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1. Introduction

We exhibit a nice Frobenius splitting a on G x B b where b is the Lie algebra of
the Borel group B of upper triangular matrices in the general linear group
G = Gin. What is nice about it, is that it descends along familiar maps and
specializes to familiar subvarieties in a manner that is useful for the study of the
singularities of closures of conjugacy classes of nilpotent n by n matrices. In
particular, we show that these closures are simultaneously Frobenius split, are
normal, and have rational singularities. The result on rational singularities is
derived from a general vanishing theorem that will be proved in our paper [15].
Note that normality has already been proved by Donkin in [3]. His method uses
a lot of representation theory and employs resolutions of the closures of
conjugacy classes invented by Kraft and Procesi.
An alternative approach to these singularities has been given by G. Lusztig. In

[11] he showed that the same singularities occur in Schubert varieties for Kac-
Moody groups of affine Weyl groups. Now Schubert varieties for such infinite
dimensional groups are mastered in Mathieu’s book [12], where Mathieu shows
they are normal and have rational singularities.

In contrast with this, our work remains in finite dimensions. It relies on
explicit formulas. Indeed the formula for our splitting Q is given by a product of
principal minors and the specialization of the splitting to subvarieties is based
on an inspection of what happens to the determinants. To descend 03C3 to the Lie

algebra g of G, (along the natural map G  Bb ~ g, cf. Grothendieck’s "simulta-
neous resolution" [2]), we use a Galois theoretic argument. We find that above
the generic point of g the action of the Weyl group on a is trivial. As preparation
for that computation we first spell out trivializations of the canonical bundles of
G x B b and G x T t.
The geometry of conjugacy classes is of course simplest for the general linear

groups. It may be of interest to try and extend our method to other semisimple
groups, but there are some obstructions to this. For instance, for the symplectic
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group of rank 2 in characteristic 2 there is no function analogous to the product
of principal minors. (No function that yields a splitting.)
The first author wishes to thank Shrawan Kumar for useful and stimulating

discussions. The second author wishes to thank Steve Donkin for pointing out
Lusztig’s paper [11] and T. A. Springer for showing the importance of the Weyl
group action.

2. Orientations

We will need the relation between trivializations of the canonical bundle Co on

three different spaces.

2.1. Notations

We work over an algebraically closed field k of characteristic p, p &#x3E; 0. Let G be

the group of n by n invertible matrices, B its subgroup of upper triangular
matrices, B = T U the usual decomposition. The unipotent radical of the Borel
group B - opposite to B we call U -. Thus U - consists of unipotent lower
triangular matrices. The Lie algebra of G is called g and is identified with the
vector space-viewed as a variety2013of n by n matrices. Similarly b is the Lie
algebra of B, u - is the Lie algebra of U -, t is that of T. The Weyl group is W. All
this is viewed as being defined over the prime field in the usual way.

2.2. Volume forms

A nowhere vanishing global section of the canonical bundle on a variety is called
a volume form. They exist only if the canonical bundle is trivial and then they
are unique up to global units. In our examples the only global units are
constants. We wish to choose volume forms on the three varieties G x ’ b, G x T t
and g. On g this is very easy; one just chooses an ordered basis of g and gets a
generator of the top exterior power 039Btop g and thus a global generator v[g] of
the canonical bundle 03C9[g]. On G x Bb we proceed as follows. A point p on this
variety may be represented by a pair (g, X) with g E G and X E b. Given such a
pair we map the variety U - x b into G  Bb by the local isomorphism
03C4g,X : (x, Y) ~ (gx, X + Y). We fix a volume form v[U- x b] of U - x b and take
its image in the canonical bundle of G x ’ b to get a local section around p of the
canonical bundle cv[G  Bb].

