, together with a homomorphism of abelian varieties

J(C) ~ J(C’). The category of direct sums of Pico C with the direct sums of the
above maps as morphisms is, therefore, equivalent to the subcategory of the
category of abelian varieties, consisting of direct sums of jacobian varieties.
These are additive categories, and for each of these, we consider the category
tensored with Q, i.e. the category having the same ones as objects and for sets of
morphisms those tensored with 0, and take its pseudo-abelian envelope, i.e., the
category for objects added formally the direct summands. We denote by l(1)curve
the category thus obtained from that of Pico C. The category obtained from that
of jacobians is no other than that of abelian varieties up to isogeny, which is
equivalent to the category Hdg(l) of polarizable 0-Hodge structures of weight 1.
Thus, l(1)curve is equivalent to the category Hdg(l).
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The following conjecture of Bloch [5] can be regarded as the weight 2
counterparts of the above equivalence:

For any smooth projective variety V over C, there exists a filtration on the
Chow group of 0-cycles CHo( v), at least the beginning of which is given by

Let S be a surface and let z be a cycle on V x S with dim z = m = dim K Then z
induces a map

The above filtration being functorial for correspondences, we get also

CONJECTURE ([5], 1.8). The map [z] depends only upon the cohomology
class {z} E H4(V x S).

Moreover,

METACONJECTURE ([5], 1.10). There is an equivalence of category between
a suitable category of polarized Hodge structures of weight 2 and a category
built up from gr2CHo(S).
The aim of this article is two-fold: to give a condition for the vanishing of

cycles in the intermediate jacobian, and to construct filtrations on the Chow

groups which satisfy the above conjectures.
The basic notion we introduce is that of product of adequate equivalence

relations. An adequate equivalence relation E consists of subgroups ECH(V) of
the Chow ring CH(V) which are stable under the correspondences. For adequate
equivalence relations E, E’, the product denoted by E * E’ is the minimum

adequate equivalence relation satisfying the condition

As a trivial but useful consequence, the filtration H*l given by powers of
homological equivalence relation H has the following property (cf. the above
conjecture):

If we denote its associate graded by grH CH( V), the map induced by an
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algebraic cycle

depends only on the homology class of z.

We state our main results:

Let A denote the algebraic equivalence relation, and Jpa(V) the algebraic part
of the p-th intermediate jacobian. We have the Abel-Jacobi map

ACHp(V) ~ Jpa(V). Then,

THEOREM ( = 6.2 + 6.4. Cf. [16], p. 534.). The kernel of the Abel-Jacobi map is,
up to finite group, equal to the product of algebraic equivalence and homological
equivalence:

Moreover these coincide precisely for p = 1, 2, dim J’:

The significance of the theorem is that the left hand side is nothing to do with
the intermediate jacobian. (Note also that homological equivalence is defined
algebraically by virtue of etale cohomology.) One might hope that J£(V can be
constructed as was done for Picard variety.
To state the second of our main results, first, consider the additive sub-

category of the category of abelian groups whose objects are direct sum of
grà CHo(S) for S surfaces and whose morphisms from gr’ CH°(S) to griCHo(S’)
are induced by algebraic cycles z E CH2(S x S’). We then get 0-additive category
having the same objects as above and morphisms tensored with rationals Q. We
denote its pseudo-abelian envelope by l(2)surf.
On the other hand, for a surface S, we denote by gr°H2(S, Q) the quotient of

H2(S, Q) by its (rational) Neron-Severi group. The group gr°H2(S, Q) has a
Hodge structure of weight 2. Then we proceed as above: we consider the sub-
category of the category of polarizable Q-Hodge structures of weight 2 whose
objects are direct sums of gr°H2(S, Q) and whose morphisms are induced by
(rational) algebraic cycles. We denote by .A2 its pseudo-abelian envelope. In fact,
we can define the category of motives for surfaces as planned by Grothendieck
(see [10]) and there are motives corresponding to gr’H’(S, Q). The category of
direct summands of these objects are equivalent to N2 and is semi-simple and
abelian. As the metaconjecture part of our results,

THEOREM ( = 7.5). We can define the functor gr2HCH0(S) ~ grO H2(S, Q) which
gives an (anti-)equivalence of the categories l(2)surf and .A2. I n particular, the
category .A2 is semi-simple abelian.
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We shall explain the organization.
In section 1, we introduce the notion of product of adequate equivalence

relations explained above. The readers who are interested only in generalization
of Abel’s theorem can proceed directly to section 6. (For notation, however, see
§5.1.)

Sections 2 and 3 are preliminaries: in section 2, we define the fundamental
class (or cohomology class) of families of subschemes, following [15], and prove
that the subfunctor of product of Hilbert schemes corresponding to the pairs of
subschemes having the same fundamental classes is representable. Section 3 is
concerning the Chow schemes by [1], i.e., families of cycles on a scheme over a
base scheme (of characteristic zero), and we show that the direct image
morphism for a proper morphism is defined on the whole of the Chow scheme,
when we add the cycle "zero" to the Chow scheme.

In section 4, we show that on a smooth projective variety over an algebrai-
cally closed uncountable field of characteristic zero, for a family of cycles
{Z(s)}s~S, if at each closed point s, Z(s) is equivalent to zero with respect to a
power of homological equivalence, so is generically. This is an analogue of [11],
5.6.

From section 5 on, the ground field is assumed to be the field of complex
numbers.

In section 5, we generalize the theorem 3.2 of [12], which, in particular, says,
in Severi’s terminology [14], that a family of 0-cycles on a surface in a class of
cube of homological equivalence is a circolazione algebrica. Further, we
introduce an additive category W(4 constructed from the powers of homological
equivalence and define a functor from W(4 to the category Hdg(o of effective
polarizable Q-Hodge structures of weight 1. We also prove that griCHo of
smooth projective varieties are objects of W(2).

In section 6, we prove above-mentioned generalization of Abel’s theorem, and
section 7 is devoted to the proof of the metaconjecture.
A part of the work was done while the author was staying at the University of

Chicago. He would like to express his sincere gratitude to the university and
Prof. Spencer Bloch for the hospitality.

1. Products of adéquate équivalence relations

1.1. Let k be an algebraically closed field, and we work in the category of
smooth projective varieties. First recall the definition of adequate equivalence
relation.

DEFINITION 1.1.1 ([13]). An adequate equivalence relation E is an equival-
ence relation on cycles such that
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(i) it is compatible with addition of cycles;
(ii) Let X be a cycle on V, and Wl, ... , Wk a finite number of subvarieties on V.

Then there exists a cycle X’ equivalent to X such that X’ and W intersect
properly;

(iii) If Z is a cycle on V x W, if X is a cycle on V equivalent to zero, and if
Z(X) = prw. (Z - X x W) is defined, then the cycle Z(X) on W is equivalent to
zero.

1.1.2. It is well-known that the rational equivalence relation, which we denote
by 0, is the finest adequate equivalence relation and the numerical equivalence
relation is the non-trivial coarsest one. We denote the trivial adequate
equivalence relation that all cycles are equivalent by I. The cycles on V modulo
rational equivalence is called the Chow ring CH(V) of V and it has a ring
structure by intersection, and is graded by codimension. The codimension p part
will be denoted by CHP(V).

