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Abstract. A general practical method for solving a Thue-Mahler equation is given. Using algebraic
number theory and the theory of linear forms in logarithms of algebraic numbers in both the
complex and p-adic case, an explicit upper bound for the solutions is derived. A practical method for
a considerable reduction of this bound is presented, based on computational real and p-adic
diophantine approximation techniques, in which the main tool is the LLL-algorithm. Special
attention is paid to the problem, in general non-trivial, of finding the solutions below the reduced
bound, using an algorithm of Fincke and Pohst for determining lattice points in a given sphere, and
a sieving process. As an illustration of the usefulness of the method, the equation
x3 —23x2y + S5xy? + 24y® = +2713%25%37%4 is completely solved.

1. Introduction

In this paper we develop a practical method for solving the general Thue-
Mabhler equation over Z. This is the diophantine equation

F(X, Y)=cpi D}, (1)
where
FX,Y)=foX"+ fiX" 'Y+ -+ f,_, XY" L 4+ £ Y"

is a given irreducible binary form in Z[X, Y] of degree n > 3, the other
parameters are the distinct rational primes p,,...,p, (v = 1) and the integer ¢
(without loss of generality we assume that (c, p, - --- - p,) = 1), and the unknowns
are (X, Y, z,,...,2,)€Z* x Z%,. Without loss of generality we may assume that

X, Y)=(Y, fo) = 1. @

K. Mabhler, in [Ma], was the first to prove that such an Equation (1) with
condition (2) has at most finitely many solutions. Twenty four years earlier A.
Thue had proved in [Th] that the equation F(X, Y) = c¢ (i.e. (1) with v = 0, the
so-called Thue equation) has only finitely many solutions. This explains the
name of Equation (1). The first proofs of these results were non-effective, and
only after the work of A. Baker in the 1960’s (the first generalizations to the p-
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adic case, needed for the Thue-Mahler equation, are due to J. Coates), were
effective proofs given. For the history of both equations we refer to Chapters 5
and 7 of T. N. Shorey’s and R. Tijdeman’s book [ST].

The present paper is a natural continuation of our 1989 paper [TW1], in
which we develop a practical method for solving the general Thue equation.
Compared to the Thue equation the study of the Thue-Mahler equation
presents more difficulties, both from the theoretical and the computational point
of view. It took us several years before we were able to develop our method in its
present generality. The first general ideas (cf. [dW2]) were suggested by
combining our ideas from the study of the general Thue equation with our ideas
on p-adic diophantine approximation from a computational viewpoint (see
[dW1, Chapters 3 (theory), 6, 7 (practice)]). Here we certainly were inspired by
the 1980 paper [ACHP], which was until very recently the only paper in which a
Thue-Mabhler equation was solved by a similar method.

As a next step we tried to apply our general ideas to the solution of a specific
Thue-Mabhler equation, namely X3 — 3XY? — Y3 = 4 3°117°219%, see [TW2]
and, for a brief exposition, [TW3]. In this specific example a very helpful fact is
that the field associated with the cubic binary form is Galois; nevertheless the
whole task proved far from trivial. Thus, in the last few years we have
accumulated a certain experience on the various aspects of the practical solution
of the Thue-Mahler equation. To this experience we ascribe our partially
successful attempts to apply in practice the ideas that are presented in Chapter V
of Sprindzuk’s book [Sp]. The reader who compares SprindZuk’s approach (and
also that of Shorey and Tijdeman [ST, Chapter 7]) to ours, will notice essential
differences, mainly motivated by our urge to present a practical method, in
which the algebraic number theoretical work should be minimized, both in
quantity and complexity. Finally we felt that we had enough experience to share
it with others, by presenting a practical way of ‘how to solve a Thue-Mahler
equation’, which is the aim of the present paper. To convince the reader (and
ourselves as well) that our method really works, we applied it to a specific
example, on which we also report below.

As usual our method consists of three steps:

(1) A very large upper bound for the solutions is derived from the theory of
(real/complex and p-adic) linear forms in logarithms. Here we use the best
theorems available, due to Blass, Glass, Manski, Meronk and Steiner in the
real/complex case, and Yu in the p-adic case. At this point, algebraic number
theory makes its appearance, preparing our way towards the linear forms in
logarithms of algebraic numbers.

(2) The upper bound can be considerably reduced in practice by diophantine
approximation computations, based on applying the LLL-algorithm to the
so-called approximation lattices related to the linear forms, both in the
real/complex and p-adic case.
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(3) The solutions below the reduced bound can be found by several methods (or
a combination of them): more detailed computations with the approxi-
mation lattices, where the main tool is an algorithm of Fincke and Pohst for
determining lattice points in a given sphere; a sieving process; and enumera-
tion of possibilities. At this point we want to warn the reader not to
underestimate this third step of finding all the solutions below a relatively
small upper bound. It might well be the computational bottleneck of the
entire method, especially when a more ‘complicated’ Thue-Mahler equation
is studied (i.e. one with many primes and/or many fundamental units
involved).

To help the reader understand better our method we have divided the paper
into many numbered sections. Each Section N (N # 13) is followed by a Section
NE= typeset in a different style, in which we apply the general ideas of Section N
to the specific equation we are solving.

1B% As an example we will study the Thue-Mahler equation

X3 — 23x%y + Sxp? + 24y° = +£27132557,

and solve it completely (a list of all the solutions is given in Section 18E%). Note that f, = 1, ¢ = 1,
v =4, n = 3. This is a rather ‘hazardous’ Thue-Mahler equation, chosen by the mere facts that the
field associated with the cubic form is not Galois, and that there are ‘many’ and ‘large’ solutions
(there are 72 solutions, when we count only the (x, y) with x > 0). Note that by Evertse’s famous
result [Ev, Corollary 2] the best a priori information is that the number of solutions is less than
2 x 10251,

2. The relevant algebraic number field

Let £ be aroot of F(t, 1) = 0, and put K = Q(&). The conjugates of £ are denoted
by ¢&@ (i =1,...,n), and are ordered as follows:

ED, L EOER, LoD = FHFD gty _ E6F2) ¢ O\R,
with s + 2t = n. Now (1) is equivalent to

JoNg@X — Y& =c-pi-----p.
Put x =f X, y = Y, 0 = f,£, so that (1) is equivalent to

Nija(x — y0) =f5 " '-c-pit- - p. 3
Assumption (2) is equivalent to

(x,y)=1 4)
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Note that K = Q(8), [K : Q] = n, and the minimal polynomial g(z) of 6 is monic,
viz.

gO ="+ fit" P+ fofot" P+ o+ S SO+ LSS

thus 6 is an algebraic integer. We need the following information:

® a basis of a convenient order @ of K containing 6 (not necessarily the maximal
order = the ring of integers),
e a system of fundamental units in ©.

Note that we do not need the class number of K. For computing the above data
efficient algorithms are known, cf. e.g. [ Bil], [Bi2], [Bul], [Bu2], [Bu3], [Bu4],
[Bus], [DF], [PZ1], [PZ2], [PZ3], and even computer packages for such
algebraic number theory computations are already in use, such as KANT (cf.

[Sm]).

2EX Note that x = X, y = Y, 8 = £ The defining polynomial g(¢) = t> — 23¢% + 5t + 24 has s = 3
real roots, whence t = 0. The discriminant of g is D, = 1115525 = 52-44621 (44621 is prime). The
field K is not Galois, since D, is not a square; a basis of the ring of integers 0y is {1, 6, w} with
® = (2 + 0 — 0%)/5 (apply [DF, Theorem II, §17]), so that the discriminant of K is Dg = 44621. A
system of fundamental units of Gy is {e;,¢€,} with &, = 1 + 0 — 6w, &, = 3911 + 43970 + 1046w.
This system has been computed by the method of Berwick [Be], and was checked by R. J. Stroeker,
who used the KANT package. The three conjugates of 6 in R are

0V = —0.9028831934..., 6@ = 1.1692597799..., 6 =227336234134...

3. Decomposition of primes
Let p be any rational prime, and let

g(t) = g1(O) -+ gm(®)

be the decomposition of g(t) into irreducible polynomials g,(t)e Q,[t]. The
prime ideals in K dividing p are in one-to-one correspondence with
g1(0), . .., gm(®) (cf. [BS, Theorem 3, Section 2, Chapter 4]). More precisely, we
have in K the following decomposition of (p):

() =p5" P,

with py,..., p, distinct prime ideals, and ey, . . ., e,,€ N (the ramification indices).
For i =1,...,m the residual degree of p; is the positive integer d; for which
Np; = p*, and then e;d; = deg g;(?).

For p = py,..., p, one has to compute the above mentioned decompositions.
Algorithms to do so efficiently are known, cf. [PZ3].
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3E% For p =2 we have m = 2, (2) = p;;P,2, €; = €, = d; = 1, d, = 2. We have computed

P21 = (1), Ty =22+ 250 + 6w, N(ny)=2,
P22 =(m32), Ty =—5+40+ 0w, N(my)=4

For p =3 we have m = 2, (3) = p3,P3,, €; = e, =d; = 1, d, = 2, and we have computed

P31 = (m31), 73 =31—410 + 4w, N(ms;) = =3,
P32 = (m35), T3, = 161923 + 1820690 + 43702w, N(m3,) = —9.

For p =5 we have m = 3, (5) = ps,Ps,Ps3, €, = €, = e3 =d;, =d, = dy = 1, and we have found

Psy = (nsy), msy = 133 + 1500 + 36w, N(msy) = —5,
Ps2 = (Tsz), sy =89 + 1000 + 24w,  N(rsy) =5,
Ps3 = (ms3), 753 =111 —900 — 160w, N(ms3)=>5.

For p=7 we have m = 2, (7) = p;,P12, €; = e, =d; = 1,d, = 2, and we have computed

P = (7':71), Ty = 1-0, N(n“) =1,
Pr2 = (n73), 74, =154+ 210 + 5w, N(mn;;) = —49.

Moreover, for p = 2, 3, 7 we have

g =t—0, gy(t)=12—(6—23)t + (6% — 230 + 5).

4. p-adic valuations

In this section we give a concise exposition of p-adic valuations. By @p we
denote the algebraic closure of @, and by C, the completion, with respect to the
p-adic absolute value, of Q - As general references we give the books of Koblitz
[Ko] and Narkiewicz [Nal] (especially Chapters I, IV and V). Let p be any
rational prime, and let x € K. Let p; be a prime ideal dividing p, and let d;, e;, g;(¢)
be defined as in Section 3. Now, ord,, (x) is defined as the exponent (a positive or
negative integer, or 0) of p; in the decomposition of the principal (fractional)
ideal (x). Since factorization into prime ideals does not depend on the choice of
conjugates, this definition of ord, (x) is independent of the choice of conjugates.

Letie{l,...,m}. Put K, = Q,(0;), where 0, satisfies g;(0;) = 0. There are m
embeddings (one for every i) defined by

1:K o Ky,
a—oa fae,
0-0,.

Now, let 6",...,60" e @, be the conjugates of 6;, where n; = degg;(t). Then
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there are n; embeddings given by

0ij: Ky, & €y,
a—-oa ifae@,
0, — 09,
Here, ie{1,...,m}, je{l,...,n;}. Note that, if 0),..., 6™ denote the roots of
g(t)in Q,, then every 69 coincides with some 6®. Since n, + - + n,, = n, there

are n embeddings given by

0;°1:K o Cp,
a—a faeQ,

0 - 09,

If K is considered as embedded in K, (by means of t;), then the p-adic order of
x€eK is defined by

ord,(x) = é ord, (x).

Thus, m different p-adic orders can be defined in K, and which one we choose in
a particular instance depends on how we view K, ie. of which field K, we
consider K to be a subfield. Given the p-adic order in K, we can define the p-adic
absolute value in K by

Ixl, = p~ordoto,

Now K, = Q,(6)) is the completion of K with respect to ||,. We also have

Ixl, = [Nk, ja, (I

Here, as before, n; = degg;(t) = [K,,:Q,]. In fact, we can extend the p-adic
absolute value to any finite extension L of Q, by

Ixl, = INL/q, (o) /E @),

and, analogously,

1
ord,(x) = m ord,(Np/q,(x))
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(note that these definitions are independent of the extension L containing x), so
that |x|, = p~°%™. Now we are in a position to define the p-adic order and
absolute value of any xe@Q,. Indeed, just consider any extension L of Q,
containing x, and apply the latter two formulas. Note that for x, ye @, it is still
valid that ord,(xy) =ord,(x) + ord,(y) and ord,(x + y) > min{ord,(x),
ord,(y)}. Note also that if K is embedded in K, then the ord,(x) previously
defined coincides with the p-adic order ord,(c;;°7;(x)) of the p-adic number
o0 t(x) (for any je{1,...,n;}).
Of course, in the special case x € Q, we can write

x=7) ¢p, 0<c;<p—1 (j=>n),

ji=n

with ¢, # 0 if x # 0, and then ord,(x) = p, |x|, = p~*. We adopt the following
notation for xe Q,:

X =CuCusq " Cy.CoCy - 1f p <O,

x= 0.cocy --- f p =0,

where we take ¢; = 0 for all i < u.

Finally we note that, having already defined the p-adic absolute value and p-
adic order of any xe@p, we can define the p-adic absolute value and p-adic
order of any x € C, as follows. We consider any sequence (x,) of elements of Q P
converging to x; then we define |x|, = lim |x,|,, and ord,(x) by means of
Ix‘p — p—ordp(x)' n=o

4E% For p = 5 the situation is easy: in Section 35* we have seen that g(¢) has three roots in Qs, which
we denote by 8V, 8, . In this case m = 3, and for every i = 1, 2, 3 we have g;(t) = t — 6 so that
(in the notation of Section 4) §; = 69, K, = Qs5(6?) = Qs, 7,(0) = 0, and the three embeddings
K < Qs are 6;; with g;,(0) = 09 for i = 1, 2, 3. We have the Table

p=5 i) @ @

[’) 0.4320132113... 0.2212320101.... 0.2312041230...
sy 0.0331023331...  0.2133034404...  0.4402441104...
Tsa 0.2042343042. .. 0.0122021301... 0.3121134001...
Tss 0.4113312002... 0.2224044144 . .. 0.0240042203....

Note that ords(n¥}) = 1 if i = j and 0 otherwise.