LEMMA 2.3. This procedure defines a volume form on G x B b.
Proof. Think of the canonical bundle as a variety and think of the desired

volume form as a morphism of varieties. We need to check that the results patch
when one varies (g, X). For this the key is to show that when (gl, X1) and (g2, X2)
represent the same point p of G  Bb, the resulting local sections v1 and v2
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respectively of m[G  Bb] agree at p. Put b = g-11 g2. Thus X1 equals Ad(b)X2.
Identify U - in the obvious way with a neighborhood of the ’origin’ B of G/B.
Thus we get an identification of the tangent space of U - x b at its origin (1, 0)
with g/b 0 b. Consider the automorphism of G/B x b given by
(x, Y) ~ (bxb-1, Ad(b) Y). View it as a birational automorphism 03C8 of U - x b. We
have 03C4g1,X1 03C8 = 7:g2,X2’ so we only need to check that the tangent map to 03C8 at the
origin (B, 0) has determinant 1. This determinant is the same as the determinant
of Ad(b) restricted to b times the determinant of the map induced by Ad(b) on
g/b, so it is simply the determinant of Ad(b). Now the adjoint action of G is by
linear transformations of determinant 1. (Recall that G is generated by its center
together with its commutator subgroup.)

2.4. Orientation on G x T t

The reasoning is similar to the case of G x ’ b. Given (g, X) with g E G and X E t
we map the variety U - x U x t into G x T t by the local isomorphism
(x, y, Y) ~ (gxy, X + Y). We fix a volume form v[U- x U x t] of U - x U x t and
take its image in the canonical bundle of G  Tt to get a local section of

03C9[G  Bb]. Identify the tangent space at (1,1) of U- x U in the obvious way
with the tangent space g/t of G/T at its ’origin’ T. This gives an identification
of the tangent space of U - x U x t at its origin (1, 1,0) with g/t ~ t. The analogue
of lemma 2.3 holds with a similar proof and we get a volume form v[G x ’ t] on
G x T t.

2.5. Comparison of volume forms

There is a natural map from G x T t to G x B b, sending the class [(g, X)] of (g, X)
to the class [(g, X)] of (g, X). There is also a natural map from G x T t to g
sending [(g, X)] to Ad(g)X. We wish to know what happens to the volume forms
under these maps. More specifically, the pull back of a volume form is a function
times the volume form on the source, and we care about the divisor of that

function. This is an exercise in computing determinants. We study the map from
G x T t to g at [(g, X)] by composing with the map from U-  U  t to G  Tt,
which was used for constructing the volume form v[G x T t]. Recall we identify
the tangent space of U - x U x t at its origin (1, 1,0) with g/t ED t which in its turn
may be identified with g itself. The upshot is that we have to compute the
determinant of the map from g to g which sends Y + Z to Ad(g)([ Y, X] + Z) for
Y ~ u- (D u and Z E t. That determinant does not depend on g but only on X.
One may view it as the product of the roots applied to X. The divisor of the
function on G x T t which arises as the coefficient of the volume form is thus
twice the divisor of the reduced subvariety G x T tirr, where tirr is the subvariety
consisting of the elements having fewer than n distinct eigenvalues. So this is the
answer when we pull back from g. Next let us pull back from G x B b. The
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determinant to consider is now the determinant of the endomorphism of
u- ~ u ~ t = u- ~ b sending (Y-, Y+, Z) to (Y-, [Y+, X ] + Z). Therefore
now the divisor is just once G x T t;rr .

2.6. The action of W

An element w of the Weyl group acts on G x T t through
[(g, X)] H [(gw-1, Ad(w)X)], with a slight abuse of notation.

LEMMA 2.7. The Weyl group acts through the sign representation on the linear
span of the pull back to G x T t of the volume form of G x B b.

Proof: The map from G x T t to g is equivariant for W, when W acts trivially
on g, so the pull back of the volume form of g is invariant. We have to divide this
pull back by the function defining G x T t;rr, on which W indeed acts through the
sign representation.

3. Frobenius splittings

3.1. A partial order

In order to describe our computations, we need to single out a particular class of
B invariant ideals of b. To this end we put a partial order on the set

P = [1, n]  [1, n] which indexes the coordinates on g. We declare that

If S is an ideal for this partial order, i.e. if (i,j)  (r, s) and (r, s) E S imply (i,j) E S,
then we define b[S] to be the subspace of b consisting of the matrices X with

Xij = 0 for (i, j ) ~ S. One easily sees that such a subspace is a B invariant ideal.
Let us agree to use the notation b[S] only when S is an ideal for the partial
order. We will find a Frobenius splitting for all G x B b[S] simultaneously.