1.2. Let E be an adequate equivalence relation and ECH(V):= {cycles on V
E-equivalent to zero}/rational equivalence. Then ECH(V) has the following
properties:

(i) ECH(V) is a graded submodule of CH( V);
(ii) IF x e ECH(V) and if z e CH( V x W), then

PROPOSITION 1.2.1. Giving an adequate equivalence relation E is equivalent to
assigning ECH(V) c CH(V) to each V which satisfies the condition (i) and (ii) of
1.2.

Let E and E’ be adequate equivalence relations. Then we define the adequate
equivalence relations E + E’, E n E’ by

We shall denote E c E’ if ECH(V) c E’CH( V) for all V.

1.3. For adequate equivalence relations E and E’, we shall define their product
denoted by E * E’ as follows:

(E * E’)CH(V) is a submodule of CH(V) generated by the elements of the form

pry.(x.y), where xeECH(Tx V), y E E’CH(T x V), T is a (smooth projective)
variety, prv : T x V- V is the projection.

LEMMA 1.3.1. E * E’ satisfies the conditions of 1.2. (i), (ii) and hence defines an
adequate equivalence relation. A cycle Z on V is E * E’-equivatent to zero if and
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only if Z is a sum of c ycles of the forms prv*(X. Y), where X is a cycle on T x V E-
equivalent to zero and Y is a cycle on T x V E’-equivalent to zero and the cycles X
and Y intersect properly, and where T is a variety and pr.: T x V~ V is the
projection.

By linearity, it is sufficient to show that if z E CH(V x W) and x~ ECH( Y x T)
and y E E’CH( V x T), then

and 1 T x z. x x 1wE ECH( T x V x W), y x 1wEE’CH(T x V x W). The latter part
results from the moving lemma.

LEMMA 1.4. Let E, E’, E" be adequate equivalence relations. Then the following
are equivalent:

It is clear that (i) implies (iii) and (ii) implies (i). To see that (iii) implies (ii), let
T: = Spec k. Then

and

1.5. For adequate equivalence relations E, E’, E", we have
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By virtue of lemma 1.4, we have

LEMMA 1.5.1. The ring structure of CH(V) defines the bigraded ring structure
on gr·ECH·(V). In particular, z c- CHp+q(V x W) defines the map

and it depends only on the class of z in grÉCH(V x W).
REMARKS 1.6.1. Let E, E’ be adequate equivalence relations. Then z E CH(Y)
is in (E*E’)CH(V) if and only if there exists a finite number of

x1,...,xk~ECH(T V) and y1,..., Yk E E’CH( T x V) such that

In fact, the following formula shows that we can take the variety T common
to all of terms in the sum: if x~ ECH(T x V) and y E E’CH(T x V), then for any
variety T’, and a point t’of T’, we have

where is the projection, and

and

1.6.2. More generally, let E1, ... , E, be adequate equivalence relations and Z a
cycle of codimension p on K Then Z is (E1 *··· * El)-equivalent to zero if and
only if there exist a variety W, a (projective) morphism f : W ~ V, cycles Xij of
codimension pj on W, Ei-equivalent to zero (1  i  l, 1  j  k) such that
Xi1,..., X ik intersect properly on W,

and that
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By 1.4, it is clear that Z is (El *... * E,)-equivalent to zero. To see the converse,
by induction, it suffices to consider the case 1 = 3. Let u~(E1 * E2)CH(T x V),
v E E3CH(T x V). By linearity, we may assume that u = prT v.(x. y), where
x E E1CH(T’ x T  V) and y E E2CH(T’ x T x V). Then,

where pr’V: T’ x T  V ~ V is the projection and 1T, x v E E3CH(T’ x T x V).

1.7. Let E be an adequate equivalence relation. We define the adequate
equivalence relation (E)o as the equivalence relation generated by 0-cycles E-
equivalent to zero. More precisely,

where T runs over all smooth projective varieties, and z runs over the cycles on
T x JI: It is clear that ~E~0CH(V) defines an adequate equivalence relation.

LEMMA 1.7.1. Let E, E’ be adequate equivalence relations.

Proof. (i) is trivial, and (ii) follows from the formula

EXAMPLE 1.8. We work in the category of varieties over the complex numbers
C. We denote by Ho the Q-homological equivalence in H2022(V, 0) and H = Hz the
homological equivalence in H2022(E Z), which are both adequate equivalence
relations. We have a filtration of CH by powers of H:

We set

By 1.7.1, Gr* CH*(V) has a bigraded ring structure, and for z~CH(T  V), the
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induced map

depends only on the cohomology class of z. For 0-cycles, notice that Gr1CHo(V)
is the associated graded to the filtration 1.8.1.

EXAMPLE 1.9. Let ACH(V) denote the classes of cycles which are algebraically
equivalent to zero. Then A CH(V) defines an adequate equivalence relation, and
A *1 is nothing but the 1-cubic equivalence relation [13]. Note that

A = ~H~0 = ~HQ~0.

LEMMA 1.10. Let E and E’ be adequate equivalence relations, and assume that
E’CH(V) are divisible for all V. Then E * E’CH( V) are also divisible. In particular,
A * ECH(V) is divisible for each smooth projective variety JI:

EXAMPLE 1.11. Let Tp(V) denote the Griffiths intermediate jacobian; we have
the Abel-Jacobi map

and the image of the restriction to ACHp(V) is, by definition, Jpa(V). For
z~CHp+q(W  V), the diagram

commutes, where the map below is induced by the fundamental class

{z}~H2p+2q(W V,Z). It follows that

define adequate equivalence relations J and J. We have J = J n A. It also

follows from the diagram above that cP(H * HQCHp(V)) = 0, which shows that
H*2 c Ho * H c J. In particular,
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Hence we have a surjective canonical map

For p = 1, JCH1(V) = JCH1(V) = 0, hence H*2CH1(V) = 0, and we have a
bijection

2. Fundamental classes for Hilbert scheme

2.1. Let S be a locally noetherian scheme and f: X - S be a compactifiable
morphism, F an etale sheaf on S. For an integer n, we define

If g: Y ~ S is a compactifiable morphism and h : X - Y is a proper S-morphism,
we have

induced by adjunction Rf*Rf’F = Rg*Rh*Rh!Rg!F ~ Rg,Rg!F. It is clear that
h~h* is functorial. For a morphism ~:S’ ~ S, we have a cartesian diagram

Then we obtain
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By Leray spectral sequence, we obtain

The following diagram is commutative:

2.2. Let g : Z ~ S be a flat morphism of pure relative dimension r, and e be a
prime integer invertible in S. By definition,

On the other hand, we have

We have the trace map ([3], §2)

hence the corresponding map Tr’g:Ze ~ R-2rg*Rg!Ze(-r). Therefore we get
HO(S, Ze) ~ H2r(Z/S, Ze(-r)). Suppose Z is a closed subscheme of X over

S:j: Z 4 X. The image of 1 E H°(S, ZJ by

will be called the fundamental class of Z/S and denoted by {Z/S}. For 
and Z’ = Z sS’, the base-change of Z, we have
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If X is smooth of pure relative dimension m over S, denoting p = m - r, we have

2.3. Suppose X is smooth projective over S of pure relative dimension m, and let
Hilb,(X/S) denote the set of subschemes flat of pure relative dimension r over S.
We have

and set

It is clear that, for ç : S’ ~ S,

defines a function Hilb 2,HX/X,r on locally noetherian schemes over S.