For p = 2, 3, 7 the situation is somewhat more complicated. According to Section 35, m = 2, and
if we denote by 6 the root of g,(t) and by 6, 6 the roots of g,(t), then 0, = 0V eQ,,
Ky, =Q,0)=Q, t,(0) =6, = 0™, Further 6, satisfies g,(0,) = 0, Ky, = Q,(0,) (a quadratic
extension of @,), 75(f) = 6. Then the three embeddings K ¢, C, are o,, °t, which maps 6 to 6),
and 0,;° 7, which map 6 to 6Y* Y for j = 1, 2. We have the following Tables:
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p=2 W Ky, =Q, ), 0, [Kp,,:Q;] =2 ord,
0 0.0001000110... roots of t2 4+ 0.10001...¢ + 0.10110... 0
Moy 0.0101011111... roots of t2 + 0.10101...¢ + 0.10111... 0
Tyn 0.1011101001 . .. roots of t2 + 0.01001 ...t + 0.00101... 1
p=3 WKy, =0 @, 0, [Kp,,: Qs3] =2 ord,
6 0.0210020022.. .. roots of t2 4+ 0.10222...t + 0.20211... 0
T3y 0.0212211000...  roots of t> + 0.22101...¢ + 0.12022... 0
Taz 0.2020002122...  roots of 2 + 0.02112...¢ + 0.00110... 1
p=17 w, Ky, =Q, @ 3 , [Kp,,:Q,]1=2 ord,
[’ 0.1544035230. ... roots of t2 + 0.61440...t + 0.44216... O
Mgy 0.0222631436. .. roots of t2 + 0.64226...t + 0.46656... 0
Tqp 0.3001001201 ... roots of t2 + 0.02600...¢ + 0.00222... 1

Note that for p = 2, 3, 7 always ord‘J 2(1rp2) =1, e, = 1, hence ord,(n ) =1 for
] =2, 3. The same conclusion "could have been drawn as follows:

/Q (n%) = 0.00% .. (where + is nonzero), so ord,(nY ) =
(1/[?{ Q,)ord,(Nk, /o R) =4-2=1.

5. Removal of prime ideals

After the general remarks of Sections 3 and 4 we now return to our Thue-Mahler
equation (3). We assume that (x,y,zq,...,2z,)€Z%xZ%, is a solution of (3)
satisfying (4). The decomposition of (x — y6) into prime ideals may contain
(apart from a bounded contribution from 3! ¢) any prime ideal dividing one of
the p;. The following lemma shows that in fact for each p;, at most one prime
ideal dividing it may have a nontrivial contribution to (x — y#). Thus the
number of prime ideals to be considered is at most v. Therefore we may call the
next lemma ‘The Prime Ideal Removing Lemma’, and it is an ideal prime
removing lemma indeed.

Let p be any prime, and let p;, d;, e;, g;(t) have the same meaning as above.
Again we denote by 6Y the roots of g;(t), for i=1,...,m and
j=1,...,n,=degg;(t). Further, let e = max{e,,...,e,}, and let D, be the
discriminant of 6.

LEMMA 1 (The Prime Ideal Removing Lemma).
(i) For every pair i, je{l,....,m} with i #j there is at most one pe{p;, p;}
satisfying

ord,(x — yb) > max{e;, e;} - ord (6 — 6%). 3)
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Here ke{l,...,n;} and le{1,...,n;} are arbitrary.
@ii) If (5) is satisfied for p = p; and p; has d; > 1 or e; > 1 then

ord, (x — y0) < ¢;- ord (6% — 6). (6)
Here k, le{1,...,n;} with k # | arbitrary.

FIRST COROLLARY OF LEMMA 1
(1) There is at most one p; dividing p with

ord,(x — yf) > max (max{e;, e} ord, (6% — ). W)

1<j<k<m

Here he{l,...,n;} and l€{1,...,n} are arbitrary.
(i) If p; satisfies (7) and has d; > 1 or e; > 1 then it satisfies (6).

SECOND COROLLARY OF LEMMA 1. There is at most one p; dividing p
with

ord, (x — yb) > e ord,(Dy), )
and it satisfies d; = e; = 1.

THIRD COROLLARY OF LEMMA 1. If p{ D, then there is at most one p;
dividing p with

ord, (x — y0) > 0,
and, if so, it must have ¢; = d; = 1.
Proof of Lemma 1. (i) It suffices to prove that if
(x — y0) = p/'p}a,
where a is some integral ideal, then
vo = min{v;, v;} < max{e;, e;}-ord, (6% — 69).
In view of the discussion of Section 4 we have:

1 v;
Ordp(x - yask)) = ordp(a',-ko ‘c,-(x — y0)) = Z ordpi(x - y0) = e—l = m,

Vo
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and analogously

Vo

— ye» >—°2
ord,(x = y07) max{e;, e;}

Since ord, is well defined on C,, and x — yf® and x — 6" are elements of C,
we obtain

Vo

© _ gO) > mi - — 0PN > )
ord, (W6 — 0)) > min{ord,(x — y9), ord,,(x — yb{)} max{e;, e;}

The result now follows if ord,(y) = 0. But if p| y then, by (4), p{x, hence
ord,(x — yf) = 0 for any p dividing p, and it follows that vo = 0, which implies
the result.

(ii) Since n; = degg;(r) = e;d; > 1, there are k, le{l,...,n} with k # 1. We
write

(x —y0) = pla, v=ord,(x — yb)

for some integral ideal a, and we obtain
1
ord,(x — yo®) = ord, (o °t;(x — yf)) = - ord, (x — yf) = 1,
i €;
and analogously
ord,(x — yo{) = A
€;
As in the proof of (i) we obtain the result. O
Proof of first corollary of Lemma 1. Trivial. O
Proof of second corollary of Lemma 1. We have
D, = o _ gv)2,
¢ 1 SI!':[ I<n ( )

and since 6 is an algebraic integer, we have
ord,(Dg) = 2-ord,(® — 6Y)

forall h,l€{1,...,n} with h # L. On the other hand, if j, ke {1,..., m} withj # k,
and 07, 6} are arbitrary conjugates of 8;, 0, respectively, then 6{) = ¢® and
6 = 6 for some h,l€{1,...,n} with h # I. Then ord,(Ds) > 2-ord, (6%’ — 6);
hence (8) implies (7), and the 1st Corollary (ii) can be applied to prove that at
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most one p; dividing p satisfies (8). Also, (8) implies (5) (because it implies (7)), as
well as the negation of (6), so that, by Lemma 1(ii), we must have d; = ¢; = 1.

O
Proof of third corollary of Lemma 1. Obvious from the 2nd Corollary. Od

5EX For p = 2, 3, 7 we apply the 3rd Corollary of Lemma 1. It follows that p,,, p3,, P, Will not
divide (x — y6), whereas p,,, p3y, p;, may divide (x — yf) to some power.

For p = 5 we can apply the 2nd Corollary of Lemma 1 with e = 1, ord5(Dy) = 2. It follows that at
most one of ps;, P52, Ps3 can divide (x — yb) to the power at least 2, and it may be any of the three.
But now Lemma 1(i) itself gives more information. Note that e, = e, = e¢; = 1, and

ords(6, — 6,) = ords(8, — 03) =0, ords(0, — 6;) = 1.
Hence, if ps, divides (x — y0), then p, and ps; don’t. If p5, or p, divides (x — y0), then ps, doesn’t.
If ps, divides (x — y6) to the power at least 2, then p, divides (x — y6) to the power at most 1, and if

ps3 divides (x — y6) to the power at least 2, then ps, divides (x — y6) to the power at most 1. Thus
(x — y0) has one of the following five forms:

n n. n n. n n: n . n n. n. n. n n. n. n. n n: n. n.
P2YPFIPEIPTL, PR1P3IP5RPTY, PR1P3IPSIP 3P, PRAPRIPSIPTL, PR1P31Ps2P53PTY

for nonnegative integers n,, n,, ns, n,.

6. Factorization of the Thue-Mahler equation
For every ie{l,...,v} let
2 = {p|p prime ideal dividing p; with d; = ¢; = 1}.

Thus £, is finite, and it may even be empty. In view of the Prime Ideal Removing
Lemma, (3) implies a finite number of ideal equations of the form

(x—y6) =a-b-pi'---pp. ©)
Here,

® a is an integral ideal with Na = f3~ !¢,

® (Py,...,P,)EP X --- X P, where p} stands for the unit ideal if 22 = ¢,

o the prime ideal factors of b are those that divide one of the p; but are not equal
to one of py,...,Pp,,

® uy; +ord, (Nb)=zfori=1,...,v.

For convenience we assume (without loss of generality) that none of the £ is
empty.

Foranyi=1,...,vlet h; be a positive integer such that p® is a principal ideal.
The smallest such h; is a divisor of the class number h of K. In practice it will be
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useful to take h; minimal, to reduce the number of cases to be considered in the
sequel, but this is not essential. For i = 1,..., v the nonnegative integers n;, s; are
defined by

wy=hn+s, 0<s;<h;,
and we put

p = (m) (n;€K), t;= ord, (Nb).
Then

z; =mnh; + 5; + t, (10)
and (9) is equivalent to

X—y0 =o-eft-ecgpreomte e my, 11
where

@ = aboppd

(note that this is a principal ideal indeed), and {¢,, ..., ¢,} is a set of fundamental
units in some order O of K containing 6. Here, r = s + t — 1, and one usually
takes O to be the maximal order, i.e. the ring of integers () of K, but again this is
not essential. Note that the finite number of equations (9) leads to a finite
number of equations (11). Each of these cases has to be treated separately in the
sequel. In practice, one has to compute all the possibilities for o (which is
determined up to a unit), and, as remarked before, one has to know the set of
fundamental units in 0, and the nontrivial roots of unity, if any (such roots exist
only if s = 0). One also has to know the h;, and in achieving that, a knowledge of
h is not required, although it might be useful.

65 As remarked in Section 55, we have five equations (9). Since we can take all h; equal to 1 (in fact,
we believe that h = 1, but we didn’t check), all the s; are 0, and for equation (11) we also have five
possibilities. Note that a = (1), p, = p,; and ©, = m,,, for p =2, 3, 7, and the 5 cases are:

Case b Ps o s
I 1) Ps1 1 sy
I (6] Ps2 1 Tsz
1 Ps3 Ps2 Tis3 Ts2
v 1) Ps3 1 Ts3
v Ps2 Ps3 Tsz Ts3

0 in Cases L, II, IV
Note that t; = t, =t, = 0 in all cases, whereas t; = { .
1 in Cases III, V
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7. The S-unit equation

Let pe{py,...,P,, 0}, and denote the roots of g(t) in C, (where C,, = C) by
M, ..., ™. Let iy, j, ke {l,...,n} be distinct, and apply the three isomorphic
embeddings of K into C, given by 6 — 6§, §9, 0¥ to

B=x—y0.

From the three conjugate equations thus obtained we eliminate x and y, which is
possible just because F(X, Y) was supposed to be irreducible and of degree >3
(cf. Section 2). Then we obtain

glio) _ gU) ﬂ(") Qv — g% ﬁ(io)
T g0 g~ T g _ glo go) -

Now we apply (11), and thus we find the so-called ‘S-unit equation’

v ngk) ni oy ssk) ai v 7tgio) ni r 8?'0) a;
= [1Gp) () - =0 () 1 (s). o

where

(o) _ QU (k) ) _ pk) (o)
0 oY « 0 0% o

0y = gio _ gm0 4@ > %27 glo _ glo 40

are constants. We will now study for each p (for the time being, p # o) the p-
adic absolute value of A for suitably chosen indices iy, j, k.

LEMMA 2. If yeK is an algebraic integer with Ng(y) # 0 (mod p), then
y®eC, is a p-adic unit for every le{1,...,n}.
Proof of Lemma 2. This is an easy exercise, that we leave to the reader. []

Let le{1,...,v}. We consider the prime p = p,.
COROLLARY OF LEMMA 2

. 4 -
() Letie{l,...,r}. Then Eo and Eo are pi-adic units.

- 7o) ()
(i) Let ie{l,...,v} withi #l. Then oy and % are p;-adic units.
Proof of the corollary. Obvious from Lemma 2. O

We now show how to choose i,. We may assume that g,(t) is the irreducible
factor of g(t) over Q,, that corresponds to the prime ideal p, e &, that appears in
(9). Since p, € &, we have deg g,(t) = 1. We denote by 0 the root of g,(t). In this
way a direct connection between I and i, is established. The other two indices j, k
appearing in (12) are fixed, but arbitrary. Note that it is always possible, and it is
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advisable, to take j, k as follows:

e If there are at least three g;(z) with degg;(t) = 1, then 89 and 6%® should be
roots of such linear polynomials. Then j, k can be taken so that ord,,(d,) > 0.

o If there are at most two linear g;(t), then there is a g;(t) with degg;(f) = 2, and
09 and 6% should be roots of the same such g;(t). Then

glo _ gu) o®
ord,,(6,) = ord,, (W) + ord,, <_a‘7) =0+0=0.

Moreover, if there is a g;(t) with deg g;(t) = 2, then it is advisable to choose 69
and 8™ to be roots of that quadratic polynomial, for reasons to be given later.

LEMMA 3
.
(i) — is a pr-adic unit.
i

(i)
" mo\
(i) ord,, (n,"") = h,.

Proof of Lemma 3. Let 69 be a root of g,(t) say, and let p’ be the prime ideal
dividing p, that corresponds to g,(¢), with ramification index e'. Then

. 1
ord, (n{) = 7 ordy(m) = 0,

since (7)) = p;* and p, # p'. Analogously we find ord,, (n{) = 0, and (i) follows.
Further, (ii) follows from

. 1
ord,, (n{) = o ord, () = hy,
1

since the ramification index e, of p; equals 1. O

Note that 6, and J, are just constants, hence so are their pi-adic orders. They
must be computed explicitly.

7EX The number of cases has now grown to twenty: each of the five cases of Section 65 has to be
treated for each of the four primes p, = 2, 3, 5, 7. For p, = 2, 3, 7 we always have i, = 1, and we
choose j = 2, k = 3. For p, = 5 we take, according to the advice given above for choosing j and k:

Case ip j k
I 1 2 3
II 2 3 1

I 2 1 3
v 3 2 1
\ 3 1 2
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With these choices we have:

ord,(d,) ord,(6,)

Case p=2 p=3 p=>5 p=17 p=2 p=3 p=>5 p=1
1 0 0 0 0 (] 0 1 0
II 0 0 1 0 0 0 0 0

111 0 0 0 0 0 0 -1 0
v 0 0 1 0 0 0 0 0
v 0 0 0 0 0 0 -1 0

8. A bound for N in terms of log H
Put
N =max{ny,...,n,}, A=max{lay,...,la,|}, H=max{N,A}.

In this section we obtain an upper bound for N in terms of log H. First we treat a
special case, which turns out to be trivial. Then we give the main result of this
section, based on the theory of p-adic linear forms in logarithms of algebraic
numbers.