3.2. Subdeterminants

If M ~ g is a matrix, let us indicate by a notation like Mr,s the submatrix
consisting of the entries whose row number is at most r and whose column
number is at least s.

LEMMA 3.3. Let g be a unipotent lower triangular matrix and let M E g be such
that Mr,n-r = 0 for some integer r between 1 and n. Then
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3.4. The choice of u

We choose a very particular section 03C3 of the anti-canonical bundle of G  Bb.

Namely, if we multiply 03C3 by our volume form v[G  Bb], which we take to be
defined over the prime field, then we require the resulting function to be the

product over all integers r between 1 and n of the pull back from g of the
subdeterminant function det(Xr,r). The power 03C3p-1 of u defines by [13] a
twisted linear endomorphism 4J (1 of the structure sheaf of G x B 6. Here twisted
linear means that it is a morphism of sheafs of abelian groups satisfying the rule

If this endomorphism preserves the constant function 1, then it is in fact a

Frobenius splitting. (This is indeed what will happen.)

3.5. Specializing to a subspace

Let S be an ideal of the partially ordered set P of 3.1, and (s, t) a maximal
element of S, so that S’ = S - {(s, t)l is also an ideal. Assume s  t so that the
corresponding coordinate does not vanish on b. If u[S’] is a global section of the
anti-canonical bundle of G  Bb[S’], which vanishes on G  Bb[S], we wish to
define a residue res a[S’] of a[S’] such that the twisted linear endomorphism
~03C3[S’] of the structure sheaf (!) G  Bb[S’] of G x B b[S’], defined by the p - 1-st power
of u[S’], induces on the structure sheaf of the codimension 1 subspace G x B b[S]
the twisted linear endomorphism ~03C3[S] defined by the p - 1-st power of
03C3[S’] : = res u[S’]. To this end we consider on G/B an open set V which is small
enough to ensure that the line bundle G x B (b[S’]/b[S]) trivializes over E Say f
is a nowhere vanishing section over V of the dual line bundle. We choose
res 03C3[S] so that

for a local section il of the canonical bundle of G  Bb[S], with hopefully self
explanatory notation. One checks that this is independent of the precise choice
of f, and therefore patches as we vary V. One also checks the desired

correspondence with twisted endomorphisms, using the explicit local formulas
of [13].

REMARK 3.6. In 3.5 it is actually not essential that f is a section of a line
bundle. The "residue" in 3.5 is dual to a Poincaré residue (cf. [6]) restricted to the
subvariety, and thus exists in greater generality.
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3.7. Formulas for the specializations

If S is as above, and r is an integer between 1 and n, let 03B4r[S] denote the matrix
with a one at each entry (1, j) e S with i + n = j + r and zeroes elsewhere. The

open subset U- x b[S] of G  Bb[S] is isomorphic to a linear affine space, so it
has-up to a constant multiple-a natural choice of volume form. (The full
space G x B b[S] usually has no volume form.) Multiplying 6[S] by such a
volume form we claim to get a function sending (g, X) E U- x b[S] to a constant
times the product over all integers r between 1 and n of the subdeterminants

dct((g(X + 03B4r[S])g-1)r,r).
THEOREM 3.8. For each ideal S of P there is a sequence of specializations
(cf. 3.5) starting with u of 3.4 and ending with a[S] as in in 3.7. The p - 1-st power
of a[S] defines a Frobenius splitting on G x B b[S]. This splitting is also induced by
the splitting ~03C3 of G x B b.