PROPOSITION 2.4. With above hypotheses, the functor Hilb 2,HX/X,r is represent-
able by an open subscheme of the product of Hilbert schemes

It is enough to show that if (Zl, Z2) e Hilbr(X/S) x Hilbr(X/S) and if, for s E S,
«Zl).,, (Z2)s) E Hilbr(X s/ S) x 2,H then there exists an open neighbourhood U of s
such that

Let 03C3 = {Z1/S} - {Z2/S}~H0(S,R2pf*Ze(p)). If s is a geometric point of s, the
pull back of (j in H2p(Xs, Ze(p)) vanishes. It suffices to see that there exists an
open neighbourhood U of s where a = 0.

LEMMA 2.4.1. Let f:X -+ S be a smooth proper morphism and s a geometric
point of S, u E HO(S, Rnf*Ze(k)). If the pull back of 6 in H"(X s’ Ze(k)) is zero, then
03C3 = 0 on the connected component of S containing s.
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We have a = (Uv) E (HO(S, Rnf*(Z/ev(k))))v and the hypothesis means that
(03C3v)s = 0 in Hn(Xs, Z/ev(k)) = (Rnf*(Z/ev(k)))S for any v, since f is proper. The
morphism f is smooth proper, hence Rnf*(Z/ev(k)) is a locally constant. Let U be
an etale neighbourhood of s where Rnf*(Z/ev(k)) is constant. Then

03C3v|U = 0~(03C3v)t = 0 at some geometric point t of U. It follows that Qv = 0 on
the connected component of S containing s, and a = 0 on it.

REMARKS 2.4.2. If S is the spectre of an algebraically closed field k, and Z is a
closed subscheme of pure dimension r of a smooth projective variety V over k,
then {Z/k} e H2P(Y, Ze(p)) is the fundamental class of the cycle associated to the
subscheme Z, cf. [15], 3.3.4.

2.4.3. The homological equivalence relation we have considered above is the Ze-
homological equivalence. We can also consider the CD,,-homological equivalence
and in that case, the proposition remains true. In fact, with the notation of proof
of the proposition, if the pull back of u in H2P(Xs, Qe(p)) vanishes, then k. 03C3 = 0
in H2P(Xs, Ze(p)) with k ~ 0, hence k. a vanishes in a neighbourhood of s with
Zg-coefncient, hence a vanishes there with 0,,-coefficient.

2.4.4. Let E be a set consisting of some prime integer invertible in S. We could
consider the intersection of Ze-homological equivalence, i.e.,

In view of lemma 2.4.1, the functor S H Hilbr(X/S) 2,H,E is also representable by
an open subscheme of Hilbx/s,, xshilbxlsr- Moreover, we can replace the
equivalent relation by the mixture of the type considered in 2.4.3.

3. Direct image morphism of Chow schemes

3.1. Let S be a locally noetherian scheme. Recall that a morphism h : X - S of
finite type is called of pure relative dimension r if X s = h -1(s) is of pure
dimension r for every s E h(X). We set

Then X(r) is a closed subset of X.
Note that h is of pure relative dimension r if and only if X(r) = X, provided

that all the fibres of h are of dimension  r.
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PROPOSITION 3.2. Let X, Y be S-schemes of finite type, f : X ~ Y be a proper
surjective S-morphism with Y irreducible and X ~ S of pure relative dimension r.
Suppose that there exists s E S such that dim Ys = r. Then Y ~ S is of pure relative
dimension r.

The conclusion is equivalent to Y = Y(r). If f is finite, thenf,: Xs ~ Y is also
finite, and it is clear that Y = Y(r). In general case, let yo be the maximum open
subscheme of Y such that f° = f(yO): X° ~ yo is finite; then Y° ~ 0. In fact,
consider Xs ~ Y . If XEXs is the generic point of a component of Xs such that

dim f(x) = r, then the restriction x ~ f(x) of fs is generically finite (the bars
denote the closure in the fibres), and f(x) E Y’. Since Xs ~ Ys is surjective, such an
x exists by hypothesis, hence Y° ~ ~. Let g : Y~ S, and g° : Y’--+ S be its

restriction. Then YO(r): = {y E Y’; dimyg°-1(g°(y))  r} = yo n Y(r). For y E yo,
dimy 9 o-1 (g"(y» = dimy( Y° n g-1(g(y))) = dimy g-1(g(y)). Since f ’: X° ~ yo is

finite, Y’(r) = Y’, so that Y" = Y’(r) = yo n Y(r) c Y(r) c Y Since the closure
of yo is Y, Y(r) = Y

LEMMA 3.3. Let S be a locally noetherian scheme and f: X ~ Y be a proper S-
morphism, and suppose that X ~ S is of pure relative dimension r. Then there exist
closed subsets Y1, Y2 of Y such that f(X) = Y1 U Y2 and Y1 - S is of pure relative
dimension r, and dim( Y2)s  r for any s E S.

We can suppose X reduced, and replacing f by X ~ f(X), we may assume f is

surjective. If Y is a union of closed subsets 1)., then for y E Y c Y, since

Y(r) is the union of Y03B3(r). Let X = ~03BBX03BB is the decomposition into irreducible
components. Then Y = U;. f(X ;.). Consider X03BB ~ f(X03BB), and we have either

f(X03BB)(r) =f(X03BB) or f(X03BB)(r) = 0 by 3.2. It will suffice to put Yl = f(X)(r) and

where the union is over those X03BB with f(X A)(r) = ~.

3.4. Let S be an affine scheme of characteristic zero, and X be a smooth

projective S-scheme of pure relative dimension m. Then for an integer p,

0  p  m, we have the Chow scheme CpX/S of cycles of relative codimension p on
X/S ([1]), while CpX/S is, in fact, only an algebraic space in general. If X is a
subscheme of S x PN for some N, then, CpX/S is embedded in

CN-m+p CN-m+pPN  S, and since (CN-m+pPN)red is the usual Chow variety of PN,
CpX/X is an S-scheme, a countable union of proper S-schemes.
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We set

Intuitively, o(S) corresponds to the cycle "zero" of codimension p. We shall show
that, for a proper S-morphism f:X ~ Y of smooth projective S-scheme, we can
define the direct image morphism

of Chow schemes, where n is the relative dimension of Y/S. To do this, it suffices
to define a morphism as functors.

Let S’ be an S-scheme, and put

Recall that an element of CP(X’/S’) is a pair (Z, c) of a closed subset Z c X’ of
pure relative dimension r = m - p over S’, and an element c E HP (X, 03A9pX’/S’)
which satisfy some conditions (cr. [1], 4.1, 4.2). By Lemma 3.3,
Z’ = f ’(Z) = Zi u Z’, where Z’1 is of pure relative dimension r over S, and Z’ is
of relative dimension  r.

Note that

Putting d = m - n, we have

and the canonical map
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hence, we get

Therefore we obtain

LEMMA 3.5. The canonical map

is an isomorphism.