-1
LEMMA 4. If ord, (6,) > O then ny = — ord,, (,).
)41 hl 141

Proof of Lemma 4. Applying the Corollary of Lemma 2 and Lemma 3 to both
expressions of 4 in (12) we compute on the one hand ord,, () = min{ord,,(d,),
ord, (1)} =0, and on the other hand ord, (1) = ord,(d,) + n;h;, hence the
result follows. O

THEOREM 5. There exist positive constants ¢, o(p,), ¢11(p;), depending on F and
¢ too, that can be explicitly calculated, such that

m < cyo(p)log H + ¢14(p))-

Proof of Theorem 5. Obviously we may assume H > 1. Let c,o(p) > 1,
-1 -1

ci1(p) > Tordm(éz). Then we may assume n, > Tordm(éz), and Lemma 4
1 1

implies ord,,(§,) = 0. From (12), the Corollary of Lemma 2 and Lemma 3 we
infer

ord,,(4) = ord,,(6;) + mh, > 0, (13)

and also that all the ratios appearing in the first expression for 4 in (12) are p,-
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adic units; hence §, is a p,adic unit as well. Applying Yu’s theorem (see
Appendix A2) to the first expression for 4 in (12) we find

ord, (4) < cjo(logH + ci,)

for some positive constants c},, ¢; depending on p,, which can be explicitly
calculated (c}, will be ‘large’). We may assume cjo = h;. Now (13) implies the

theorem with
C’IO , 1 —1
ciolp) ==—, c11(p) =max<{cy; ——— Ordp,(éz), - Ordp,(éz) . O
hy C10 h

On putting

c13= max c;o(p), C14 = max cy(p),

=1,...,v yeensV

Theorem 5 implies
N < cy3(logH + c¢44). (14)

8E* Lemma 4 implies ns = 0 in cases II and IV. Hence, they can be incorporated in case I with
ns = 0. As a result, from now on we need only consider cases I, III and V. The constants ¢, (p,) and
¢,1(p) have to be computed from [Yu2]; see Appendix A2E*. We obtained:

p= | 2 3 5 7

clo< | 1.020x10%7 8.051 x 10*3 2.787 x 10*4 7.050 x 10%*

¢y < 4970

so that ¢;3 < 1.020x 107, ¢,,, < 4.970.

9. A bound for H

Theorem 5 was the first important step towards an upper bound for H. In fact, it
contains all the p-adic arguments. We will also need real/complex arguments,
which we will give in this and the next section. Our aim is to bound A4 from
above by a linear function of H. Put

— 081, . o
e=¢7' 08
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For any r xr matrix U = (u;;) we define the row-norm N[U] of U as

NLU] = max (Ju;| + -~ + |u;|).

1<isr

LEMMA 6. Let I = {iy,...,i,} = {1,...,5 + t} be any set of r distinct indices,
and consider

logle§”| -+ logle)|
U1 =
logle{”| -+ logle!™|

Let 1, be an index set such that
N[U;,'] = min N[U; '],
I
and let ke I, be an index such that

llogle®|] = max [logle®||.

helo

Then either [¢®] > €4 or [e®| < e™ >4, where ¢,5 = 1/N[U,'].

Proof of Lemma 6. Let I, = {iy,...,i,}. Then

a, log|etY)|
L

a, log|e®)|
and it is straightforward to see that
A < N[U '] |log|e®)].

The lemma follows at once. O

Now we choose a positive constant

Cis
—1

Cie <
16 n

Although it can be chosen arbitrarily, in any specific example of a Thue-Mahler
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equation its choice will affect the size of the upper bound for H to be found.
Later we will indicate what might be an optimal size for c,.
We distinguish three cases. In the first two, k will be the index defined in

Lemma 6.

Case 1. min |BY| > e ¢4 and [¢®)] > 54, We have
1<i<n

B TT 1891 =15 el p3t- -+ P2
i#k
therefore
“g(k)l < Ifr(t)—lcl .pil e .pzv.e(n—l)cmA.

Hence, for this case, using (10) and (11), it follows that

e < e = 1B B
'a(k)l . In(lk)|n1 e |n(vk)|nv |oc(")| . In(lk)ru e |n(vk)|nv
n—1,.s1+t1, .. vt hi|n hyv
< |f0 CI pl‘ (k)l m . _kal ' . . Dy "v. e(n— 1)c164
@) PP

< exp{cig + ¢17N + (n — 1)c; 64},

where
hy . . nh =1, . ph1+t1—1, v ttv—1
, pi' -y , lfo “el-py ™" e gt
€17 =log— = o> Cis =log )
min |n{----- 7Y min |V
1<j<n 1<j<n

It follows that

cig + ¢17N

A<——m—— |
¢1s —(n— l)cye

(15)

Case 2. min |B?| > e~“'*4 and |e®| < e™“'54. Now,
1<i<n
IB(k)l e c16d

>
®) - 7O . @
o ®)]| - |mPprr - | g IZI Inl-....nle’

from which it follows that

e 1 > |g0) =

gt ci7N (16)

C15 — C16
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with

], = loglnl‘----nvL clg = log[&l.

Note that, in view of Lemma 6, the cases 1 and 2 are exhaustive with respect to

the condition min |f?] > e ¢4, Summarizing, we have

1<is<n

PROPOSITION 7. If

min |f9] > e~ cte4
1<i<n

then
A<cls+cl7N, (17)

where

"
Coo = max{ Ci17 Ci17 }
17 = s >
cis—(m—1)ci €15 —Cy6

Cis cls
C18 = max { s .
cis—(n—1ci6 €15 — g6

Now, Theorem 5 and Proposition 7 imply the following

PROPOSITION 8. If

min |B®] > e 164

1<i<n
then

H < cyg + ¢y log H, _ (18)
where

C10 = MAaX{Cy3Cq14, C13C14C17 + Cyg}s C29 = €13 Max{c,,, 1}.

Proof of Proposition 8. If H=N then Theorem 5 implies
H < cy3¢14 +¢y3logH. If H# N then H= A > N, and Proposition 7 and
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Theorem 5 imply

H = A < 018 + 617N < cls + 617613(10gH + 614),

and in both cases the result follows. O
9EX We have:
) 2) 3)
logle, | —1422188...  —4998188... 6.420376...
logle,| —15.983272... 9.151570. .. 6.831702. ..

(so the regulator of the field K is R = 92.902663....). Clearly, I, = {2, 3}, and

. (—0.07353613 ... 0.09850707.. >
fo 0.06910863... 0.05380027...

with N[Uj,'] = 0.17204321 ..., ¢, 5 > 5.812. Further we have

g 235 4ass log —— < 11.142
ci7 <log—————— < 24455, ¢\g < log < 1142
IR Indd

¢}, < loglnPaPnn)| < 15.753, |5 < log|nf)| < 5.888.

For the time being we do not specify c,¢ Thus

24455 15753 24.455
¢;7 < max , = s
5812 — ¢, 5812 — i) 5812 — 2cy6
11.142 5.888 11.142
¢, < max s = s
5812 —2c,6 5812 —cy6) 5812 — 2c,6

1.240 x 10*° 1.240 x 10%°
¢19 < max{5.070 x 1047,

5812 — 2c,6) 5812 —2¢,6

2495%x10*8)  2.495x 1048
€40 < max 41.020 x 1047, = .

5812 —2c,s) 5812 —2c,6

10. A bound for H, continued
In this section we deal with the remaining case.

Case 3. min |B?] < e “'*4. We treat the S-unit equation in a way which is
1<i<n

essentially the same as that we used in [TW1] for the unit equation resulting
from a Thue equation. Put

B = min |BO] <e et (19)

1<isn
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(note that we have no prior knowledge of i;, which depends on the solution
(x,y)), and

Ci6 s+1<j<s+t

1 . .
max {[-— —1log min |Im 0‘”|], 1} if t >0,
Ci2 =

1 ift=0.
First we treat the case s = 0 (called the ‘totally complex case’).

PROPOSITION 9. If min |BY < e %4 and s = 0, then

1<i<n

HSCIZ ifH=A,
H <cl3cl4 + C1310gH ifH = N.

Proof of Proposition 9. If H = A then H < ¢, by (19), since t > 0 and either
y =0, whence %] =|x| =1, A =0, or Bi@¢R, whence || > |Im 66|, If
H # A then H = N > A, and (14) implies H < ¢,3¢,4 + ¢,3logH. d

Next we assume s > 0. We distinguish between the case s = 1, 2 (called ‘the
complex case’), and s > 3 (called ‘the real case’). The characterizations ‘complex’
and ‘real’ refer to the kind of logarithms that we will use below.

From now on we will assume A > c,,, so that as in the proof of Proposition 9,
(19) implies iy e{1,...,s}. We choose j, ke{1,...,n} such that i #j # k # io.
Moreover, in the real case we choose j, k arbitrarily from {1,..., s}, so that all
three of 69, ¥ ® are in R, while in the complex case we choose j arbitrarily
from {s + 1,...,s + t},and then k = j + ¢, so that 0® = 69. This choice of j and
k is not absolutely essential, but turns out to be convenient.

From

191°109 — 99 = | B — o] < 219
it follows that

|89 > 3 min 6© — 69
i#l

Here, the minimum is taken over all i, le {1,..., s} in the real case, and over all
ie{l,...,s}, le{s+1,...,s + t} in the complex case. Using this and (19) we
find from (12)

2 l v — gk l

WS i io® = 60] 6@ — 6w ©
i#l

T < oy (20)
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where

2
Caq =_—l— max
min |00 — 09 ;, «iy2i520
i#l

02 _ 9(1'3)
gz _ g’

Here the minimum is taken as above, and the maximum is taken over all iy, i,,
iye{l,...,s} in the real case, and over all i;e{l,...,s}, i,e{s+1,...,5s+ ¢},
iy =i, + t in the complex case.

Note that if H = N, then (14) implies

H < ¢y3¢14 + ¢43 log H, 21
and H is already bounded. So now assume H = 4 > N. Further we assume that

H> ey, (22)

where

1
022 = max {612’ l"géigc—nl-l}.
16

In the real case, put
Ao =log(1l + A).

This is well defined by (22), since then (20) implies |4| < 3, so 1 + A > 0. Note
that A, # 0. We find |e*° — 1| = |4] < 3, hence

0 < |Ao| < 1.39)4] < 1.39c,,e 154, (23)

where A, can be written as

n®

7

r

&
+ Y a;log
i=1

&h

v

g0 _ gi)
+ Y mlog
i=1

9G0 _ g® 40

Ao = log

On the other hand, by the theory of linear forms in logarithms of algebraic
numbers (cf. [Wa], (BGMMS]), we can find a lower bound for |Ay| of the
following form:

|Aol > exp{—c(log H + cg)}, 24
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where the constants ¢, cg can be explicitly calculated (see Appendix A3). Thus
(22), (23) and (24) combine to

log(1:39¢3,) + ¢res | €7\ g 25)

if H=A > c,, then H <
C16 Ci6

We now put

log(1.39¢,,) + ¢4¢ c

. 21 78 7 2

C,3 = max {c13c14, C225 , Cpq =Max <c,3, —, €.
Ci6 Ci16

Thus in the real case, in both the cases H = N and H = A, we conclude in view
of (21) and (25) that

H<cy3+cyqlog H ¢y > e (26)

In the complex case, put
1
Ao = n Log(1 + A).

Here, Log(z) stands for the principal value of the complex logarithm of z, thus
—n < Im Log(z) < n. Since we have 8% ¢eR and 6® = 9¥), we have

1 900 _ gu) x — yg®
Ay = : Log (0(;'0) —® .x — y()(’))e R,

and hence |Ay| < m. Again we note that A, # 0. Now, again assuming (22),
|4] <4 implies [siniA,| = {lei*® — 1] = 4|4| < 4, hence

1/4

Aol <
Al 2sin1/4

Isin 4A,| < 1.02J4l.

Thus
0 < |Aq| < 1.02¢, e~ 164, 27

and A, may be written as

glio) _ gud 0 v e r &)
Ao = Arg (mﬁ) + i; n;Arg (@) + i; a;Arg <@> + ao-2m.
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For zeC we have —n < Arg(z) < «, and since Arg(z,z,) = Arg(z,) + Arg(z,)
holds only modulo 2%, one more unknown integer a, has entered the scene. By
elementary estimations we see that 2ulao| <|Ao| + VN7 + rAn, hence by
|Aol <4 and ageZ we find

lagl <Y1+ W +rA)<¥1+v+nrH

under the assumption H > 1.
Since |Ao| = |iAo| and iA, is a linear form in logarithms of algebraic numbers
(note that 2zi = 2 Log(— 1)), we get, by analogy with (24),

|Aol > exp{—c,(log H + c§)},

with ¢ = cg + log3(1 + v + r). We conclude, as in the real case, but now from
(22) and (27), that

H <chy + cpalogH, cy4 > €%, (28)
where
log(1.02¢,,) + ¢-c;
Cy3 = max {cwcw Ca2, & 021) ! 8}.
16

10B* Since t = 0 we have ¢, = 1. We are, of course, in the real case. Now the value of i, can be any
of 1, 2, 3, so we have to perform the computations for three cases, namely (io, j, k) = (1, 2, 3),(2,3,1),
(3,1,2). Then
2 |g(3) — g(l)l
€1 = g _ ge
|6 —g@)| 160 — 63

3.091921 3.091921 6
¢, =max 1, < +1<—.

Ci6 Ci6 Ci6

< 11.009659,

From Appendix A3E* we see
¢ < 2289x 10%, ¢y < 885955,

so we obtain

2.028 x 103
cy3 < max 5.070 x 1047, ——

Ci6

2.289 x 1033
€24 < max §1.020 x 1047, ——— .

Ci6
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11. The main theorem

We are now in a position to state and prove the main result of this paper. Put

5 = max{c,, €23}, C25 = Max{co, Ch3}s €26 = MAX{C20, C24}s
c3o = max{c,o, €2}, ci3 = max{c,;, €*},

Creal = 2C35 + 2¢56108 C36,

Ceomplex = 2C25 + 2¢36108 €16,

+ + + +
Ciotally complex — max{clz, 2¢y3C14 + 2¢i3108¢q3, 2049 + 2¢59 108020}-

THEOREM 10
(i) In the real case s = 3 we have H < c,y.
(i) In the complex case s = 1, 2 we have H < Coompiex-
(iii) In the totally complex case s = 0 we have H < Ciyaity complex-

Proof of Theorem 10. In each of the cases we have an inequality of the shape
H <+ c"logH,

for fully explicit constants ¢’, ¢” with ¢” > e2. Then apply Lemma 2.2 of [PW].
O

In practice, the constants coming from the estimates for linear forms in
logarithms of algebraic numbers, and all constants depending on them, are very
large compared to the others. These large constants are ¢’ ¢, ¢10(P1): €135 13> C10
€50, 5 all of which depend on the p-adic estimate for linear forms [Yu2], c, that
comes from the real/complex estimate [BGMMS], and c,3, ¢33, C24, C25, C355 C26
which depend on both estimates. Note that c,,; and ¢ ompiex depend on the p-
adic and real estimates, whereas Ciyi1y complex dépends on the p-adic estimate
only. Further note that the final bounds c,¢y1, Ccomprex are essentially of the size of
max{c;, €13}, aNd Cyorany comptex iS Of the size of ¢, .

The choice of c,¢ is free, so it can be taken such that the final bound of
Theorem 10 becomes optimal. Generally speaking, an optimal ¢, ; will be of the
size of ¢4/c, if ¢13 » ¢4, and of the size of ¢,s/(n — 1) if ¢;5 < ¢, orif ¢;5 and ¢,
are of the same size. Here, c,; comes from the p-adic estimate, and ¢, from the
real/complex estimate.

If, in the real or complex case, ¢, 3 « ¢4, then we can find a better upper bound
for N, namely one of the size of ¢, ;. Indeed, with

{Cl 3(108 Crear + C14) in the real case
v =

¢13(10g Ceompiex + €14)  in the complex case

we have the following corollary.