3.9. Start of proof

We argue by induction on the size of S to show that specialization leads to the
formulas indicated in 3.7, but we will go in the other direction to prove that one
has Frobenius splittings. The formula for 6[S] is by definition correct when b[S]
equals b. (Note that in this case i &#x3E; j for (fj) E S so that 03B4r[S] vanishes for r  n.)
Therefore let us now assume S contains a maximal element (s, t) with s  t. We
assume the formulas true for S’ = S - {(s, t)l. Put r = s + n - t. For

(g, X) E U - x b[S’] the hypotheses of Lemma 3.3 apply with M = X + 03B4r[S’].
Moreover Mr,&#x3E;-r is a block matrix

with determinant det(a)X,, det(03B2). We may use Xst as the f of 3.5, at least over
the open subset U - of G/B. As U - x b[S] is dense in G  Bb[S], the hypotheses
for the residue construction are satisfied and we only need to check that it

replaces the factor det((X + 03B4r[S’]),&#x3E;n-r) in the product for u[S’] by the factor
det((X + 03B4r[S])r,&#x3E;n-r)· Indeed one must put Xst equal to zero in the regular
function det(Mr,&#x3E;n-r)/Xst = det(03B1) det(03B2). And this gives the same as putting
Xst equal to zero in det((X + 03B4r[S])r,&#x3E;n-r).

3.10. The splitting of G/B

We take S = P and investigate Q[S]. It is a section of the anti-canonical bundle
of G  B0 = G/B. Its p - 1-st power defines a twisted endomorphism ~03C3[S] of the
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structure sheaf, which is a Frobenius splitting if ~03C3[s](1) = 1. As G/B is complete,
we may try the criterion in terms of local coordinates around a special point,
given in Proposition 6 of [13]. As special point we take the origin B, and we
restrict to its neighborhood U - = U - B/B. But for the coordinates of g E U - we
take the matrix coefficients Yij with i &#x3E; j of the inverse matrix. The product of

u[S] with the volume form of U - is given by the product of the subdeterminants

det((g-1)&#x3E;n-r, r). For r = 1 this gives Yn,1. Putting that coordinate equal to zero
one gets Yn-1,1 Yn,2 as subdeterminant for r = 2. Putting those two coordinates
equal to zero too, one gets Yn-2,1 Yn-1,2 Yn,3 as the subdeterminant for r = 3.
Proceeding in this manner, one sees that the p - 1-st power of the product of the
subdeterminants has 1 as the coefficient of the monomial 03A0i&#x3E;j Yp-1ij. This shows
that we have a splitting. (As it happens, the normalizing constant is auto-

matically correct because we started with something defined over the prime field
and then took a p - 1-st power. Otherwise we would have had to rescale ~03C3.)

3.11. End of proof of 3.8

We now know that ~03C3 induces a splitting on G  B0, so cP(1(I) restricts to 1 on

G  B0. It remains to show that it is 1 on all of G x B b. Now if c is a nonzero

constant, we get an automorphism hc of G x B b given by [(g, X)] H [(g, cX)].
Under this automorphism the section 03C3 goes to a nonzero constant multiple of
itself, because determinants are multilinear. This implies that the zero set of ~03C3(1)
is invariant under hc, for all nonzero c. As ~03C3(1) is 1 on the zero section of the
vector bundle G x B b over G/B, the result follows. Alternatively, one may show
that 03C3 extends to a complete variety, by embedding b as an open subset of the
projective space P(b Ef) k) ... ~

4. Conjugacy classes of nilpotent matrices

4.1. Partitions

Given the conjugacy class C(N) of a nilpotent element N of g, one may associate
to it two partitions of n. The first, say 03C0(N) = (n[N] 1,..., n[N]r), consists of the
sizes of the Jordan blocks, in descending order. The second is the dual partition
03C0’[N]. It may also be read off the dimensions of the kernels of the powers of N, in
an easy way. Let F be the partial flag in k nwhose i-th part is spanned by the first
03C0’[N]1 + ... + 03C0’[N]i standard basis vectors, (0  i  03C0[N]1), and let P[N] be
the stabilizer of the flag F. Then P[N] is a parabolic subgroup and the sizes of
the blocks in its Levi subgroup are exactly given by n’[N]. Let r[N] be the Lie
algebra of the unipotent radical R(P[N]) of P[N] It has an open orbit, called

r[N]reg, under the action of P[N]. This orbit is the open dense subset consisting
of the elements whose powers have maximal rank, i.e. such that the i-th power
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has rank 03C0’[N]i+1 + ... + 03C0’[N]S, where s = n[N] 1 is also the number of simple
factors of the Levi group. The regular orbit is also the intersection of the G orbit
of N with r[N]. An element X of the Lie algebra r[N] does not just preserve the
flag; it actually satisfies X(Fi) ce Fi-1 and thus induces maps