SUBLEMMA 3.5.1. (cf. [2]) Let g: Y ~ S be a morphism of relative

dimension  r of locally noetherian schemes, then we have

The question is local on Y For any z E Y, we have a commutative diagram

where j is an open immersion, and h is a quasi-finite morphism. By Zariski’s
Main theorem, there is a finite morphism h : V ~ Ar-1S and an open immersion
k:U ~ V such that h = h· k. We have
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where :(V,OV) ~ (Ar-1s, h*OV). Since h is flat, we have

Therefore we have

LEMMA 3.5.2. Let g : Y ~ S be a smooth morphism of locally noetherian schemes
of pure relative dimension n, E a locally free Oy-Module offinite rank and Z c Y a
closed subscheme of relative dimension  r over S and set p’ = n - r. Then we have

Let j:Z ~ Y denote the closed immersion. We get

and we have a spectral sequence

By sublemma 3.5.1, Ri-a-n(g·j)!Os = 0 for 1-a-n  -r, i.e., for 1-ap’.
Since Ea,i-a2 = 0 unless a  0 and i - a &#x3E; p’, Exti(OZ, E) = 0 for i  p’. It follows
that HiZ(X, E) = 0 for i  p’.

The proof of lemma 3.5 is now easy: we have an exact sequence

and the both extremes vanish by virtue of sublemma 3.5.2, because .
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as follows: the image of ids,(= o(S)(S’)) is ids’ E CP(Y’ /S’). For (Z, c) E CP(X’ /S’), we
have

If Z’1 ~ ~, we put

and otherwise,

PROPOSITION 3.7. Under the above hypothesis. and we

have a morphism of functors

It suffices to see f’*((Z, c)) E Cp(Y’/S’).
Let z’~Z’1, and (U’, B’, qi) be a projection of Z’ around z’. It is also a

projection of Z’ around z" for any generization z" E Z’ of z’, hence (Z’, P,(C» is
a Chow class at z’ if it is a Chow class at z". Let Zl be the pull-back of Z’ by
Z c X’ ~ Y’, and let Z" be the closed set of Z’1 of points y such that the fiber of
Z1 ~ Z’ over y has positive dimension. Take an irreducible component of Z’1; it
is not contained in Z’2, nor in Z"1, i.e., z’ has its generization z" E Z’1B(Z"1 ~ Z’2). To
show (Z’, f’*(c)) is a Chow class at z", set Y" = Y’B(Z" u Z’), X" = f’-1(Y"),
f":X" ~ Y" the base-change of f’. Then, we have

and Z n X" is finite over Y". In that case, the proof can be found in [1], 6.3.

3.8. With the notations and hypotheses in 3.2, let (Z, c) and (Z’, c’) be Chow
classes. We have the sum c + c’ of c and c’ by the natural maps

and



307

respectively and (Z u Z’, c + c’) is a Chow class, hence we get a morphism of
functors + : CP(X/S) x CP(X/S) - CP(X/S). We extend it to the morphism of
functors

as follows: it coincides with + above on CP(X/S) x CP(X/S), and the first

projection on CP(X/S) x {ids}, the second projection on {ids} x Cp(X/S), and the
image of (ids, ids) is ids. Therefore we obtain the morphism of algebraic spaces

4. Genericity Theorem

4.1. In this section, the ground field k is supposed to be algebraically closed of
characteristic zero and uncountable. Recall that we denote by Ho the Q-
homological equivalence relation and we have the adequate equivalence
relations H*lQ (See 1.5). The purpose of this section is to prove the following
THEOREM 4.2. Let V be a smooth projective variety of dimension m, S a smooth
variety, 1 an integer and Z a cycle on S x V of codimension p. Assume that for an
arbitrary closed point s E S, the cycle Z(s) is defined, and is H*lQ-equivalent to zero.
Then there exist a smooth variety T, a dominant morphism e: T -+ S, a smooth
projective morphism n: ff -+ T, cycles Xij of codimension Pij on ff x V (1  i  l,
1  j  k) such that

Let 1tex: F03B1 - 7§ (a E A) be countable families of smooth projective morphisms
such that Tex are affine algebraic schemes over k and that for any smooth
projective variety W, there exist an a E A and t ~ T03B1 with W ~ (F03B1)t.
For a smooth projective morphism q: X ~ T, integers po, ... , pl  0, let
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By [1], 7.1.6, there is a morphism

where Hilb(j§§l are defined in 2.4.3 (cf. also, 2.4; note that Q-homological and
0,,-homological equivalences coincide since we are in characteristic zero),
ri = rel . dim X/T - pi, hence their product

Let 2[1,l] be the set of maps from the interval [ 1, l] of integers to the set {0, 1} and
for 03C3 E 2[1,l], let

be the product of projections pr a(i) where pr03C3(i) is the projection to the first factor
if 6(i) = 0, and to the second factor if 03C3(i) = 1. Then we have

and,

where lul = Li 03C3(i), and lui ~ 0 means that the summation is over all Q with even
lui, and lul - 1 means the summation over 03C3 with odd lui.

Let Hp1,...,plX/T be the pull-back of na pr- 1(u) by the morphism i. Thus we get a
morphism

Consider the morphisms
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where p=(p1,...,pl), |p| = 03A3pi, p = |p| - rel.dim F03B1/S03B1, and CpX/X =
CpX/So(S) (cf. 3.4) and the second arrow is induced by the morphism
V F03B1 ~ V S03B1.
For an integer n  1 and a sequence of 1-tuples p1,...,pn with

|pj| = P + rel.dimF03B1/S03B1, putting

we get a morphism

the second arrow being the sum given by

(cf. 3.8). For a k-rational point x of the left hand side 2p1,...,pn03B1, the image in
Cÿ x Cÿ is given as follows:

Let s be the image of x in Sa. Then x consists of subschemes (Z(0)i,j, Z(1)i,j) of
V x (F03B1)s of codimension pi,j (where pj = (p1,j,..., pl,j)) such that the associated
cycles to Z(0)i,j and Z(1)i,j are Q-homologically equivalent on Vx (F03B1)s. The image of
x in CP x Cÿ corresponds to the pairs of cycles

where for simplicity, we denote by Z(03C3(i))i,j the associated cycles on Vx (F03B1)s to the
subschemes Z(03C3(i))i,j, and by n(X the morphism 03C003B1:V (F03B1)s ~ V. Since

Hilb vx F03B1/S03B1,,r ~ CpV F03B1/S03B1 is surjective, any r-cycles on V which are Hôtequivalent
to zero can be written as the différences z - z’ of pairs (Z, Z’) in this form for
some a (cf. 1.6.2). We have a morphism defined by

Denote by Rp1,...,pn03B1 the pull-back of the diagonal of CpV x CpV, and consider the
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projection 03C0p1,...,pn03B1:Rp1,...,pn03B1~CpV CpV. The union of the images for all n,

p1,...,pn and ex

is the set of the pairs (Z, Z’) of effective r-cycles which are Hô’-equivalent.
Since the set of possible n, p1,...,pn, ce is countable and the number of

irreducible components of Rp1,...,pnV F03B1/S03B1 is countable, the above union is a countable
union of irreducible subsets. Now, shrinking S if necessary, write Z as a

difference of effective cycles which are non-degenerate on S: Z = Z+ - Z - . It
defines a morphism

By hypotheses,

as k-rational point. Since the ground field k is uncountable, we can find n,

Pl’ ... , pn, and a such that there exists a locally closed subvariety of Rp1,...,pnV F03B1/S03B1
such that the image of the restriction of n:1,...,1’n to the subvariety contains the
generic point of Im ç. Hence we have a diagram

and the left vertical arrow is dominant. There exist, therefore, a smooth affine
variety T, and a dominant morphism e : T ~ S which sit in the diagram

We have the morphism T ~ S03B1 and let
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By base-change, we get an element ç of Rp1,...,pnV F/T (T) whose image by 03C0p1,...,pnV F/T is

qJ 0 e E CpV x CpV(T). Let the image of 03BE under the morphism induced by 1

be ((Z(0)i,j, Z(1)i,j)). If we denote the generic point of T byr, the pull-backs (Z(0)i,j)03C4 and
(Z(1)i,j)03C4 are the cycles on V x F03C4/03BA(03C4). Let Z(0)i,j and Z(1)i,j be the closures of them in
V  F, and put

Then Xij and e : T ~ S satisfy the conditions of the theorem.