248 N. Tzanakis and B. M. M. de Weger

COROLLARY OF THEOREM 10. In the real and complex cases, N < cy.
Proof of the Corollary. Obvious from Theorem 10 and (14). O

11B* We find

1.240x 10*° 2,028 x 103¢
5812 —2¢,6 Cy6 } ’
2495 x 1048 2.289 x 1033}
5812 —2¢,s Cy6 ’

Cy5 < max {

Cy6 < Max {

We found that ¢, = 10712 is more or less optimal (it is indeed of the size of c,/c,;). Then
Crea < 9.844 x 10%°.

In this case the corollary gives no essential improvement, since c¢;3 > c,.

12. Preliminaries for the reduction process

In the following sections we show how the bound for H, given by Theorem 10,
can be considerably reduced. To do so we use methods from Computational
Diophantine Approximation Theory.

First, we need some results from the theory of p-adic numbers. Recall that for
any zeC, with ord,(z — 1) > 0 the p-adic logarithm of z is defined by the
convergent p-adic power series

(_1)i+1

— - 1),

log,z = il

Moreover, if ord,(z — 1) > 1/(p — 1), then all the usual properties of the
logarithmic function are valid. In view of the following lemma, we can extend the
definition of the p-adic logarithm of z to all p-adic units of C,,.

LEMMA 11. If zeC, is a p-adic unit, then a positive integer ¢ can be explicitly
found such that

ord(z% — 1) > !

p p— 1 °

Proof of Lemma 11. If z is algebraic over Q,, our claim follows from Fermat’s
Little Theorem for algebraic number fields, cf. [BS, Chapter 3, Section 7,
Problem 6]. Then the general case follows since every zeC, is the limit of a
sequence of elements of C, that are algebraic over Q,,. O

For z as in Lemma 11 we define

1
log,z = 3 log, z°.
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Although ¢ is not uniquely defined, the above definition is independent of ¢, as
can be easily established.

LEMMA 12. Let z,,...,z,€C, be p-adic units. Let b,,...,b,e Z. If

1
ord,(z}t - rzbe — 1) > ——

then

b1

ord,(b,log,z, + --- + b,log,z)) = ord(z}a+--- - zb* — 1).

Proof of Lemma 12. This lemma is an easy consequence of the relation
ord,(z—1)=ord,log,z, which is valid for zeC, with ord,(z—1)>1/(p—1)
(see [Yul, Section 1.1]). O

Now, let p = p,e{p;, ..., p,} and let the factorization of p into prime ideals of
K be as in Section 3. If among the polynomials g,(¢),. .., g.(t) € Q,[t] there are
at least three of the first degree, then, by the choice of iy, j, k (cf. just before
Lemma 3), all the p-adic numbers appearing in (12) are in Q, itself. If however we
are forced to use a conjugate for which degg;(t) > 2, then, as we remarked just
before Lemma 3, we take indices iy, j, k in such a way that 8“9 e Q, and 69, 6%
are roots of the same g;(t) with degg;(t) = 2. In the latter case we consider K
embedded in K, (where p; corresponds to g;(t); see Section 3), and the p-adic
order and absolute value are defined in accordance with this embedding (see
Section 4; for simplicity in our notation we do not distinguish between x € K and
the image of x under the embedding K < K,, ). Now, all the numbers appearing

in (12) belong to a finite extension of Q,,.
. R A - o

In either case, all the numbers n—(lj), ceesy E‘?’ 8—(11.)-, cees s,ﬁ are p-adic units by the
Corollary of Lemma 2 and Lemma 3, and ord,(d,) > 0. Moreover, we may
suppose that 6, is a p-adic unit as well. Indeed, if ord,(d,) > 0, then by Lemma 4
n, is ‘very small’, which means that for p = p, there is no need for a reduction
process such as described below. In view of this, the following linear form in p,-
adic logarithms is well defined for I = 1,...,v (cf. (12)):

v NI &
A, =log, (A + 1) =log, 6, + 'Zl n;log,, —G + .Zl a;log,, 5

(6, has been defined immediately after (12)). Further, in view of Section 10, we
will also deal with the following linear forms: in the real case with

(k)

m r
Y

(o)
+ Y a;log
i=1

L
&

b

Ao = log(A + 1) =log|d,| + Y n;log
i=1
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and in the complex case with

1 v ngk) r s(i")
Ay = i Log(4 + 1) = Arg(6,) + i; n; Arg (@) + Y a;Arg <;$—,7> + 6o 2m.

i=1

In dealing with A, for [ = 1,...,v, all three indices i,, j, k are fixed, as noted

immediately before Lemma 3. However, in case of A,, we have no prior

knowledge of iy, which is defined by (19), and thus depends on the presupposed

solution (x, y). Therefore in this case we must consider all possible values for i,

and for each one of them fix j, k, according to the rules given after Proposition 9.
For convenience, let us write

Ai=p+ _Zl ndy; + '2‘1 a;pu;(+ ag2m)

forl =1,...,v,0, where the definitions of p,, 1;;, u,; are obvious. Note that in the
totally complex case we have only I = 1,...,v. In fact, in the totally complex
case any upper bound for N immediately gives rise to a good upper bound for A4,
by Propositions 7 and 9, namely 4 < max{c,g + ¢;,N, N, c;,} (note that ¢,
and c, g are ‘small’ numbers).

Lemma 12 guarantees that when n, is large enough, an important property of
A is carried over to A;, namely that its p,-adic order can be expressed in terms of
n,. Put

v, = ord,,(,).

LEMMA 13. If
- 1 1
n, m\p—1 2]
then

ord, (A) = njhy + v,.
Proof of Lemma 13. Obvious from (12), (13) and Lemma 12. O

12B% In this section we give approximations of the p-adic values for p = 2, 3, 5, 7, oo of the numbers
appearing in the linear forms A, (I = 1, 2, 3, 4, 0). When applying the reduction process, we will of
course need much higher precision. We give first the p-adic field K, in which K is considered
embedded (cf. the lines following the proof of Lemma 12), the choice of indices iy, j, k, and for I = 1, 2,
3, 4 the value of v, (see the Table in Section 75%). The above information is given for each p separately.
Note that hy =h, =hy=h, = 1.
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pr=2 KoKy, =Q)f), v,=0  0=00001000110..., 0, 6%  roots of
2 +0.1000111010. .. ¢t + 0.1011000010. ... We put 8® = 0, so that ¢ = —0 — 0.1000111010....
Then with (iy,j, k) = (1,2, 3) we have
o — g@ )
log, 7 g in Case I
o — g 73) ) 73
=log, §, =4Il e I, Ay, =log, —=, A4;,=Ilog,—,
Py = 1083 0y 082 - 70 0D — 6™ Q) In Lase 11 = 1082 e 12 = 108, e
o — 9@ 7@)
log, o0 7@ in Case V
Q)
log, —+ 2 in Case I
(3) (3) 3) (3)
L2y I 1 &1 )
A3 ={ log, @ in Case IlII, A,, =log, @, My = log, @, Hy, = log, @
(3)
log, %’23) in Case V
Case I Case 111 Case V
0.0011010000 --- + | 0.0010001101 --- + | 0.0000100010--- +
P1 0.0001101110---6 | 0.0001000001---6 | 0.0000010000 --- &
Ar 0.0010010001 -+ +0.0001001100 --- 6
Az 0.0000111010 -+ +0.0000011100 --- 6
2 0.0010000100 --- + | 0.0010011100--- + | 0.0001100101 --- +
13 0.0001000110---6 | 0.0001001001---6 | 0.0000110000--- 6
Aa 0.0011111100--- +0.0001111010 --- 8
i1 0.0000111101 --- +0.0000011111 --- 6
12 0.0010111010--- +0.0001011010 --- 6
p2=3 KoK, =Q40), v,=0, 0V = 0.0210020022..., 6@, ¥ roots of

t2 + 0.1022210022 --- t + 0.2021111120... . We put 6@ = 6, so that * = —6 — 0.1022210022....

Then with (io, j, k) = (1,2, 3) we have

o _ g
logy —— o — g in Case I
o — g9 73 (3) e

21 31
p, = logs 6, ={log, T 90 7@ 2 in Case III, 4,, =log, @, Ayz = logs @,

o — 9@ 7Q)

log, 7§ 22 0 in Case V
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(3)

log; —+ (2) in Case I
O e @ &
Aa3 = 1033% in Case III, 4,, = log;, %, Uiy = logs (2), U2z = logy == (2)'
Ts2 71
)
logy —+ 2@ in Case V
Case 1 Case 111 Case V
0.0020121210--- 4+ | 0.0102202221 --- + | 0.0122101111 --- +
P2 0.0011001020---6 | 0.0200020000---6 | 0.0211220202---0
A 0.0110110222 --- +0.0222121112--- 0
Azz 0.0122212011 --- +0.0211122022--- 0
2 0.0112000120 --- + | 0.0102012120--- + | 0.0111110011 --- +
23 0.0220110102---6 | 0.0200222111---6 | 0.0221212202---6
Ara 0.0111021201 --- +0.0221000010 --- 6
Hay 0.0101001221 --- +0.0201112121 ---0
Has 0.0000110001 --- +0.0000222220 ---
1 in Casel

p3=5 Ko Qs vy=
60 =0.2312041230....

logs g — g3

P3= 10g5 61 = 1085 0(2) 0(3) 1[(1)

logs 0o _ 0@ 7

-1

in Cases III, V’

0V = 04320132113...,

6@ = 0.2212320101... .,

We have with (Case, iy, j, k) = (I, 1, 2, 3), (IIL, 2, 1, 3), (V, 3, 1, 2):

0(1)

_ @
0 — gV 7G)
o _

o 7@

(k)

in Case 1

in Case V

e(k)

(k)

in Case III, 13, = logs n—z.)', A3z
g}

gk

75(")
1085 g-) >

71 >
A3z = 1035 (51 = logs M, u3y =logs — 0 Uiz = logs — 9
Case 1 Case III Case V
P3 0.0303104024--- 0.0120010441--- 0.0210213301---
Azy 0.0104134430--- 0.0012340332.-- 0.0403111341.--
Azz 0.0020143404--- 0.0041022031--- 0.0021423022. -+
Ass 0.0013303302--- 0.0434331122--- 0.0000432440- - -
Az 0.0104244122.-. 0.0340230124--- 0.0241430441.---
U3y 0.0221312110--- 0.0344013144--- 0.0123240034- --
Uiz 0.0034434443.-. 0.0143020221--- 0.0114030222- --
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pa=7 KoKy =Qi0), v,=06"=01544035230..., 6%, 6 roots of
t? + 0.6144035230 - t + 0.4421630235.... We put 6@ = 6, so that §® = —6 — 0.6144035230.....
Then with (i, j, k) = (1, 2, 3) we have

( gV — g
log, m in Case I
ps =log,; 8, ={log o0 — 6% a3 in Case III, 4 log i A log s
4 =log; 0y = T k) @ e T T 2’
00— 6% 2 "1 g
00— 02 )
log; ————— inCase V
\ o — 3 72
(o
log, — I Case I
51
(3) (3) (3) (3)
_ ns2 _ 71 _ &1 _ L)
A4z =( log, @ in Case IIl, 4,4 = log, ;‘7;1)‘, B4y = log, E)‘, Haz = log; @
e
log, —? in Case V
s
Case I Case 111 Case V
0.0661663355 -+ + | 0.0402523333--- + | 0.0534630416--- +
Pa 0.0245233564 ---0 | 0.0636604432..-6 | 0.0401066250 -6
Aar 0.0013364046 --- +0.0053662346 --- 0
sz 0.0602344653 --- +0.0221636026 --- 0
A 0.0324004651 --- + | 0.0632043030--- + | 0.0500626644 --- +
43 0.0143562346 ---0 | 0.0232423452---0 | 0.0460440634 --- 0
Asa 0.0513104013 --- +0.0444550354 --- 0
Hay 0.0504012336 --- +0.0466505033 --- 6
Haz 0.0650302255 -+ +0.0264153356 --- 0

Po=00: Ko R, 0 = —0.9028831934..., 6@ = 1.1692597799..., 0 = 22.7336234134.... We
have Wlth (i01.i’ k) = (17 2’ 3)) (2, 3» 1), (3’ 19 2)

[ |gio _ gu)

log W in Case I
g0 — 60 1) i ik

= log|d,| ={log F——>——1 i = - M
po = logld,| og o 60 ) in Case III, Ay, = log 9 Aoz = log LT:’);’

6 — 00 n)

log———| inCase V

\ gl _ g® 7“5’5
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103 =

log ﬁ in Case I
)
) ) o &
log —| in CaseIII, o4 =log , Moy = log , Mo = log|—]
9, 04 ) 01 9 9
)
log 153—‘ in Case V
\ I
ip=1 Case I Case 111 Case V
Po —2.4342090823- - 12.9846875535--- —8.8270472842.- -
Aox —5.8088635875---
Aoz 20.3940649170- --
Aoa —9.0260584338--- —6.3928382019--- 15.4188966358---
Aos 4.8551811120---
Moy 11.4185651918..-
Hoz —2.3198675688---
ip=2 Case I Case II1 Case V
Po 2.3424587957.--- 1.7095054351--- | 0.6315809180---
Aot 0.3777789841.--
Aoz —4.3593440764---
Aos 2.3438312383.-- —1.7108778777--- | —0.6329533606---
Aoa —2.4354903211---
Hoy —7.8425648244. -
Hoz —22.8149748950- --
ip=13 Case I Case 111 I Case V
Po 0.0917502865--- —14.6941929886- -- ‘ 8.1954663662---
Ao1 5.4310846034---
Aoz —16.0347208405---
Aos 6.6822271954- - 8.1037160796--- l —14.7859432751- .-
Aoa —2.4196907908- - -
Ho1 —3.5760003674---
Hoz 25.1348424639---
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13. The reduction strategy

Let K, be the upper bound for H that is given by Theorem 10, and let N be the
upper bound for N that is given by Theorem 10 or its corollary. Our reduction
strategy is the following. For everyi = 1,...,v we apply to the linear form A, the
so-called p-adic reduction step (with p = p;; see Sections 14 and 15) in order to
obtain an upper bound for n;, which is very small in comparison with the initial
upper bound N, for n; in fact it can be expected to be of the size of

logK
v+ r)%;g. Thus the maximum of these reduced upper bounds for n,,...,n,
i

gives us a new upper bound N, for N, which is considerably smaller than N,,.
Using this we can in turn find a new upper bound A, for A, which also is of the

logK
size of (v + r)%)gg_po

. Indeed, we have the following cases:

Casel. AN

1:
Case 2. N < A {Case 21: A<cyg+c¢49N

Case 2.2.1: A<
Case 2.2: ¢, +¢;sN< 4 { ase €22

Case 2.2.2: A > c,,

In all cases but Case 2.2.2 we immediately have for A an upper bound of the
desired size (note that c,,, ¢,g, c,, are small compared to K, and N,). In Case
2.2.2 we have

cig+c;sN<A and A>c;, and N< A

The first inequality implies, in view of Proposition 7, that we are in Case 3
(Section 10). Moreover, the third inequality, Proposition 9 and the definition of
¢, (see after (22)) show that we cannot have s = 0, therefore we are in the real or
complex case. Now the second and third inequality, in combination with (23) in
the real case and (27) in the complex case, imply that

0 < [Aq| < care™ 14, 29
where

S 1.39¢,; in the real case
277 11.02¢,, in the complex case’

This inequality plays an important role in the so called real reduction step,
which we apply to A, in Section 16. In that step use is made of both 4 < K, and
N <N,.
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The whole reduction process can be repeated with N, in place of N, and
K, = max{A4;,N,} in place of K,. Thus we will find in the second p-adic
reduction step a bound N, < N, for N, that can be used in the second real
reduction step to find a bound 4, < A4, for A. As long as a good reduction is
achieved this way, we can go further with a third, fourth, etc. reduction step (see
Section 17).