Fi/Fi-1 ~ Fi-l/Fi-2. One checks that it belongs to the regular orbit if and only
if all these maps are injective.

4.2. Resolution

Let p denote the map from G  Bb to g given by [(g, X)] - Ad(g)(X). We want to
take a "direct image" of the splitting ~03C3 along p.

THEOREM 4.3. The twisted endomorphism of 03C1*(OG Bb) induced by ~03C3 leaves
invariant the subsheaf Og, and thus yields a Frobenius splitting 0 of g. For each
nilpotent matrix N in g this splitting is compatible with the closure of the conjugacy
class of N.

Proof. Let f be a regular function, defined on some open subset V of g. As p is
proper, h(03C1-1(v), (9G Bb) is finite over r( V, (9.). Moreover, g is a normal variety,
so to prove that cP(1(f) E F(V, Og), it suffices to show that it is in the function field
k(g) of g. Now the function field of G x ’ b is the same as the function field of
G  B breg = G x T treg, and the latter function field is a Galois extension with
group W of k(g), see [2]. Thus what we need to show is that ~03C3(f) is W invariant.
As f is W invariant, this will follow if the restriction of the Frobenius splitting
~03C3 to G x T treg is invariant. It is indeed invariant because of Lemma 2.7 and the
construction of ~03C3. (The p - 1-st power of the sign representation is the trivial
representation, and functions that are pulled back from g are invariant.) To
prove the last sentence of the theorem, we use that r[N] is one of the b[S] of 3.1,
because the parts of x’[N] are ordered by descending size. Thus by theorem 3.8
~03C3 leaves invariant the ideal sheaf of G x B r[N] and thus 0 leaves invariant the
ideal sheaf of p(G  Br[N]), which is indeed the closure of the conjugacy class
of N.

NOTATION 4.4. If N ~ g is a nilpotent element and S is such that r[N] = b[S],
we write a-[N] for Q[S], b[N] for b[S], 03B4r[N] for br [S]. By p[N] we denote the
restriction of p to G x B r[N] with as target the closure of the conjugacy class of
N.

PROPOSITION 4.5. If N E g is nilpotent, there is a principal effective divisor D
which contains the exceptional locus of p [N] : G x B r[N] ~ C(N) and on which
03C3[N] vanishes.

Proof. Let us show first that u[N] vanishes on the exceptional locus. This
locus is the complement of G  Br[N]reg. As its intersection with the open set
U - x r[N] is dense, we may restrict attention to that open set. Let us consider
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(g, X ) E U - x r[N] such that 6[N] does not vanish at [(g, X)]. We have to show
that X ~ r[N]reg. The map Fi/Fi-l 1~ Fi-1/Fi-2 induced by X is given by a
submatrix a of X with 03C0’[N]i columns and 03C0’[N]i-1 rows. (2  i  03C0[N]1). Let

fl be the submatrix of a consisting of the bottom 7r’[N]j rows. Choose r such that
fi is one of the blocks along the diagonal in (X + 03B4r[S])r, &#x3E;n-r· Then the
hypotheses of Lemma 3.3 apply with jB1 = X + 03B4r[S], so det(Mr,&#x3E;n-r) does not
vanish. But M r, &#x3E;n-r is a block matrix of the form

so fi has full rank and the map Fi/Fi-1 ~ Fi-l/Fi-2 is injective. It follows that

X E r[N]reg. To finish, check that the map (g, X) H det(03B2) defines a regular
function on G x B r[N].

THEOREM 4.6. If N E g is nilpotent, then C(N) is normal and has rational

singularities.