5. Définition of the functor

In the sequel, the ground field is assumed to be the field of complex numbers.

5.1. Recall the definition of coniveau filtration (cf. [12]):
For a smooth variety, let

where F runs over the set of Zariski closed subsets of V of codimension  p.
NpHn(V, Q) define a decreasing filtration of H"(V, Q) and we denote by
grpH"( V, Q) the associated graded module:

We have Hn(V, Q) = N0Hn(V, Q) and NpHn(V, Q) = 0 if n  2p. Note that

Hn(V, Q) has a mixed 0-Hodge structure. In view of 5.1.1, NpHn(V, Q) is a mixed
Hodge sub-structure of Hn(V, Q), and hence, grPHn(V, Q) has also a mixed Q-
Hodge structure. If V is projective, it is pure of weight n.
The coniveau filtration has the following functorial properties:
(i) For a morphism f : V --+ W, NpHn(W, Q) ~ Hn(W, Q) is mapped into

NpHn(V, Q) by the pull-back f*: Nn(W, Q) ~ Hn(V, Q); hence f* induces the map

(ii) For a proper morphism f : V~W, NpHn(V, Q) c Hn(V, Q) is mapped into
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Np-dHn-2d(W, Q)(-d) by the push-forward f*: Nn(V, Q) - Hn-2d(W, Q)(-d),
where d = dim W - dim K Hence/* induces the map

(iii) The cup-product u : Hn(V, Q) x Hn’(V, Q) - Hn+n’(V, Q) maps

into

hence we get

The fundamental class of an algebraic cycle z of codimension p on V will be
denoted by {z} ~grpH2p(V, Q)(p) = NpH2p(V, Q)(p) ~ H2p(Y Q)(p).
For smooth varieties T, Jt: with V projective, dim Y= m, and for

z ~ CHp(T  V), 1 an integer, r = m - p, we define a morphism of mixed Hodge
structure

as the composite

where the second map is defined by the cup-product with

THEOREM 5.2. Let V be a smooth projective variety of dimension m, S a smooth
variety, z E CHP(S x V), r = m - p, and 1 an integer. If z(s) E H;b(+ ’)CH-V(V) for all
s E S, then the map

is zero.
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Let Z be a cycle on S x V representing z E CHp(S x V). By shrinking S, if

necessary, we may assume that Z(s) are defined for all s E S. Then Z(s) are H*(l+1)Q-
equivalent to zero. By theorem 4.2, there exist a smooth variety T, a dominant

morphism e : T- S, a smooth projective morphism 03C0:F ~ T, and cycles Xij of
codimension pij on ,97 x V (0  i  l, 1  j  n) such that

For any are Q-homologous to zero;

We have a factorization

and e* is injective (cf. [12], 1.7). The following lemma will complete the proof of
the theorem:

LEMMA 5.2.1. Let T, X, V be smooth varieties, g: X ~ V be a morphism and
f: X - T a smooth proper morphism of relative dimension m, Zi (0  i  1) be
cycles on X of codimension pi such that the restriction of Zi to a fiber Xt is Q-
homologicall y equivalent to zero. Put p = po + ... + pl, r = m - p, and

Then the map

is zero.

We have the Leray spectral sequence

(i) By intersection, we get a pairing of spectral sequence
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in particular, we have

(ii) If f ’ : X’ - T is smooth of relative dimension m’ and h : X ~ X’ is a proper
T morphism, and if d = m - m’, we have a morphism of spectral sequence

in particular, h.FPHn(X’, Q(k)) ~ FPHn-2d(X’, Q(k - d)).
By Lemma 2.4.1 (see also Remark 2.4.3.),

For

and by (ii) and iterated use of (i), we obtain

hence, the lemma is proven.

5.3. For a smooth projective variety W and integers q, l, we consider the
condition:

H(W, q, 1): There exist smooth projective varieties 1j, and cycles uj on 1j x W of
codimension dim W - q such that

(i) the map

induced by uj is injective;
(ii) The following condition H(Tj,l) holds for 1 and all 1j. H(T, 1): There exist

smooth varieties S, !F, morphisms F ~ S, and cycles x1k,..., xlx (1  k  n,
n  1) on 57 x T such that

(i) F ~ S is smooth projective;
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(ii) Licodim xik=rel.dim F/S+dim T, for all k;
(iii) xik |Fx x T are homologous to zero for all i, k and s e S;
(iv) The map

induced by the cycle Ek X 1 k * » * * xlk is injective.

(For 1 = 0, 03A3kx1k·····xlk = n·1F T~0, and by (ii), T must be a poir
case, H( T, 0) always holds).
The reason we introduce the condition is this:

COROLLARY 5.4. Let V and W be smooth projective varieties of din
and n respectively, z E CHp+q(W x V), r = m - p, and 1 an integer, an(
that the condition H(W, q, 1) holds. If the map

it; in that

iension m

i suppose

(cf. 1.8) is zero, then the map

is also zero.

With the notations of 5.3, we have

and

and since Lj {tu} is injective, we may assume that H(W,l) holds and q = 0. The
notation being as in the definition of H(T,l) with T = W, let x = Lk x1k·····xlx .
If 03C0:F ~ S is the morphism, then we set y = (03C0 x idT)I(X) E CH(S x T). For SES,

and z 03BF y(s) ~H*(l+1)CHr(V). By the theorem, we have that
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is zero. But by 5.3, (iv), {ty} is injective, so that {tz} is zero.

5.5. We shall reformulate the corollary 5.4. To do so, we introduce a pseudo-
abelian category W(4. First, we define an additive category W*(4z as follows:

Objects: formal sum Ili GrlCHri(Vi), where the condition H(Vi, ri, 1) holds for
each smooth projective variety Y.

Morphisms:

and for general objects, we define

It is clear that W*(I)z is an additive category, and we define a Q-additive
category l*(l) having the same objects as W*(4z and

Then the pseudo-abelian category W(4 is obtained as the pseudo-abelian
envelope of l*(l).

Let Hdg be the category of polarizable 0-Hodge structures and Hdg(o be the
full subcategory of Hdg whose objects are effective of weight 1. As noted above,
grr H2r+l(V, Q(r))~Hdg(l). By Corollary 5.4, we have

COROLLARY 5.6. We have an additive contravariant functor

LEMMA 5.7. (i) If z is a cycle of codimension q + dim W’ - q’ on the product
W x W’ of smooth projective varieties such that the induced map

is injective and if the condition H(W, q, 1) holds, then the condition H(W’, q’, 1) also
holds.
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For (i), let 7§’s and uj’s be as in 5.3 (for H(W, q, 1». Then, the map

induced by z - uj is injective, and H(Tj, 1) hold for all T .
(ii) is trivial by taking the diagonal as u = ul in the definition of H(T, 0, 1).