14. Preliminaries for the p-adic reduction step

In this section we give some preliminary remarks for the p-adic reduction step,
that will be treated in the next section. For every ie{l,..., v} we consider the
linear form A;. We have (cf. Lemma 13)

ord,,(A) = n;h; + v;.

In general, p;, 4; (I=1,...,v), uy (I =1,...,r) and A, belong to some finite
extension Q,,(¢) of Q,,. For convenience in our notation we put

(%05 %15 e vs @yiy) = (P05 Aits -+ Aivs Mits -+ o s Biy)-

Let s = [Q,,(¢):Q,], and let G(t)e Q,,[¢t] be the minimal polynomial of ¢
over Q,,. Thenfor I =0, 1,...,v + r we can write

=g+ o+ -+ a9 ot 1€Q,,
and consequently
A=A+ Mg+ + A 1d°7, (30)

where for k=0,...,s — 1
\d r
Ay = oo + Z oy + Z a0y 41 € Qp,.
=1 =1

Now we consider the s p;-adic conjugates of (30) and note that ord, (A{") does
not depend on [ (see Section 4). We have

N R e

AP L L0 g A
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Hence there are y,,, with ord,, (y;,) = 0 such that

Ay 1 Y11 o Vis AWM
: H (¢(’)__¢(m)) : : :

(s)
Ai,s—-l 1sm<is<s Ys1 ot Vs Ai

It follows that
ord, (Ay) = ord, (A) — u;, (31

where

u; = ord,, ( [T Y- d)("")) = % ord,, (discr G(t)).

<m<l

Hence, if ord,, (A)) is large, then so are ord, (Ay) forallk =0, 1,...,5s — 1. Now
fix an arbitrary € {0,...,s — 1}, and let us proceed with A;;, which has the nice
property of being in Q,, itself, instead of in the extension Q, (¢) (we owe this
remark to J.-H. Evertse). Define &;€{a,,,...,a,4,,} by

ord, () = min ord, (a.,)

1<m<v+r

(if more than one choice is possible, any one will do; it will be convenient in the
sequel to take ¢; as one of the u’s). Note that ord,, (ay,) > ord,, (&) is true when
ord, (Ay) > ord,,(&). Put

1
A:'=_—Ai’
& "

and note that A; is a linear form with p;-adic integral coefficients (in Q,,), one of
which is 1, involving the same unknown integers as A;. Thus we can write

Ai= —Bo—biBy — - —bysr—1Brir—1 + by,

where (b,, ..., b,,,)is a permutation of (ny,...,n,, a,,...,a,), fo = —oy/&;, and
each of f,,...,B,+,-1€Z,, is equal to a number of the form —a,/; for the
proper index k. It is convenient to choose the permutation as follows: if £; = py,
then take (by,...,b,4,) =My, ..., Ny Gy s Qe 1, Qi 15- - -5 Gp, &), and if &; = Ay
then take (by,...,by4,) =(Nys ... s Me_ 1, Mgs15- -+ Ny, Ay, . - ., 4, ). In the former
case let v/ = v, in the latter case let v/ = v — 1. Note that in view of (31) we have

ord, (A) > mh; + I, (32)

fori=1,...,v, with [; = v; — u; — ord,, ().
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To conclude this section we like to point out and discuss two special cases. At
the beginning of Section 6 we have assumed that 2, is nonempty, since otherwise
the exponent z; in (1) would be necessarily ‘small’. This is equivalent to the fact
that at least one of the polynomials g;(t)e Q,,[t] (see Section 3) is of the first
degree.

The first special case is when at least three of the polynomials g,(t) have degree
1. Then we have chosen iy, j, k in such a way that all the numbers that are
involved in A, are in Q,, itself (cf. Section 7). For the above discussion this
implies s = 1, and thus A; = A. Thus in this case we don’t need to work in a
nontrivial extension Q,,(¢) of Q,,.

The second special case is when at most two of the polynomials g;(¢) are of
degree 1, but there is one of degree 2. Then we choose indices j, k such that 69,
6™ are roots of that quadratic polynomial over Q,, (cf. Section 7). In such a case,
Qm((ﬁ) = ng(ew) = Qm(e(k))'

In this second special case, for any a, f€Q),, (¢) we have

a® k)
log,, 0 / log,, 50 €Q,,. (33)

This follows from the fact that the nontrivial automorphism of Q,,(¢), which
interchanges j and k, multiplies the logarithms by — 1. So their quotient is fixed
by this automorphism, and this implies (33).

Because of property (33) we do not have to work with one of Ay, A;
(remember that s = 2), but we can work with A, itself. Namely, now choose
&i€{hitse s Aiys Mits--.» My With minimal pradic order, and define
A;=(1/&)A;. In view of (33) and the definitions of p;, the A’s and u’s (which
indeed are p;-adic logarithms of the quotient of a quadratic number over Q,, and
its conjugate), the coefficients of A; are in Z,,,, and we can work with this A; as in
the general case.

Note that if n = 3 we necessarily have one of the two special cases. In both
special cases we can replace (32) by

Ordm(A:') = nih,- + li’ (34)
where I; = v; — ord,, (£).

145* We took &, = py, (for p, =2), and & = py for p, =3, 5, 7, so always v = v = 4. Then

ord;(§;) =2 and ord,({) =1 for p;=3, 5, 7. In view of (34) we have ord,(A) = n, + I, for
0 in Casel

—2 in Cases III, V’

ord, (A} > 2 for i = 1, ord,,(A) > 1 for i = 2, 3, 4. From the Tables in Section 125* we compute

Bos- -, Bs in all the cases (which should be done to a much greater precision than presented here).

Fori=1,s0 p, =2, we have

i=1,...,4, with , =-2, I,=-1, I;= Iy = —1, under the condition

A
Bo=—LL, B=—Z(=1,234), f,=-"1
I Hi2

12 Hiz
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and fori =2, 3,4,s0 p; =3, 5, 7, we have

. A .
ﬂ0=_&, ﬁl=_l(l=1!2’3’4)7 ﬁsz—“_'z—
Hix Hix Hix

Note that for i = 1,2, 4 we are in the second special case, and for i = 3 we are in the first special case.

py=2 i Case 1 Case 111 Case V
Bo 0.1110000100--- 0.1010011010--- 0.0010100011.--
By 0.1011100010---
B, 0.0011000010---
Bs 0.1010100100--- 0.1011000101--- J 0.0111101100---
Ba 0.1101001001---
Bs 0.0011011101---
p2=3 Case 1 Case III Case V
Bo 0.0202121002--- 0.1012210010--- 0.1212101101---
B 0.1122122101..-
i 0.1210012011.--
By 0.1112121212-.- T 0.1010012002- - J 0.1100121201.--
Ba 0.1102110002---
Bs 0.0001121011.---
p3=35 Case I Case 111 Case V
Bo 0.4302213223... 0.2123343114.-. 0.2241110022.--
B 0.3403414014--- 0.0213333412.-- 0.4204414122...
B 0.0140023031--- 0.0312011101--- 0.0223403411.---
B, 0.0331214022.-- 0.3002210013.-- 0.0004040304- -
Ba 0.3401201111--- 0.1024340340--- 0.2004133143.--
Bs 0.0402340030- - - 0.2030022001 - 0.1420142114---
Pa=1 Case 1 Case III Case V
Bo 0.4522515064-- - 0.5540422123--- 0.1246604142. -
By 0.0332114423. -
23 0.4143654424---
Bs 0.2334663553--- 0.4314165054--- 0.1025504035---
Ba 0.1354624005-- -
Bs 0.4252341630- -
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15. The p-adic reduction step

In this section ie{1,..., v} is fixed. Let W, ..., W, ., be positive integers, called
weights. Later in this section we will fix them. These weights are used to obtain
an optimal balance between the various upper bounds for the different variables.
We choose a positive integer m such that p* [ ;2] W is of the size of K3*", but
large enough (this ‘large enough’ will be explained after Proposition 15 below).
For any xeZ, we denote by x"™ the unique rational integer in the interval
[0, pi* — 1] such that ord,,(x — x™) > m. We consider the lattice I',, generated
by the column-vectors of the matrix

W, O
A= '
O I/Vv+r—1
I/Vv+rﬁ(lm) I/Vv+r v"-'l-)r—l m+rp;"
Put
A= _ﬂgn) — blﬂ(l"l) -t bv+r—1 v"-'l-)r—l + bv+r
P!
and
0
= : ez .
y 0
- v+rﬂgn)

LEMMA 14. n; = (1/h)m — 1) if and only if

Wb,
+yel,,.
I/Vv+rbv+r

Proof of Lemma 14. Since

b

! Wb,

Iy |7 : +y,
vt VV\'+rbv+r
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this point is a lattice point if and only if A€ Z, which is equivalent to

Ordm(—ﬁg”) - blﬂ(l'") -t bv+r—1ﬂ$"2r—-1 + bv+r) Zm.

In view of ord,,, (B — B;) = mfor j=0,...,v + r this is equivalent to

Ordp,(—ﬁo - blﬂl - bv+r—lﬂv+r—1 + bv+r) =Zm,

ie. ord,, (A} = m, which, by (32) (or (34) as the case may be) proves the lemma.
O

Now put

min [x| ify=0

—J xel,\{0} .
W ) =) minjx — yl if y # 0

xel’,,

By the LLL-algorithm (see [LLL, Fig. 1], and [dW]1, Fig. 1] for an ‘integral
version’ of it), we can compute a so-called reduced basis c,,...,c,,, for T',.
Roughly speaking, this is an ‘almost orthogonal’ basis. We can also view it as a
basis for R**", and, in case that y # 0, we can express

Y=251C1 + -+ 5,4:Cy4ps sl"'-,sv+rER'

For the actual computation of the s;, see [dW1, Section 3.8], It can be proved
that

—(v+r—1)/2 3 — 141
ICoy) > {i_(v“_lzjzlcll %f y = 0 ((LLL, Proposition 1.11])’ (35)
Isj eyl if y # 0 ([dW1, Lemma 3.5])
where j, = max{je{l,...,v + r}|s;¢Z}, and |- || denotes the distance to the
nearest integer. Note that the above set of indices j is not empty when y # 0.
Indeed, if it were, then s;e Z forevery j = 1,...,v 4 r, hence yeI',, and rational
integers z,,..., z,., would exist such that

Z1
Y = A
Zy+r
But then z; = ---=2z,,,_, =0 and — B = z,,,p"", and since by definition

B e [0, p* — 1], we would conclude B = 0, which contradicts y # 0. Thus the
lower bound for (T, y) given in (35) is always positive.
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Now we fix the weights for the remainder of this section (but in later sections
we might wish to make different choices for these weights):

m:---:m,:u/’ m,+1=-"= v+'_1=1,
W = 1 ifv=vy
virlw ifv=v-1’

where W is a convenient positive integer close to Ko/N, (e.g. with K, = 10°°
and N, = 3 x 10*° it is sufficient to take W= 3 x 10°). For the definition of v,
see just before (32). Put

Q = vW3N3 + rK3.
We have the following result.

PROPOSITION 15. If i(T',,,y) > \/Q then n; <(1/h)(m—1).
Proof of Proposition 15. Suppose n; = (1/h;)(m—1I;). Then, by Lemma 14,

Wb,
+yel,.
I/Vv+rbv+r

Therefore
Wz(bf + ot b&) + b3'+1 + o+ b‘2:+r—1 + W$+rb\2’+r 2 l(rm’ Y)z-

By the definitions of b,,...,b,,, and W,,..., W, , for the two cases v' =,
v — 1, and by the definitions of N, and K,, we obtain

(T, y)* < VW2NG + K5 = Q,

which contradicts the hypothesis. O

Clearly one can prove a similar proposition when the weights are chosen
differently. In practice one can expect that the hypothesis of Proposition 15 is
highly probable if m is taken to be of the indicated size, and large enough.
Indeed, the volume of the parallelepiped spanned by c,,...,¢,,, is equal to
det o/, = pI" H_}i 1 W;. On the other hand, since c,, .. ., ¢, ., constitute an almost
orthogonal basis, the above parallelepiped has a volume of the size of
leq]* -+ - |e, +,], which can be expected to be of the size of [c,|"*". Thus |e,|**" is of
the size of det .o/, which, by the choice of m, is of the size of K}*". From this we
see that |c,| is of the size of K. By (35) we see that also I(T,,,y) is of that size,
except in the case that |s;,|| is extremely small. This situation is unlikely to

happen, but if it does, then one can apply [dW1, Lemma 3.6] in place of [dW1,
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Lemma 3.5], which hopefully will give a better lower bound for i(T",,, y) that is of
the size of K.

In practice, we take m such that p* n};' 1 W, be somewhat larger than K3*’,
and if with the chosen value for m the hypothesis of Proposition 15 is not
fulfilled, then we should take m somewhat larger than the previous one, and
recompute the reduced basis for the new lattice I',,. Note that in such a case we
can take advantage of the computations already done with the not large enough
m, as follows. Suppose that we have computed, using the LLL-algorithm, the
matrices 4,,, %, for a certain m such that 8,, = 4, %,,, where the columns of %,,
are a reduced basis for I',,, and suppose that we want a reduced basis for I,
with m" > m. Then we should use <, %,, as input for the second application of
the LLL-algorithm, rather than 7, . This will save a lot of computation time.

Note that the upper bound (1/h)m—1) for n, is of the size of
(v+r)log Ky/log p;, as required. Thus, if we repeat the above reduction process
foreveryi=1,...,v, then we get an upper bound N, for N, which is of the size
of log K,. This usually is considerably smaller than N,,.