4.7. Start of proof

By 4.3, C(N) is Frobenius split, so normality will follow from [14] if we find any
normal variety mapping onto C(N) with connected fibres. One may use a map
from [10], but we prefer to use the following theorem.

THEOREM 4.8 (Spaltenstein). The fibres of p[N] : G  Br[N] ~ C(N) are

connected.

Proof Let M E r[N] and let F be the partial flag corresponding with P[N].
Note that X ~ r[N] if and only if X(Fi) c Fi-l for all i. The conjugacy classes of

nilpotents that intersect r[N] are those that are contained in the image C(N) of
03C1[N]. By section 1 of [4] the criterion for X to belong to such a class is that
dim(ker Xi)  dim(ker Ni) for all i  1. In other words, the condition is that

x[X] K 03C0[N] in the "closure ordering" of partitions, called "dominance" order
in [5]. The fiber 03C1[N]-1(M) of M is parametrized by

which maps onto a set of partial flags

through a map g H g(F), which is a proper map with connected fibres. To prove



220

the theorem it thus suffices to show that,97 is connected. Now P maps onto a set

V of linear subspaces of ker(M) by the map f which assigns to a partial flag its
first part. By an induction hypothesis we may assume the fibres of f to be
connected, as they are of the same nature as P, but for smaller n. It thus remains
to understand why 1/’ is connected. By the remarks above Y consists of the
03C0’[N]1 dimensional subspaces L of ker(M) for which the map X = ML induced
by M on k"IL satisfies dim(ker Xi)  dim(ker N’) - dim(L) for i  1. Now one

can be quite explicit about the way the Jordan type of ML 2013 or the

Young/Ferrers diagram of its partition depends on the choice of L. (We may
now forget about N.) Let ei,j be a Jordan basis of kn for M, with

eij ~ ei,j-1~ ··· ei1 ~ 0.

One may think of this basis as indexed by the boxes of the Young diagram of
rc = 03C0[M]. For a subspace L of ker M = span(el i,..., els) we define a pivot to be
an integer i such that L intersects e 1 + span(e11,..., e 1, i -1 ). Taking vectors that
realize the respective pivots gives a basis of L and the Jordan type of ML is
obtained from that of M by making the i-th block one smaller if i is a pivot.
(Exercise.) In terms of n[M], one should subtract 1 from n[M]i when i is a pivot,
and then reorder the parts again by size, if necessary. If L has i as a pivot, but not
i - 1, then one may modify the corresponding basis vector, and thus also L, to
lower the pivot by one. Doing this, the other pivots remain the same and
dim(ker(ML)i) can only increase, as one sees by looking at the partitions. So one
does not leave Y’ this way. It is easy to realize such a lowering of a pivot in a one
parameter family of subspaces in which the general element has the original set
of pivots and the special element has the "lower" set. This family thus lies inside
V. The process may be repeated until the set of pivots is {1,..., dim(L)}, in
which case L = span(e11, ... , el ,dim(L»). All of r is thus in the same connected
component as this particular subspace.

4.9. End of proof of 4.6

The map p[N] factors through the birational map G P[N]r[N] ~ C(N) and the
higher direct images of (9G x B,,[N] in G  P[N]r[N] vanish because

G Br[N] ~ G P[N]r[N] is a fibration with fibre P[N]/B to which Kempf’s
vanishing theorem applies. Further the splitting of G x B r[N] is compatible with
the zero set of 03C3[N] and its subdivisor D from 4.5 (see [13] Remark on page 34;
observe that the scheme 03C3[N] = 0 cannot contain a divisor with multiplicity &#x3E; 1

because that would make the splitting wrong in local coordinates). So by [ 15] it
follows from 4.5 that the higher direct images in C(N) of the structure sheaf of
G x B r[N] vanish. By the Leray spectral sequence the higher direct images in
C(N) of the structure sheaf of G x P[N] r[N] also vanish. And that structure sheaf
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is also isomorphic with the canonical bundle. We have thus checked the
conditions stated by Kempf on page 51 of [8]. D
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