PROPOSITION 5.8. For a smooth projective variety V, the condition H(V, 0, 2)
holds.

Let i : V’ 4 V be a smooth hyperplane section. Then

is injective if dim V’  2. Note that

Since HomHdg(gr0H2(V, Q), Q( -1)) = 0 = HomHdg(Q(-1), gr0H2(V, Q)), we
have the canonical decomposition

and i*: gr0H2(V, Q) ~ grOH2(V’, Q) is also injective. Therefore, there exist a
surface S, and j : S ~ V such that the map

is injective. Then, by lemma 5.7, it suffices to show H(S, 0, 2).
If b : S’ ~ S is surjective, b* : gr°H2(S, Q) ~ gr°H2(S’, Q) is injective. In view of

5.7, considering a Lefschetz pencil and its base change over Pl, for example, we
can suppose S has a fibration 03C0: S ~ C over a curve C with smooth generic fibre,
and a section J: C ~ S.

LEMMA 5.8.1. Let S be a smooth projective surface. Then there exists a 2-cycle
Z on S x S with Q-coefficients inducing the projector H.(s. Q) - grOH2(S, Q), i.e.,
the induced map H"(S, Q) ~ H"(S, Q) are zero for n ~ 2,
Nl H2(S, Q) ~ N1H2(S, Q) is also zero, and the map grO H2(S, Q) ~ grO H2(S, Q) is
the identity.

Sketch of proof. Let V be the full subcategory of smooth projective schemes
consisting of schemes whose components V satisfy the condition B(V) of [7].
Note that the condition B is stable under product, that the Künneth compo-
nents of the class of the diagonal of V are algebraic (loc. cit., 2.5, 2.9), that the
condition 1(V, L) (loc. cit.) holds for those schemes by the Hodge theory, and that
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all the curves and all the surfaces (and all the abelian varieties) belong to V.
Starting from V, employing algebraic cycles modulo numerical equivalence as
morphisms, we can construct the category -4f of motives as in [10]. The category
JI is semi-simple, and we have a faithful functor

with H(hn(V)) = Hft(V, Q), the Betti realization. By [6], there exist a finite number
of curves C1, ... , Ck and morphisms (pi: Ci ~ S such that the image of

is N1H2(S, Q)(1). Since Ci, S~Ob V, we have as well

in M. Denote the image by I. Since the category M is semi-simple, we have the
projector p: h2(S)(1) ~ I c h2(S)(1). The composite of the morphism
h(S)(1) - h2(S)(1)with id - p is represented by a 2-cycle with Q-coefBcient on
S x S which has the required properties, by considering the Betti realization.

LEMMA 5.8.2. For a surface S which has a fibration 03C0:S ~ T over a curve with
smooth generic fiber and a section 6: C ~ S, the condition H(S, 2) holds.

Let Co be an open subset of C such that 03C00:S0: = 03C0-1(C0) ~ Co is smooth,
and set F = So c S. We have the projections 03C01: F ~ So and 03C02: F ~ S, and
put

and

Note that xi is smooth projective, so that e7 is smooth. Let Z be the cycle with
0-coefficients as in 5.8.1, and let N be a sufficiently large integer &#x3E; 0 such that

Z1 = N·tZ has Z-coefficients, and put X1 = n!(Z 1), a 3-cycle on e7 x S. To the
C-morphisms 03C81:S0 ~ S, the inclusion, and 03C82 = 03C3 03BF 03C0:S0 ~ S, there corre-
spond the sections il, 03C42:s0 ~ F of 1tl, and il, Î2: So  S ~ F x S, the base-
changes. Finally, we set
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For s~ So, putting c = 03C0(s), àfi = s x 5’c = S’c, and we have

where j:Sc S = FS S ~ S S, and j*(X2) is homologous to zero on ,97, x S.
Denoting the natural inclusion Sc x S - S x S by j’, we have

In the Künneth decomposition

Z1 has no other than H2(S) (8) H2(S)-component, and further, in the

decomposition

Z1 has only gr0H2 ~ gr°H2-component. Hence Z1|Sc x S is Q-homologous to
zero, by grO H2(Sc, Q) = 0. Taking N larger if necessary, we may assume that it is
Z-homologous to zero. We claim that

hence, injective. We have X1 · X 2 = X1 · 03C41*(1S0 S) - X1 · 03C42*(1S0 S), and

for i = 1, 2. Therefore,

On gr°H2(S, Q), {tZ1} = N·id, 03C8*2 = 0 because
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This completes the proof of 5.8.2 and hence that of 5.8.

REMARK 5.9. We can prove similarly that for a smooth projective variety E
the condition H(V, 0, 1) holds.

6. Generalization of Abel’s theorem

THEOREM 6.1. Let V and T be a smooth projective varieties, z E CHp+q(T x V),
q’ = dim T - q. If the map

is zero, then the map

is also zero.

To see [z] = 0, it suffices to show that for any curve C and for any

uECHq’(C x T), the composite

vanishes because ~H~0CHq(T) = ACHq(T) is generated by u(ACHo(C)) for all C
and u. By hypothesis,

is zero. Hence, in the Künneth decomposition,

the H1 p H2p-1-Component of the class {z03BF ul in H2p(C  V, Q) vanishes. Some
multiple of z - u is, therefore, homologically equivalent to the sum of cycles of
the form C x (cycle on V of codimension p) and of the form point x (cycle on
V of codimension p - 1). Since these cycles induce the zero map

Gr1CH0(C) ~ Gr1CHp(V), the multiple of zou induces the zero map

Gr1CH0(C) ~ Gr1CHp(V) by 1.8. We have [zou]=0 by divisibility of

Gr’CHO(C).
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THEOREM 6.2. Let V be a smooth projective variety, and p be an integer. Then,

(i) Gr1CHp(V) has a structure of abelian variety, and the canonical map

ACHp(V) ~ GrlCHP(V) is regular: i.e., for an arbitrary smooth projective
variety T, a cycle z E CHp(T x V), and to E T, the map

is a morphism of varieties.
(ii) The canonical mapping (cf. 1.11)

is surjective and the kernel is finite.
(iii) If (H)oCHP(V)tors -+ J:(V) is injective, then yP is bijective, where

(H)oCHP(V)tors denotes the torsion part.

LEMMA 6.2.1. There exist an abelian variety A of dimension a and

u E CHP(A x V) such that the induced mapping

is bijective. Moreover, putting ’Gr1CHp(V) = ACHp(V)/A*HCHp(V), the

mapping

is surjective.

We have a surjective map H1(P) ~ NP-l H2P-l(V) induced by an algebraic
cycle, where P is an abelian variety. In fact, by [6], Np-1H2p-1(V) is the sum of
the images of H1(T) by f*, where f : T- V is projective with codim f(T) = p - 1.
Let PT be the Picard variety of T; then, the Poincaré divisor induces the
bijection H1(PT) ~ H1(T). Therefore, Np-1H2p-1(V) is the sum of the images of
H1(PT) ~ H2p-1(V) induced by algebraic cycles UT. Since NP-1H2P-l(V) is
finite dimensional, we can find a finite number of T such that the sum of the
images of H1(PTi) ~ H2P-l(V) is NP-l H2P-l(V). Let P be the product of PTi’s,
and u’ be the sum of pull-backs of uTi to P x 11: Then H1(P) = LI H1(PTi), and the
image of H1(P) in H2p-1(V) induced by u’ is NpH2p-1(V).