158% Based on Ko = N, = 9.844 x 10*° we took W, = - = W, = 1. We took m as in the following
Table, and computed the ;€ Z,, that constitute most of the input for the LLL-algorithm, to the
desired precision. In order to be able to do this we had to compute many p-adic algebraic numbers
and their logarithms to a high precision. These computations are straightforward but laborious (we
used Hensel’s Lemma = the p-adic Newton method, the power series expansion for the p-adic
logarithm, and a multiple-precision package for p-adic computations written by ourselves). Then we
applied the integral version [dW1, Fig. 1] of the LLL-algorithm to each of the 12 lattices, and
obtained data as given in the following Table. Here, in all cases j, = 6.

i p: m pr'e Case leg|> s6ll > T, y)>

I 6.21609 x 1037 0.36268 3.98541 x 10%¢
1 2 1152 6.27---x10%7 III 5.48328 x 10%7 0.00646 6.26946 x 10°4
A 5.22452 x 1037 0.46402 4.28559 x 10%¢

I 3.05484 x 10%* 0.46487 2.51042 x 1052
2 3 672  2.73..-x10%3 11 2.29269 x 10%3 0.32858 1.33175 x 10%2
v 2.14153 x 10%3 0.38535 1.45883 x 1052

I 4.83786 x 10°° 0.40713 3.48191 x 10%4
3 5 480  827---x10%% III 1.09351 x 10%¢ 0.48912 9.45521 x 1054
A/ 7.01884 x 10%* 0.22653 2.81079 x 10%4

I 1.16289 x 1054 0.29605 6.08600 x 102
4 7 384  1.21..-x10% 111 9.57912 x 10%3 0.44165 7.47891 x 10%2
Vv 8.63845 x 10%3 0.26302 4.01652 x 1052

In all cases the hypothesis of Proposition 15, being (T,,, y) > \/3K0 = 2.41127--- x 10%°, is amply
fulfilled (in fact, we could have chosen somewhat smaller m’s). Hence Proposition 15, with [, = —2,

0 inCasel
= — 1, I, = . N l, = — . = = = =1, 1 3
I, 3 {_ 2 inCasesIILV’ 1,hy = h, = hy = hy = 1, and m as in the Table above
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yields
ny, < 1153, n, <672, ny <481, n, < 384,

and it follows that N, = 1153 is the new upper bound for N, replacing N, = 9.844 x 10*°. Note that
N, is indeed of the size of 6log Ky/log2 =996.4....

16. The real reduction step

As we have noted in Section 13, this step is not made in the totally complex case.
Thus, we suppose that we are in the real or complex case, hence A is defined (see
also near the end of section 12). In Section 13 we have also noted that the real
reduction step is essentially needed in practice only when

A>c,, and N<A and c5+c¢7N < A4,
from which it follows (see (29)) that
0 < |Ag| < cype™cte4, (36)

Thus in this section we suppose that all the above inequalities hold. Moreover,
we are free to choose ¢, ¢ different from earlier choices (such as in Section 11), as
long as 0 <c;¢<c,5/(n—1), and the constants depending on it (cy7, Cyg, €22)
are changed accordingly.

Let ipe{1,...,s} be fixed. In the real case, we again choose positive integers
W,,...,W,.,_, as weights (note that now W,,, is not defined). Let C be a
positive integer such that C[[}217! W;is of the size of K3*", and C must be large
enough (C is more or less the analogue of m of Section 15). Put

¢ =[Clod(i=1,...,9)¥;=[Cupl i =1,...,7), $o = [Cpol,

where [ -] denotes (e.g.) rounding off towards zero, i.c.

_{ij ifx>0
D=1 ifx<o

We consider the lattice I" generated by the column vectors of the matrix

W, 7]
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Its determinant is approximately Cuo, [ [}21™* W;, which is of the size of K3 " in
view of the choice of C. By the LLL-algorithm we compute a reduced basis

C4,...,¢ 4, of . We put

—®o

and as in Section 15 (but now with I in place of I',,) we define IT’, y). Note that
(35) still holds with I" replaced by I',,. As explained in the remark following
Proposition 15, it is reasonable to expect that I(I', y) is of the size of K. If it is
too small to fulfill the hypothesis of Proposition 16, we should try again with a
somewhat larger value for C.

Now we fix the weights for the remainder of this section (but in later sections
we might wish to make different choices for these weights):

W’l==VVv=VV’ I/Vv+1='“= v+r—1=1’

where W is a convenient positive integer close to K,/N,. Thus C is of the size of
NiKj. Let e =0 if po =0, and ¢ = 1 if p, # 0. Put

R=vwN, +rKy+¢ S=vW32N?+(r— 1)K32.

Now we have the following result, which is the real analogue of Proposition 15.

PROPOSITION 16. If IT,y) > /R*> + S then

1
H=A<— {logc,, + logC — log(/UT,y)> — S — R)}.

Ci6

Proof of Proposition 16. Consider the lattice point

[, ] [ Wh, 7
Wh,
n\' .
X =/ ,withx—y=| a, |,
al .
) a1
a, | [ o |

where

Q=¢o+n P+ +n,d,+ay, + - +ay,.
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Then
|® — CAol <ICpo—[Cpoll
+ %, miCho,—[Chodl + 3 1aiCuio; ~ [Cho JI < R
Hence, also in view of (36),
|®| < Ccyq,e %4 + R 37

Since x T, we have, by the definition of (T',y), and in view of (37),

Ty’ <Ix—y?>=W@ni+--+nd)+a}+ - +a’, +0°
< § + (Ccyqe™ 4 + R)?,

from which the claimed upper bound for H = 4 immediately follows. O

Clearly one can prove a similar result for different choices of the weights. The
reduction process described above must be performed for all i, = 1,...,s. The
so obtained new upper bound for A is essentially of the size of rlog K, but holds
only under the assumptions mentioned in the beginning of this section. Thus in
the general situation we obtain the following upper bound A, for A4, which will
be considerably smaller than K:

A < A, = max{upper bound from Proposition 16, ¢,5 + ¢;7N;, ¢35}

From this expression it is easy to choose an optimal value for the parameter c,.
As a consequence of the reduced bounds for 4 and N we have a new upper
bound K, for H, improving on K,, namely

H < K; = max{N,, 4,},

which is expected to be of essentially the size of log K.

In the complex case we work analogously. The only difference in this case is
that, in view of the appearance of the variable a, (see Section 10 after (27)), we
must work in a lattice of dimension v + r + 1, and K, must be replaced by
3(1 + v + nK,. Note that here one needs to approximate n = 3.14159... to
sufficiently high precision.

165* Based on K, =9.844x10* and N, = 1153 we took W, =--- = W, =9x 10%, W, =1,
C = 10'32, We computed the input for the LLL-algorithm to the desired precision. In order to be
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able to do this we had to compute many real algebraic numbers and their logarithms to a high
precision. These computations are straightforward but laborious (we used the real Newton method,
the power series expansion for log(1 + x), and a multiple-precision package for real computations
written by ourselves). Then we applied the integral version [dW1, Fig. 1] of the LLL-algorithm to
each of the 9 lattices, and obtained data as given in the following Table. Here, in all cases j, = 6.

i Case les|> lisell > Ir,y)>
I 1.71179 x 10%3 0.33615 1.01720 x 10%2
1 1 1.63407 x 10%3 0.16228 4.68799 x 10%*
\4 2.01731 x 10%3 0.18308 6.52922 x 10%*
I 3.15947 x 10%3 0.26388 1.47383 x 1052
2 I 3.74556 x 10%3 0.44774 2.96465 x 1052
\4 2.81549 x 10%3 0.31138 1.54981 x 10%2
I 3.13799 x 10%3 0.00946 5.24957 x 10%°
3 i1 3.00766 x 10*3 0.34886 1.85485 x 102
v 2.80133 x 10%3 0.37839 1.87383 x 10%2
28207.757

Either we have H < c¢.;g +cy7N; < or we can apply Proposition 16. We have

5.812 — 2¢,6
R < 1.969 x 10%°, § < 5.277 x 10*°°, thus in all é:ses the hypothesis of Proposition 16 is fulfilled,
since KT,y)> 3.026x10%° > /R? + §. Hence using IT,y) > 5.24957x10%° we obtain from
. , 190.52800 i '
Proposition 16 that for this case H < —016——. We find the optimal ¢, ¢ from putting
28207.757  190.52800
5812 —2¢,6 6

s

and this gives ¢, = 0.0387336..., and thus H < 4918.928... . Hence the results from this and the
preceding section yield H < K, = 4918.

17. Further reduction and the Fincke and Pohst method

As announced in Section 13, we can repeat the reduction process described in
Sections 15 and 16, to reduce the upper bounds for N and A even further. It is
often useful in the second and further reduction steps to be more careful in the
estimations. Let us for simplicity assume that v' = v, since the case v =v — 1
can be dealt with analogously. Then (b,,...,b,+,) =(ny,...,n,, a,..., a;_4,
Qgr15---508, ak)'

Assume that from the previous p-adic and real reduction steps, being the Ith in
succession, we have upper bounds Ny,,..., N;,, A, forn,,..., n,, A respectively.
Then N, =max;N;; is an upper bound for N, and K; = max{N, 4,} is an upper
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bound for H. To obtain bounds N;.;y,...,N;+;, we perform a p-adic
reduction step for each p = p;, ..., p, as follows.

We choose weights as follows: forj = 1,..., vlet W, be (e.g.) the nearest integer
>0 to A;/Ny;, and let W,,; = --- = W,,, = 1 (here the hidden assumption is
that 4, > N,;; if that is not the case then W, , , ..., W, ,, should be adjusted such
that a good balance is obtained). Let the lattice I',, and the vector y be defined as
in Section 15, and now put

Q=WIN} + - + WINE +rd}.

Then the statement of Proposition 15 is obviously true. The p-adic reduction
step as described in Section 15, applied for p = p,,..., p,, now gives new upper
bounds N;; q,..., N4y, for ny,...,n,. With small computational effort one
can find for each p;, by trying in a certain range, the smallest m such that the
hypothesis of Proposition 15 is fulfilled. This gives the optimal upper bound for
n;.

Subsequently we perform a real reduction step. Choose the weights W; for
j=1,..., v to be the nearest integer >0 to A;/N,.,;, and W,,, =
= W,,,-, = 1. Then Proposition 16 with I', ¢ and y as in Section 16, and with

R=Np1+ -+ Ny ytra +e
S=W3iNi, + -+ WINL,, + (r— DA,

is obviously true. Application of the real reduction step as described in Section
16 now gives a new upper bound 4, , for A. Again, an optimal C can be found
by trial and error.

In each reduction step the final upper bound K, , for H follows as indicated
at the end of Section 16. Here, c¢,¢ can be chosen differently at each reduction
step. The whole procedure can be repeated until no more improvement is
accomplished.

It is possible to considerably reduce the bounds thus obtained even further by
taking a much more detailed look at the approximation lattices I',, and I". A
useful tool here is the algorithm of Fincke and Pohst [FP] for determining the
lattice points in a given lattice within a certain distance from the origin. Since
this much more refined reduction technique might use a large amount of
computation time (a large number of lattice points might be found as candidates
for solutions), it is advisable to use it only after the cruder but faster reduction
steps as described above have been pursued until no further improvement is
apparent.

For the p-adic reduction step the technique works as follows (again assuming
v =v). For the weights W, for j = 1,...,v we now take (e.g.) the integer nearest
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to 24,/Ny;, and further W, ., = --- = W,,, = 1. Put
[3WiN,] ]

[_%WIVNIV_I
y = 0

0
|

Let se R"*" be defined by y' = %s, where 4 is the matrix with the reduced basis
¢y,...,¢,4, as columns. Choose teZ'*" such that |t;—s)|=1 for every
i=1,...,v+ rand |#t — y'| is minimal. Then most likely %t is the lattice point
nearest to y. With 4 as in Section 15 and the conventions and notations as
adopted just before (32), we have

[_”1 ] [(Win; — le‘vleu_l—
n, I/anv - L%VVVNNJ
2=, | a, | = a, +y
C# ‘H#
a" ar
| A J L Gy i

(where # means: g, omitted), which is a lattice point, since A € Z (cf. the first lines
of the proof of Lemma 14). By 0 < n; < N;; we have

|Win; — I.%VViNli_” < I%VViNti—‘-

Put u = z — %t, then also uel’,,, and

lu| < \/l_%WlNu-lz"' < +[BWNL P +rA7 + | Bt—y'|.

Thus, upper bound for |u| is a constant, so the algorithm of Fincke and Pohst
[FP] can be applied to find all the points u that satisfy this relation. For each u
the corresponding n,,..., n,, a,...,a, can be easily found, and this candidate
solution should be tested further (see below). After all the candidates have been
tested, we can conclude that apart from a few explicitly known ones, the
solutions satisfy n; < (1/hm—1;), and we have found an improvement of the
upper bound for n;.

Note that in the above process, if we have performed the p-adic reduction step
for some of the p;, we can, instead of the old bound N;, use the corresponding
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improved bound N, , ; for n; in the subsequent applications of the process for
the other p;’s.

In the real reduction step we may work as follows. Again let W;forj=1,...,v
be the nearest integer > 0to 24,/N,,; j,and W,y = .- = W,,,_, = 1, with all
other notations below as in Section 16, if not explicitly redefined. Consider the
lattice I" for some C, and the vector

l%le.,. l,lJ ]

LW, Nis 1,1
y= 0

0
| 0

Let s, t, # be as above. Consider the lattice point

[(ny ] [Win, — l%mNHl,lJ_
n, mnv - I-%le“‘l,V_l
z=9f | a; |= a, +Yy.
‘# S
af a'
| | | (0] J

Put u = z — %t, which is a lattice point with
lul <z —y|+ |28t -yl
Let R be as before, and now let
S = BWiNp 1P+ - + BWNy 1,1 + (= DAL

Let D > ./R? + S be some convenient number. We distinguish two cases.

o If [z—y|<D then all lattice points u satisfying the inequality
|ul < D + |#t — y'| can be computed by the algorithm of Fincke and Pohst,
and tested.

e Otherwise we can apply Proposition 16, with KT, y) replaced by D and with S
as given above, and thus obtain a new upper bound for A.

In this way we will find a new upper bound for H that holds for all solutions
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apart from a few explicitly known ones. We may repeat the whole procedure,
decreasing m (in the p-adic step) and C (in the real step) little by little (not too
much at a time, in order to limit the number of lattice points to be tested), and
hopefully we will reach a final upper bound for N and A4 that is small enough to
admit e.g. enumeration techniques.

To conclude this section we describe how we can test a candidate solutionin a
way that rules out non-solutions at an early stage. We start by checking (34) for
i=1,...,v, and in case of failure we take

ord,,(A) = n;h; + v;

fori=1,...,v (compare Lemma 13). This test is easy in practice: the A; can be
easily computed up to the desired precision because all its ingredients have
already been computed to a very high precision.

It is not guaranteed that all candidate solutions that pass this test are
solutions. Therefore one subsequently has to perform another test, such as
checking (12), or the vanishing of the coefficients of 6%, ..., 6" ! in the right hand
side of (11). Such a test can be performed up to a certain precision in p-adic and
real form before it is applied with exact computations. Thus a series of tests is
available, of increasing computational complexity, but hopefully needed for a
rapidly decreasing number of candidates only.

17 For the second p-adic reduction step we took W, =4, W, =17, W, =10, W, = 13. We
increased m with steps of 1, in the ranges indicated below, until (T",,, y) > \/6 = 11824.879..., since
Q=4?115324+7%672%+ 104812 + 1323842 4+ 2-49182. We used the reduced basis of I',_, to
precompute the input for the reduction of the basis of I',,, as indicated near the end of Section 15. We
found:

range

p Case form es|> Issll > Ty, y)>
I 84— 97 334824 0.21192 12543

2 11 84-104 303877 0.47593 25566
v 84-100 386457 0.17618 12036
I 49— 60 308427 0.42982 23434

3 m 49— 58 145737 0.46329 11935
v 49— 60 220651 0.38291 14935
1 35- 42 230930 0.47395 19348

5 I 35- 42 210908 0.37384 13938
v 35- 40 182977 0.47108 15237
I 28— 35 253880 0.36187 16240

7 I 28- 35 261805 0.27181 12579

\4 28— 34 144298 0.48438 12355
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The conclusion is:
ny <105, n, <60, n; <43, n, <35,
hence N, = 105.

For the second real reduction step we took W; = 47, W, = 82, W, = 114, W, = 141. We started
with C = 102!, increasing it by a factor 10 until we could find an upper bound for A4 for some optimal

2578.917
16, applying either H < ¢, + ¢,N, = —————— or Proposition 16. We thus obtained:
5.812 — 2¢4¢
io Case final C leql> lIsell > I, y)> Ci6 H<
I 1024 211427 0.43513 16263 0.10940--- 461
1 I 1028 1052952 0.35472 66027 0.12154.-. 463
\% 10%* 363139 0.27984 17964 0.11258--- 461
I 10%3 175905 0.48364 15039 0.10963--- 461
2 III 10%¢ 649285 0.34402 39486 0.11339.-. 461
A% 10%4 281100 0.44227 21977 0.10615--- 460
I 1023 236851 0.48709 20394 0.10182--- 459
3 I 10%4 310082 0.34395 18853 0.10728--- 460
\% 10%7 861423 0.13577 20675 0.12092--- 462

The conclusion is: H < 463.

For the third p-adic reduction step we took W, = 4, W, = 7, W, = 10, W, = 13. We increased m
until I(T,,,y) > \/a = 1083.265..., since Q = 421052+ 72602+ 1024324132352 4+2-4632. We
found:

range
p Case for m leq|> lisell > Ty, y)>
I 72-75 17469 0.44524 1375
2 I 72-175 22927 0.39308 1593
\% 72-78 37980 031137 2090
I 42-45 13985 045183 1117
3 I 42-54 79063 0.22715 3174
v 42-48 26150 0.47372 2189
I 30-33 24452 0.35949 1553
5 III 30-35 41524 0.37149 2727
v 30-33 20656 0.32888 1200
I 24-26 14672 0.46797 1213
7 11 24-26 16753 0.42145 1248

A 24-30 52147 0.47753 4402




The conclusion is:

n, <79, n,<54, n;<36,

hence N; = 79.
For the third real reduction step we took W, = 6, W, =9, W, = 13, W, = 15. We started with
C = 10'8, increasing it by a factor 10 until we could find an upper bound for A for some optimal ¢ ¢,
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n, < 30,
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L. 1943.087 - .
applying either H < ¢y5 + ¢y7N;3 = S812—20 or Proposition 16. We thus obtained:
. 16

io Case final C ley|> [Isgll > T, y)> Ci6 H<
I 10%4 42528 0.41517 3121 0.14355.-- 351

1 III 10%4 54327 047110 4524 0.14195--- 351
\% 10?3 42622 0.37629 2835 0.15025.-- 352

I 10?2 19216 0.48374 1643 0.13800--- 350

2 11 10%t 20966 0.47450 1758 0.12979--- 349
10%4 52446 0.44227 4100 0.14234... 351

I 10?3 40201 0.42533 3022 0.13747-.- 350

3 11 10?3 49989 0.34395 3039 0.13744..- 350
A 10?4 63098 0.30391 3389 0.14315.-- 351

The conclusion is: H < 352.

In the subsequent reduction steps we applied the algorithm of Fincke and Pohst [FP] to compute
all lattice points in a sphere of a certain radius around the origin. We have for the fourth p-adic
reduction step:

p m  ng,nyngn, A< Wi, Wy, W, W, Case |Bt—y'|< Jul< * wE R
1 29493388  1158.86095 3312 22 O
2 36 79, 54,36, 30, 352 9, 13, 20, 23 111 39473914  1258.66621 5598 19 1
A% 27997142 114389849 3172 14 O
1 257.07978 1119.36628 8554 69 1
3 21 37,54, 36, 30, 352 19, 13, 20, 23 111 173.62605 103591256 5344 71 4
\% 214.44349  1076.72999 6758 74 3
1 323.10218 1187.84840 1570 11 2
5 15 37,21, 36, 30, 352 19, 34, 20, 23 I 481.29621  1346.04243 3234 6 O
\' 299.41780 1164.16402 1414 6 0
1 271.15118 113259766 1188 8 1
7 12 37,21, 16, 30, 352 19, 34, 44, 23 11 302.54744 116399392 1462 10 O
\' 33398644 119543292 1662 8 0

The * column gives the number of lattice points found in the sphere of radius the given bound for u.
The ** column gives the number of those points that satisfy the given bounds for n; and A4, as well as
the condition n; + I; > m for the i such that p; = p. The *** column gives the number of these lattice
points that correspond to solutions of ord,,(Aj) = n; + I; for only the prime p; = p. The 12 such



274 N. Tzanakis and B. M. M. de Weger

solutions that were found were checked for ord,,(A) = n; + I, for the other three primes, and all
failed. Thus the conclusion is:

n <37, ny<21, ny;<16, n, <12,

hence, N, = 37.
At the fourth real reduction step we took C = 10'° and W, = 19, W, = 34, W, = 44, W, = 59.

Then R = 791 and S = 624477. We took D = 1500, which satisfies D > ,/R> + S = 1118.1.... We
found:

io Case |Bt—y'|< * b
1 464.29089 7656 3
1 I 372.31576 5802 5
\' 205.23890 3238 1
I 647.46665 1316 1
2 i 738.61362 1740 1
\" 630.15399 1284 1
I 707.31116 1424 1
3 I 551.28128 926 3
\' 528.66156 864 2

Here the * column gives the number of lattice points in the sphere of radius D + the given bound for

|#8t—y’|, and the ** column gives the number of those points inside the block given by the bounds for

n, found in the fourth p-adic reduction step, and the bound 352 for 4 found in the third real

reduction step. These 18 candidate solutions did not pass the ord, (A} = n; + ; test for the four
915977

5.812—2c¢,¢
. The optimal ¢, is 0.119097, that leads to the conclusion H < 164.

primes. Now we have either H < ¢;5+ ¢7N, =

19.571927

C16
We performed three more reduction steps using the Fincke and Pohst method. We give the
following data:

, or we apply Proposition 16, which

yields H <

step  p/real m/C  my,mynyn, AS O Wi, Wp, W3, W, R s b *
2 24 37,21,16,12, 164 9,16,21,27 0

3 14 2521,16,12,164  13,16,21,27 0

fifth 5 10 2514,16,12,164  13,23,21,27 2
7 8  2514,11,12,164  13,23,30,27 0

real  10°  2514,11, 8,164  13,23,30,41 387 133507 750 O
221 2514,11,8,113 9, 16,21, 28 0

3 12 22,14,11,8,113 10, 16, 21, 28 3

sisth 5 9 22,12,11,8,113 10, 19, 21, 28 1
7 7 22,12,10,8, 113 10, 19, 23, 28 0

real  10°  22,12,10,7, 113 10,19,23,32 278 63634 600 0

2 18 22,12,10,7, 9 9,17,20,28 4

3 11 19,12,10,7, 99 10, 17, 20, 28 9

seventh 5 7 19,1,10,7, 99 10, 18, 20, 28 14
7 6 19,11, 87, 99 10, 18, 25, 28 9

real 107 19,11, 8,6, 99 10,18,25,33 243 48428 500 3
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Here the *-column gives the number of candidate-solutions that passed the test for
ord,,(A) = n; + ; for the four primes. For these 45 candidate-solutions we computed (to a precision
of about 15 decimal digits) as a subsequent test the real logarithms of the absolute values of the three
conjugates of f = ans w33 nyet'es’, and checked for

(O — 6N + (69 — 9D + (00 — 0P =,

which i$ equivalent to (12). Only six candidates survived this, and appeared to correspond to
solutions of (1) indeed. They are (of the pair +(x, y) we give only the one with positive x)

ny n, ns n, a, a, Case x y found at

18 0 12 0 -6 2 v 48632 —3729  fifthstep,p=>5
0 13 2 0 -22 5 m 399 302  sixthstep,p=3

20 0 0 0 10 -3 I 56 55 seventh step, p =2
0 2 2 1 -2 1 I 93  —103  seventh step, real
5 0 2 3 2 -1 I 1112 951  seventh step, real
2 0 8 0 3 -2 i1t 3388 149  seventh step, real

As in the fourth reduction step we conclude after the real reduction steps that we have for all but the
above six exceptional solutions:

after step Ci6 H<
fifth 0.1577012.-- 113
sixth 0.1558846- - 9
seventh 0.1562559--- 86

The conclusion is that for all but the six exceptional solutions we have
n <19, n, <11, n; <8, n, <6, A<86

Note that only the first three exceptional solutions do not satisfy these bounds. Carrying out further
reduction in the same way caused the number of lattice points found by the Fincke and Pohst
method to increase so dramatically that it turned out to be more efficient to apply the sieve method
of the next section to find all the solutions below the bounds just obtained.

18. The final sieve

Now we are left with the ‘very small’ upper bounds N,,..., N, for n,,...,n,
respectively, and A, for A =max|a]. Thus we have (N,+1)----
(N, + 1)- (24, + 1) possible tuples (n,,...,n,, a,,...,a,) to check for relation
(11), ie. whether, if we express the right-hand side of (11) as a Z-linear
combination of an integral basis 1, 6, . .. of the order 0, all but the coefficients of
1 and 0 turn out to be zero. Such a task might be difficult to accomplish by direct
checking of every possible tuple. Therefore we propose the following, com-
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putationally easier method, which constitutes a sieve of the set, in general very
large, of possible (very small) tuples.

Let g be a rational prime, whose prime ideal factorization in K has at least
three distinct first degree ideals, denoted by q; (i = 1, 2, 3). Then

0 = m;(mod q;)

for some explicitly known m;eZ for i = 1, 2, 3. Hence for i = 1, 2, 3 rational
integers A4;, P;y,..., P, Ei,- .., E;, can be easily computed such that (cf. (11))

otEA,-, TCjEPij(j=1,...,v), 8jEE,~j(j=1,...,7‘)(m0dq,~).
It follows by (11) that
x—ym; = A; P+ Py-Eff -+ Ejf (modq) (i =1, 2, 3),

and now both sides of the last congruence are rational integers, therefore each of
the three congruences above holds modulo g as a congruence in Z as well. From
these three congruences we can eliminate x and y, just as we did in deriving (12)
from (11), to find a congruence of the form

Clp’fll '{va‘illE‘;'r"' CZ'P;ll""'szv' 211 ;';
=Cs P3Py, E3} - -+ ES, (mod g). €))

For several primes g, ¢, 4", . . . as above we can find analogous congruences. We
start with checking all possible tuples (n,,..., n,, a,, ..., a,) for congruence (38)
modulo q. Each tuple that survives this test is then checked for (38) modulo ¢/,
and so on. If a tuple does satisfy all the congruences (38) modulo ¢, ¢, 9°,...,
then, and only then, this tuple is tested further, e.g. directly for (11), or by
checking (12) seen as an equality in R with a certain precision (15 decimal digits
usually will suffice). One expects that this last check has to be done for only a
very few tuples that are not factual solutions of (11). In practice this is already
the case when only a few primes ¢, ¢, ¢”,... are selected. Heuristically, one
expects that only one out of every g random tuples satisfies (38) modulo g. Thus
it is efficient to start the sieving with the largest prime selected.

185* We have as bounds: N; = 19,N, = 11, N5 = 8, N, = 6, A, = 86. The number of tuples to be
checked in each of the three cases is thus 20-12-9-7-173% ~ 4.5 x 108. We chose four primes:
q = 401, 167, 89, 47, that all split completely in K (note that 401-167-89-47 ~ 2.8 x 108 is of the size
of the number of tuples). Using the data as given in the Table below we performed the sieve for these
four primes.
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q 401 167 89 47

i 1 2 3 1 2 3 t 2 3 1 2 3
m; —-28 5 46 14 —75 —83 —34 —18 —14 3 —15 —12
C; (Case I) —41 74 33 8 70 78 -4 2 16 -3 —15 —18
C,(Case IIl)  —9 —132 91 —75 —51 4 20 43 —24 -2 —16 16
C,(Case V) —116 140 77 —10 59 -39 -27 —-21 38 —19 —4 -10
Py —46 —35 134 —11 —40 —63 7 —35 -8 17 10 -21
P -19 138 39 —64 79 40 30 —24 —33 2 —12 6
P, (Case ) 126 192 3 —65 —72 —43 43 —31 42 9 14 16
P, (CaseIl) —183 —139 136 —43 8 8 29 39 -31 22 -6 1l
P (Case V) 10 —121 —58 —72 78 -8 -5 —29 43 23 23 20
P 29 —4 —45 —13 76 -8 35 19 15 -2 16 13
Ea 143 188 —118 64 —S0 —68 22 35 23 —10 -1 14
E, 63 —85 —48 —76 —S56 —33 11 42 -21 22 17 -23

The results were as follows:

initial # tuples left after sieving with
Case # tuples q =401 q=167 q=89 q=47
I 452526480 1128261 6767 87 20
11 452526480 1128603 6704 99 33
v 452526480 1128376 6764 121 29

The 82 tuples that were left were tested for (12) in 15 digit real precision. Three tuples did not satisfy
this test, namely (n,, n,, n3, n4, a,, a,, Case) = (9, 5, 5, 5,48, 13, I11), (10, 3, 1, 2, 18, — 3, 1II),(10, 3, 1, 2,
18, —3, V). The other 79 tuples come from solutions indeed. Among them there are 10 solutions
counted twice, namely in Cases III and V with n; = 1. Thus there are 69 solutions satisfying the
bounds given above, in addition to the 3 solutions not satisfying these bounds, that were found in the
previous Section.

We do not give detailed information on the computation time, since we used different computers,
which makes comparison difficult. Moreover, the computation times might say more about the
complexity of our implementation of the algorithms than about the complexity of the algorithms
themselves. Roughly speaking we used about 159 of the total time for the first reduction step
(bringing the bound down from 9.844 x 10*° to 4918), about 5% on the second to fifth steps (from
4918 down to 113), about 45%; on the sixth and seventh reduction step (from 113 down to 86, this
large percentage being due to the very many lattice points detected by the Fincke and Pohst
algorithm that had to be checked further), and about 30%; for the final sieve. We estimate that the
total computation time on a VAX 3100 workstation (the fastest computer we have used) would be
about 100 hours.

We also performed an eighth and ninth reduction step using the Fincke and Pohst method,
leading to a reduction of the bound from 86 down to 59 only, at the cost of 150 hours on the
VAX 3100. It is thus clear that the sieve did this job much faster. This experience shows that the
different reduction methods are in practice complementary. It also shows that the amount of work
needed (by computer and programmer) for reducing the bound from, say, 1000 to 0, will in general be
much larger than the time needed for the reduction from, say, 105° to 1000.