Since the kernel of H1(P) ~ NP-l H2P-l(V) is a sub-Hodge structure of weight
-1 of H1(P), there exists an abelian variety K 1 of P such that
0 ~ H1(K1) ~ H1(P) ~ Np-1H2p-1(V) is exact. Let A be an abelian subvariety
of P such that A + K 1 = P and A n K 1 is finite. Then the map

H1(A) ~ NP-1H2P-l(V) induced by the restriction u E CHp(A x V) of u’ to A x V
is an isomorphism. Replacing u by u - 0 x u(O), we may assume u(O) = 0.
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We shall show that [u]: ’Gr1CHo(A) -+ ’Gr1CHP(V) is surjective. It suffices to
show that u:A ~ ’GrlCHP(V), x ~ u(x) is surjective.

Let B be an abelian variety and z E CHp(B x Y), z(0)=0. Put

w = 1 B x u + 1A z~CHp(B A V). We have

Let K c B x A be an abelian subvariety such that

By 6.1, K c B  A ~ ’Gr1CHp(V) vanishes. Therefore, we obtain

and

where the dotted maps are not known to be algebraic. Since

{u}:H1(A) ~ H1((B A)/K)  Np-1H2p-1(V) is bijective, so is the map

H1(A) ~ H1((B x A)/K). Hence A - (B x A)/K is an isogeny, in particular, is

surjective. It therefore follows that
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Since, for any element of ’Gr1CHp(V), we can find an abelian variety B and
z~CHp(B V) as above such that the element is contained in the image of
B ~ ’Gr1CHp(V), we see that A ~ ’Gr1CHp(V) is surjective.
We shall prove the theorem 6.2. Note that we have

Let ’N be the kernel of A ~ ’Gr1CHp(V). The map A ~ ’Gr1CHp(V) ~ Jpa(V)
is an isogeny, since its H1 is identified with the bijection
H 1(A) ~ NP-l H2P-l(V). Hence ’N is contained in the kernel, and finite. By the
surjectivity of A ~ ’Gr1CHp(V), and of the maps in the factorization of ’03B3p, the
kernel of each of these maps is finite.

Suppose ACHP(V),.,,. - Jpa(V)tors is injective, and put

For k E Z, we have a commutative diagram

and we see that K is torsion-free. From A*HCHp(V) ~ K follows that

A * HCHp(Y) is torsion-free and divisible (cf. 1.10). Hence Ker(’03B3p) =
K/A * HCHP(V) is torsion-free. Since it is finite, Ker(’yP) = 0. As its quotient,
Ker(yP) = 0, too. In particular, for p = dim E the maps ’yP and yP are bijective by
[9].
We shall prove (i). Putting N = Ker(A ~ Gr1CHp(V)), a finite group, we have

The left hand side has a structure of abelian variety, and we endow the right
hand side with the structure of abelian variety via the isomorphism above. We
shall show that the natural homomorphism

is regular. Let T and z be as in (i), and B be the Albanese variety of T:03B2: T ~ B,
with 03B2(t0) = 0. Assume z = (03B2 x idv)*(z’), z’ E CHp(B x V). Then,
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With the notations of the proof of lemma 6.2.1, z replaced by z’, we have

and the map

is a morphism. (Notice we are in characteristic 0.) Therefore,

is also a morphism.
Next we shall assume dim T = 1. Let J be the jacobian of T and i3 be the

Poincaré- divisor on J x T. The map

is the inverse of 

We have

hence

and

is a morphism.
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Consider the general case. Let C be a general curve of T: i : C 4 T. Then

i* : Alb(C) ~ Alb(T) is surjective, and we have

As shown above, z o i*: Alb(C) - Gr1CHp(V) is a morphism, and so is the map
Alb(T) ~ Gr1CHp(V) by the surjectivity of i*. It follows that z : T - Gr1CHp(V)
is a morphism.

COROLLARY 6.3. the canonical map

is bijective.

We may assume p = 2. By virtue of [8], for any prime e, we have an
isomorphism CH2(V)(e) ~ N1H3(V, Qe/Ze(2)), where CHP(V)(e) is the e-torsion
subgroup of CH"(V), and the map is induced by Bloch’s map [4]. Summing up
over all primes, we get

which is induced from the Abel-Jacobi map

REMARK. 6.4. In the course of the proof of 6.2, we have proven that the
subgroups

coincide up to finite groups, and if the assumption 6.2, (iii) is satisfied, then they
coincide precisely.
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7. The equivalence of categories

THEOREM 7.1. Let T, V be smooth projective varieties, m = dim V,
z E CHp+q(T x W) and assume the condition D(V, r, 2):

then, we have

LEMMA 7.1.1. The adequate equivalence relation ~H*2~0 is generated by
~H*2~0CH0 of surfaces. More precisely, for an arbitrary smooth projective variety
Y, we have

where S ranges over all surfaces, and z ranges over all of elements of CH(S x V).

We denote the right hand side by ECH(V). It is clear that E gives an adequate
equivalence relation, and that ~H*2~0 ~ E. Note that (H*2)0 is generated by
H*2CHo, and, by 6.3, and 6.4, we have ~H*2~0CH0 = A * HCHo, hence that

where S runs over all surfaces and z E CH(S x V). We may assume dim V &#x3E; 2 and

it is sufficient to show that A * HCHo( V) = ECHo( V), i.e., that for a smooth

projective variety T, x~ HCHp(T x V), y E ACHQ(T x V), with p + q =

dim T + dim V, we have

By definition, there exist a curve C, u E CHq(C x T x V), and points a and b of C
such that y = u(y), where y = (a) - (b). Since

it suffices to show that 103B8 x·u·03B3 1T 1y E ECHo(C x T x V). We are thus
reduced to show the following assertion:
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Let V be a smooth projective variety of dimension &#x3E; 2 with a morphism
03C0: V ~ C to a curve, xeHCHi(V), y E ACHo(C). Then x. 03C0c*(03B3) E ECH( V).

Let X be a 1-cycle representing x, and let Supp(X) denote the support of X
with reduced scheme structure. Blowing-up Vat singular points of Supp(X), we
get b : V ~ V such that the proper transform of Supp(X) is smooth. Then the
proper transform X of X is a 1-cycle whose support is smooth and b*(X) = X.
By the following sublemma, we can find a smooth hyperplane section V’ ce E
with respect to some embedding into a projective space, containing the support
of X, if dim V &#x3E; 2.

SUBLEMMA 7.1.2. Let X be an r-dimensional smooth subscheme of a smooth
projective variety V, Ix the ideal sheaf of X in V, L an ample line bundle. If
2r  dim V, a general member of lIx (D L~n| is a smooth variety containing the
scheme X for sufficientl y large n.

For sufficiently large n, the map

is surjective. Then (IxlIx) 2 p L On - is generated by the global sections of

H0(V,IX~L~n). Since the rank of the vector bundle IX/I2X on X is

dim V - r &#x3E; r, the image of a general member s of |IX Q L~n| by the canonical
map Ix Q L~n ~ (Ix/Ii) Q Lon vanishes nowhere. Then, V’ = (s) c V is smooth
at the points of X. By Bertini’s theorem, it is smooth off X, whence the sublemma
7.1.2.

We return to the proof of 7.1.1. Taking hyperplane sections repeatedly, we
obtain a smooth surface S 4 V containing the support of X. Let b’ = b 0 i.

Denoting by X’ the 1-cycle X regarded as a cycle on S, we have b’*(X’) = X. In
the commutative diagram

the horizontal map below is an isogeny, since

is an isomorphism. The cycle X is homologous to zero, hence the left vertical
arrow vanishes, which means that b’*(03B1)·X’ = 0 in Gr1CH0(S), for any
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a E Gr1CH1(V) = ACH1(V). In other words, b’*(03B1) · X’ E A * HCHo(S). It follows
that

It is now enough to take a = 03C0*(03B3).

We shall prove the theorem 7.1. By means of 7.1.1, we are reduced to the case

where q = 0 and T is a surface, as in the proof of theorem 6.1. We shall show that
there exists an integer N ~ 0 with

Then, since A * HCHo(T) = (H*2)OCHo(T) as noted above, Gr2CHo(T) is

divisible by 1.10, so that [z] = 0.
Since T is a surface, the Künneth components 0394i~Hi(T)~H4-i(T) of the

diagonal {0394T} E H4(T x T, Q) are algebraic; moreover, for a hyperplane section
h E H2(T, Q), the inverses of the bijective maps hi~: H2-i(T, Q) ~ H2+i(T, Q) are
algebraic (cf. [7]). Put

They are the Künneth components of {z} E H2p(T x V, Q) and are algebraic. For
each i, there exists some integer N such that N - zi is integral (and algebraic) and
induces the zero map

which follows from the following two lemmae.

LEMMA 7.1.3. For i ~ 2, there exists an integer N such that N · Ai is integral
algebraic and induces the zero map

LEMMA 7.1.4. Under the hypothesis of 7.1, there exists an integer N such that
N - z2 is integral algebraic and induces the zero map

Proof of 7.1.3. Li = hj~:H2-j(T, Q) ~ H2+j(T, Q) has the algebraic inverse
L-j~H4-2j(T T). We distinguish two cases:
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CASE i  2. Put 0394’i = Li-2 03BF 0394i~H2i(T T). Then (1 h2-i·0394T)03BF0394’i=0394i. In

fact, the left hand side induces the map

which vanishes unless j = 4 - i, and in that case, which is id. Take integers N1,
N2 so that N1·0394i and N 1 A; are integral and that N2N1(1 h2-i·0394T)03BF0394’i and
N2(NlOi) are Z-homologically equivalent. Set N = N lN 2. By 1.8,

which is zero because Gr’CH’(T) = 0 by 1.11.

which is zero unless j = 4 - i, and is id in that case. Take an integer N similarly
as above. Then symbolically,

and Gr2CH2-i(T) = 0 because 2 - i  0.

Proof of 7.1.4. First, we prove

Let el’..., eb be a basis for H2(T, Q), where b = dim H2(T, Q); e*1,..., e*b be the
dual basis for H2(T, Q) via the intersection product H2(T,Q) (8)
H2(T, Q) ~ H4(T, Q) = Q, and write

Then,

Since {z}~NpH2p(V,Q), we have {z}·e*i~1v~NpH2p+2(T V,Q), hence,
xi~Np-2H2p-2(V,Q), i.e., 7.1.5.
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The hypothesis

means {tz}(NrH2r+2(V, Q)) c N1H2(T,Q), or tz2(NrH2r+2(V,Q)) ~ N1H2(T,Q).
The condition D(V,r,2) together with 7.1.5 implies z2~N1H2(T,Q)~
Np-2H2p-2(V, Q). Choose the basis e1,..., eb so that el’...’ e03C1 form a basis for
Nl H2(T, Q), where p = dim Nl H2(T, Q), the Picard number of T. Then et,..., e*03C1
are the dual basis for Nl H2(T, Q), since the restriction to Nl H2(T, Q) of the
intersection product is perfect. We can write

i.e., Xi is algebraic. Let Nl, N2 be the non-zero integers such that Ni ’ ei’s are
represented by integral divisors Ei on T, and that N 2 . xi’s are represented by
integral algebraic cycles Xi on J’: Put N = N1N2. Then N·z2 is represented by
the cycle LEi x X which induces the zero map

7.2. We shall define the pseudo-abelian category W’(2), as in 5.5, starting from
Gr2CHr(V) with H(V,r, 2) and D( V, r, 2). Then, W’(2) is a full subcategory of W(2)
and we have the composite

which we shall also denote by 1. Note that Gr2CHo(V) are objects of W’(2) for all
smooth projective varieties E since the condition D(V, 0, 2) holds trivially for
r = 0, and the condition H(V,0,2) holds by 5.8.

COROLLARY 7.3. The contravariant functor

is faithful.

7.4. Let l(2)surf be the full pseudo-abelian subcategory of W(2) obtained from
Gr2CHo(S) with surfaces S, and let N2 be the full subcategory of motives defined
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in 5.8.1, consisting of the subobjects of sums of gr°h2(S), where S is a surface,
gr°h2(S) = h2(S)/Nlh2(S), and Nlh2(S) is the submotive of h2(S) whose Betti
realization is N 1 H2(S, Q) (cf. 5.7.1). Then J/2 is a semi-simple abelian sub-
category of JII. Note that by Betti realization, we have a faithful functor

l(2)surf is a full subcategory of W’(2) and, we have the restriction

~: l(2)surf - Hdg(2), which is factorized as

where ~’: rc(2)surf ~ n2 is given by Gr2CHo(S) H grOh2(S).
COROLLARY 7.5. The functor fi’ gives an anti-equivalence of categories:

In particular, the category l(2)surf is a semi-simple 0-abelian category.

We have shown that ~’ is faithful. By definition, the morphisms from grOh2(S)
to gr°h2(S’) are induced by algebraic cycles of codimension 2 on S’ x S. Hence it
is clear that il’ is fully-faithful, and its essential image is n2, because
~’(Gr2CH0(S)) = gr°h2(S).
REMARKS 7.6.1. Since grOH2(S, Q) and grOH2(S, QX2) are dual via inter-
section, we could formulate the corollary 7.5 as

is an equivalence of categories.

7.6.2. By 7.1.1, for any smooth projective variety V, Gr2CH0(V) is generated by
those of surfaces as abelian group. We do not know, however, whether the
inclusion from W(2)ru,f into the category generated by all Gr’CHO(V) is an
equivalence of categories, or more generally, whether l(2)surf  W(2) is an

equivalence of categories. Assume, however, that the standard conjecture B(V)
holds universally. Then the conditions H(V, r, 2) and D(V, r, 2) are true and
Gr2CHr(V) is an object of l’(2) for arbitrary V and r. Hence, W’(2) = W(2), and
l(2)surf  W(2) is an equivalence of categories, and they are equivalent to the
category n2 via the functor tl.

REMARK 7.7. So far, we have assumed that the ground field k is the complex
numbers. Some statements remain true even if k is algebraically closed of
characteristic zero. For example, theorems 6.1 and 7.1 are those ones when the
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Betti cohomology is replaced by etale cohomology or De Rham cohomology,
the proof being reduced to the case of complex numbers by the comparison
theorem. However, theorem 4.1 (hence 5.1) makes essential use of the hypothesis
that the ground field is uncountable, and it is plausible that it is false if k is the
algebraic closure of the field of rational numbers. Hence it might be a right
formulation to define first a functor of the form

and to show it is (fully) faithful when k is, for example, the field of complex
numbers.
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