Finally we give the complete list of solutions of

x =30 = £mH TR P ooy
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with (x, y) = 1 and x > 0. Note that the solutions of the Thue-Mahler equation
x3 — 23x%y + Sxy® + 24y3 = 4271372553724

0 inCasel

can be easily found from this Table, since z, = n,, z, = n,, z3 = ,Z4 =Ny
Y B =M 22 = 2 "’+{1 in Cases I V" ¢ = ™

x y ny n, ny ny ay a, Case
48632 —-3729 18 0 12 0 -6 2 \4
264 —1003 5 5 7 1 —4 0 I
267 —209 0 8 3 2 —14 3 I
137 —-199 0 0 3 6 -2 0 11
96 —107 3 5 1 1 -8 2 L, v
93 —103 0 2 2 1 -2 1 I
88 —101 8 0 2 2 3 -1 I
73 —81 0 0 2 3 -3 1 \4
24 —53 6 2 3 1 —4 1 \4
31 -32 0 0 5 1 -6 2 \4
28 =31 2 0 2 (1] 1 0 1
24 -29 7 3 2 0 0 0 I
132 -29 2 4 2 3 -9 2 \4
24 -23 4 2 3 0 -1 0 11
3 —16 0 6 2 0 —-12 3 \4
19 —13 0 0 6 0 2 -1 m
24 —13 11 1 1 0 3 -1 L, v
48 -13 3 9 1 0 —13 3 1
4 -9 2 0 5 0 5 -1 1
6 -7 1 1 2 0 -3 1 \4
3 -4 0 2 0 2 —4 1 I
4 -3 2 0 1 1 0 0 L, v
1 -2 0 0 2 0 0 0 m
51 -2 0 4 4 0 -6 1 o1
1 -1 0 0 1 0 1 0 I
3 -1 0 2 1 0 —4 1 L v
6 -1 1 1 2 1 0 0 I
8 -1 4 0 2 0 0 0 \4
13 -1 0 0 2 2 -1 0 I
0 -1 3 1 0 (1] 0 0 I
1 0 0 0 0 (1] 0 0 I
1 1 0 0 0 1 0 0 I
2 1 1 0 1 0 0 0 L, vV
8 1 7 0 0 1 3 -1 I
12 1 2 1 2 0 -1 0 III
15 1 0 5 0 1 -9 2 I
22 1 1 0 1 1 -1 0 1L v
24 1 4 2 1 0 —1 0 I
42 1 1 3 3 0 -8 2 \%
3 2 0 3 1 0 -4 1 I
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x y ny n, ny ng a, a, Case
9 2 0 1 2 1 —4 1 \4
1 3 0 0 3 0 -3 1 A
10 3 1 0 (\] 4 -1 0 I
7 6 0 0 1 0 0 0 L v
8 7 4 0 2 0 4 -1 I
9 7 0 1 3 0 -1 0 11
24 7 5 4 1 0 -5 1 L v
159 7 0 3 2 0 -6 1 I
8 9 6 0 2 0 3 -1 I
128 9 3 0 4 2 —4 1 A
12 11 2 2 2 0 -4 1 A
32 11 3 0 4 1 2 -1 I
87 11 0 1 7 0 -10 3 v
6 13 1 3 2 1 -5 1 I
272 13 3 0 4 3 3 -1 1
296 13 6 0 3 0 -1 0 v
24 17 4 1 1 2 -1 0 L v
744 37 6 3 3 2 -3 0 it
48 41 3 4 0 1 -5 1 I
56 43 5 0 5 0 -3 1 A
59 52 0 0 3 3 -4 1 A
56 55 20 0 (\] 0 10 -3 1
2184 97 14 5 1 0 -3 0 IIL V
24 115 10 6 0 2 -6 1 I
152 131 10 (\] 2 1 3 -1 \4
216 139 12 1 4 1 7 -2 I
3388 149 2 0 8 0 3 -2 I
399 302 0 13 2 0 -22 5 I
534 457 1 1 6 1 1 -1 I
984 827 7 8 3 0 -13 3 \4
1112 951 5 0 2 3 2 -1 i
1656 1663 11 1 5 3 4 -2 11

Appendix Al. The absolute logarithmic height of an algebraic number
Let « be an algebraic number, aot” + --- + ap its minimal polynomial over Z,

and a®),...,a'? the real or complex roots of this polynomial. The absolute
logarithmic height of a is

h(x) = % log (ao i]f[l max{1, la‘”l})

Note that even when we view o as a complex number (so that « coincides with
some o) rather than as an abstract algebraic number, h(x) is independent of the
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specific numerical value of the conjugate of a that we are considering. For
references and more information on the absolute logarithmic height we refer to
[Wa, Section 2].

A1E* Below &, is as defined in Section 7 (see also the Table in Section 65%), where for (i, j, k) we
have chosen some permutation of (1,2, 3). Referring to the notation of Appendix Al, we have
computed the following Table.

o _ 9@ oY — 6% 7 oy — 62 =g ) )
YOS oo - 2
D 6 6 6 6 6
a, 1115525 1115525 1115525 4 9

h(a) < 3.132209 7.218871 5.263156 2.167337 7.164226
) " =2 2 2
D 6 6 6 6 6 6
a 25 25 25 49 1 1

h(o)< 3.545166 3237718 5.676112 2.267031 3.806189 8.378281

Appendix A2. A lower bound for linear forms in logarithms of algebraic
numbers in the p-adic case

In this Appendix we refer to [Yu2, Section 0.2]. We have made several slight
modifications to the notation in order to conform to (or to avoid confusion with)
the notation of the present paper.

Let o...,a, (m=2) be nonzero algebraic numbers, and put
K, = Qay,...,a,), n, = [K;:Q]. Let p be a prime number. Set

{22 ifp>2
@ W= 3,1 ifp=2

Let K, be an extension of K, such that

ieK, ifp>2 (i=./-1),
wekK, ifp=2 <a)=:—1%-— ‘/_3>

and n, = [K,: Q). Let p, be a prime ideal of K, over p with f;, as residual degree.
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For any algebraic number o of degree D and conjugates a),...,a® in C we
define

L(¢) = max |Loga®|,

1<i<D
where Log denotes the principal complex algorithm. Now for everyj=1,...,m

let

v, > max {h(a ) L(a,) f2 logp}

n,
and

V= max V,.

1<jsm
Finally put

1
" 2qf,logp’

Let by,...,b,,€Z, and put

S PR =
A=ojtc--rogm—1, B= max |bj|
1<j<m

The following theorem is a slightly weakened version of [Yu2, Theorem 1].

THEOREM (Yu). If ord, (x) =0 forj=1,...,m and A # O, then

f2 _ 24 1/p—1) \m+2
ord, (1) < Co*(m + 1y»+2-mm+o.2 1_( +1/(p )) _—

ny e Vi Ve
q" f>logp >
-max{mlog(2'°qm(m + o)n3V), f,logp}-(log B + 2logn,),

where

c. _ JA04746x 10" if p>2
©7 1848625 x 12™ if p=2"

(k
%)

A2E* We refer to the notation of Appendix A2. In our case pe{2,3,5,7}, m=7, a;=0,, a,= ‘T’
k k (k) (k; k
O . W U

3= "o %R T T %5 T "G5 %6 T Ty *TT Gy
R i M U]

K,=K({)with{=iforp=3,5,7and { = o for p= 2. Since K, = Rt is obvious that n, = 12.

K, is the normal closure of K, so that n, =6, and
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Weputp = p,,if p=2,3,7,and p = psif p = 5 (see the Table in Section 6%%). In Section 3** we have
seen that

exia®) =1, fka®) =1
Let p,, p, be prime ideals over p of K, and K, respectively. Put

fi=Ik,a®)

for j = 1, 2 (note that f, agrees with the notation of Appendix A2). Since p, is over p we obviously
have ordy(4) < ordy, (4), therefore

ord,(4) = ordy(4) < ord, (). 39)

By the relation between residual degrees of ideals in relative extensions (see [Na2, Proposition 4.3]
or [Nal, p. 136]) we have

fi =1k, 0P =fk jxk®KQP) =k, /kP) <2 (40)

since [K;:K] = 2. By Yu’s lemma (see [Yu2, Appendix]), for p = 2, 3, 7 we have f, = max{f;,2},
while for p = 5 we have f, = f;. Hence, by (40),

=2 for p=2,3,7, f,<2 for p=5. 41)
Now we can apply the Theorem of Appendix A2, making use of (41), in order to find an upper bound
for ordy(4), which, in view of (39), will give an upper bound for ord,(1). In our case, of course 1 is

given by the leftmost expression in (12), and B = H. Straightforward computations show that
V; = h(a) for j = 1,...,7. The upper bound for ord,(4) is of the form

ord,(4) < ¢;o(pNlog H + ¢14(p))-
For every pe{2, 3, 5, 7} we can take
¢y1(p) = 4970 > 2logn, = 2log12.
It is easy to see that the worst (=largest) upper bound given by the Theorem is obtained in Case V.

Then V,-----V; < 33534.769, and V=V, < 8.378281. The following Table is useful for the
computation of ¢, q(p):

P -1 2+1/p-1)

p q u f ¢ C
z T flog p °
2 3 1 2 1 1 3 848625 x 127
121log2 2log2
1 5
3 2 2 2 2 2 404746 x 10
8log3 4log3 x
1 9
5 2 2 2 _ 107
8log5 6 Slogs ‘04746
1 9
5 2 2 1 1 404746 x 107
4logs 4logs X
1 13
7 2 2 2 12 404746 x 107

8log7 12log7
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A straightforward computation shows that

€10(2) = 1020 x 1047, ¢,o(3) = 8.051 x 10%3,
3o(5) = 2787 x 10*, ¢,4(7) = 7.050 x 104

(rounded up).

Appendix A3. A lower bound for linear forms in logarithms of algebraic
numbers in the real/complex case

In this section we state a recent result by Blass, Glass, Manski, Meronk and
Steiner [BGMMS, Corollary 2], which considerably improves the lower bound
for linear forms in logarithms of algebraic numbers given in a well known earlier
paper of Waldschmidt [Wa]. Below we give a slightly modified (weakened)
version of this result, though we believe it to be more useful for our application.

Let ay,...,a, (m>2) be algebraic numbers, which we view as complex
numbers, belonging to a field of absolute degree D > 2. Foreveryj=1,...,m
we fix a determination of the logarithm of «;, which we denote by log«;. For
j=1,...,m we define

1 1
¥, = max {h( u), B4 |°g“1| D},

where we have supposed, without loss of generality, that the numbering of the
a;’s is such that

[/1 < - < Vm'

Further we define for j=1,...,m

_ DYV, 14 1\!
Vi =max{l, V), ¥=max{j¥; 1}, o= ﬁf=(;-7~;)
i=1 4;

[logaty”

We also consider positive numbers a, a, E, E and M such that

I A 1"'1—1 . ¢ 2DV
a<(=Y —) , a={= ) =] , E<min{e*®", 4Da},

m =1 a; m i=14;
E > min{e*®", 43}, M <2(2®mDV,,_,E)".
Finally, let b,,...,b,€Z. Put

A =b,loga, + --- + b, loga,, = max |bj.

1<j<m
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THEOREM (Blass, Glass, Manski, Meronk and Steiner). If A # 0 and

v, _
B>— : - max{(2'mDV,;)", E, E*m?)

then
—c7(log B+
|A| >e c7(log cs),
where

(24e2)m220 . Dm+ )

> m-Vy o Vel M
12 log By " o8

and

log(m!)

logD

6mD3V,\ (m + 1)2
+
m

cg=(m+ 1)210g<

m 1 m+1
log| —+—+0. .
+ og(V1 + v + 0000025) + = logm

A3E* The algebraic numbers o, ...,a, are those which appear in Appendix A2%%, but now the
ordering of these numbers is not immaterial, in view of the condition V; < --- < V;. Note that here A
is the linear form A, appearing in Section 10. As stressed there we must consider three cases,
depending on the value of i,. Corresponding to those cases we have chosen (see Section 10%%)
(j, k) = (2,3), (3, 1), (1, 2). In the notation of the Theorem of Appendix A3, B = H, and D = 6. In the
case of our specific example, the Theorem is applied with H = A4 (see Section 10, after (21)). For the
computation of the numerical values of ¢, and cg it has been necessary to construct the following
Tables:

Case oy oy o oy os % o,
(k) k k k k. (k.
O S B . SR |
221 -1 . o1 b =31 22

) ) ) &) ) &f

(k) k k k (k; (k)
U T R . S
7 n ~7rn -l rry e 1 v

) e ) & n$} ey

(k) 3 k k (k) (k;

TR S R S

\% —_ N

3
Lt Lt & ) = &
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Case Vioeer Vg Vi Vs |
1 12464.805 2.167336--- 7.164225..- 8.378280---
111 26236.536 2.167336--- 7.218870--- 8.378280---
v 33534.769 2.167336--- 7.164225.-- 8.378280---
Case 1 j=2k=3 | j=3k=1 | j=1k=2
a, 2.238651--- 34.422300--- 2.394369---
a, 2.801580--- 5.584987--- 5.621454---
as 7.720476--- 8.022874.-- 204.830465---
a, 2.356620- - 9.075308--- 3.183219---
as 2.000000- - - 2.911946--- 6.386221---
ag 2.107738.-- 9.860509- - 2.680767---
a, 21.669204- - 2.203363--- 2.000000---
a< 2944 5218 3.601
a> 2.693 8.219 3.729
E< 70.645 125.223 86.412
E> 10.774 32.877 14918
logM < 121.639 125.810 123.213
cq 6.076 x 1032 2.889 x 1031 2.202 x 1032
Cg 885.955
provided that H> 3.939 x 1032
Case 111 j=2,k=3 j=3,k=1 j=1,k=2
a, 2.238651--- 34.422300--- 2.394369---
a, 2.801580:-- 5.584987--- 5.621454---
as 3.038761--- 11.354584--- 2.397209---
a, 2.000000- - - 2.911946.-- 6.386221---
as 2.107738-- 9.860509--- 2.680767---
ag 3.335715--- 25.336697--- 2.947642---
a; 21.669204- .- 2.203363--- 2.000000- -«
a< 2.854 5.672 2.940
a> 2.493 8.270 3.033
E< 68.485 136.108 70.542
E > 9.973 33.083 12.133
logM < 121.639 126.447 121.846
cq 1.663 x 1033 6.034 x 103! 8.658 x 1032
cs 885.955
provided that H> 3.939 x 10°2

285
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Case V j=2, k=3 j=3,k=1 j=1,k=2
a, 2.238651--- 34.422300--- 2.394369---
a, 2.801580--- 5.584987--- 5.621454---
a5 2000000 | 2911946 | 6.386221---
a, 3.577519--- 49.999816--- 3.853219---
as 2.208761--- 53.805969- - - 2.303313---
ag 2.107738.-- 9.860509--- 2.680767---
a,; 21.669204--- 2.203363--- 2.000000---
a< . 2.739 6.112 3.019
a> 2439 8.170 3.267
E< 65.715 146.678 72.451
E> 9.757 32.682 13.068
log M< 121.297 126.917 121.980
P 2289x10°% | 7948x10° | 8765 10
cs 885.955
provided that H> 3.939 x 1032

Summing up we have in all cases:

If H > 3.939 x 10° then |Aq| > e~<7008H +en),
where ¢, = 2.289x 10®° and c¢g = 885.955.

It is impressive that, on applying Waldschmidt’s theorem on which the present theorem is based (cf.
[Wa]), we find ¢, = 7 x 10°#, cg & 5, unconditionally on H. As is seen in Section 10%%, the restriction
H > 3.939 x 1032 is not essential.
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